hw.c 70 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512
  1. /******************************************************************************
  2. *
  3. * Copyright(c) 2009-2010 Realtek Corporation.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms of version 2 of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * this program; if not, write to the Free Software Foundation, Inc.,
  16. * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
  17. *
  18. * The full GNU General Public License is included in this distribution in the
  19. * file called LICENSE.
  20. *
  21. * Contact Information:
  22. * wlanfae <wlanfae@realtek.com>
  23. * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
  24. * Hsinchu 300, Taiwan.
  25. *
  26. * Larry Finger <Larry.Finger@lwfinger.net>
  27. *
  28. *****************************************************************************/
  29. #include "../wifi.h"
  30. #include "../efuse.h"
  31. #include "../base.h"
  32. #include "../regd.h"
  33. #include "../cam.h"
  34. #include "../ps.h"
  35. #include "../pci.h"
  36. #include "reg.h"
  37. #include "def.h"
  38. #include "phy.h"
  39. #include "dm.h"
  40. #include "fw.h"
  41. #include "led.h"
  42. #include "hw.h"
  43. void rtl92se_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
  44. {
  45. struct rtl_priv *rtlpriv = rtl_priv(hw);
  46. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  47. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  48. switch (variable) {
  49. case HW_VAR_RCR: {
  50. *((u32 *) (val)) = rtlpci->receive_config;
  51. break;
  52. }
  53. case HW_VAR_RF_STATE: {
  54. *((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state;
  55. break;
  56. }
  57. case HW_VAR_FW_PSMODE_STATUS: {
  58. *((bool *) (val)) = ppsc->fw_current_inpsmode;
  59. break;
  60. }
  61. case HW_VAR_CORRECT_TSF: {
  62. u64 tsf;
  63. u32 *ptsf_low = (u32 *)&tsf;
  64. u32 *ptsf_high = ((u32 *)&tsf) + 1;
  65. *ptsf_high = rtl_read_dword(rtlpriv, (TSFR + 4));
  66. *ptsf_low = rtl_read_dword(rtlpriv, TSFR);
  67. *((u64 *) (val)) = tsf;
  68. break;
  69. }
  70. case HW_VAR_MRC: {
  71. *((bool *)(val)) = rtlpriv->dm.current_mrc_switch;
  72. break;
  73. }
  74. default: {
  75. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  76. ("switch case not process\n"));
  77. break;
  78. }
  79. }
  80. }
  81. void rtl92se_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
  82. {
  83. struct rtl_priv *rtlpriv = rtl_priv(hw);
  84. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  85. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  86. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  87. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  88. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  89. switch (variable) {
  90. case HW_VAR_ETHER_ADDR:{
  91. rtl_write_dword(rtlpriv, IDR0, ((u32 *)(val))[0]);
  92. rtl_write_word(rtlpriv, IDR4, ((u16 *)(val + 4))[0]);
  93. break;
  94. }
  95. case HW_VAR_BASIC_RATE:{
  96. u16 rate_cfg = ((u16 *) val)[0];
  97. u8 rate_index = 0;
  98. if (rtlhal->version == VERSION_8192S_ACUT)
  99. rate_cfg = rate_cfg & 0x150;
  100. else
  101. rate_cfg = rate_cfg & 0x15f;
  102. rate_cfg |= 0x01;
  103. rtl_write_byte(rtlpriv, RRSR, rate_cfg & 0xff);
  104. rtl_write_byte(rtlpriv, RRSR + 1,
  105. (rate_cfg >> 8) & 0xff);
  106. while (rate_cfg > 0x1) {
  107. rate_cfg = (rate_cfg >> 1);
  108. rate_index++;
  109. }
  110. rtl_write_byte(rtlpriv, INIRTSMCS_SEL, rate_index);
  111. break;
  112. }
  113. case HW_VAR_BSSID:{
  114. rtl_write_dword(rtlpriv, BSSIDR, ((u32 *)(val))[0]);
  115. rtl_write_word(rtlpriv, BSSIDR + 4,
  116. ((u16 *)(val + 4))[0]);
  117. break;
  118. }
  119. case HW_VAR_SIFS:{
  120. rtl_write_byte(rtlpriv, SIFS_OFDM, val[0]);
  121. rtl_write_byte(rtlpriv, SIFS_OFDM + 1, val[1]);
  122. break;
  123. }
  124. case HW_VAR_SLOT_TIME:{
  125. u8 e_aci;
  126. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  127. ("HW_VAR_SLOT_TIME %x\n", val[0]));
  128. rtl_write_byte(rtlpriv, SLOT_TIME, val[0]);
  129. for (e_aci = 0; e_aci < AC_MAX; e_aci++) {
  130. rtlpriv->cfg->ops->set_hw_reg(hw,
  131. HW_VAR_AC_PARAM,
  132. (u8 *)(&e_aci));
  133. }
  134. break;
  135. }
  136. case HW_VAR_ACK_PREAMBLE:{
  137. u8 reg_tmp;
  138. u8 short_preamble = (bool) (*(u8 *) val);
  139. reg_tmp = (mac->cur_40_prime_sc) << 5;
  140. if (short_preamble)
  141. reg_tmp |= 0x80;
  142. rtl_write_byte(rtlpriv, RRSR + 2, reg_tmp);
  143. break;
  144. }
  145. case HW_VAR_AMPDU_MIN_SPACE:{
  146. u8 min_spacing_to_set;
  147. u8 sec_min_space;
  148. min_spacing_to_set = *((u8 *)val);
  149. if (min_spacing_to_set <= 7) {
  150. if (rtlpriv->sec.pairwise_enc_algorithm ==
  151. NO_ENCRYPTION)
  152. sec_min_space = 0;
  153. else
  154. sec_min_space = 1;
  155. if (min_spacing_to_set < sec_min_space)
  156. min_spacing_to_set = sec_min_space;
  157. if (min_spacing_to_set > 5)
  158. min_spacing_to_set = 5;
  159. mac->min_space_cfg =
  160. ((mac->min_space_cfg & 0xf8) |
  161. min_spacing_to_set);
  162. *val = min_spacing_to_set;
  163. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  164. ("Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
  165. mac->min_space_cfg));
  166. rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE,
  167. mac->min_space_cfg);
  168. }
  169. break;
  170. }
  171. case HW_VAR_SHORTGI_DENSITY:{
  172. u8 density_to_set;
  173. density_to_set = *((u8 *) val);
  174. mac->min_space_cfg = rtlpriv->rtlhal.minspace_cfg;
  175. mac->min_space_cfg |= (density_to_set << 3);
  176. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  177. ("Set HW_VAR_SHORTGI_DENSITY: %#x\n",
  178. mac->min_space_cfg));
  179. rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE,
  180. mac->min_space_cfg);
  181. break;
  182. }
  183. case HW_VAR_AMPDU_FACTOR:{
  184. u8 factor_toset;
  185. u8 regtoset;
  186. u8 factorlevel[18] = {
  187. 2, 4, 4, 7, 7, 13, 13,
  188. 13, 2, 7, 7, 13, 13,
  189. 15, 15, 15, 15, 0};
  190. u8 index = 0;
  191. factor_toset = *((u8 *) val);
  192. if (factor_toset <= 3) {
  193. factor_toset = (1 << (factor_toset + 2));
  194. if (factor_toset > 0xf)
  195. factor_toset = 0xf;
  196. for (index = 0; index < 17; index++) {
  197. if (factorlevel[index] > factor_toset)
  198. factorlevel[index] =
  199. factor_toset;
  200. }
  201. for (index = 0; index < 8; index++) {
  202. regtoset = ((factorlevel[index * 2]) |
  203. (factorlevel[index *
  204. 2 + 1] << 4));
  205. rtl_write_byte(rtlpriv,
  206. AGGLEN_LMT_L + index,
  207. regtoset);
  208. }
  209. regtoset = ((factorlevel[16]) |
  210. (factorlevel[17] << 4));
  211. rtl_write_byte(rtlpriv, AGGLEN_LMT_H, regtoset);
  212. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  213. ("Set HW_VAR_AMPDU_FACTOR: %#x\n",
  214. factor_toset));
  215. }
  216. break;
  217. }
  218. case HW_VAR_AC_PARAM:{
  219. u8 e_aci = *((u8 *) val);
  220. rtl92s_dm_init_edca_turbo(hw);
  221. if (rtlpci->acm_method != eAcmWay2_SW)
  222. rtlpriv->cfg->ops->set_hw_reg(hw,
  223. HW_VAR_ACM_CTRL,
  224. (u8 *)(&e_aci));
  225. break;
  226. }
  227. case HW_VAR_ACM_CTRL:{
  228. u8 e_aci = *((u8 *) val);
  229. union aci_aifsn *p_aci_aifsn = (union aci_aifsn *)(&(
  230. mac->ac[0].aifs));
  231. u8 acm = p_aci_aifsn->f.acm;
  232. u8 acm_ctrl = rtl_read_byte(rtlpriv, AcmHwCtrl);
  233. acm_ctrl = acm_ctrl | ((rtlpci->acm_method == 2) ?
