vxge-config.c 135 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140
  1. /******************************************************************************
  2. * This software may be used and distributed according to the terms of
  3. * the GNU General Public License (GPL), incorporated herein by reference.
  4. * Drivers based on or derived from this code fall under the GPL and must
  5. * retain the authorship, copyright and license notice. This file is not
  6. * a complete program and may only be used when the entire operating
  7. * system is licensed under the GPL.
  8. * See the file COPYING in this distribution for more information.
  9. *
  10. * vxge-config.c: Driver for Exar Corp's X3100 Series 10GbE PCIe I/O
  11. * Virtualized Server Adapter.
  12. * Copyright(c) 2002-2010 Exar Corp.
  13. ******************************************************************************/
  14. #include <linux/vmalloc.h>
  15. #include <linux/etherdevice.h>
  16. #include <linux/pci.h>
  17. #include <linux/pci_hotplug.h>
  18. #include <linux/slab.h>
  19. #include "vxge-traffic.h"
  20. #include "vxge-config.h"
  21. #include "vxge-main.h"
  22. #define VXGE_HW_VPATH_STATS_PIO_READ(offset) { \
  23. status = __vxge_hw_vpath_stats_access(vpath, \
  24. VXGE_HW_STATS_OP_READ, \
  25. offset, \
  26. &val64); \
  27. if (status != VXGE_HW_OK) \
  28. return status; \
  29. }
  30. static void
  31. vxge_hw_vpath_set_zero_rx_frm_len(struct vxge_hw_vpath_reg __iomem *vp_reg)
  32. {
  33. u64 val64;
  34. val64 = readq(&vp_reg->rxmac_vcfg0);
  35. val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
  36. writeq(val64, &vp_reg->rxmac_vcfg0);
  37. val64 = readq(&vp_reg->rxmac_vcfg0);
  38. }
  39. /*
  40. * vxge_hw_vpath_wait_receive_idle - Wait for Rx to become idle
  41. */
  42. int vxge_hw_vpath_wait_receive_idle(struct __vxge_hw_device *hldev, u32 vp_id)
  43. {
  44. struct vxge_hw_vpath_reg __iomem *vp_reg;
  45. struct __vxge_hw_virtualpath *vpath;
  46. u64 val64, rxd_count, rxd_spat;
  47. int count = 0, total_count = 0;
  48. vpath = &hldev->virtual_paths[vp_id];
  49. vp_reg = vpath->vp_reg;
  50. vxge_hw_vpath_set_zero_rx_frm_len(vp_reg);
  51. /* Check that the ring controller for this vpath has enough free RxDs
  52. * to send frames to the host. This is done by reading the
  53. * PRC_RXD_DOORBELL_VPn register and comparing the read value to the
  54. * RXD_SPAT value for the vpath.
  55. */
  56. val64 = readq(&vp_reg->prc_cfg6);
  57. rxd_spat = VXGE_HW_PRC_CFG6_GET_RXD_SPAT(val64) + 1;
  58. /* Use a factor of 2 when comparing rxd_count against rxd_spat for some
  59. * leg room.
  60. */
  61. rxd_spat *= 2;
  62. do {
  63. mdelay(1);
  64. rxd_count = readq(&vp_reg->prc_rxd_doorbell);
  65. /* Check that the ring controller for this vpath does
  66. * not have any frame in its pipeline.
  67. */
  68. val64 = readq(&vp_reg->frm_in_progress_cnt);
  69. if ((rxd_count <= rxd_spat) || (val64 > 0))
  70. count = 0;
  71. else
  72. count++;
  73. total_count++;
  74. } while ((count < VXGE_HW_MIN_SUCCESSIVE_IDLE_COUNT) &&
  75. (total_count < VXGE_HW_MAX_POLLING_COUNT));
  76. if (total_count >= VXGE_HW_MAX_POLLING_COUNT)
  77. printk(KERN_ALERT "%s: Still Receiving traffic. Abort wait\n",
  78. __func__);
  79. return total_count;
  80. }
  81. /* vxge_hw_device_wait_receive_idle - This function waits until all frames
  82. * stored in the frame buffer for each vpath assigned to the given
  83. * function (hldev) have been sent to the host.
  84. */
  85. void vxge_hw_device_wait_receive_idle(struct __vxge_hw_device *hldev)
  86. {
  87. int i, total_count = 0;
  88. for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
  89. if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
  90. continue;
  91. total_count += vxge_hw_vpath_wait_receive_idle(hldev, i);
  92. if (total_count >= VXGE_HW_MAX_POLLING_COUNT)
  93. break;
  94. }
  95. }
  96. /*
  97. * __vxge_hw_device_register_poll
  98. * Will poll certain register for specified amount of time.
  99. * Will poll until masked bit is not cleared.
  100. */
  101. static enum vxge_hw_status
  102. __vxge_hw_device_register_poll(void __iomem *reg, u64 mask, u32 max_millis)
  103. {
  104. u64 val64;
  105. u32 i = 0;
  106. enum vxge_hw_status ret = VXGE_HW_FAIL;
  107. udelay(10);
  108. do {
  109. val64 = readq(reg);
  110. if (!(val64 & mask))
  111. return VXGE_HW_OK;
  112. udelay(100);
  113. } while (++i <= 9);
  114. i = 0;
  115. do {
  116. val64 = readq(reg);
  117. if (!(val64 & mask))
  118. return VXGE_HW_OK;
  119. mdelay(1);
  120. } while (++i <= max_millis);
  121. return ret;
  122. }
  123. static inline enum vxge_hw_status
  124. __vxge_hw_pio_mem_write64(u64 val64, void __iomem *addr,
  125. u64 mask, u32 max_millis)
  126. {
  127. __vxge_hw_pio_mem_write32_lower((u32)vxge_bVALn(val64, 32, 32), addr);
  128. wmb();
  129. __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32), addr);
  130. wmb();
  131. return __vxge_hw_device_register_poll(addr, mask, max_millis);
  132. }
  133. static enum vxge_hw_status
  134. vxge_hw_vpath_fw_api(struct __vxge_hw_virtualpath *vpath, u32 action,
  135. u32 fw_memo, u32 offset, u64 *data0, u64 *data1,
  136. u64 *steer_ctrl)
  137. {
  138. struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
  139. enum vxge_hw_status status;
  140. u64 val64;
  141. u32 retry = 0, max_retry = 3;
  142. spin_lock(&vpath->lock);
  143. if (!vpath->vp_open) {
  144. spin_unlock(&vpath->lock);
  145. max_retry = 100;
  146. }
  147. writeq(*data0, &vp_reg->rts_access_steer_data0);
  148. writeq(*data1, &vp_reg->rts_access_steer_data1);
  149. wmb();
  150. val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(action) |
  151. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(fw_memo) |
  152. VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(offset) |
  153. VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
  154. *steer_ctrl;
  155. status = __vxge_hw_pio_mem_write64(val64,
  156. &vp_reg->rts_access_steer_ctrl,
  157. VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
  158. VXGE_HW_DEF_DEVICE_POLL_MILLIS);
  159. /* The __vxge_hw_device_register_poll can udelay for a significant
  160. * amount of time, blocking other process from the CPU. If it delays
  161. * for ~5secs, a NMI error can occur. A way around this is to give up
  162. * the processor via msleep, but this is not allowed is under lock.
  163. * So, only allow it to sleep for ~4secs if open. Otherwise, delay for
  164. * 1sec and sleep for 10ms until the firmware operation has completed
  165. * or timed-out.