  234. 0x0 : 0x1);
  235. if (acm) {
  236. switch (e_aci) {
  237. case AC0_BE:
  238. acm_ctrl |= AcmHw_BeqEn;
  239. break;
  240. case AC2_VI:
  241. acm_ctrl |= AcmHw_ViqEn;
  242. break;
  243. case AC3_VO:
  244. acm_ctrl |= AcmHw_VoqEn;
  245. break;
  246. default:
  247. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  248. ("HW_VAR_ACM_CTRL acm set "
  249. "failed: eACI is %d\n", acm));
  250. break;
  251. }
  252. } else {
  253. switch (e_aci) {
  254. case AC0_BE:
  255. acm_ctrl &= (~AcmHw_BeqEn);
  256. break;
  257. case AC2_VI:
  258. acm_ctrl &= (~AcmHw_ViqEn);
  259. break;
  260. case AC3_VO:
  261. acm_ctrl &= (~AcmHw_BeqEn);
  262. break;
  263. default:
  264. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  265. ("switch case not process\n"));
  266. break;
  267. }
  268. }
  269. RT_TRACE(rtlpriv, COMP_QOS, DBG_TRACE,
  270. ("HW_VAR_ACM_CTRL Write 0x%X\n", acm_ctrl));
  271. rtl_write_byte(rtlpriv, AcmHwCtrl, acm_ctrl);
  272. break;
  273. }
  274. case HW_VAR_RCR:{
  275. rtl_write_dword(rtlpriv, RCR, ((u32 *) (val))[0]);
  276. rtlpci->receive_config = ((u32 *) (val))[0];
  277. break;
  278. }
  279. case HW_VAR_RETRY_LIMIT:{
  280. u8 retry_limit = ((u8 *) (val))[0];
  281. rtl_write_word(rtlpriv, RETRY_LIMIT,
  282. retry_limit << RETRY_LIMIT_SHORT_SHIFT |
  283. retry_limit << RETRY_LIMIT_LONG_SHIFT);
  284. break;
  285. }
  286. case HW_VAR_DUAL_TSF_RST: {
  287. break;
  288. }
  289. case HW_VAR_EFUSE_BYTES: {
  290. rtlefuse->efuse_usedbytes = *((u16 *) val);
  291. break;
  292. }
  293. case HW_VAR_EFUSE_USAGE: {
  294. rtlefuse->efuse_usedpercentage = *((u8 *) val);
  295. break;
  296. }
  297. case HW_VAR_IO_CMD: {
  298. break;
  299. }
  300. case HW_VAR_WPA_CONFIG: {
  301. rtl_write_byte(rtlpriv, REG_SECR, *((u8 *) val));
  302. break;
  303. }
  304. case HW_VAR_SET_RPWM:{
  305. break;
  306. }
  307. case HW_VAR_H2C_FW_PWRMODE:{
  308. break;
  309. }
  310. case HW_VAR_FW_PSMODE_STATUS: {
  311. ppsc->fw_current_inpsmode = *((bool *) val);
  312. break;
  313. }
  314. case HW_VAR_H2C_FW_JOINBSSRPT:{
  315. break;
  316. }
  317. case HW_VAR_AID:{
  318. break;
  319. }
  320. case HW_VAR_CORRECT_TSF:{
  321. break;
  322. }
  323. case HW_VAR_MRC: {
  324. bool bmrc_toset = *((bool *)val);
  325. u8 u1bdata = 0;
  326. if (bmrc_toset) {
  327. rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
  328. MASKBYTE0, 0x33);
  329. u1bdata = (u8)rtl_get_bbreg(hw,
  330. ROFDM1_TRXPATHENABLE,
  331. MASKBYTE0);
  332. rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE,
  333. MASKBYTE0,
  334. ((u1bdata & 0xf0) | 0x03));
  335. u1bdata = (u8)rtl_get_bbreg(hw,
  336. ROFDM0_TRXPATHENABLE,
  337. MASKBYTE1);
  338. rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
  339. MASKBYTE1,
  340. (u1bdata | 0x04));
  341. /* Update current settings. */
  342. rtlpriv->dm.current_mrc_switch = bmrc_toset;
  343. } else {
  344. rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
  345. MASKBYTE0, 0x13);
  346. u1bdata = (u8)rtl_get_bbreg(hw,
  347. ROFDM1_TRXPATHENABLE,
  348. MASKBYTE0);
  349. rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE,
  350. MASKBYTE0,
  351. ((u1bdata & 0xf0) | 0x01));
  352. u1bdata = (u8)rtl_get_bbreg(hw,
  353. ROFDM0_TRXPATHENABLE,
  354. MASKBYTE1);
  355. rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
  356. MASKBYTE1, (u1bdata & 0xfb));
  357. /* Update current settings. */
  358. rtlpriv->dm.current_mrc_switch = bmrc_toset;
  359. }
  360. break;
  361. }
  362. default:
  363. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  364. ("switch case not process\n"));
  365. break;
  366. }
  367. }
  368. void rtl92se_enable_hw_security_config(struct ieee80211_hw *hw)
  369. {
  370. struct rtl_priv *rtlpriv = rtl_priv(hw);
  371. u8 sec_reg_value = 0x0;
  372. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, ("PairwiseEncAlgorithm = %d "
  373. "GroupEncAlgorithm = %d\n",
  374. rtlpriv->sec.pairwise_enc_algorithm,
  375. rtlpriv->sec.group_enc_algorithm));
  376. if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) {
  377. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  378. ("not open hw encryption\n"));
  379. return;
  380. }
  381. sec_reg_value = SCR_TXENCENABLE | SCR_RXENCENABLE;
  382. if (rtlpriv->sec.use_defaultkey) {
  383. sec_reg_value |= SCR_TXUSEDK;
  384. sec_reg_value |= SCR_RXUSEDK;
  385. }
  386. RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD, ("The SECR-value %x\n",
  387. sec_reg_value));
  388. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value);
  389. }
  390. static u8 _rtl92ce_halset_sysclk(struct ieee80211_hw *hw, u8 data)
  391. {
  392. struct rtl_priv *rtlpriv = rtl_priv(hw);
  393. u8 waitcount = 100;
  394. bool bresult = false;
  395. u8 tmpvalue;
  396. rtl_write_byte(rtlpriv, SYS_CLKR + 1, data);
  397. /* Wait the MAC synchronized. */
  398. udelay(400);
  399. /* Check if it is set ready. */
  400. tmpvalue = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
  401. bresult = ((tmpvalue & BIT(7)) == (data & BIT(7)));
  402. if ((data & (BIT(6) | BIT(7))) == false) {
  403. waitcount = 100;
  404. tmpvalue = 0;
  405. while (1) {
  406. waitcount--;
  407. tmpvalue = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
  408. if ((tmpvalue & BIT(6)))
  409. break;
  410. printk(KERN_ERR "wait for BIT(6) return value %x\n",
  411. tmpvalue);
  412. if (waitcount == 0)
  413. break;
  414. udelay(10);
  415. }
  416. if (waitcount == 0)
  417. bresult = false;
  418. else
  419. bresult = true;
  420. }
  421. return bresult;
  422. }
  423. void rtl8192se_gpiobit3_cfg_inputmode(struct ieee80211_hw *hw)
  424. {
  425. struct rtl_priv *rtlpriv = rtl_priv(hw);
  426. u8 u1tmp;
  427. /* The following config GPIO function */
  428. rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, (GPIOMUX_EN | GPIOSEL_GPIO));
  429. u1tmp = rtl_read_byte(rtlpriv, GPIO_IO_SEL);
  430. /* config GPIO3 to input */
  431. u1tmp &= HAL_8192S_HW_GPIO_OFF_MASK;
  432. rtl_write_byte(rtlpriv, GPIO_IO_SEL, u1tmp);
  433. }
  434. static u8 _rtl92se_rf_onoff_detect(struct ieee80211_hw *hw)
  435. {
  436. struct rtl_priv *rtlpriv = rtl_priv(hw);
  437. u8 u1tmp;
  438. u8 retval = ERFON;
  439. /* The following config GPIO function */
  440. rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, (GPIOMUX_EN | GPIOSEL_GPIO));
  441. u1tmp = rtl_read_byte(rtlpriv, GPIO_IO_SEL);
  442. /* config GPIO3 to input */
  443. u1tmp &= HAL_8192S_HW_GPIO_OFF_MASK;
  444. rtl_write_byte(rtlpriv, GPIO_IO_SEL, u1tmp);
  445. /* On some of the platform, driver cannot read correct
  446. * value without delay between Write_GPIO_SEL and Read_GPIO_IN */
  447. mdelay(10);
  448. /* check GPIO3 */
  449. u1tmp = rtl_read_byte(rtlpriv, GPIO_IN);
  450. retval = (u1tmp & HAL_8192S_HW_GPIO_OFF_BIT) ? ERFON : ERFOFF;
  451. return retval;
  452. }
  453. static void _rtl92se_macconfig_before_fwdownload(struct ieee80211_hw *hw)
  454. {
  455. struct rtl_priv *rtlpriv = rtl_priv(hw);
  456. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  457. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  458. u8 i;
  459. u8 tmpu1b;
  460. u16 tmpu2b;
  461. u8 pollingcnt = 20;
  462. if (rtlpci->first_init) {
  463. /* Reset PCIE Digital */
  464. tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
  465. tmpu1b &= 0xFE;
  466. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
  467. udelay(1);
  468. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b | BIT(0));
  469. }
  470. /* Switch to SW IO control */
  471. tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
  472. if (tmpu1b & BIT(7)) {
  473. tmpu1b &= ~(BIT(6) | BIT(7));
  474. /* Set failed, return to prevent hang. */
  475. if (!_rtl92ce_halset_sysclk(hw, tmpu1b))
  476. return;
  477. }
  478. rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x0);
  479. udelay(50);
  480. rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
  481. udelay(50);
  482. /* Clear FW RPWM for FW control LPS.*/
  483. rtl_write_byte(rtlpriv, RPWM, 0x0);
  484. /* Reset MAC-IO and CPU and Core Digital BIT(10)/11/15 */
  485. tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
  486. tmpu1b &= 0x73;
  487. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
  488. /* wait for BIT 10/11/15 to pull high automatically!! */
  489. mdelay(1);
  490. rtl_write_byte(rtlpriv, CMDR, 0);
  491. rtl_write_byte(rtlpriv, TCR, 0);
  492. /* Data sheet not define 0x562!!! Copy from WMAC!!!!! */
  493. tmpu1b = rtl_read_byte(rtlpriv, 0x562);
  494. tmpu1b |= 0x08;
  495. rtl_write_byte(rtlpriv, 0x562, tmpu1b);
  496. tmpu1b &= ~(BIT(3));
  497. rtl_write_byte(rtlpriv, 0x562, tmpu1b);
  498. /* Enable AFE clock source */
  499. tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL);
  500. rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, (tmpu1b | 0x01));
  501. /* Delay 1.5ms */
  502. mdelay(2);
  503. tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL + 1);
  504. rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, (tmpu1b & 0xfb));
  505. /* Enable AFE Macro Block's Bandgap */
  506. tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
  507. rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | BIT(0)));
  508. mdelay(1);
  509. /* Enable AFE Mbias */
  510. tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
  511. rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | 0x02));
  512. mdelay(1);
  513. /* Enable LDOA15 block */
  514. tmpu1b = rtl_read_byte(rtlpriv, LDOA15_CTRL);
  515. rtl_write_byte(rtlpriv, LDOA15_CTRL, (tmpu1b | BIT(0)));
  516. /* Set Digital Vdd to Retention isolation Path. */
  517. tmpu2b = rtl_read_word(rtlpriv, REG_SYS_ISO_CTRL);
  518. rtl_write_word(rtlpriv, REG_SYS_ISO_CTRL, (tmpu2b | BIT(11)));
  519. /* For warm reboot NIC disappera bug. */
  520. tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
  521. rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(13)));
  522. rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x68);
  523. /* Enable AFE PLL Macro Block */
  524. /* We need to delay 100u before enabling PLL. */
  525. udelay(200);
  526. tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL);
  527. rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
  528. /* for divider reset */
  529. udelay(100);
  530. rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) |
  531. BIT(4) | BIT(6)));
  532. udelay(10);
  533. rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
  534. udelay(10);
  535. /* Enable MAC 80MHZ clock */
  536. tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL + 1);
  537. rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, (tmpu1b | BIT(0)));
  538. mdelay(1);
  539. /* Release isolation AFE PLL & MD */
  540. rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, 0xA6);
  541. /* Enable MAC clock */
  542. tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