  166. */
  167. while ((status != VXGE_HW_OK) && retry++ < max_retry) {
  168. if (!vpath->vp_open)
  169. msleep(20);
  170. status = __vxge_hw_device_register_poll(
  171. &vp_reg->rts_access_steer_ctrl,
  172. VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
  173. VXGE_HW_DEF_DEVICE_POLL_MILLIS);
  174. }
  175. if (status != VXGE_HW_OK)
  176. goto out;
  177. val64 = readq(&vp_reg->rts_access_steer_ctrl);
  178. if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
  179. *data0 = readq(&vp_reg->rts_access_steer_data0);
  180. *data1 = readq(&vp_reg->rts_access_steer_data1);
  181. *steer_ctrl = val64;
  182. } else
  183. status = VXGE_HW_FAIL;
  184. out:
  185. if (vpath->vp_open)
  186. spin_unlock(&vpath->lock);
  187. return status;
  188. }
  189. enum vxge_hw_status
  190. vxge_hw_upgrade_read_version(struct __vxge_hw_device *hldev, u32 *major,
  191. u32 *minor, u32 *build)
  192. {
  193. u64 data0 = 0, data1 = 0, steer_ctrl = 0;
  194. struct __vxge_hw_virtualpath *vpath;
  195. enum vxge_hw_status status;
  196. vpath = &hldev->virtual_paths[hldev->first_vp_id];
  197. status = vxge_hw_vpath_fw_api(vpath,
  198. VXGE_HW_FW_UPGRADE_ACTION,
  199. VXGE_HW_FW_UPGRADE_MEMO,
  200. VXGE_HW_FW_UPGRADE_OFFSET_READ,
  201. &data0, &data1, &steer_ctrl);
  202. if (status != VXGE_HW_OK)
  203. return status;
  204. *major = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MAJOR(data0);
  205. *minor = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MINOR(data0);
  206. *build = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_BUILD(data0);
  207. return status;
  208. }
  209. enum vxge_hw_status vxge_hw_flash_fw(struct __vxge_hw_device *hldev)
  210. {
  211. u64 data0 = 0, data1 = 0, steer_ctrl = 0;
  212. struct __vxge_hw_virtualpath *vpath;
  213. enum vxge_hw_status status;
  214. u32 ret;
  215. vpath = &hldev->virtual_paths[hldev->first_vp_id];
  216. status = vxge_hw_vpath_fw_api(vpath,
  217. VXGE_HW_FW_UPGRADE_ACTION,
  218. VXGE_HW_FW_UPGRADE_MEMO,
  219. VXGE_HW_FW_UPGRADE_OFFSET_COMMIT,
  220. &data0, &data1, &steer_ctrl);
  221. if (status != VXGE_HW_OK) {
  222. vxge_debug_init(VXGE_ERR, "%s: FW upgrade failed", __func__);
  223. goto exit;
  224. }
  225. ret = VXGE_HW_RTS_ACCESS_STEER_CTRL_GET_ACTION(steer_ctrl) & 0x7F;
  226. if (ret != 1) {
  227. vxge_debug_init(VXGE_ERR, "%s: FW commit failed with error %d",
  228. __func__, ret);
  229. status = VXGE_HW_FAIL;
  230. }
  231. exit:
  232. return status;
  233. }
  234. enum vxge_hw_status
  235. vxge_update_fw_image(struct __vxge_hw_device *hldev, const u8 *fwdata, int size)
  236. {
  237. u64 data0 = 0, data1 = 0, steer_ctrl = 0;
  238. struct __vxge_hw_virtualpath *vpath;
  239. enum vxge_hw_status status;
  240. int ret_code, sec_code;
  241. vpath = &hldev->virtual_paths[hldev->first_vp_id];
  242. /* send upgrade start command */
  243. status = vxge_hw_vpath_fw_api(vpath,
  244. VXGE_HW_FW_UPGRADE_ACTION,
  245. VXGE_HW_FW_UPGRADE_MEMO,
  246. VXGE_HW_FW_UPGRADE_OFFSET_START,
  247. &data0, &data1, &steer_ctrl);
  248. if (status != VXGE_HW_OK) {
  249. vxge_debug_init(VXGE_ERR, " %s: Upgrade start cmd failed",
  250. __func__);
  251. return status;
  252. }
  253. /* Transfer fw image to adapter 16 bytes at a time */
  254. for (; size > 0; size -= VXGE_HW_FW_UPGRADE_BLK_SIZE) {
  255. steer_ctrl = 0;
  256. /* The next 128bits of fwdata to be loaded onto the adapter */
  257. data0 = *((u64 *)fwdata);
  258. data1 = *((u64 *)fwdata + 1);
  259. status = vxge_hw_vpath_fw_api(vpath,
  260. VXGE_HW_FW_UPGRADE_ACTION,
  261. VXGE_HW_FW_UPGRADE_MEMO,
  262. VXGE_HW_FW_UPGRADE_OFFSET_SEND,
  263. &data0, &data1, &steer_ctrl);
  264. if (status != VXGE_HW_OK) {
  265. vxge_debug_init(VXGE_ERR, "%s: Upgrade send failed",
  266. __func__);
  267. goto out;
  268. }
  269. ret_code = VXGE_HW_UPGRADE_GET_RET_ERR_CODE(data0);
  270. switch (ret_code) {
  271. case VXGE_HW_FW_UPGRADE_OK:
  272. /* All OK, send next 16 bytes. */
  273. break;
  274. case VXGE_FW_UPGRADE_BYTES2SKIP:
  275. /* skip bytes in the stream */
  276. fwdata += (data0 >> 8) & 0xFFFFFFFF;
  277. break;
  278. case VXGE_HW_FW_UPGRADE_DONE:
  279. goto out;
  280. case VXGE_HW_FW_UPGRADE_ERR:
  281. sec_code = VXGE_HW_UPGRADE_GET_SEC_ERR_CODE(data0);
  282. switch (sec_code) {
  283. case VXGE_HW_FW_UPGRADE_ERR_CORRUPT_DATA_1:
  284. case VXGE_HW_FW_UPGRADE_ERR_CORRUPT_DATA_7:
  285. printk(KERN_ERR
  286. "corrupted data from .ncf file\n");
  287. break;
  288. case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_3:
  289. case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_4:
  290. case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_5:
  291. case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_6:
  292. case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_8:
  293. printk(KERN_ERR "invalid .ncf file\n");
  294. break;
  295. case VXGE_HW_FW_UPGRADE_ERR_BUFFER_OVERFLOW:
  296. printk(KERN_ERR "buffer overflow\n");
  297. break;
  298. case VXGE_HW_FW_UPGRADE_ERR_FAILED_TO_FLASH:
  299. printk(KERN_ERR "failed to flash the image\n");
  300. break;
  301. case VXGE_HW_FW_UPGRADE_ERR_GENERIC_ERROR_UNKNOWN:
  302. printk(KERN_ERR
  303. "generic error. Unknown error type\n");
  304. break;
  305. default:
  306. printk(KERN_ERR "Unknown error of type %d\n",
  307. sec_code);
  308. break;
  309. }
  310. status = VXGE_HW_FAIL;
  311. goto out;
  312. default:
  313. printk(KERN_ERR "Unknown FW error: %d\n", ret_code);
  314. status = VXGE_HW_FAIL;
  315. goto out;
  316. }
  317. /* point to next 16 bytes */
  318. fwdata += VXGE_HW_FW_UPGRADE_BLK_SIZE;
  319. }
  320. out:
  321. return status;
  322. }
  323. enum vxge_hw_status
  324. vxge_hw_vpath_eprom_img_ver_get(struct __vxge_hw_device *hldev,
  325. struct eprom_image *img)
  326. {
  327. u64 data0 = 0, data1 = 0, steer_ctrl = 0;
  328. struct __vxge_hw_virtualpath *vpath;
  329. enum vxge_hw_status status;
  330. int i;
  331. vpath = &hldev->virtual_paths[hldev->first_vp_id];
  332. for (i = 0; i < VXGE_HW_MAX_ROM_IMAGES; i++) {
  333. data0 = VXGE_HW_RTS_ACCESS_STEER_ROM_IMAGE_INDEX(i);
  334. data1 = steer_ctrl = 0;
  335. status = vxge_hw_vpath_fw_api(vpath,
  336. VXGE_HW_FW_API_GET_EPROM_REV,
  337. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
  338. 0, &data0, &data1, &steer_ctrl);
  339. if (status != VXGE_HW_OK)
  340. break;