  543. rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b | BIT(12) | BIT(11)));
  544. /* Enable Core digital and enable IOREG R/W */
  545. tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
  546. rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11)));
  547. tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
  548. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b & ~(BIT(7)));
  549. /* enable REG_EN */
  550. rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11) | BIT(15)));
  551. /* Switch the control path. */
  552. tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
  553. rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b & (~BIT(2))));
  554. tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
  555. tmpu1b = ((tmpu1b | BIT(7)) & (~BIT(6)));
  556. if (!_rtl92ce_halset_sysclk(hw, tmpu1b))
  557. return; /* Set failed, return to prevent hang. */
  558. rtl_write_word(rtlpriv, CMDR, 0x07FC);
  559. /* MH We must enable the section of code to prevent load IMEM fail. */
  560. /* Load MAC register from WMAc temporarily We simulate macreg. */
  561. /* txt HW will provide MAC txt later */
  562. rtl_write_byte(rtlpriv, 0x6, 0x30);
  563. rtl_write_byte(rtlpriv, 0x49, 0xf0);
  564. rtl_write_byte(rtlpriv, 0x4b, 0x81);
  565. rtl_write_byte(rtlpriv, 0xb5, 0x21);
  566. rtl_write_byte(rtlpriv, 0xdc, 0xff);
  567. rtl_write_byte(rtlpriv, 0xdd, 0xff);
  568. rtl_write_byte(rtlpriv, 0xde, 0xff);
  569. rtl_write_byte(rtlpriv, 0xdf, 0xff);
  570. rtl_write_byte(rtlpriv, 0x11a, 0x00);
  571. rtl_write_byte(rtlpriv, 0x11b, 0x00);
  572. for (i = 0; i < 32; i++)
  573. rtl_write_byte(rtlpriv, INIMCS_SEL + i, 0x1b);
  574. rtl_write_byte(rtlpriv, 0x236, 0xff);
  575. rtl_write_byte(rtlpriv, 0x503, 0x22);
  576. if (ppsc->support_aspm && !ppsc->support_backdoor)
  577. rtl_write_byte(rtlpriv, 0x560, 0x40);
  578. else
  579. rtl_write_byte(rtlpriv, 0x560, 0x00);
  580. rtl_write_byte(rtlpriv, DBG_PORT, 0x91);
  581. /* Set RX Desc Address */
  582. rtl_write_dword(rtlpriv, RDQDA, rtlpci->rx_ring[RX_MPDU_QUEUE].dma);
  583. rtl_write_dword(rtlpriv, RCDA, rtlpci->rx_ring[RX_CMD_QUEUE].dma);
  584. /* Set TX Desc Address */
  585. rtl_write_dword(rtlpriv, TBKDA, rtlpci->tx_ring[BK_QUEUE].dma);
  586. rtl_write_dword(rtlpriv, TBEDA, rtlpci->tx_ring[BE_QUEUE].dma);
  587. rtl_write_dword(rtlpriv, TVIDA, rtlpci->tx_ring[VI_QUEUE].dma);
  588. rtl_write_dword(rtlpriv, TVODA, rtlpci->tx_ring[VO_QUEUE].dma);
  589. rtl_write_dword(rtlpriv, TBDA, rtlpci->tx_ring[BEACON_QUEUE].dma);
  590. rtl_write_dword(rtlpriv, TCDA, rtlpci->tx_ring[TXCMD_QUEUE].dma);
  591. rtl_write_dword(rtlpriv, TMDA, rtlpci->tx_ring[MGNT_QUEUE].dma);
  592. rtl_write_dword(rtlpriv, THPDA, rtlpci->tx_ring[HIGH_QUEUE].dma);
  593. rtl_write_dword(rtlpriv, HDA, rtlpci->tx_ring[HCCA_QUEUE].dma);
  594. rtl_write_word(rtlpriv, CMDR, 0x37FC);
  595. /* To make sure that TxDMA can ready to download FW. */
  596. /* We should reset TxDMA if IMEM RPT was not ready. */
  597. do {
  598. tmpu1b = rtl_read_byte(rtlpriv, TCR);
  599. if ((tmpu1b & TXDMA_INIT_VALUE) == TXDMA_INIT_VALUE)
  600. break;
  601. udelay(5);
  602. } while (pollingcnt--);
  603. if (pollingcnt <= 0) {
  604. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  605. ("Polling TXDMA_INIT_VALUE "
  606. "timeout!! Current TCR(%#x)\n", tmpu1b));
  607. tmpu1b = rtl_read_byte(rtlpriv, CMDR);
  608. rtl_write_byte(rtlpriv, CMDR, tmpu1b & (~TXDMA_EN));
  609. udelay(2);
  610. /* Reset TxDMA */
  611. rtl_write_byte(rtlpriv, CMDR, tmpu1b | TXDMA_EN);
  612. }
  613. /* After MACIO reset,we must refresh LED state. */
  614. if ((ppsc->rfoff_reason == RF_CHANGE_BY_IPS) ||
  615. (ppsc->rfoff_reason == 0)) {
  616. struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
  617. struct rtl_led *pLed0 = &(pcipriv->ledctl.sw_led0);
  618. enum rf_pwrstate rfpwr_state_toset;
  619. rfpwr_state_toset = _rtl92se_rf_onoff_detect(hw);
  620. if (rfpwr_state_toset == ERFON)
  621. rtl92se_sw_led_on(hw, pLed0);
  622. }
  623. }
  624. static void _rtl92se_macconfig_after_fwdownload(struct ieee80211_hw *hw)
  625. {
  626. struct rtl_priv *rtlpriv = rtl_priv(hw);
  627. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  628. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  629. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  630. u8 i;
  631. u16 tmpu2b;
  632. /* 1. System Configure Register (Offset: 0x0000 - 0x003F) */
  633. /* 2. Command Control Register (Offset: 0x0040 - 0x004F) */
  634. /* Turn on 0x40 Command register */
  635. rtl_write_word(rtlpriv, CMDR, (BBRSTN | BB_GLB_RSTN |
  636. SCHEDULE_EN | MACRXEN | MACTXEN | DDMA_EN | FW2HW_EN |
  637. RXDMA_EN | TXDMA_EN | HCI_RXDMA_EN | HCI_TXDMA_EN));
  638. /* Set TCR TX DMA pre 2 FULL enable bit */
  639. rtl_write_dword(rtlpriv, TCR, rtl_read_dword(rtlpriv, TCR) |
  640. TXDMAPRE2FULL);
  641. /* Set RCR */
  642. rtl_write_dword(rtlpriv, RCR, rtlpci->receive_config);
  643. /* 3. MACID Setting Register (Offset: 0x0050 - 0x007F) */
  644. /* 4. Timing Control Register (Offset: 0x0080 - 0x009F) */
  645. /* Set CCK/OFDM SIFS */
  646. /* CCK SIFS shall always be 10us. */
  647. rtl_write_word(rtlpriv, SIFS_CCK, 0x0a0a);
  648. rtl_write_word(rtlpriv, SIFS_OFDM, 0x1010);
  649. /* Set AckTimeout */
  650. rtl_write_byte(rtlpriv, ACK_TIMEOUT, 0x40);
  651. /* Beacon related */
  652. rtl_write_word(rtlpriv, BCN_INTERVAL, 100);
  653. rtl_write_word(rtlpriv, ATIMWND, 2);
  654. /* 5. FIFO Control Register (Offset: 0x00A0 - 0x015F) */
  655. /* 5.1 Initialize Number of Reserved Pages in Firmware Queue */
  656. /* Firmware allocate now, associate with FW internal setting.!!! */
  657. /* 5.2 Setting TX/RX page size 0/1/2/3/4=64/128/256/512/1024 */
  658. /* 5.3 Set driver info, we only accept PHY status now. */
  659. /* 5.4 Set RXDMA arbitration to control RXDMA/MAC/FW R/W for RXFIFO */
  660. rtl_write_byte(rtlpriv, RXDMA, rtl_read_byte(rtlpriv, RXDMA) | BIT(6));
  661. /* 6. Adaptive Control Register (Offset: 0x0160 - 0x01CF) */
  662. /* Set RRSR to all legacy rate and HT rate
  663. * CCK rate is supported by default.
  664. * CCK rate will be filtered out only when associated
  665. * AP does not support it.
  666. * Only enable ACK rate to OFDM 24M
  667. * Disable RRSR for CCK rate in A-Cut */
  668. if (rtlhal->version == VERSION_8192S_ACUT)
  669. rtl_write_byte(rtlpriv, RRSR, 0xf0);
  670. else if (rtlhal->version == VERSION_8192S_BCUT)
  671. rtl_write_byte(rtlpriv, RRSR, 0xff);
  672. rtl_write_byte(rtlpriv, RRSR + 1, 0x01);
  673. rtl_write_byte(rtlpriv, RRSR + 2, 0x00);
  674. /* A-Cut IC do not support CCK rate. We forbid ARFR to */
  675. /* fallback to CCK rate */
  676. for (i = 0; i < 8; i++) {
  677. /*Disable RRSR for CCK rate in A-Cut */
  678. if (rtlhal->version == VERSION_8192S_ACUT)
  679. rtl_write_dword(rtlpriv, ARFR0 + i * 4, 0x1f0ff0f0);
  680. }
  681. /* Different rate use different AMPDU size */
  682. /* MCS32/ MCS15_SG use max AMPDU size 15*2=30K */
  683. rtl_write_byte(rtlpriv, AGGLEN_LMT_H, 0x0f);
  684. /* MCS0/1/2/3 use max AMPDU size 4*2=8K */
  685. rtl_write_word(rtlpriv, AGGLEN_LMT_L, 0x7442);
  686. /* MCS4/5 use max AMPDU size 8*2=16K 6/7 use 10*2=20K */
  687. rtl_write_word(rtlpriv, AGGLEN_LMT_L + 2, 0xddd7);
  688. /* MCS8/9 use max AMPDU size 8*2=16K 10/11 use 10*2=20K */
  689. rtl_write_word(rtlpriv, AGGLEN_LMT_L + 4, 0xd772);
  690. /* MCS12/13/14/15 use max AMPDU size 15*2=30K */
  691. rtl_write_word(rtlpriv, AGGLEN_LMT_L + 6, 0xfffd);
  692. /* Set Data / Response auto rate fallack retry count */
  693. rtl_write_dword(rtlpriv, DARFRC, 0x04010000);
  694. rtl_write_dword(rtlpriv, DARFRC + 4, 0x09070605);
  695. rtl_write_dword(rtlpriv, RARFRC, 0x04010000);
  696. rtl_write_dword(rtlpriv, RARFRC + 4, 0x09070605);
  697. /* 7. EDCA Setting Register (Offset: 0x01D0 - 0x01FF) */
  698. /* Set all rate to support SG */
  699. rtl_write_word(rtlpriv, SG_RATE, 0xFFFF);
  700. /* 8. WMAC, BA, and CCX related Register (Offset: 0x0200 - 0x023F) */
  701. /* Set NAV protection length */
  702. rtl_write_word(rtlpriv, NAV_PROT_LEN, 0x0080);
  703. /* CF-END Threshold */
  704. rtl_write_byte(rtlpriv, CFEND_TH, 0xFF);
  705. /* Set AMPDU minimum space */
  706. rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE, 0x07);
  707. /* Set TXOP stall control for several queue/HI/BCN/MGT/ */
  708. rtl_write_byte(rtlpriv, TXOP_STALL_CTRL, 0x00);
  709. /* 9. Security Control Register (Offset: 0x0240 - 0x025F) */
  710. /* 10. Power Save Control Register (Offset: 0x0260 - 0x02DF) */
  711. /* 11. General Purpose Register (Offset: 0x02E0 - 0x02FF) */
  712. /* 12. Host Interrupt Status Register (Offset: 0x0300 - 0x030F) */
  713. /* 13. Test Mode and Debug Control Register (Offset: 0x0310 - 0x034F) */
  714. /* 14. Set driver info, we only accept PHY status now. */
  715. rtl_write_byte(rtlpriv, RXDRVINFO_SZ, 4);
  716. /* 15. For EEPROM R/W Workaround */
  717. /* 16. For EFUSE to share REG_SYS_FUNC_EN with EEPROM!!! */
  718. tmpu2b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN);
  719. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, tmpu2b | BIT(13));
  720. tmpu2b = rtl_read_byte(rtlpriv, REG_SYS_ISO_CTRL);
  721. rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, tmpu2b & (~BIT(8)));
  722. /* 17. For EFUSE */
  723. /* We may R/W EFUSE in EEPROM mode */
  724. if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) {
  725. u8 tempval;
  726. tempval = rtl_read_byte(rtlpriv, REG_SYS_ISO_CTRL + 1);
  727. tempval &= 0xFE;
  728. rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, tempval);
  729. /* Change Program timing */
  730. rtl_write_byte(rtlpriv, REG_EFUSE_CTRL + 3, 0x72);
  731. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, ("EFUSE CONFIG OK\n"));
  732. }
  733. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, ("OK\n"));
  734. }
  735. static void _rtl92se_hw_configure(struct ieee80211_hw *hw)
  736. {
  737. struct rtl_priv *rtlpriv = rtl_priv(hw);
  738. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  739. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  740. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  741. u8 reg_bw_opmode = 0;
  742. u32 reg_ratr = 0, reg_rrsr = 0;
  743. u8 regtmp = 0;
  744. reg_bw_opmode = BW_OPMODE_20MHZ;
  745. reg_ratr = RATE_ALL_CCK | RATE_ALL_OFDM_AG | RATE_ALL_OFDM_1SS |
  746. RATE_ALL_OFDM_2SS;
  747. reg_rrsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
  748. regtmp = rtl_read_byte(rtlpriv, INIRTSMCS_SEL);
  749. reg_rrsr = ((reg_rrsr & 0x000fffff) << 8) | regtmp;
  750. rtl_write_dword(rtlpriv, INIRTSMCS_SEL, reg_rrsr);
  751. rtl_write_byte(rtlpriv, BW_OPMODE, reg_bw_opmode);
  752. /* Set Retry Limit here */
  753. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RETRY_LIMIT,
  754. (u8 *)(&rtlpci->shortretry_limit));
  755. rtl_write_byte(rtlpriv, MLT, 0x8f);
  756. /* For Min Spacing configuration. */