  341. img[i].is_valid = VXGE_HW_GET_EPROM_IMAGE_VALID(data0);
  342. img[i].index = VXGE_HW_GET_EPROM_IMAGE_INDEX(data0);
  343. img[i].type = VXGE_HW_GET_EPROM_IMAGE_TYPE(data0);
  344. img[i].version = VXGE_HW_GET_EPROM_IMAGE_REV(data0);
  345. }
  346. return status;
  347. }
  348. /*
  349. * __vxge_hw_channel_free - Free memory allocated for channel
  350. * This function deallocates memory from the channel and various arrays
  351. * in the channel
  352. */
  353. static void __vxge_hw_channel_free(struct __vxge_hw_channel *channel)
  354. {
  355. kfree(channel->work_arr);
  356. kfree(channel->free_arr);
  357. kfree(channel->reserve_arr);
  358. kfree(channel->orig_arr);
  359. kfree(channel);
  360. }
  361. /*
  362. * __vxge_hw_channel_initialize - Initialize a channel
  363. * This function initializes a channel by properly setting the
  364. * various references
  365. */
  366. static enum vxge_hw_status
  367. __vxge_hw_channel_initialize(struct __vxge_hw_channel *channel)
  368. {
  369. u32 i;
  370. struct __vxge_hw_virtualpath *vpath;
  371. vpath = channel->vph->vpath;
  372. if ((channel->reserve_arr != NULL) && (channel->orig_arr != NULL)) {
  373. for (i = 0; i < channel->length; i++)
  374. channel->orig_arr[i] = channel->reserve_arr[i];
  375. }
  376. switch (channel->type) {
  377. case VXGE_HW_CHANNEL_TYPE_FIFO:
  378. vpath->fifoh = (struct __vxge_hw_fifo *)channel;
  379. channel->stats = &((struct __vxge_hw_fifo *)
  380. channel)->stats->common_stats;
  381. break;
  382. case VXGE_HW_CHANNEL_TYPE_RING:
  383. vpath->ringh = (struct __vxge_hw_ring *)channel;
  384. channel->stats = &((struct __vxge_hw_ring *)
  385. channel)->stats->common_stats;
  386. break;
  387. default:
  388. break;
  389. }
  390. return VXGE_HW_OK;
  391. }
  392. /*
  393. * __vxge_hw_channel_reset - Resets a channel
  394. * This function resets a channel by properly setting the various references
  395. */
  396. static enum vxge_hw_status
  397. __vxge_hw_channel_reset(struct __vxge_hw_channel *channel)
  398. {
  399. u32 i;
  400. for (i = 0; i < channel->length; i++) {
  401. if (channel->reserve_arr != NULL)
  402. channel->reserve_arr[i] = channel->orig_arr[i];
  403. if (channel->free_arr != NULL)
  404. channel->free_arr[i] = NULL;
  405. if (channel->work_arr != NULL)
  406. channel->work_arr[i] = NULL;
  407. }
  408. channel->free_ptr = channel->length;
  409. channel->reserve_ptr = channel->length;
  410. channel->reserve_top = 0;
  411. channel->post_index = 0;
  412. channel->compl_index = 0;
  413. return VXGE_HW_OK;
  414. }
  415. /*
  416. * __vxge_hw_device_pci_e_init
  417. * Initialize certain PCI/PCI-X configuration registers
  418. * with recommended values. Save config space for future hw resets.
  419. */
  420. static void __vxge_hw_device_pci_e_init(struct __vxge_hw_device *hldev)
  421. {
  422. u16 cmd = 0;
  423. /* Set the PErr Repconse bit and SERR in PCI command register. */
  424. pci_read_config_word(hldev->pdev, PCI_COMMAND, &cmd);
  425. cmd |= 0x140;
  426. pci_write_config_word(hldev->pdev, PCI_COMMAND, cmd);
  427. pci_save_state(hldev->pdev);
  428. }
  429. /* __vxge_hw_device_vpath_reset_in_prog_check - Check if vpath reset
  430. * in progress
  431. * This routine checks the vpath reset in progress register is turned zero
  432. */
  433. static enum vxge_hw_status
  434. __vxge_hw_device_vpath_reset_in_prog_check(u64 __iomem *vpath_rst_in_prog)
  435. {
  436. enum vxge_hw_status status;
  437. status = __vxge_hw_device_register_poll(vpath_rst_in_prog,
  438. VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG(0x1ffff),
  439. VXGE_HW_DEF_DEVICE_POLL_MILLIS);
  440. return status;
  441. }
  442. /*
  443. * _hw_legacy_swapper_set - Set the swapper bits for the legacy secion.
  444. * Set the swapper bits appropriately for the lagacy section.
  445. */
  446. static enum vxge_hw_status
  447. __vxge_hw_legacy_swapper_set(struct vxge_hw_legacy_reg __iomem *legacy_reg)
  448. {
  449. u64 val64;
  450. enum vxge_hw_status status = VXGE_HW_OK;
  451. val64 = readq(&legacy_reg->toc_swapper_fb);
  452. wmb();
  453. switch (val64) {
  454. case VXGE_HW_SWAPPER_INITIAL_VALUE:
  455. return status;
  456. case VXGE_HW_SWAPPER_BYTE_SWAPPED_BIT_FLIPPED:
  457. writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE,
  458. &legacy_reg->pifm_rd_swap_en);
  459. writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE,
  460. &legacy_reg->pifm_rd_flip_en);
  461. writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE,
  462. &legacy_reg->pifm_wr_swap_en);
  463. writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE,
  464. &legacy_reg->pifm_wr_flip_en);
  465. break;
  466. case VXGE_HW_SWAPPER_BYTE_SWAPPED:
  467. writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE,
  468. &legacy_reg->pifm_rd_swap_en);
  469. writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE,
  470. &legacy_reg->pifm_wr_swap_en);
  471. break;
  472. case VXGE_HW_SWAPPER_BIT_FLIPPED:
  473. writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE,
  474. &legacy_reg->pifm_rd_flip_en);
  475. writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE,
  476. &legacy_reg->pifm_wr_flip_en);
  477. break;
  478. }
  479. wmb();
  480. val64 = readq(&legacy_reg->toc_swapper_fb);
  481. if (val64 != VXGE_HW_SWAPPER_INITIAL_VALUE)
  482. status = VXGE_HW_ERR_SWAPPER_CTRL;
  483. return status;
  484. }
  485. /*
  486. * __vxge_hw_device_toc_get
  487. * This routine sets the swapper and reads the toc pointer and returns the
  488. * memory mapped address of the toc
  489. */
  490. static struct vxge_hw_toc_reg __iomem *
  491. __vxge_hw_device_toc_get(void __iomem *bar0)
  492. {
  493. u64 val64;
  494. struct vxge_hw_toc_reg __iomem *toc = NULL;
  495. enum vxge_hw_status status;
  496. struct vxge_hw_legacy_reg __iomem *legacy_reg =
  497. (struct vxge_hw_legacy_reg __iomem *)bar0;
  498. status = __vxge_hw_legacy_swapper_set(legacy_reg);
  499. if (status != VXGE_HW_OK)
  500. goto exit;
  501. val64 = readq(&legacy_reg->toc_first_pointer);
  502. toc = (struct vxge_hw_toc_reg __iomem *)(bar0+val64);
  503. exit:
  504. return toc;
  505. }
  506. /*
  507. * __vxge_hw_device_reg_addr_get
  508. * This routine sets the swapper and reads the toc pointer and initializes the
  509. * register location pointers in the device object. It waits until the ric is
  510. * completed initializing registers.
  511. */
  512. static enum vxge_hw_status
  513. __vxge_hw_device_reg_addr_get(struct __vxge_hw_device *hldev)
  514. {
  515. u64 val64;
  516. u32 i;
  517. enum vxge_hw_status status = VXGE_HW_OK;
  518. hldev->legacy_reg = (struct vxge_hw_legacy_reg __iomem *)hldev->bar0;
  519. hldev->toc_reg = __vxge_hw_device_toc_get(hldev->bar0);
  520. if (hldev->toc_reg == NULL) {
  521. status = VXGE_HW_FAIL;
  522. goto exit;
  523. }
  524. val64 = readq(&hldev->toc_reg->toc_common_pointer);
  525. hldev->common_reg =
  526. (struct vxge_hw_common_reg __iomem *)(hldev->bar0 + val64);
  527. val64 = readq(&hldev->toc_reg->toc_mrpcim_pointer);
  528. hldev->mrpcim_reg =
  529. (struct vxge_hw_mrpcim_reg __iomem *)(hldev->bar0 + val64);
  530. for (i = 0; i < VXGE_HW_TITAN_SRPCIM_REG_SPACES; i++) {
  531. val64 = readq(&hldev->toc_reg->toc_srpcim_pointer[i]);
  532. hldev->srpcim_reg[i] =
  533. (struct vxge_hw_srpcim_reg __iomem *)
  534. (hldev->bar0 + val64);
  535. }
  536. for (i = 0; i < VXGE_HW_TITAN_VPMGMT_REG_SPACES; i++) {
  537. val64 = readq(&hldev->toc_reg->toc_vpmgmt_pointer[i]);
  538. hldev->vpmgmt_reg[i] =
  539. (struct vxge_hw_vpmgmt_reg __iomem *)(hldev->bar0 + val64);
  540. }
  541. for (i = 0; i < VXGE_HW_TITAN_VPATH_REG_SPACES; i++) {
  542. val64 = readq(&hldev->toc_reg->toc_vpath_pointer[i]);
  543. hldev->vpath_reg[i] =
  544. (struct vxge_hw_vpath_reg __iomem *)
  545. (hldev->bar0 + val64);
  546. }
  547. val64 = readq(&hldev->toc_reg->toc_kdfc);
  548. switch (VXGE_HW_TOC_GET_KDFC_INITIAL_BIR(val64)) {
  549. case 0:
  550. hldev->kdfc = (u8 __iomem *)(hldev->bar0 +
  551. VXGE_HW_TOC_GET_KDFC_INITIAL_OFFSET(val64));
  552. break;
  553. default:
  554. break;
  555. }
  556. status = __vxge_hw_device_vpath_reset_in_prog_check(
  557. (u64 __iomem *)&hldev->common_reg->vpath_rst_in_prog);
  558. exit:
  559. return status;
  560. }
  561. /*
  562. * __vxge_hw_device_access_rights_get: Get Access Rights of the driver
  563. * This routine returns the Access Rights of the driver
  564. */
  565. static u32
  566. __vxge_hw_device_access_rights_get(u32 host_type, u32 func_id)
  567. {
  568. u32 access_rights = VXGE_HW_DEVICE_ACCESS_RIGHT_VPATH;
  569. switch (host_type) {
  570. case VXGE_HW_NO_MR_NO_SR_NORMAL_FUNCTION:
  571. if (func_id == 0) {
  572. access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
  573. VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
  574. }
  575. break;
  576. case VXGE_HW_MR_NO_SR_VH0_BASE_FUNCTION:
  577. access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
  578. VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
  579. break;
  580. case VXGE_HW_NO_MR_SR_VH0_FUNCTION0:
  581. access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
  582. VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
  583. break;
  584. case VXGE_HW_NO_MR_SR_VH0_VIRTUAL_FUNCTION:
  585. case VXGE_HW_SR_VH_VIRTUAL_FUNCTION:
  586. case VXGE_HW_MR_SR_VH0_INVALID_CONFIG:
  587. break;
  588. case VXGE_HW_SR_VH_FUNCTION0:
  589. case VXGE_HW_VH_NORMAL_FUNCTION:
  590. access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
  591. break;
  592. }
  593. return access_rights;
  594. }
  595. /*
  596. * __vxge_hw_device_is_privilaged
  597. * This routine checks if the device function is privilaged or not
  598. */
  599. enum vxge_hw_status
  600. __vxge_hw_device_is_privilaged(u32 host_type, u32 func_id)
  601. {
  602. if (__vxge_hw_device_access_rights_get(host_type,
  603. func_id) &
  604. VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)
  605. return VXGE_HW_OK;
  606. else
  607. return VXGE_HW_ERR_PRIVILAGED_OPEARATION;
  608. }
  609. /*
  610. * __vxge_hw_vpath_func_id_get - Get the function id of the vpath.
  611. * Returns the function number of the vpath.
  612. */
  613. static u32
  614. __vxge_hw_vpath_func_id_get(struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg)
  615. {
  616. u64 val64;
  617. val64 = readq(&vpmgmt_reg->vpath_to_func_map_cfg1);
  618. return
  619. (u32)VXGE_HW_VPATH_TO_FUNC_MAP_CFG1_GET_VPATH_TO_FUNC_MAP_CFG1(val64);
  620. }
  621. /*
  622. * __vxge_hw_device_host_info_get
  623. * This routine returns the host type assignments
  624. */
  625. static void __vxge_hw_device_host_info_get(struct __vxge_hw_device *hldev)
  626. {
  627. u64 val64;
  628. u32 i;
  629. val64 = readq(&hldev->common_reg->host_type_assignments);
  630. hldev->host_type =
  631. (u32)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64);
  632. hldev->vpath_assignments = readq(&hldev->common_reg->vpath_assignments);
  633. for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
  634. if (!(hldev->vpath_assignments & vxge_mBIT(i)))
  635. continue;
  636. hldev->func_id =
  637. __vxge_hw_vpath_func_id_get(hldev->vpmgmt_reg[i]);
  638. hldev->access_rights = __vxge_hw_device_access_rights_get(
  639. hldev->host_type, hldev->func_id);
  640. hldev->virtual_paths[i].vp_open = VXGE_HW_VP_NOT_OPEN;
  641. hldev->virtual_paths[i].vp_reg = hldev->vpath_reg[i];
  642. hldev->first_vp_id = i;
  643. break;
  644. }
  645. }
  646. /*
  647. * __vxge_hw_verify_pci_e_info - Validate the pci-e link parameters such as
  648. * link width and signalling rate.
  649. */
  650. static enum vxge_hw_status
  651. __vxge_hw_verify_pci_e_info(struct __vxge_hw_device *hldev)
  652. {
  653. int exp_cap;
  654. u16 lnk;
  655. /* Get the negotiated link width and speed from PCI config space */
  656. exp_cap = pci_find_capability(hldev->pdev, PCI_CAP_ID_EXP);
  657. pci_read_config_word(hldev->pdev, exp_cap + PCI_EXP_LNKSTA, &lnk);
  658. if ((lnk & PCI_EXP_LNKSTA_CLS) != 1)
  659. return VXGE_HW_ERR_INVALID_PCI_INFO;
  660. switch ((lnk & PCI_EXP_LNKSTA_NLW) >> 4) {
  661. case PCIE_LNK_WIDTH_RESRV:
  662. case PCIE_LNK_X1:
  663. case PCIE_LNK_X2:
  664. case PCIE_LNK_X4:
  665. case PCIE_LNK_X8:
  666. break;
  667. default:
  668. return VXGE_HW_ERR_INVALID_PCI_INFO;
  669. }
  670. return VXGE_HW_OK;
  671. }
  672. /*
  673. * __vxge_hw_device_initialize
  674. * Initialize Titan-V hardware.