  757. switch (rtlphy->rf_type) {
  758. case RF_1T2R:
  759. case RF_1T1R:
  760. rtlhal->minspace_cfg = (MAX_MSS_DENSITY_1T << 3);
  761. break;
  762. case RF_2T2R:
  763. case RF_2T2R_GREEN:
  764. rtlhal->minspace_cfg = (MAX_MSS_DENSITY_2T << 3);
  765. break;
  766. }
  767. rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE, rtlhal->minspace_cfg);
  768. }
  769. int rtl92se_hw_init(struct ieee80211_hw *hw)
  770. {
  771. struct rtl_priv *rtlpriv = rtl_priv(hw);
  772. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  773. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  774. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  775. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  776. u8 tmp_byte = 0;
  777. bool rtstatus = true;
  778. u8 tmp_u1b;
  779. int err = false;
  780. u8 i;
  781. int wdcapra_add[] = {
  782. EDCAPARA_BE, EDCAPARA_BK,
  783. EDCAPARA_VI, EDCAPARA_VO};
  784. u8 secr_value = 0x0;
  785. rtlpci->being_init_adapter = true;
  786. rtlpriv->intf_ops->disable_aspm(hw);
  787. /* 1. MAC Initialize */
  788. /* Before FW download, we have to set some MAC register */
  789. _rtl92se_macconfig_before_fwdownload(hw);
  790. rtlhal->version = (enum version_8192s)((rtl_read_dword(rtlpriv,
  791. PMC_FSM) >> 16) & 0xF);
  792. rtl8192se_gpiobit3_cfg_inputmode(hw);
  793. /* 2. download firmware */
  794. rtstatus = rtl92s_download_fw(hw);
  795. if (!rtstatus) {
  796. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  797. ("Failed to download FW. "
  798. "Init HW without FW now.., Please copy FW into"
  799. "/lib/firmware/rtlwifi\n"));
  800. rtlhal->fw_ready = false;
  801. } else {
  802. rtlhal->fw_ready = true;
  803. }
  804. /* After FW download, we have to reset MAC register */
  805. _rtl92se_macconfig_after_fwdownload(hw);
  806. /*Retrieve default FW Cmd IO map. */
  807. rtlhal->fwcmd_iomap = rtl_read_word(rtlpriv, LBUS_MON_ADDR);
  808. rtlhal->fwcmd_ioparam = rtl_read_dword(rtlpriv, LBUS_ADDR_MASK);
  809. /* 3. Initialize MAC/PHY Config by MACPHY_reg.txt */
  810. if (rtl92s_phy_mac_config(hw) != true) {
  811. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, ("MAC Config failed\n"));
  812. return rtstatus;
  813. }
  814. /* Make sure BB/RF write OK. We should prevent enter IPS. radio off. */
  815. /* We must set flag avoid BB/RF config period later!! */
  816. rtl_write_dword(rtlpriv, CMDR, 0x37FC);
  817. /* 4. Initialize BB After MAC Config PHY_reg.txt, AGC_Tab.txt */
  818. if (rtl92s_phy_bb_config(hw) != true) {
  819. RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG, ("BB Config failed\n"));
  820. return rtstatus;
  821. }
  822. /* 5. Initiailze RF RAIO_A.txt RF RAIO_B.txt */
  823. /* Before initalizing RF. We can not use FW to do RF-R/W. */
  824. rtlphy->rf_mode = RF_OP_BY_SW_3WIRE;
  825. /* RF Power Save */
  826. #if 0
  827. /* H/W or S/W RF OFF before sleep. */
  828. if (rtlpriv->psc.rfoff_reason > RF_CHANGE_BY_PS) {
  829. u32 rfoffreason = rtlpriv->psc.rfoff_reason;
  830. rtlpriv->psc.rfoff_reason = RF_CHANGE_BY_INIT;
  831. rtlpriv->psc.rfpwr_state = ERFON;
  832. rtl_ps_set_rf_state(hw, ERFOFF, rfoffreason, true);
  833. } else {
  834. /* gpio radio on/off is out of adapter start */
  835. if (rtlpriv->psc.hwradiooff == false) {
  836. rtlpriv->psc.rfpwr_state = ERFON;
  837. rtlpriv->psc.rfoff_reason = 0;
  838. }
  839. }
  840. #endif
  841. /* Before RF-R/W we must execute the IO from Scott's suggestion. */
  842. rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, 0xDB);
  843. if (rtlhal->version == VERSION_8192S_ACUT)
  844. rtl_write_byte(rtlpriv, SPS1_CTRL + 3, 0x07);
  845. else
  846. rtl_write_byte(rtlpriv, RF_CTRL, 0x07);
  847. if (rtl92s_phy_rf_config(hw) != true) {
  848. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, ("RF Config failed\n"));
  849. return rtstatus;
  850. }
  851. /* After read predefined TXT, we must set BB/MAC/RF
  852. * register as our requirement */
  853. rtlphy->rfreg_chnlval[0] = rtl92s_phy_query_rf_reg(hw,
  854. (enum radio_path)0,
  855. RF_CHNLBW,
  856. RFREG_OFFSET_MASK);
  857. rtlphy->rfreg_chnlval[1] = rtl92s_phy_query_rf_reg(hw,
  858. (enum radio_path)1,
  859. RF_CHNLBW,
  860. RFREG_OFFSET_MASK);
  861. /*---- Set CCK and OFDM Block "ON"----*/
  862. rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1);
  863. rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1);
  864. /*3 Set Hardware(Do nothing now) */
  865. _rtl92se_hw_configure(hw);
  866. /* Read EEPROM TX power index and PHY_REG_PG.txt to capture correct */
  867. /* TX power index for different rate set. */
  868. /* Get original hw reg values */
  869. rtl92s_phy_get_hw_reg_originalvalue(hw);
  870. /* Write correct tx power index */
  871. rtl92s_phy_set_txpower(hw, rtlphy->current_channel);
  872. /* We must set MAC address after firmware download. */
  873. for (i = 0; i < 6; i++)
  874. rtl_write_byte(rtlpriv, MACIDR0 + i, rtlefuse->dev_addr[i]);
  875. /* EEPROM R/W workaround */
  876. tmp_u1b = rtl_read_byte(rtlpriv, MAC_PINMUX_CFG);
  877. rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, tmp_u1b & (~BIT(3)));
  878. rtl_write_byte(rtlpriv, 0x4d, 0x0);
  879. if (hal_get_firmwareversion(rtlpriv) >= 0x49) {
  880. tmp_byte = rtl_read_byte(rtlpriv, FW_RSVD_PG_CRTL) & (~BIT(4));
  881. tmp_byte = tmp_byte | BIT(5);
  882. rtl_write_byte(rtlpriv, FW_RSVD_PG_CRTL, tmp_byte);
  883. rtl_write_dword(rtlpriv, TXDESC_MSK, 0xFFFFCFFF);
  884. }
  885. /* We enable high power and RA related mechanism after NIC
  886. * initialized. */
  887. rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_INIT);
  888. /* Add to prevent ASPM bug. */
  889. /* Always enable hst and NIC clock request. */
  890. rtl92s_phy_switch_ephy_parameter(hw);
  891. /* Security related
  892. * 1. Clear all H/W keys.
  893. * 2. Enable H/W encryption/decryption. */
  894. rtl_cam_reset_all_entry(hw);
  895. secr_value |= SCR_TXENCENABLE;
  896. secr_value |= SCR_RXENCENABLE;
  897. secr_value |= SCR_NOSKMC;
  898. rtl_write_byte(rtlpriv, REG_SECR, secr_value);
  899. for (i = 0; i < 4; i++)
  900. rtl_write_dword(rtlpriv, wdcapra_add[i], 0x5e4322);
  901. if (rtlphy->rf_type == RF_1T2R) {
  902. bool mrc2set = true;
  903. /* Turn on B-Path */
  904. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_MRC, (u8 *)&mrc2set);
  905. }
  906. rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_ON);
  907. rtl92s_dm_init(hw);
  908. rtlpci->being_init_adapter = false;
  909. return err;
  910. }
  911. void rtl92se_set_mac_addr(struct rtl_io *io, const u8 * addr)
  912. {
  913. }
  914. void rtl92se_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid)
  915. {
  916. struct rtl_priv *rtlpriv = rtl_priv(hw);
  917. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  918. u32 reg_rcr = rtlpci->receive_config;
  919. if (rtlpriv->psc.rfpwr_state != ERFON)
  920. return;
  921. if (check_bssid == true) {
  922. reg_rcr |= (RCR_CBSSID);
  923. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
  924. } else if (check_bssid == false) {
  925. reg_rcr &= (~RCR_CBSSID);
  926. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
  927. }
  928. }
  929. static int _rtl92se_set_media_status(struct ieee80211_hw *hw,
  930. enum nl80211_iftype type)
  931. {
  932. struct rtl_priv *rtlpriv = rtl_priv(hw);
  933. u8 bt_msr = rtl_read_byte(rtlpriv, MSR);
  934. enum led_ctl_mode ledaction = LED_CTL_NO_LINK;
  935. u32 temp;
  936. bt_msr &= ~MSR_LINK_MASK;
  937. switch (type) {
  938. case NL80211_IFTYPE_UNSPECIFIED:
  939. bt_msr |= (MSR_LINK_NONE << MSR_LINK_SHIFT);
  940. ledaction = LED_CTL_LINK;
  941. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  942. ("Set Network type to NO LINK!\n"));
  943. break;
  944. case NL80211_IFTYPE_ADHOC:
  945. bt_msr |= (MSR_LINK_ADHOC << MSR_LINK_SHIFT);
  946. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  947. ("Set Network type to Ad Hoc!\n"));
  948. break;
  949. case NL80211_IFTYPE_STATION:
  950. bt_msr |= (MSR_LINK_MANAGED << MSR_LINK_SHIFT);
  951. ledaction = LED_CTL_LINK;
  952. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  953. ("Set Network type to STA!\n"));
  954. break;
  955. case NL80211_IFTYPE_AP:
  956. bt_msr |= (MSR_LINK_MASTER << MSR_LINK_SHIFT);
  957. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  958. ("Set Network type to AP!\n"));
  959. break;
  960. default:
  961. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  962. ("Network type %d not support!\n", type));
  963. return 1;
  964. break;
  965. }
  966. rtl_write_byte(rtlpriv, (MSR), bt_msr);
  967. temp = rtl_read_dword(rtlpriv, TCR);
  968. rtl_write_dword(rtlpriv, TCR, temp & (~BIT(8)));
  969. rtl_write_dword(rtlpriv, TCR, temp | BIT(8));
  970. return 0;
  971. }
  972. /* HW_VAR_MEDIA_STATUS & HW_VAR_CECHK_BSSID */
  973. int rtl92se_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type)
  974. {
  975. struct rtl_priv *rtlpriv = rtl_priv(hw);
  976. if (_rtl92se_set_media_status(hw, type))
  977. return -EOPNOTSUPP;
  978. if (rtlpriv->mac80211.link_state == MAC80211_LINKED) {
  979. if (type != NL80211_IFTYPE_AP)
  980. rtl92se_set_check_bssid(hw, true);
  981. } else {
  982. rtl92se_set_check_bssid(hw, false);
  983. }
  984. return 0;
  985. }
  986. /* don't set REG_EDCA_BE_PARAM here because mac80211 will send pkt when scan */
  987. void rtl92se_set_qos(struct ieee80211_hw *hw, int aci)
  988. {
  989. struct rtl_priv *rtlpriv = rtl_priv(hw);
  990. rtl92s_dm_init_edca_turbo(hw);
  991. switch (aci) {
  992. case AC1_BK:
  993. rtl_write_dword(rtlpriv, EDCAPARA_BK, 0xa44f);
  994. break;
  995. case AC0_BE:
  996. /* rtl_write_dword(rtlpriv, EDCAPARA_BE, u4b_ac_param); */
  997. break;
  998. case AC2_VI:
  999. rtl_write_dword(rtlpriv, EDCAPARA_VI, 0x5e4322);
  1000. break;
  1001. case AC3_VO:
  1002. rtl_write_dword(rtlpriv, EDCAPARA_VO, 0x2f3222);
  1003. break;
  1004. default:
  1005. RT_ASSERT(false, ("invalid aci: %d !\n", aci));
  1006. break;
  1007. }
  1008. }
  1009. void rtl92se_enable_interrupt(struct ieee80211_hw *hw)
  1010. {
  1011. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1012. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1013. rtl_write_dword(rtlpriv, INTA_MASK, rtlpci->irq_mask[0]);
  1014. /* Support Bit 32-37(Assign as Bit 0-5) interrupt setting now */
  1015. rtl_write_dword(rtlpriv, INTA_MASK + 4, rtlpci->irq_mask[1] & 0x3F);
  1016. rtlpci->irq_enabled = true;
  1017. }
  1018. void rtl92se_disable_interrupt(struct ieee80211_hw *hw)
  1019. {
  1020. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1021. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1022. rtl_write_dword(rtlpriv, INTA_MASK, 0);
  1023. rtl_write_dword(rtlpriv, INTA_MASK + 4, 0);
  1024. rtlpci->irq_enabled = false;
  1025. }
  1026. static u8 _rtl92s_set_sysclk(struct ieee80211_hw *hw, u8 data)
  1027. {