  675. */
  676. static enum vxge_hw_status
  677. __vxge_hw_device_initialize(struct __vxge_hw_device *hldev)
  678. {
  679. enum vxge_hw_status status = VXGE_HW_OK;
  680. if (VXGE_HW_OK == __vxge_hw_device_is_privilaged(hldev->host_type,
  681. hldev->func_id)) {
  682. /* Validate the pci-e link width and speed */
  683. status = __vxge_hw_verify_pci_e_info(hldev);
  684. if (status != VXGE_HW_OK)
  685. goto exit;
  686. }
  687. exit:
  688. return status;
  689. }
  690. /*
  691. * __vxge_hw_vpath_fw_ver_get - Get the fw version
  692. * Returns FW Version
  693. */
  694. static enum vxge_hw_status
  695. __vxge_hw_vpath_fw_ver_get(struct __vxge_hw_virtualpath *vpath,
  696. struct vxge_hw_device_hw_info *hw_info)
  697. {
  698. struct vxge_hw_device_version *fw_version = &hw_info->fw_version;
  699. struct vxge_hw_device_date *fw_date = &hw_info->fw_date;
  700. struct vxge_hw_device_version *flash_version = &hw_info->flash_version;
  701. struct vxge_hw_device_date *flash_date = &hw_info->flash_date;
  702. u64 data0, data1 = 0, steer_ctrl = 0;
  703. enum vxge_hw_status status;
  704. status = vxge_hw_vpath_fw_api(vpath,
  705. VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_ENTRY,
  706. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
  707. 0, &data0, &data1, &steer_ctrl);
  708. if (status != VXGE_HW_OK)
  709. goto exit;
  710. fw_date->day =
  711. (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_DAY(data0);
  712. fw_date->month =
  713. (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MONTH(data0);
  714. fw_date->year =
  715. (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_YEAR(data0);
  716. snprintf(fw_date->date, VXGE_HW_FW_STRLEN, "%2.2d/%2.2d/%4.4d",
  717. fw_date->month, fw_date->day, fw_date->year);
  718. fw_version->major =
  719. (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MAJOR(data0);
  720. fw_version->minor =
  721. (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MINOR(data0);
  722. fw_version->build =
  723. (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_BUILD(data0);
  724. snprintf(fw_version->version, VXGE_HW_FW_STRLEN, "%d.%d.%d",
  725. fw_version->major, fw_version->minor, fw_version->build);
  726. flash_date->day =
  727. (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_DAY(data1);
  728. flash_date->month =
  729. (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MONTH(data1);
  730. flash_date->year =
  731. (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_YEAR(data1);
  732. snprintf(flash_date->date, VXGE_HW_FW_STRLEN, "%2.2d/%2.2d/%4.4d",
  733. flash_date->month, flash_date->day, flash_date->year);
  734. flash_version->major =
  735. (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MAJOR(data1);
  736. flash_version->minor =
  737. (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MINOR(data1);
  738. flash_version->build =
  739. (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_BUILD(data1);
  740. snprintf(flash_version->version, VXGE_HW_FW_STRLEN, "%d.%d.%d",
  741. flash_version->major, flash_version->minor,
  742. flash_version->build);
  743. exit:
  744. return status;
  745. }
  746. /*
  747. * __vxge_hw_vpath_card_info_get - Get the serial numbers,
  748. * part number and product description.
  749. */
  750. static enum vxge_hw_status
  751. __vxge_hw_vpath_card_info_get(struct __vxge_hw_virtualpath *vpath,
  752. struct vxge_hw_device_hw_info *hw_info)
  753. {
  754. enum vxge_hw_status status;
  755. u64 data0, data1 = 0, steer_ctrl = 0;
  756. u8 *serial_number = hw_info->serial_number;
  757. u8 *part_number = hw_info->part_number;
  758. u8 *product_desc = hw_info->product_desc;
  759. u32 i, j = 0;
  760. data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_SERIAL_NUMBER;
  761. status = vxge_hw_vpath_fw_api(vpath,
  762. VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY,
  763. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
  764. 0, &data0, &data1, &steer_ctrl);
  765. if (status != VXGE_HW_OK)
  766. return status;
  767. ((u64 *)serial_number)[0] = be64_to_cpu(data0);
  768. ((u64 *)serial_number)[1] = be64_to_cpu(data1);
  769. data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_PART_NUMBER;
  770. data1 = steer_ctrl = 0;
  771. status = vxge_hw_vpath_fw_api(vpath,
  772. VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY,
  773. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
  774. 0, &data0, &data1, &steer_ctrl);
  775. if (status != VXGE_HW_OK)
  776. return status;
  777. ((u64 *)part_number)[0] = be64_to_cpu(data0);
  778. ((u64 *)part_number)[1] = be64_to_cpu(data1);
  779. for (i = VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_0;
  780. i <= VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_3; i++) {
  781. data0 = i;
  782. data1 = steer_ctrl = 0;
  783. status = vxge_hw_vpath_fw_api(vpath,
  784. VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY,
  785. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
  786. 0, &data0, &data1, &steer_ctrl);
  787. if (status != VXGE_HW_OK)
  788. return status;
  789. ((u64 *)product_desc)[j++] = be64_to_cpu(data0);
  790. ((u64 *)product_desc)[j++] = be64_to_cpu(data1);
  791. }
  792. return status;
  793. }
  794. /*
  795. * __vxge_hw_vpath_pci_func_mode_get - Get the pci mode
  796. * Returns pci function mode
  797. */
  798. static enum vxge_hw_status
  799. __vxge_hw_vpath_pci_func_mode_get(struct __vxge_hw_virtualpath *vpath,
  800. struct vxge_hw_device_hw_info *hw_info)
  801. {
  802. u64 data0, data1 = 0, steer_ctrl = 0;
  803. enum vxge_hw_status status;
  804. data0 = 0;
  805. status = vxge_hw_vpath_fw_api(vpath,
  806. VXGE_HW_FW_API_GET_FUNC_MODE,
  807. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
  808. 0, &data0, &data1, &steer_ctrl);
  809. if (status != VXGE_HW_OK)
  810. return status;
  811. hw_info->function_mode = VXGE_HW_GET_FUNC_MODE_VAL(data0);
  812. return status;
  813. }
  814. /*
  815. * __vxge_hw_vpath_addr_get - Get the hw address entry for this vpath
  816. * from MAC address table.
  817. */
  818. static enum vxge_hw_status
  819. __vxge_hw_vpath_addr_get(struct __vxge_hw_virtualpath *vpath,
  820. u8 *macaddr, u8 *macaddr_mask)
  821. {
  822. u64 action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY,
  823. data0 = 0, data1 = 0, steer_ctrl = 0;
  824. enum vxge_hw_status status;
  825. int i;
  826. do {
  827. status = vxge_hw_vpath_fw_api(vpath, action,
  828. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
  829. 0, &data0, &data1, &steer_ctrl);
  830. if (status != VXGE_HW_OK)
  831. goto exit;
  832. data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data0);
  833. data1 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(
  834. data1);
  835. for (i = ETH_ALEN; i > 0; i--) {
  836. macaddr[i - 1] = (u8) (data0 & 0xFF);
  837. data0 >>= 8;
  838. macaddr_mask[i - 1] = (u8) (data1 & 0xFF);
  839. data1 >>= 8;
  840. }
  841. action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY;
  842. data0 = 0, data1 = 0, steer_ctrl = 0;
  843. } while (!is_valid_ether_addr(macaddr));
  844. exit:
  845. return status;
  846. }
  847. /**
  848. * vxge_hw_device_hw_info_get - Get the hw information
  849. * Returns the vpath mask that has the bits set for each vpath allocated
  850. * for the driver, FW version information, and the first mac address for
  851. * each vpath
  852. */
  853. enum vxge_hw_status __devinit
  854. vxge_hw_device_hw_info_get(void __iomem *bar0,