  1028. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1029. u8 waitcnt = 100;
  1030. bool result = false;
  1031. u8 tmp;
  1032. rtl_write_byte(rtlpriv, SYS_CLKR + 1, data);
  1033. /* Wait the MAC synchronized. */
  1034. udelay(400);
  1035. /* Check if it is set ready. */
  1036. tmp = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
  1037. result = ((tmp & BIT(7)) == (data & BIT(7)));
  1038. if ((data & (BIT(6) | BIT(7))) == false) {
  1039. waitcnt = 100;
  1040. tmp = 0;
  1041. while (1) {
  1042. waitcnt--;
  1043. tmp = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
  1044. if ((tmp & BIT(6)))
  1045. break;
  1046. printk(KERN_ERR "wait for BIT(6) return value %x\n",
  1047. tmp);
  1048. if (waitcnt == 0)
  1049. break;
  1050. udelay(10);
  1051. }
  1052. if (waitcnt == 0)
  1053. result = false;
  1054. else
  1055. result = true;
  1056. }
  1057. return result;
  1058. }
  1059. static void _rtl92s_phy_set_rfhalt(struct ieee80211_hw *hw)
  1060. {
  1061. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1062. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1063. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  1064. u8 u1btmp;
  1065. if (rtlhal->driver_going2unload)
  1066. rtl_write_byte(rtlpriv, 0x560, 0x0);
  1067. /* Power save for BB/RF */
  1068. u1btmp = rtl_read_byte(rtlpriv, LDOV12D_CTRL);
  1069. u1btmp |= BIT(0);
  1070. rtl_write_byte(rtlpriv, LDOV12D_CTRL, u1btmp);
  1071. rtl_write_byte(rtlpriv, SPS1_CTRL, 0x0);
  1072. rtl_write_byte(rtlpriv, TXPAUSE, 0xFF);
  1073. rtl_write_word(rtlpriv, CMDR, 0x57FC);
  1074. udelay(100);
  1075. rtl_write_word(rtlpriv, CMDR, 0x77FC);
  1076. rtl_write_byte(rtlpriv, PHY_CCA, 0x0);
  1077. udelay(10);
  1078. rtl_write_word(rtlpriv, CMDR, 0x37FC);
  1079. udelay(10);
  1080. rtl_write_word(rtlpriv, CMDR, 0x77FC);
  1081. udelay(10);
  1082. rtl_write_word(rtlpriv, CMDR, 0x57FC);
  1083. rtl_write_word(rtlpriv, CMDR, 0x0000);
  1084. if (rtlhal->driver_going2unload) {
  1085. u1btmp = rtl_read_byte(rtlpriv, (REG_SYS_FUNC_EN + 1));
  1086. u1btmp &= ~(BIT(0));
  1087. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, u1btmp);
  1088. }
  1089. u1btmp = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
  1090. /* Add description. After switch control path. register
  1091. * after page1 will be invisible. We can not do any IO
  1092. * for register>0x40. After resume&MACIO reset, we need
  1093. * to remember previous reg content. */
  1094. if (u1btmp & BIT(7)) {
  1095. u1btmp &= ~(BIT(6) | BIT(7));
  1096. if (!_rtl92s_set_sysclk(hw, u1btmp)) {
  1097. printk(KERN_ERR "Switch ctrl path fail\n");
  1098. return;
  1099. }
  1100. }
  1101. /* Power save for MAC */
  1102. if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS &&
  1103. !rtlhal->driver_going2unload) {
  1104. /* enable LED function */
  1105. rtl_write_byte(rtlpriv, 0x03, 0xF9);
  1106. /* SW/HW radio off or halt adapter!! For example S3/S4 */
  1107. } else {
  1108. /* LED function disable. Power range is about 8mA now. */
  1109. /* if write 0xF1 disconnet_pci power
  1110. * ifconfig wlan0 down power are both high 35:70 */
  1111. /* if write oxF9 disconnet_pci power
  1112. * ifconfig wlan0 down power are both low 12:45*/
  1113. rtl_write_byte(rtlpriv, 0x03, 0xF9);
  1114. }
  1115. rtl_write_byte(rtlpriv, SYS_CLKR + 1, 0x70);
  1116. rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, 0x68);
  1117. rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x00);
  1118. rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
  1119. rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, 0x0E);
  1120. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
  1121. }
  1122. static void _rtl92se_gen_refreshledstate(struct ieee80211_hw *hw)
  1123. {
  1124. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1125. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1126. struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
  1127. struct rtl_led *pLed0 = &(pcipriv->ledctl.sw_led0);
  1128. if (rtlpci->up_first_time == 1)
  1129. return;
  1130. if (rtlpriv->psc.rfoff_reason == RF_CHANGE_BY_IPS)
  1131. rtl92se_sw_led_on(hw, pLed0);
  1132. else
  1133. rtl92se_sw_led_off(hw, pLed0);
  1134. }
  1135. static void _rtl92se_power_domain_init(struct ieee80211_hw *hw)
  1136. {
  1137. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1138. u16 tmpu2b;
  1139. u8 tmpu1b;
  1140. rtlpriv->psc.pwrdomain_protect = true;
  1141. tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
  1142. if (tmpu1b & BIT(7)) {
  1143. tmpu1b &= ~(BIT(6) | BIT(7));
  1144. if (!_rtl92s_set_sysclk(hw, tmpu1b)) {
  1145. rtlpriv->psc.pwrdomain_protect = false;
  1146. return;
  1147. }
  1148. }
  1149. rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x0);
  1150. rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
  1151. /* Reset MAC-IO and CPU and Core Digital BIT10/11/15 */
  1152. tmpu1b = rtl_read_byte(rtlpriv, SYS_FUNC_EN + 1);
  1153. /* If IPS we need to turn LED on. So we not
  1154. * not disable BIT 3/7 of reg3. */
  1155. if (rtlpriv->psc.rfoff_reason & (RF_CHANGE_BY_IPS | RF_CHANGE_BY_HW))
  1156. tmpu1b &= 0xFB;
  1157. else
  1158. tmpu1b &= 0x73;
  1159. rtl_write_byte(rtlpriv, SYS_FUNC_EN + 1, tmpu1b);
  1160. /* wait for BIT 10/11/15 to pull high automatically!! */
  1161. mdelay(1);
  1162. rtl_write_byte(rtlpriv, CMDR, 0);
  1163. rtl_write_byte(rtlpriv, TCR, 0);
  1164. /* Data sheet not define 0x562!!! Copy from WMAC!!!!! */
  1165. tmpu1b = rtl_read_byte(rtlpriv, 0x562);
  1166. tmpu1b |= 0x08;
  1167. rtl_write_byte(rtlpriv, 0x562, tmpu1b);
  1168. tmpu1b &= ~(BIT(3));
  1169. rtl_write_byte(rtlpriv, 0x562, tmpu1b);
  1170. /* Enable AFE clock source */
  1171. tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL);
  1172. rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, (tmpu1b | 0x01));
  1173. /* Delay 1.5ms */
  1174. udelay(1500);
  1175. tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL + 1);
  1176. rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, (tmpu1b & 0xfb));
  1177. /* Enable AFE Macro Block's Bandgap */
  1178. tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
  1179. rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | BIT(0)));
  1180. mdelay(1);
  1181. /* Enable AFE Mbias */
  1182. tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
  1183. rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | 0x02));
  1184. mdelay(1);
  1185. /* Enable LDOA15 block */
  1186. tmpu1b = rtl_read_byte(rtlpriv, LDOA15_CTRL);
  1187. rtl_write_byte(rtlpriv, LDOA15_CTRL, (tmpu1b | BIT(0)));
  1188. /* Set Digital Vdd to Retention isolation Path. */
  1189. tmpu2b = rtl_read_word(rtlpriv, SYS_ISO_CTRL);
  1190. rtl_write_word(rtlpriv, SYS_ISO_CTRL, (tmpu2b | BIT(11)));
  1191. /* For warm reboot NIC disappera bug. */
  1192. tmpu2b = rtl_read_word(rtlpriv, SYS_FUNC_EN);
  1193. rtl_write_word(rtlpriv, SYS_FUNC_EN, (tmpu2b | BIT(13)));
  1194. rtl_write_byte(rtlpriv, SYS_ISO_CTRL + 1, 0x68);
  1195. /* Enable AFE PLL Macro Block */
  1196. tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL);
  1197. rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
  1198. /* Enable MAC 80MHZ clock */
  1199. tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL + 1);
  1200. rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, (tmpu1b | BIT(0)));
  1201. mdelay(1);
  1202. /* Release isolation AFE PLL & MD */
  1203. rtl_write_byte(rtlpriv, SYS_ISO_CTRL, 0xA6);
  1204. /* Enable MAC clock */
  1205. tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
  1206. rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b | BIT(12) | BIT(11)));
  1207. /* Enable Core digital and enable IOREG R/W */
  1208. tmpu2b = rtl_read_word(rtlpriv, SYS_FUNC_EN);
  1209. rtl_write_word(rtlpriv, SYS_FUNC_EN, (tmpu2b | BIT(11)));
  1210. /* enable REG_EN */
  1211. rtl_write_word(rtlpriv, SYS_FUNC_EN, (tmpu2b | BIT(11) | BIT(15)));
  1212. /* Switch the control path. */
  1213. tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
  1214. rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b & (~BIT(2))));
  1215. tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
  1216. tmpu1b = ((tmpu1b | BIT(7)) & (~BIT(6)));
  1217. if (!_rtl92s_set_sysclk(hw, tmpu1b)) {
  1218. rtlpriv->psc.pwrdomain_protect = false;
  1219. return;
  1220. }
  1221. rtl_write_word(rtlpriv, CMDR, 0x37FC);
  1222. /* After MACIO reset,we must refresh LED state. */
  1223. _rtl92se_gen_refreshledstate(hw);
  1224. rtlpriv->psc.pwrdomain_protect = false;
  1225. }
  1226. void rtl92se_card_disable(struct ieee80211_hw *hw)
  1227. {
  1228. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1229. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1230. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1231. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  1232. enum nl80211_iftype opmode;
  1233. u8 wait = 30;
  1234. rtlpriv->intf_ops->enable_aspm(hw);
  1235. if (rtlpci->driver_is_goingto_unload ||
  1236. ppsc->rfoff_reason > RF_CHANGE_BY_PS)
  1237. rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
  1238. /* we should chnge GPIO to input mode
  1239. * this will drop away current about 25mA*/
  1240. rtl8192se_gpiobit3_cfg_inputmode(hw);
  1241. /* this is very important for ips power save */
  1242. while (wait-- >= 10 && rtlpriv->psc.pwrdomain_protect) {
  1243. if (rtlpriv->psc.pwrdomain_protect)
  1244. mdelay(20);
  1245. else
  1246. break;
  1247. }
  1248. mac->link_state = MAC80211_NOLINK;
  1249. opmode = NL80211_IFTYPE_UNSPECIFIED;
  1250. _rtl92se_set_media_status(hw, opmode);
  1251. _rtl92s_phy_set_rfhalt(hw);
  1252. udelay(100);
  1253. }
  1254. void rtl92se_interrupt_recognized(struct ieee80211_hw *hw, u32 *p_inta,
  1255. u32 *p_intb)
  1256. {
  1257. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1258. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1259. *p_inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0];
  1260. rtl_write_dword(rtlpriv, ISR, *p_inta);
  1261. *p_intb = rtl_read_dword(rtlpriv, ISR + 4) & rtlpci->irq_mask[1];
  1262. rtl_write_dword(rtlpriv, ISR + 4, *p_intb);
  1263. }
  1264. void rtl92se_set_beacon_related_registers(struct ieee80211_hw *hw)
  1265. {
  1266. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1267. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1268. u16 bcntime_cfg = 0;
  1269. u16 bcn_cw = 6, bcn_ifs = 0xf;
  1270. u16 atim_window = 2;
  1271. /* ATIM Window (in unit of TU). */
  1272. rtl_write_word(rtlpriv, ATIMWND, atim_window);
  1273. /* Beacon interval (in unit of TU). */
  1274. rtl_write_word(rtlpriv, BCN_INTERVAL, mac->beacon_interval);
  1275. /* DrvErlyInt (in unit of TU). (Time to send
  1276. * interrupt to notify driver to change
  1277. * beacon content) */
  1278. rtl_write_word(rtlpriv, BCN_DRV_EARLY_INT, 10 << 4);
  1279. /* BcnDMATIM(in unit of us). Indicates the