  855. struct vxge_hw_device_hw_info *hw_info)
  856. {
  857. u32 i;
  858. u64 val64;
  859. struct vxge_hw_toc_reg __iomem *toc;
  860. struct vxge_hw_mrpcim_reg __iomem *mrpcim_reg;
  861. struct vxge_hw_common_reg __iomem *common_reg;
  862. struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg;
  863. enum vxge_hw_status status;
  864. struct __vxge_hw_virtualpath vpath;
  865. memset(hw_info, 0, sizeof(struct vxge_hw_device_hw_info));
  866. toc = __vxge_hw_device_toc_get(bar0);
  867. if (toc == NULL) {
  868. status = VXGE_HW_ERR_CRITICAL;
  869. goto exit;
  870. }
  871. val64 = readq(&toc->toc_common_pointer);
  872. common_reg = (struct vxge_hw_common_reg __iomem *)(bar0 + val64);
  873. status = __vxge_hw_device_vpath_reset_in_prog_check(
  874. (u64 __iomem *)&common_reg->vpath_rst_in_prog);
  875. if (status != VXGE_HW_OK)
  876. goto exit;
  877. hw_info->vpath_mask = readq(&common_reg->vpath_assignments);
  878. val64 = readq(&common_reg->host_type_assignments);
  879. hw_info->host_type =
  880. (u32)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64);
  881. for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
  882. if (!((hw_info->vpath_mask) & vxge_mBIT(i)))
  883. continue;
  884. val64 = readq(&toc->toc_vpmgmt_pointer[i]);
  885. vpmgmt_reg = (struct vxge_hw_vpmgmt_reg __iomem *)
  886. (bar0 + val64);
  887. hw_info->func_id = __vxge_hw_vpath_func_id_get(vpmgmt_reg);
  888. if (__vxge_hw_device_access_rights_get(hw_info->host_type,
  889. hw_info->func_id) &
  890. VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM) {
  891. val64 = readq(&toc->toc_mrpcim_pointer);
  892. mrpcim_reg = (struct vxge_hw_mrpcim_reg __iomem *)
  893. (bar0 + val64);
  894. writeq(0, &mrpcim_reg->xgmac_gen_fw_memo_mask);
  895. wmb();
  896. }
  897. val64 = readq(&toc->toc_vpath_pointer[i]);
  898. spin_lock_init(&vpath.lock);
  899. vpath.vp_reg = (struct vxge_hw_vpath_reg __iomem *)
  900. (bar0 + val64);
  901. vpath.vp_open = VXGE_HW_VP_NOT_OPEN;
  902. status = __vxge_hw_vpath_pci_func_mode_get(&vpath, hw_info);
  903. if (status != VXGE_HW_OK)
  904. goto exit;
  905. status = __vxge_hw_vpath_fw_ver_get(&vpath, hw_info);
  906. if (status != VXGE_HW_OK)
  907. goto exit;
  908. status = __vxge_hw_vpath_card_info_get(&vpath, hw_info);
  909. if (status != VXGE_HW_OK)
  910. goto exit;
  911. break;
  912. }
  913. for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
  914. if (!((hw_info->vpath_mask) & vxge_mBIT(i)))
  915. continue;
  916. val64 = readq(&toc->toc_vpath_pointer[i]);
  917. vpath.vp_reg = (struct vxge_hw_vpath_reg __iomem *)
  918. (bar0 + val64);
  919. vpath.vp_open = VXGE_HW_VP_NOT_OPEN;
  920. status = __vxge_hw_vpath_addr_get(&vpath,
  921. hw_info->mac_addrs[i],
  922. hw_info->mac_addr_masks[i]);
  923. if (status != VXGE_HW_OK)
  924. goto exit;
  925. }
  926. exit:
  927. return status;
  928. }
  929. /*
  930. * __vxge_hw_blockpool_destroy - Deallocates the block pool
  931. */
  932. static void __vxge_hw_blockpool_destroy(struct __vxge_hw_blockpool *blockpool)
  933. {
  934. struct __vxge_hw_device *hldev;
  935. struct list_head *p, *n;
  936. u16 ret;
  937. if (blockpool == NULL) {
  938. ret = 1;
  939. goto exit;
  940. }
  941. hldev = blockpool->hldev;
  942. list_for_each_safe(p, n, &blockpool->free_block_list) {
  943. pci_unmap_single(hldev->pdev,
  944. ((struct __vxge_hw_blockpool_entry *)p)->dma_addr,
  945. ((struct __vxge_hw_blockpool_entry *)p)->length,
  946. PCI_DMA_BIDIRECTIONAL);
  947. vxge_os_dma_free(hldev->pdev,
  948. ((struct __vxge_hw_blockpool_entry *)p)->memblock,
  949. &((struct __vxge_hw_blockpool_entry *)p)->acc_handle);
  950. list_del(&((struct __vxge_hw_blockpool_entry *)p)->item);
  951. kfree(p);
  952. blockpool->pool_size--;
  953. }
  954. list_for_each_safe(p, n, &blockpool->free_entry_list) {
  955. list_del(&((struct __vxge_hw_blockpool_entry *)p)->item);
  956. kfree((void *)p);
  957. }
  958. ret = 0;
  959. exit:
  960. return;
  961. }
  962. /*
  963. * __vxge_hw_blockpool_create - Create block pool
  964. */
  965. static enum vxge_hw_status
  966. __vxge_hw_blockpool_create(struct __vxge_hw_device *hldev,
  967. struct __vxge_hw_blockpool *blockpool,
  968. u32 pool_size,
  969. u32 pool_max)
  970. {
  971. u32 i;
  972. struct __vxge_hw_blockpool_entry *entry = NULL;
  973. void *memblock;
  974. dma_addr_t dma_addr;
  975. struct pci_dev *dma_handle;
  976. struct pci_dev *acc_handle;
  977. enum vxge_hw_status status = VXGE_HW_OK;
  978. if (blockpool == NULL) {
  979. status = VXGE_HW_FAIL;
  980. goto blockpool_create_exit;
  981. }
  982. blockpool->hldev = hldev;
  983. blockpool->block_size = VXGE_HW_BLOCK_SIZE;
  984. blockpool->pool_size = 0;
  985. blockpool->pool_max = pool_max;
  986. blockpool->req_out = 0;
  987. INIT_LIST_HEAD(&blockpool->free_block_list);
  988. INIT_LIST_HEAD(&blockpool->free_entry_list);
  989. for (i = 0; i < pool_size + pool_max; i++) {
  990. entry = kzalloc(sizeof(struct __vxge_hw_blockpool_entry),
  991. GFP_KERNEL);
  992. if (entry == NULL) {
  993. __vxge_hw_blockpool_destroy(blockpool);
  994. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  995. goto blockpool_create_exit;
  996. }
  997. list_add(&entry->item, &blockpool->free_entry_list);
  998. }
  999. for (i = 0; i < pool_size; i++) {
  1000. memblock = vxge_os_dma_malloc(
  1001. hldev->pdev,
  1002. VXGE_HW_BLOCK_SIZE,
  1003. &dma_handle,
  1004. &acc_handle);
  1005. if (memblock == NULL) {
  1006. __vxge_hw_blockpool_destroy(blockpool);
  1007. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  1008. goto blockpool_create_exit;
  1009. }
  1010. dma_addr = pci_map_single(hldev->pdev, memblock,
  1011. VXGE_HW_BLOCK_SIZE, PCI_DMA_BIDIRECTIONAL);
  1012. if (unlikely(pci_dma_mapping_error(hldev->pdev,
  1013. dma_addr))) {
  1014. vxge_os_dma_free(hldev->pdev, memblock, &acc_handle);
  1015. __vxge_hw_blockpool_destroy(blockpool);
  1016. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  1017. goto blockpool_create_exit;
  1018. }
  1019. if (!list_empty(&blockpool->free_entry_list))
  1020. entry = (struct __vxge_hw_blockpool_entry *)
  1021. list_first_entry(&blockpool->free_entry_list,
  1022. struct __vxge_hw_blockpool_entry,
  1023. item);
  1024. if (entry == NULL)
  1025. entry =
  1026. kzalloc(sizeof(struct __vxge_hw_blockpool_entry),
  1027. GFP_KERNEL);
  1028. if (entry != NULL) {
  1029. list_del(&entry->item);
  1030. entry->length = VXGE_HW_BLOCK_SIZE;
  1031. entry->memblock = memblock;
  1032. entry->dma_addr = dma_addr;
  1033. entry->acc_handle = acc_handle;
  1034. entry->dma_handle = dma_handle;
  1035. list_add(&entry->item,
  1036. &blockpool->free_block_list);
  1037. blockpool->pool_size++;
  1038. } else {
  1039. __vxge_hw_blockpool_destroy(blockpool);
  1040. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  1041. goto blockpool_create_exit;
  1042. }
  1043. }
  1044. blockpool_create_exit:
  1045. return status;
  1046. }
  1047. /*
  1048. * __vxge_hw_device_fifo_config_check - Check fifo configuration.
  1049. * Check the fifo configuration
  1050. */
  1051. static enum vxge_hw_status
  1052. __vxge_hw_device_fifo_config_check(struct vxge_hw_fifo_config *fifo_config)
  1053. {
  1054. if ((fifo_config->fifo_blocks < VXGE_HW_MIN_FIFO_BLOCKS) ||
  1055. (fifo_config->fifo_blocks > VXGE_HW_MAX_FIFO_BLOCKS))
  1056. return VXGE_HW_BADCFG_FIFO_BLOCKS;
  1057. return VXGE_HW_OK;
  1058. }
  1059. /*
  1060. * __vxge_hw_device_vpath_config_check - Check vpath configuration.