  1280. * time before TBTT to perform beacon queue DMA */
  1281. rtl_write_word(rtlpriv, BCN_DMATIME, 256);
  1282. /* Force beacon frame transmission even
  1283. * after receiving beacon frame from
  1284. * other ad hoc STA */
  1285. rtl_write_byte(rtlpriv, BCN_ERR_THRESH, 100);
  1286. /* Beacon Time Configuration */
  1287. if (mac->opmode == NL80211_IFTYPE_ADHOC)
  1288. bcntime_cfg |= (bcn_cw << BCN_TCFG_CW_SHIFT);
  1289. /* TODO: bcn_ifs may required to be changed on ASIC */
  1290. bcntime_cfg |= bcn_ifs << BCN_TCFG_IFS;
  1291. /*for beacon changed */
  1292. rtl92s_phy_set_beacon_hwreg(hw, mac->beacon_interval);
  1293. }
  1294. void rtl92se_set_beacon_interval(struct ieee80211_hw *hw)
  1295. {
  1296. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1297. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1298. u16 bcn_interval = mac->beacon_interval;
  1299. /* Beacon interval (in unit of TU). */
  1300. rtl_write_word(rtlpriv, BCN_INTERVAL, bcn_interval);
  1301. /* 2008.10.24 added by tynli for beacon changed. */
  1302. rtl92s_phy_set_beacon_hwreg(hw, bcn_interval);
  1303. }
  1304. void rtl92se_update_interrupt_mask(struct ieee80211_hw *hw,
  1305. u32 add_msr, u32 rm_msr)
  1306. {
  1307. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1308. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1309. RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD,
  1310. ("add_msr:%x, rm_msr:%x\n", add_msr, rm_msr));
  1311. if (add_msr)
  1312. rtlpci->irq_mask[0] |= add_msr;
  1313. if (rm_msr)
  1314. rtlpci->irq_mask[0] &= (~rm_msr);
  1315. rtl92se_disable_interrupt(hw);
  1316. rtl92se_enable_interrupt(hw);
  1317. }
  1318. static void _rtl8192se_get_IC_Inferiority(struct ieee80211_hw *hw)
  1319. {
  1320. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1321. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1322. u8 efuse_id;
  1323. rtlhal->ic_class = IC_INFERIORITY_A;
  1324. /* Only retrieving while using EFUSE. */
  1325. if ((rtlefuse->epromtype == EEPROM_BOOT_EFUSE) &&
  1326. !rtlefuse->autoload_failflag) {
  1327. efuse_id = efuse_read_1byte(hw, EFUSE_IC_ID_OFFSET);
  1328. if (efuse_id == 0xfe)
  1329. rtlhal->ic_class = IC_INFERIORITY_B;
  1330. }
  1331. }
  1332. static void _rtl92se_read_adapter_info(struct ieee80211_hw *hw)
  1333. {
  1334. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1335. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1336. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1337. u16 i, usvalue;
  1338. u16 eeprom_id;
  1339. u8 tempval;
  1340. u8 hwinfo[HWSET_MAX_SIZE_92S];
  1341. u8 rf_path, index;
  1342. if (rtlefuse->epromtype == EEPROM_93C46) {
  1343. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  1344. ("RTL819X Not boot from eeprom, check it !!"));
  1345. } else if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) {
  1346. rtl_efuse_shadow_map_update(hw);
  1347. memcpy((void *)hwinfo, (void *)
  1348. &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
  1349. HWSET_MAX_SIZE_92S);
  1350. }
  1351. RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, ("MAP\n"),
  1352. hwinfo, HWSET_MAX_SIZE_92S);
  1353. eeprom_id = *((u16 *)&hwinfo[0]);
  1354. if (eeprom_id != RTL8190_EEPROM_ID) {
  1355. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  1356. ("EEPROM ID(%#x) is invalid!!\n", eeprom_id));
  1357. rtlefuse->autoload_failflag = true;
  1358. } else {
  1359. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, ("Autoload OK\n"));
  1360. rtlefuse->autoload_failflag = false;
  1361. }
  1362. if (rtlefuse->autoload_failflag == true)
  1363. return;
  1364. _rtl8192se_get_IC_Inferiority(hw);
  1365. /* Read IC Version && Channel Plan */
  1366. /* VID, DID SE 0xA-D */
  1367. rtlefuse->eeprom_vid = *(u16 *)&hwinfo[EEPROM_VID];
  1368. rtlefuse->eeprom_did = *(u16 *)&hwinfo[EEPROM_DID];
  1369. rtlefuse->eeprom_svid = *(u16 *)&hwinfo[EEPROM_SVID];
  1370. rtlefuse->eeprom_smid = *(u16 *)&hwinfo[EEPROM_SMID];
  1371. rtlefuse->eeprom_version = *(u16 *)&hwinfo[EEPROM_VERSION];
  1372. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1373. ("EEPROMId = 0x%4x\n", eeprom_id));
  1374. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1375. ("EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid));
  1376. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1377. ("EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did));
  1378. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1379. ("EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid));
  1380. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1381. ("EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid));
  1382. for (i = 0; i < 6; i += 2) {
  1383. usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR + i];
  1384. *((u16 *) (&rtlefuse->dev_addr[i])) = usvalue;
  1385. }
  1386. for (i = 0; i < 6; i++)
  1387. rtl_write_byte(rtlpriv, MACIDR0 + i, rtlefuse->dev_addr[i]);
  1388. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
  1389. (MAC_FMT "\n", MAC_ARG(rtlefuse->dev_addr)));
  1390. /* Get Tx Power Level by Channel */
  1391. /* Read Tx power of Channel 1 ~ 14 from EEPROM. */
  1392. /* 92S suupport RF A & B */
  1393. for (rf_path = 0; rf_path < 2; rf_path++) {
  1394. for (i = 0; i < 3; i++) {
  1395. /* Read CCK RF A & B Tx power */
  1396. rtlefuse->eeprom_chnlarea_txpwr_cck[rf_path][i] =
  1397. hwinfo[EEPROM_TXPOWERBASE + rf_path * 3 + i];
  1398. /* Read OFDM RF A & B Tx power for 1T */
  1399. rtlefuse->eeprom_chnlarea_txpwr_ht40_1s[rf_path][i] =
  1400. hwinfo[EEPROM_TXPOWERBASE + 6 + rf_path * 3 + i];
  1401. /* Read OFDM RF A & B Tx power for 2T */
  1402. rtlefuse->eeprom_chnlarea_txpwr_ht40_2sdiif[rf_path][i]
  1403. = hwinfo[EEPROM_TXPOWERBASE + 12 +
  1404. rf_path * 3 + i];
  1405. }
  1406. }
  1407. for (rf_path = 0; rf_path < 2; rf_path++)
  1408. for (i = 0; i < 3; i++)
  1409. RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
  1410. ("RF(%d) EEPROM CCK Area(%d) = 0x%x\n", rf_path,
  1411. i, rtlefuse->eeprom_chnlarea_txpwr_cck
  1412. [rf_path][i]));
  1413. for (rf_path = 0; rf_path < 2; rf_path++)
  1414. for (i = 0; i < 3; i++)
  1415. RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
  1416. ("RF(%d) EEPROM HT40 1S Area(%d) = 0x%x\n",
  1417. rf_path, i,
  1418. rtlefuse->eeprom_chnlarea_txpwr_ht40_1s
  1419. [rf_path][i]));
  1420. for (rf_path = 0; rf_path < 2; rf_path++)
  1421. for (i = 0; i < 3; i++)
  1422. RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
  1423. ("RF(%d) EEPROM HT40 2S Diff Area(%d) = 0x%x\n",
  1424. rf_path, i,
  1425. rtlefuse->eeprom_chnlarea_txpwr_ht40_2sdiif
  1426. [rf_path][i]));
  1427. for (rf_path = 0; rf_path < 2; rf_path++) {
  1428. /* Assign dedicated channel tx power */
  1429. for (i = 0; i < 14; i++) {
  1430. /* channel 1~3 use the same Tx Power Level. */
  1431. if (i < 3)
  1432. index = 0;
  1433. /* Channel 4-8 */
  1434. else if (i < 8)
  1435. index = 1;
  1436. /* Channel 9-14 */
  1437. else
  1438. index = 2;
  1439. /* Record A & B CCK /OFDM - 1T/2T Channel area
  1440. * tx power */
  1441. rtlefuse->txpwrlevel_cck[rf_path][i] =
  1442. rtlefuse->eeprom_chnlarea_txpwr_cck
  1443. [rf_path][index];
  1444. rtlefuse->txpwrlevel_ht40_1s[rf_path][i] =
  1445. rtlefuse->eeprom_chnlarea_txpwr_ht40_1s
  1446. [rf_path][index];
  1447. rtlefuse->txpwrlevel_ht40_2s[rf_path][i] =
  1448. rtlefuse->eeprom_chnlarea_txpwr_ht40_2sdiif
  1449. [rf_path][index];
  1450. }
  1451. for (i = 0; i < 14; i++) {
  1452. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  1453. ("RF(%d)-Ch(%d) [CCK / HT40_1S / HT40_2S] = "
  1454. "[0x%x / 0x%x / 0x%x]\n", rf_path, i,
  1455. rtlefuse->txpwrlevel_cck[rf_path][i],
  1456. rtlefuse->txpwrlevel_ht40_1s[rf_path][i],
  1457. rtlefuse->txpwrlevel_ht40_2s[rf_path][i]));
  1458. }
  1459. }
  1460. for (rf_path = 0; rf_path < 2; rf_path++) {
  1461. for (i = 0; i < 3; i++) {
  1462. /* Read Power diff limit. */
  1463. rtlefuse->eeprom_pwrgroup[rf_path][i] =
  1464. hwinfo[EEPROM_TXPWRGROUP + rf_path * 3 + i];
  1465. }
  1466. }
  1467. for (rf_path = 0; rf_path < 2; rf_path++) {
  1468. /* Fill Pwr group */
  1469. for (i = 0; i < 14; i++) {
  1470. /* Chanel 1-3 */
  1471. if (i < 3)
  1472. index = 0;
  1473. /* Channel 4-8 */
  1474. else if (i < 8)
  1475. index = 1;
  1476. /* Channel 9-13 */
  1477. else
  1478. index = 2;
  1479. rtlefuse->pwrgroup_ht20[rf_path][i] =
  1480. (rtlefuse->eeprom_pwrgroup[rf_path][index] &
  1481. 0xf);
  1482. rtlefuse->pwrgroup_ht40[rf_path][i] =
  1483. ((rtlefuse->eeprom_pwrgroup[rf_path][index] &
  1484. 0xf0) >> 4);
  1485. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  1486. ("RF-%d pwrgroup_ht20[%d] = 0x%x\n",
  1487. rf_path, i,
  1488. rtlefuse->pwrgroup_ht20[rf_path][i]));
  1489. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  1490. ("RF-%d pwrgroup_ht40[%d] = 0x%x\n",
  1491. rf_path, i,
  1492. rtlefuse->pwrgroup_ht40[rf_path][i]));
  1493. }
  1494. }
  1495. for (i = 0; i < 14; i++) {
  1496. /* Read tx power difference between HT OFDM 20/40 MHZ */
  1497. /* channel 1-3 */
  1498. if (i < 3)
  1499. index = 0;
  1500. /* Channel 4-8 */
  1501. else if (i < 8)
  1502. index = 1;
  1503. /* Channel 9-14 */
  1504. else
  1505. index = 2;
  1506. tempval = (*(u8 *)&hwinfo[EEPROM_TX_PWR_HT20_DIFF +
  1507. index]) & 0xff;
  1508. rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] = (tempval & 0xF);
  1509. rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] =
  1510. ((tempval >> 4) & 0xF);
  1511. /* Read OFDM<->HT tx power diff */
  1512. /* Channel 1-3 */
  1513. if (i < 3)
  1514. index = 0;
  1515. /* Channel 4-8 */
  1516. else if (i < 8)
  1517. index = 0x11;
  1518. /* Channel 9-14 */
  1519. else
  1520. index = 1;
  1521. tempval = (*(u8 *)&hwinfo[EEPROM_TX_PWR_OFDM_DIFF + index])
  1522. & 0xff;
  1523. rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i] =
  1524. (tempval & 0xF);
  1525. rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i] =
  1526. ((tempval >> 4) & 0xF);
  1527. tempval = (*(u8 *)&hwinfo[TX_PWR_SAFETY_CHK]);
  1528. rtlefuse->txpwr_safetyflag = (tempval & 0x01);
  1529. }
  1530. rtlefuse->eeprom_regulatory = 0;
  1531. if (rtlefuse->eeprom_version >= 2) {
  1532. /* BIT(0)~2 */
  1533. if (rtlefuse->eeprom_version >= 4)
  1534. rtlefuse->eeprom_regulatory =
  1535. (hwinfo[EEPROM_REGULATORY] & 0x7);
  1536. else /* BIT(0) */
  1537. rtlefuse->eeprom_regulatory =
  1538. (hwinfo[EEPROM_REGULATORY] & 0x1);
  1539. }
  1540. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  1541. ("eeprom_regulatory = 0x%x\n", rtlefuse->eeprom_regulatory));
  1542. for (i = 0; i < 14; i++)
  1543. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  1544. ("RF-A Ht20 to HT40 Diff[%d] = 0x%x\n", i,
  1545. rtlefuse->txpwr_ht20diff[RF90_PATH_A][i]));
  1546. for (i = 0; i < 14; i++)
  1547. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  1548. ("RF-A Legacy to Ht40 Diff[%d] = 0x%x\n", i,