  1061. * Check the vpath configuration
  1062. */
  1063. static enum vxge_hw_status
  1064. __vxge_hw_device_vpath_config_check(struct vxge_hw_vp_config *vp_config)
  1065. {
  1066. enum vxge_hw_status status;
  1067. if ((vp_config->min_bandwidth < VXGE_HW_VPATH_BANDWIDTH_MIN) ||
  1068. (vp_config->min_bandwidth > VXGE_HW_VPATH_BANDWIDTH_MAX))
  1069. return VXGE_HW_BADCFG_VPATH_MIN_BANDWIDTH;
  1070. status = __vxge_hw_device_fifo_config_check(&vp_config->fifo);
  1071. if (status != VXGE_HW_OK)
  1072. return status;
  1073. if ((vp_config->mtu != VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU) &&
  1074. ((vp_config->mtu < VXGE_HW_VPATH_MIN_INITIAL_MTU) ||
  1075. (vp_config->mtu > VXGE_HW_VPATH_MAX_INITIAL_MTU)))
  1076. return VXGE_HW_BADCFG_VPATH_MTU;
  1077. if ((vp_config->rpa_strip_vlan_tag !=
  1078. VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT) &&
  1079. (vp_config->rpa_strip_vlan_tag !=
  1080. VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_ENABLE) &&
  1081. (vp_config->rpa_strip_vlan_tag !=
  1082. VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_DISABLE))
  1083. return VXGE_HW_BADCFG_VPATH_RPA_STRIP_VLAN_TAG;
  1084. return VXGE_HW_OK;
  1085. }
  1086. /*
  1087. * __vxge_hw_device_config_check - Check device configuration.
  1088. * Check the device configuration
  1089. */
  1090. static enum vxge_hw_status
  1091. __vxge_hw_device_config_check(struct vxge_hw_device_config *new_config)
  1092. {
  1093. u32 i;
  1094. enum vxge_hw_status status;
  1095. if ((new_config->intr_mode != VXGE_HW_INTR_MODE_IRQLINE) &&
  1096. (new_config->intr_mode != VXGE_HW_INTR_MODE_MSIX) &&
  1097. (new_config->intr_mode != VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) &&
  1098. (new_config->intr_mode != VXGE_HW_INTR_MODE_DEF))
  1099. return VXGE_HW_BADCFG_INTR_MODE;
  1100. if ((new_config->rts_mac_en != VXGE_HW_RTS_MAC_DISABLE) &&
  1101. (new_config->rts_mac_en != VXGE_HW_RTS_MAC_ENABLE))
  1102. return VXGE_HW_BADCFG_RTS_MAC_EN;
  1103. for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
  1104. status = __vxge_hw_device_vpath_config_check(
  1105. &new_config->vp_config[i]);
  1106. if (status != VXGE_HW_OK)
  1107. return status;
  1108. }
  1109. return VXGE_HW_OK;
  1110. }
  1111. /*
  1112. * vxge_hw_device_initialize - Initialize Titan device.
  1113. * Initialize Titan device. Note that all the arguments of this public API
  1114. * are 'IN', including @hldev. Driver cooperates with
  1115. * OS to find new Titan device, locate its PCI and memory spaces.
  1116. *
  1117. * When done, the driver allocates sizeof(struct __vxge_hw_device) bytes for HW
  1118. * to enable the latter to perform Titan hardware initialization.
  1119. */
  1120. enum vxge_hw_status __devinit
  1121. vxge_hw_device_initialize(
  1122. struct __vxge_hw_device **devh,
  1123. struct vxge_hw_device_attr *attr,
  1124. struct vxge_hw_device_config *device_config)
  1125. {
  1126. u32 i;
  1127. u32 nblocks = 0;
  1128. struct __vxge_hw_device *hldev = NULL;
  1129. enum vxge_hw_status status = VXGE_HW_OK;
  1130. status = __vxge_hw_device_config_check(device_config);
  1131. if (status != VXGE_HW_OK)
  1132. goto exit;
  1133. hldev = vzalloc(sizeof(struct __vxge_hw_device));
  1134. if (hldev == NULL) {
  1135. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  1136. goto exit;
  1137. }
  1138. hldev->magic = VXGE_HW_DEVICE_MAGIC;
  1139. vxge_hw_device_debug_set(hldev, VXGE_ERR, VXGE_COMPONENT_ALL);
  1140. /* apply config */
  1141. memcpy(&hldev->config, device_config,
  1142. sizeof(struct vxge_hw_device_config));
  1143. hldev->bar0 = attr->bar0;
  1144. hldev->pdev = attr->pdev;
  1145. hldev->uld_callbacks.link_up = attr->uld_callbacks.link_up;
  1146. hldev->uld_callbacks.link_down = attr->uld_callbacks.link_down;
  1147. hldev->uld_callbacks.crit_err = attr->uld_callbacks.crit_err;
  1148. __vxge_hw_device_pci_e_init(hldev);
  1149. status = __vxge_hw_device_reg_addr_get(hldev);
  1150. if (status != VXGE_HW_OK) {
  1151. vfree(hldev);
  1152. goto exit;
  1153. }
  1154. __vxge_hw_device_host_info_get(hldev);
  1155. /* Incrementing for stats blocks */
  1156. nblocks++;
  1157. for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
  1158. if (!(hldev->vpath_assignments & vxge_mBIT(i)))
  1159. continue;
  1160. if (device_config->vp_config[i].ring.enable ==
  1161. VXGE_HW_RING_ENABLE)
  1162. nblocks += device_config->vp_config[i].ring.ring_blocks;
  1163. if (device_config->vp_config[i].fifo.enable ==
  1164. VXGE_HW_FIFO_ENABLE)
  1165. nblocks += device_config->vp_config[i].fifo.fifo_blocks;
  1166. nblocks++;
  1167. }
  1168. if (__vxge_hw_blockpool_create(hldev,
  1169. &hldev->block_pool,
  1170. device_config->dma_blockpool_initial + nblocks,
  1171. device_config->dma_blockpool_max + nblocks) != VXGE_HW_OK) {
  1172. vxge_hw_device_terminate(hldev);
  1173. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  1174. goto exit;
  1175. }
  1176. status = __vxge_hw_device_initialize(hldev);
  1177. if (status != VXGE_HW_OK) {
  1178. vxge_hw_device_terminate(hldev);
  1179. goto exit;
  1180. }
  1181. *devh = hldev;
  1182. exit:
  1183. return status;
  1184. }
  1185. /*
  1186. * vxge_hw_device_terminate - Terminate Titan device.
  1187. * Terminate HW device.