  1549. rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i]));
  1550. for (i = 0; i < 14; i++)
  1551. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  1552. ("RF-B Ht20 to HT40 Diff[%d] = 0x%x\n", i,
  1553. rtlefuse->txpwr_ht20diff[RF90_PATH_B][i]));
  1554. for (i = 0; i < 14; i++)
  1555. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  1556. ("RF-B Legacy to HT40 Diff[%d] = 0x%x\n", i,
  1557. rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i]));
  1558. RTPRINT(rtlpriv, FINIT, INIT_TxPower, ("TxPwrSafetyFlag = %d\n",
  1559. rtlefuse->txpwr_safetyflag));
  1560. /* Read RF-indication and Tx Power gain
  1561. * index diff of legacy to HT OFDM rate. */
  1562. tempval = (*(u8 *)&hwinfo[EEPROM_RFIND_POWERDIFF]) & 0xff;
  1563. rtlefuse->eeprom_txpowerdiff = tempval;
  1564. rtlefuse->legacy_httxpowerdiff =
  1565. rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][0];
  1566. RTPRINT(rtlpriv, FINIT, INIT_TxPower, ("TxPowerDiff = %#x\n",
  1567. rtlefuse->eeprom_txpowerdiff));
  1568. /* Get TSSI value for each path. */
  1569. usvalue = *(u16 *)&hwinfo[EEPROM_TSSI_A];
  1570. rtlefuse->eeprom_tssi[RF90_PATH_A] = (u8)((usvalue & 0xff00) >> 8);
  1571. usvalue = *(u8 *)&hwinfo[EEPROM_TSSI_B];
  1572. rtlefuse->eeprom_tssi[RF90_PATH_B] = (u8)(usvalue & 0xff);
  1573. RTPRINT(rtlpriv, FINIT, INIT_TxPower, ("TSSI_A = 0x%x, TSSI_B = 0x%x\n",
  1574. rtlefuse->eeprom_tssi[RF90_PATH_A],
  1575. rtlefuse->eeprom_tssi[RF90_PATH_B]));
  1576. /* Read antenna tx power offset of B/C/D to A from EEPROM */
  1577. /* and read ThermalMeter from EEPROM */
  1578. tempval = *(u8 *)&hwinfo[EEPROM_THERMALMETER];
  1579. rtlefuse->eeprom_thermalmeter = tempval;
  1580. RTPRINT(rtlpriv, FINIT, INIT_TxPower, ("thermalmeter = 0x%x\n",
  1581. rtlefuse->eeprom_thermalmeter));
  1582. /* ThermalMeter, BIT(0)~3 for RFIC1, BIT(4)~7 for RFIC2 */
  1583. rtlefuse->thermalmeter[0] = (rtlefuse->eeprom_thermalmeter & 0x1f);
  1584. rtlefuse->tssi_13dbm = rtlefuse->eeprom_thermalmeter * 100;
  1585. /* Read CrystalCap from EEPROM */
  1586. tempval = (*(u8 *)&hwinfo[EEPROM_CRYSTALCAP]) >> 4;
  1587. rtlefuse->eeprom_crystalcap = tempval;
  1588. /* CrystalCap, BIT(12)~15 */
  1589. rtlefuse->crystalcap = rtlefuse->eeprom_crystalcap;
  1590. /* Read IC Version && Channel Plan */
  1591. /* Version ID, Channel plan */
  1592. rtlefuse->eeprom_channelplan = *(u8 *)&hwinfo[EEPROM_CHANNELPLAN];
  1593. rtlefuse->txpwr_fromeprom = true;
  1594. RTPRINT(rtlpriv, FINIT, INIT_TxPower, ("EEPROM ChannelPlan = 0x%4x\n",
  1595. rtlefuse->eeprom_channelplan));
  1596. /* Read Customer ID or Board Type!!! */
  1597. tempval = *(u8 *)&hwinfo[EEPROM_BOARDTYPE];
  1598. /* Change RF type definition */
  1599. if (tempval == 0)
  1600. rtlphy->rf_type = RF_2T2R;
  1601. else if (tempval == 1)
  1602. rtlphy->rf_type = RF_1T2R;
  1603. else if (tempval == 2)
  1604. rtlphy->rf_type = RF_1T2R;
  1605. else if (tempval == 3)
  1606. rtlphy->rf_type = RF_1T1R;
  1607. /* 1T2R but 1SS (1x1 receive combining) */
  1608. rtlefuse->b1x1_recvcombine = false;
  1609. if (rtlphy->rf_type == RF_1T2R) {
  1610. tempval = rtl_read_byte(rtlpriv, 0x07);
  1611. if (!(tempval & BIT(0))) {
  1612. rtlefuse->b1x1_recvcombine = true;
  1613. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1614. ("RF_TYPE=1T2R but only 1SS\n"));
  1615. }
  1616. }
  1617. rtlefuse->b1ss_support = rtlefuse->b1x1_recvcombine;
  1618. rtlefuse->eeprom_oemid = *(u8 *)&hwinfo[EEPROM_CUSTOMID];
  1619. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, ("EEPROM Customer ID: 0x%2x",
  1620. rtlefuse->eeprom_oemid));
  1621. /* set channel paln to world wide 13 */
  1622. rtlefuse->channel_plan = COUNTRY_CODE_WORLD_WIDE_13;
  1623. }
  1624. void rtl92se_read_eeprom_info(struct ieee80211_hw *hw)
  1625. {
  1626. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1627. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1628. u8 tmp_u1b = 0;
  1629. tmp_u1b = rtl_read_byte(rtlpriv, EPROM_CMD);
  1630. if (tmp_u1b & BIT(4)) {
  1631. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, ("Boot from EEPROM\n"));
  1632. rtlefuse->epromtype = EEPROM_93C46;
  1633. } else {
  1634. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, ("Boot from EFUSE\n"));
  1635. rtlefuse->epromtype = EEPROM_BOOT_EFUSE;
  1636. }
  1637. if (tmp_u1b & BIT(5)) {
  1638. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, ("Autoload OK\n"));
  1639. rtlefuse->autoload_failflag = false;
  1640. _rtl92se_read_adapter_info(hw);
  1641. } else {
  1642. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, ("Autoload ERR!!\n"));
  1643. rtlefuse->autoload_failflag = true;
  1644. }
  1645. }
  1646. static void rtl92se_update_hal_rate_table(struct ieee80211_hw *hw,
  1647. struct ieee80211_sta *sta)
  1648. {
  1649. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1650. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1651. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1652. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1653. u32 ratr_value;
  1654. u8 ratr_index = 0;
  1655. u8 nmode = mac->ht_enable;
  1656. u8 mimo_ps = IEEE80211_SMPS_OFF;
  1657. u16 shortgi_rate = 0;
  1658. u32 tmp_ratr_value = 0;
  1659. u8 curtxbw_40mhz = mac->bw_40;
  1660. u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
  1661. 1 : 0;
  1662. u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
  1663. 1 : 0;
  1664. enum wireless_mode wirelessmode = mac->mode;
  1665. if (rtlhal->current_bandtype == BAND_ON_5G)
  1666. ratr_value = sta->supp_rates[1] << 4;
  1667. else
  1668. ratr_value = sta->supp_rates[0];
  1669. ratr_value |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
  1670. sta->ht_cap.mcs.rx_mask[0] << 12);
  1671. switch (wirelessmode) {
  1672. case WIRELESS_MODE_B:
  1673. ratr_value &= 0x0000000D;
  1674. break;
  1675. case WIRELESS_MODE_G:
  1676. ratr_value &= 0x00000FF5;
  1677. break;
  1678. case WIRELESS_MODE_N_24G:
  1679. case WIRELESS_MODE_N_5G:
  1680. nmode = 1;
  1681. if (mimo_ps == IEEE80211_SMPS_STATIC) {
  1682. ratr_value &= 0x0007F005;
  1683. } else {
  1684. u32 ratr_mask;
  1685. if (get_rf_type(rtlphy) == RF_1T2R ||
  1686. get_rf_type(rtlphy) == RF_1T1R) {
  1687. if (curtxbw_40mhz)
  1688. ratr_mask = 0x000ff015;
  1689. else
  1690. ratr_mask = 0x000ff005;
  1691. } else {
  1692. if (curtxbw_40mhz)
  1693. ratr_mask = 0x0f0ff015;
  1694. else
  1695. ratr_mask = 0x0f0ff005;
  1696. }
  1697. ratr_value &= ratr_mask;
  1698. }
  1699. break;
  1700. default:
  1701. if (rtlphy->rf_type == RF_1T2R)
  1702. ratr_value &= 0x000ff0ff;
  1703. else
  1704. ratr_value &= 0x0f0ff0ff;
  1705. break;
  1706. }
  1707. if (rtlpriv->rtlhal.version >= VERSION_8192S_BCUT)
  1708. ratr_value &= 0x0FFFFFFF;
  1709. else if (rtlpriv->rtlhal.version == VERSION_8192S_ACUT)
  1710. ratr_value &= 0x0FFFFFF0;
  1711. if (nmode && ((curtxbw_40mhz &&
  1712. curshortgi_40mhz) || (!curtxbw_40mhz &&
  1713. curshortgi_20mhz))) {
  1714. ratr_value |= 0x10000000;
  1715. tmp_ratr_value = (ratr_value >> 12);
  1716. for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
  1717. if ((1 << shortgi_rate) & tmp_ratr_value)
  1718. break;
  1719. }
  1720. shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
  1721. (shortgi_rate << 4) | (shortgi_rate);
  1722. rtl_write_byte(rtlpriv, SG_RATE, shortgi_rate);
  1723. }
  1724. rtl_write_dword(rtlpriv, ARFR0 + ratr_index * 4, ratr_value);
  1725. if (ratr_value & 0xfffff000)
  1726. rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_REFRESH_N);
  1727. else
  1728. rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_REFRESH_BG);
  1729. RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG,
  1730. ("%x\n", rtl_read_dword(rtlpriv, ARFR0)));
  1731. }
  1732. static void rtl92se_update_hal_rate_mask(struct ieee80211_hw *hw,
  1733. struct ieee80211_sta *sta,
  1734. u8 rssi_level)
  1735. {
  1736. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1737. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1738. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1739. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1740. struct rtl_sta_info *sta_entry = NULL;
  1741. u32 ratr_bitmap;
  1742. u8 ratr_index = 0;
  1743. u8 curtxbw_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40)
  1744. ? 1 : 0;
  1745. u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
  1746. 1 : 0;
  1747. u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
  1748. 1 : 0;
  1749. enum wireless_mode wirelessmode = 0;
  1750. bool shortgi = false;
  1751. u32 ratr_value = 0;
  1752. u8 shortgi_rate = 0;
  1753. u32 mask = 0;
  1754. u32 band = 0;
  1755. bool bmulticast = false;
  1756. u8 macid = 0;
  1757. u8 mimo_ps = IEEE80211_SMPS_OFF;
  1758. sta_entry = (struct rtl_sta_info *) sta->drv_priv;
  1759. wirelessmode = sta_entry->wireless_mode;
  1760. if (mac->opmode == NL80211_IFTYPE_STATION)
  1761. curtxbw_40mhz = mac->bw_40;
  1762. else if (mac->opmode == NL80211_IFTYPE_AP ||
  1763. mac->opmode == NL80211_IFTYPE_ADHOC)
  1764. macid = sta->aid + 1;
  1765. if (rtlhal->current_bandtype == BAND_ON_5G)
  1766. ratr_bitmap = sta->supp_rates[1] << 4;
  1767. else
  1768. ratr_bitmap = sta->supp_rates[0];
  1769. ratr_bitmap |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
  1770. sta->ht_cap.mcs.rx_mask[0] << 12);
  1771. switch (wirelessmode) {
  1772. case WIRELESS_MODE_B:
  1773. band |= WIRELESS_11B;
  1774. ratr_index = RATR_INX_WIRELESS_B;
  1775. if (ratr_bitmap & 0x0000000c)
  1776. ratr_bitmap &= 0x0000000d;
  1777. else
  1778. ratr_bitmap &= 0x0000000f;
  1779. break;
  1780. case WIRELESS_MODE_G:
  1781. band |= (WIRELESS_11G | WIRELESS_11B);
  1782. ratr_index = RATR_INX_WIRELESS_GB;
  1783. if (rssi_level == 1)
  1784. ratr_bitmap &= 0x00000f00;
  1785. else if (rssi_level == 2)
  1786. ratr_bitmap &= 0x00000ff0;
  1787. else
  1788. ratr_bitmap &= 0x00000ff5;
  1789. break;
  1790. case WIRELESS_MODE_A:
  1791. band |= WIRELESS_11A;
  1792. ratr_index = RATR_INX_WIRELESS_A;
  1793. ratr_bitmap &= 0x00000ff0;
  1794. break;
  1795. case WIRELESS_MODE_N_24G:
  1796. case WIRELESS_MODE_N_5G:
  1797. band |= (WIRELESS_11N | WIRELESS_11G | WIRELESS_11B);
  1798. ratr_index = RATR_INX_WIRELESS_NGB;
  1799. if (mimo_ps == IEEE80211_SMPS_STATIC) {
  1800. if (rssi_level == 1)
  1801. ratr_bitmap &= 0x00070000;
  1802. else if (rssi_level == 2)
  1803. ratr_bitmap &= 0x0007f000;
  1804. else
  1805. ratr_bitmap &= 0x0007f005;
  1806. } else {
  1807. if (rtlphy->rf_type == RF_1T2R ||
  1808. rtlphy->rf_type == RF_1T1R) {
  1809. if (rssi_level == 1) {
  1810. ratr_bitmap &= 0x000f0000;
  1811. } else if (rssi_level == 3) {
  1812. ratr_bitmap &= 0x000fc000;
  1813. } else if (rssi_level == 5) {
  1814. ratr_bitmap &= 0x000ff000;
  1815. } else {
  1816. if (curtxbw_40mhz)
  1817. ratr_bitmap &= 0x000ff015;
  1818. else
  1819. ratr_bitmap &= 0x000ff005;
  1820. }
  1821. } else {
  1822. if (rssi_level == 1) {
  1823. ratr_bitmap &= 0x0f8f0000;
  1824. } else if (rssi_level == 3) {
  1825. ratr_bitmap &= 0x0f8fc000;
  1826. } else if (rssi_level == 5) {
  1827. ratr_bitmap &= 0x0f8ff000;
  1828. } else {
  1829. if (curtxbw_40mhz)
  1830. ratr_bitmap &= 0x0f8ff015;
  1831. else
  1832. ratr_bitmap &= 0x0f8ff005;
  1833. }
  1834. }
  1835. }
  1836. if ((curtxbw_40mhz && curshortgi_40mhz) ||
  1837. (!curtxbw_40mhz && curshortgi_20mhz)) {
  1838. if (macid == 0)
  1839. shortgi = true;
  1840. else if (macid == 1)
  1841. shortgi = false;
  1842. }
  1843. break;
  1844. default:
  1845. band |= (WIRELESS_11N | WIRELESS_11G | WIRELESS_11B);
  1846. ratr_index = RATR_INX_WIRELESS_NGB;
  1847. if (rtlphy->rf_type == RF_1T2R)
  1848. ratr_bitmap &= 0x000ff0ff;
  1849. else
  1850. ratr_bitmap &= 0x0f8ff0ff;
  1851. break;
  1852. }
  1853. if (rtlpriv->rtlhal.version >= VERSION_8192S_BCUT)
  1854. ratr_bitmap &= 0x0FFFFFFF;
  1855. else if (rtlpriv->rtlhal.version == VERSION_8192S_ACUT)
  1856. ratr_bitmap &= 0x0FFFFFF0;
  1857. if (shortgi) {
  1858. ratr_bitmap |= 0x10000000;
  1859. /* Get MAX MCS available. */
  1860. ratr_value = (ratr_bitmap >> 12);
  1861. for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
  1862. if ((1 << shortgi_rate) & ratr_value)
  1863. break;
  1864. }
  1865. shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
  1866. (shortgi_rate << 4) | (shortgi_rate);
  1867. rtl_write_byte(rtlpriv, SG_RATE, shortgi_rate);
  1868. }
  1869. mask |= (bmulticast ? 1 : 0) << 9 | (macid & 0x1f) << 4 | (band & 0xf);
  1870. RT_TRACE(rtlpriv, COMP_RATR, DBG_TRACE, ("mask = %x, bitmap = %x\n",
  1871. mask, ratr_bitmap));
  1872. rtl_write_dword(rtlpriv, 0x2c4, ratr_bitmap);
  1873. rtl_write_dword(rtlpriv, WFM5, (FW_RA_UPDATE_MASK | (mask << 8)));
  1874. if (macid != 0)
  1875. sta_entry->ratr_index = ratr_index;
  1876. }
  1877. void rtl92se_update_hal_rate_tbl(struct ieee80211_hw *hw,
  1878. struct ieee80211_sta *sta, u8 rssi_level)
  1879. {
  1880. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1881. if (rtlpriv->dm.useramask)
  1882. rtl92se_update_hal_rate_mask(hw, sta, rssi_level);
  1883. else
  1884. rtl92se_update_hal_rate_table(hw, sta);
  1885. }
  1886. void rtl92se_update_channel_access_setting(struct ieee80211_hw *hw)
  1887. {
  1888. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1889. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1890. u16 sifs_timer;
  1891. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME,
  1892. (u8 *)&mac->slot_time);
  1893. sifs_timer = 0x0e0e;
  1894. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer);
  1895. }
  1896. /* this ifunction is for RFKILL, it's different with windows,
  1897. * because UI will disable wireless when GPIO Radio Off.
  1898. * And here we not check or Disable/Enable ASPM like windows*/
  1899. bool rtl92se_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid)
  1900. {
  1901. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1902. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  1903. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1904. enum rf_pwrstate rfpwr_toset, cur_rfstate;
  1905. unsigned long flag = 0;
  1906. bool actuallyset = false;
  1907. bool turnonbypowerdomain = false;
  1908. /* just 8191se can check gpio before firstup, 92c/92d have fixed it */
  1909. if ((rtlpci->up_first_time == 1) || (rtlpci->being_init_adapter))
  1910. return false;
  1911. if (ppsc->swrf_processing)
  1912. return false;
  1913. spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
  1914. if (ppsc->rfchange_inprogress) {
  1915. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  1916. return false;
  1917. } else {
  1918. ppsc->rfchange_inprogress = true;
  1919. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  1920. }
  1921. cur_rfstate = ppsc->rfpwr_state;
  1922. /* because after _rtl92s_phy_set_rfhalt, all power
  1923. * closed, so we must open some power for GPIO check,
  1924. * or we will always check GPIO RFOFF here,
  1925. * And we should close power after GPIO check */
  1926. if (RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC)) {
  1927. _rtl92se_power_domain_init(hw);
  1928. turnonbypowerdomain = true;
  1929. }
  1930. rfpwr_toset = _rtl92se_rf_onoff_detect(hw);
  1931. if ((ppsc->hwradiooff == true) && (rfpwr_toset == ERFON)) {
  1932. RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
  1933. ("RFKILL-HW Radio ON, RF ON\n"));
  1934. rfpwr_toset = ERFON;
  1935. ppsc->hwradiooff = false;
  1936. actuallyset = true;
  1937. } else if ((ppsc->hwradiooff == false) && (rfpwr_toset == ERFOFF)) {
  1938. RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
  1939. ("RFKILL-HW Radio OFF, RF OFF\n"));
  1940. rfpwr_toset = ERFOFF;
  1941. ppsc->hwradiooff = true;
  1942. actuallyset = true;
  1943. }
  1944. if (actuallyset) {
  1945. spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
  1946. ppsc->rfchange_inprogress = false;
  1947. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  1948. /* this not include ifconfig wlan0 down case */
  1949. /* } else if (rfpwr_toset == ERFOFF || cur_rfstate == ERFOFF) { */
  1950. } else {
  1951. /* because power_domain_init may be happen when
  1952. * _rtl92s_phy_set_rfhalt, this will open some powers
  1953. * and cause current increasing about 40 mA for ips,
  1954. * rfoff and ifconfig down, so we set
  1955. * _rtl92s_phy_set_rfhalt again here */
  1956. if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC &&
  1957. turnonbypowerdomain) {
  1958. _rtl92s_phy_set_rfhalt(hw);
  1959. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
  1960. }
  1961. spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
  1962. ppsc->rfchange_inprogress = false;
  1963. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  1964. }
  1965. *valid = 1;
  1966. return !ppsc->hwradiooff;
  1967. }
  1968. /* Is_wepkey just used for WEP used as group & pairwise key
  1969. * if pairwise is AES ang group is WEP Is_wepkey == false.*/
  1970. void rtl92se_set_key(struct ieee80211_hw *hw, u32 key_index, u8 *p_macaddr,
  1971. bool is_group, u8 enc_algo, bool is_wepkey, bool clear_all)
  1972. {
  1973. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1974. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1975. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1976. u8 *macaddr = p_macaddr;
  1977. u32 entry_id = 0;
  1978. bool is_pairwise = false;
  1979. static u8 cam_const_addr[4][6] = {
  1980. {0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
  1981. {0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
  1982. {0x00, 0x00, 0x00, 0x00, 0x00, 0x02},
  1983. {0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
  1984. };
  1985. static u8 cam_const_broad[] = {
  1986. 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
  1987. };
  1988. if (clear_all) {
  1989. u8 idx = 0;
  1990. u8 cam_offset = 0;
  1991. u8 clear_number = 5;
  1992. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, ("clear_all\n"));
  1993. for (idx = 0; idx < clear_number; idx++) {
  1994. rtl_cam_mark_invalid(hw, cam_offset + idx);
  1995. rtl_cam_empty_entry(hw, cam_offset + idx);
  1996. if (idx < 5) {
  1997. memset(rtlpriv->sec.key_buf[idx], 0,
  1998. MAX_KEY_LEN);
  1999. rtlpriv->sec.key_len[idx] = 0;
  2000. }
  2001. }
  2002. } else {
  2003. switch (enc_algo) {
  2004. case WEP40_ENCRYPTION:
  2005. enc_algo = CAM_WEP40;
  2006. break;
  2007. case WEP104_ENCRYPTION:
  2008. enc_algo = CAM_WEP104;
  2009. break;
  2010. case TKIP_ENCRYPTION:
  2011. enc_algo = CAM_TKIP;
  2012. break;
  2013. case AESCCMP_ENCRYPTION:
  2014. enc_algo = CAM_AES;
  2015. break;
  2016. default:
  2017. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  2018. ("switch case not process\n"));
  2019. enc_algo = CAM_TKIP;
  2020. break;
  2021. }
  2022. if (is_wepkey || rtlpriv->sec.use_defaultkey) {
  2023. macaddr = cam_const_addr[key_index];
  2024. entry_id = key_index;
  2025. } else {
  2026. if (is_group) {
  2027. macaddr = cam_const_broad;
  2028. entry_id = key_index;
  2029. } else {
  2030. if (mac->opmode == NL80211_IFTYPE_AP) {
  2031. entry_id = rtl_cam_get_free_entry(hw,
  2032. p_macaddr);
  2033. if (entry_id >= TOTAL_CAM_ENTRY) {
  2034. RT_TRACE(rtlpriv,
  2035. COMP_SEC, DBG_EMERG,
  2036. ("Can not find free hw"
  2037. " security cam entry\n"));
  2038. return;
  2039. }
  2040. } else {
  2041. entry_id = CAM_PAIRWISE_KEY_POSITION;
  2042. }
  2043. key_index = PAIRWISE_KEYIDX;
  2044. is_pairwise = true;
  2045. }
  2046. }
  2047. if (rtlpriv->sec.key_len[key_index] == 0) {
  2048. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  2049. ("delete one entry, entry_id is %d\n",
  2050. entry_id));
  2051. if (mac->opmode == NL80211_IFTYPE_AP)
  2052. rtl_cam_del_entry(hw, p_macaddr);
  2053. rtl_cam_delete_one_entry(hw, p_macaddr, entry_id);
  2054. } else {
  2055. RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
  2056. ("The insert KEY length is %d\n",
  2057. rtlpriv->sec.key_len[PAIRWISE_KEYIDX]));
  2058. RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
  2059. ("The insert KEY is %x %x\n",
  2060. rtlpriv->sec.key_buf[0][0],
  2061. rtlpriv->sec.key_buf[0][1]));
  2062. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  2063. ("add one entry\n"));
  2064. if (is_pairwise) {
  2065. RT_PRINT_DATA(rtlpriv, COMP_SEC, DBG_LOUD,
  2066. "Pairwiase Key content :",
  2067. rtlpriv->sec.pairwise_key,
  2068. rtlpriv->sec.key_len[PAIRWISE_KEYIDX]);
  2069. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  2070. ("set Pairwiase key\n"));
  2071. rtl_cam_add_one_entry(hw, macaddr, key_index,
  2072. entry_id, enc_algo,
  2073. CAM_CONFIG_NO_USEDK,
  2074. rtlpriv->sec.key_buf[key_index]);
  2075. } else {
  2076. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  2077. ("set group key\n"));
  2078. if (mac->opmode == NL80211_IFTYPE_ADHOC) {
  2079. rtl_cam_add_one_entry(hw,
  2080. rtlefuse->dev_addr,
  2081. PAIRWISE_KEYIDX,
  2082. CAM_PAIRWISE_KEY_POSITION,
  2083. enc_algo, CAM_CONFIG_NO_USEDK,
  2084. rtlpriv->sec.key_buf[entry_id]);
  2085. }
  2086. rtl_cam_add_one_entry(hw, macaddr, key_index,
  2087. entry_id, enc_algo,
  2088. CAM_CONFIG_NO_USEDK,
  2089. rtlpriv->sec.key_buf[entry_id]);
  2090. }
  2091. }
  2092. }
  2093. }
  2094. void rtl92se_suspend(struct ieee80211_hw *hw)
  2095. {
  2096. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  2097. rtlpci->up_first_time = true;
  2098. }
  2099. void rtl92se_resume(struct ieee80211_hw *hw)
  2100. {
  2101. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  2102. u32 val;
  2103. pci_read_config_dword(rtlpci->pdev, 0x40, &val);
  2104. if ((val & 0x0000ff00) != 0)
  2105. pci_write_config_dword(rtlpci->pdev, 0x40,
  2106. val & 0xffff00ff);
  2107. }