  1188. */
  1189. void
  1190. vxge_hw_device_terminate(struct __vxge_hw_device *hldev)
  1191. {
  1192. vxge_assert(hldev->magic == VXGE_HW_DEVICE_MAGIC);
  1193. hldev->magic = VXGE_HW_DEVICE_DEAD;
  1194. __vxge_hw_blockpool_destroy(&hldev->block_pool);
  1195. vfree(hldev);
  1196. }
  1197. /*
  1198. * __vxge_hw_vpath_stats_access - Get the statistics from the given location
  1199. * and offset and perform an operation
  1200. */
  1201. static enum vxge_hw_status
  1202. __vxge_hw_vpath_stats_access(struct __vxge_hw_virtualpath *vpath,
  1203. u32 operation, u32 offset, u64 *stat)
  1204. {
  1205. u64 val64;
  1206. enum vxge_hw_status status = VXGE_HW_OK;
  1207. struct vxge_hw_vpath_reg __iomem *vp_reg;
  1208. if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
  1209. status = VXGE_HW_ERR_VPATH_NOT_OPEN;
  1210. goto vpath_stats_access_exit;
  1211. }
  1212. vp_reg = vpath->vp_reg;
  1213. val64 = VXGE_HW_XMAC_STATS_ACCESS_CMD_OP(operation) |
  1214. VXGE_HW_XMAC_STATS_ACCESS_CMD_STROBE |
  1215. VXGE_HW_XMAC_STATS_ACCESS_CMD_OFFSET_SEL(offset);
  1216. status = __vxge_hw_pio_mem_write64(val64,
  1217. &vp_reg->xmac_stats_access_cmd,
  1218. VXGE_HW_XMAC_STATS_ACCESS_CMD_STROBE,
  1219. vpath->hldev->config.device_poll_millis);
  1220. if ((status == VXGE_HW_OK) && (operation == VXGE_HW_STATS_OP_READ))
  1221. *stat = readq(&vp_reg->xmac_stats_access_data);
  1222. else
  1223. *stat = 0;
  1224. vpath_stats_access_exit:
  1225. return status;
  1226. }
  1227. /*
  1228. * __vxge_hw_vpath_xmac_tx_stats_get - Get the TX Statistics of a vpath
  1229. */
  1230. static enum vxge_hw_status
  1231. __vxge_hw_vpath_xmac_tx_stats_get(struct __vxge_hw_virtualpath *vpath,
  1232. struct vxge_hw_xmac_vpath_tx_stats *vpath_tx_stats)
  1233. {
  1234. u64 *val64;
  1235. int i;
  1236. u32 offset = VXGE_HW_STATS_VPATH_TX_OFFSET;
  1237. enum vxge_hw_status status = VXGE_HW_OK;
  1238. val64 = (u64 *)vpath_tx_stats;
  1239. if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
  1240. status = VXGE_HW_ERR_VPATH_NOT_OPEN;
  1241. goto exit;
  1242. }
  1243. for (i = 0; i < sizeof(struct vxge_hw_xmac_vpath_tx_stats) / 8; i++) {
  1244. status = __vxge_hw_vpath_stats_access(vpath,
  1245. VXGE_HW_STATS_OP_READ,
  1246. offset, val64);
  1247. if (status != VXGE_HW_OK)
  1248. goto exit;
  1249. offset++;
  1250. val64++;
  1251. }
  1252. exit:
  1253. return status;
  1254. }
  1255. /*
  1256. * __vxge_hw_vpath_xmac_rx_stats_get - Get the RX Statistics of a vpath
  1257. */
  1258. static enum vxge_hw_status
  1259. __vxge_hw_vpath_xmac_rx_stats_get(struct __vxge_hw_virtualpath *vpath,
  1260. struct vxge_hw_xmac_vpath_rx_stats *vpath_rx_stats)
  1261. {
  1262. u64 *val64;
  1263. enum vxge_hw_status status = VXGE_HW_OK;
  1264. int i;
  1265. u32 offset = VXGE_HW_STATS_VPATH_RX_OFFSET;
  1266. val64 = (u64 *) vpath_rx_stats;
  1267. if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
  1268. status = VXGE_HW_ERR_VPATH_NOT_OPEN;
  1269. goto exit;
  1270. }
  1271. for (i = 0; i < sizeof(struct vxge_hw_xmac_vpath_rx_stats) / 8; i++) {
  1272. status = __vxge_hw_vpath_stats_access(vpath,
  1273. VXGE_HW_STATS_OP_READ,
  1274. offset >> 3, val64);
  1275. if (status != VXGE_HW_OK)
  1276. goto exit;
  1277. offset += 8;
  1278. val64++;
  1279. }
  1280. exit:
  1281. return status;
  1282. }
  1283. /*
  1284. * __vxge_hw_vpath_stats_get - Get the vpath hw statistics.
  1285. */
  1286. static enum vxge_hw_status
  1287. __vxge_hw_vpath_stats_get(struct __vxge_hw_virtualpath *vpath,
  1288. struct vxge_hw_vpath_stats_hw_info *hw_stats)
  1289. {
  1290. u64 val64;
  1291. enum vxge_hw_status status = VXGE_HW_OK;
  1292. struct vxge_hw_vpath_reg __iomem *vp_reg;
  1293. if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
  1294. status = VXGE_HW_ERR_VPATH_NOT_OPEN;
  1295. goto exit;
  1296. }
  1297. vp_reg = vpath->vp_reg;
  1298. val64 = readq(&vp_reg->vpath_debug_stats0);
  1299. hw_stats->ini_num_mwr_sent =
  1300. (u32)VXGE_HW_VPATH_DEBUG_STATS0_GET_INI_NUM_MWR_SENT(val64);
  1301. val64 = readq(&vp_reg->vpath_debug_stats1);
  1302. hw_stats->ini_num_mrd_sent =
  1303. (u32)VXGE_HW_VPATH_DEBUG_STATS1_GET_INI_NUM_MRD_SENT(val64);
  1304. val64 = readq(&vp_reg->vpath_debug_stats2);
  1305. hw_stats->ini_num_cpl_rcvd =
  1306. (u32)VXGE_HW_VPATH_DEBUG_STATS2_GET_INI_NUM_CPL_RCVD(val64);
  1307. val64 = readq(&vp_reg->vpath_debug_stats3);
  1308. hw_stats->ini_num_mwr_byte_sent =
  1309. VXGE_HW_VPATH_DEBUG_STATS3_GET_INI_NUM_MWR_BYTE_SENT(val64);
  1310. val64 = readq(&vp_reg->vpath_debug_stats4);
  1311. hw_stats->ini_num_cpl_byte_rcvd =
  1312. VXGE_HW_VPATH_DEBUG_STATS4_GET_INI_NUM_CPL_BYTE_RCVD(val64);
  1313. val64 = readq(&vp_reg->vpath_debug_stats5);
  1314. hw_stats->wrcrdtarb_xoff =
  1315. (u32)VXGE_HW_VPATH_DEBUG_STATS5_GET_WRCRDTARB_XOFF(val64);
  1316. val64 = readq(&vp_reg->vpath_debug_stats6);
  1317. hw_stats->rdcrdtarb_xoff =
  1318. (u32)VXGE_HW_VPATH_DEBUG_STATS6_GET_RDCRDTARB_XOFF(val64);
  1319. val64 = readq(&vp_reg->vpath_genstats_count01);
  1320. hw_stats->vpath_genstats_count0 =
  1321. (u32)VXGE_HW_VPATH_GENSTATS_COUNT01_GET_PPIF_VPATH_GENSTATS_COUNT0(
  1322. val64);
  1323. val64 = readq(&vp_reg->vpath_genstats_count01);
  1324. hw_stats->vpath_genstats_count1 =
  1325. (u32)VXGE_HW_VPATH_GENSTATS_COUNT01_GET_PPIF_VPATH_GENSTATS_COUNT1(
  1326. val64);
  1327. val64 = readq(&vp_reg->vpath_genstats_count23);
  1328. hw_stats->vpath_genstats_count2 =
  1329. (u32)VXGE_HW_VPATH_GENSTATS_COUNT23_GET_PPIF_VPATH_GENSTATS_COUNT2(
  1330. val64);
  1331. val64 = readq(&vp_reg->vpath_genstats_count01);
  1332. hw_stats->vpath_genstats_count3 =
  1333. (u32)VXGE_HW_VPATH_GENSTATS_COUNT23_GET_PPIF_VPATH_GENSTATS_COUNT3(
  1334. val64);
  1335. val64 = readq(&vp_reg->vpath_genstats_count4);
  1336. hw_stats->vpath_genstats_count4 =
  1337. (u32)VXGE_HW_VPATH_GENSTATS_COUNT4_GET_PPIF_VPATH_GENSTATS_COUNT4(
  1338. val64);
  1339. val64 = readq(&vp_reg->vpath_genstats_count5);
  1340. hw_stats->vpath_genstats_count5 =
  1341. (u32)VXGE_HW_VPATH_GENSTATS_COUNT5_GET_PPIF_VPATH_GENSTATS_COUNT5(
  1342. val64);
  1343. status = __vxge_hw_vpath_xmac_tx_stats_get(vpath, &hw_stats->tx_stats);
  1344. if (status != VXGE_HW_OK)
  1345. goto exit;
  1346. status = __vxge_hw_vpath_xmac_rx_stats_get(vpath, &hw_stats->rx_stats);
  1347. if (status != VXGE_HW_OK)
  1348. goto exit;
  1349. VXGE_HW_VPATH_STATS_PIO_READ(
  1350. VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM0_OFFSET);
  1351. hw_stats->prog_event_vnum0 =
  1352. (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM0(val64);
  1353. hw_stats->prog_event_vnum1 =
  1354. (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM1(val64);
  1355. VXGE_HW_VPATH_STATS_PIO_READ(
  1356. VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM2_OFFSET);
  1357. hw_stats->prog_event_vnum2 =
  1358. (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM2(val64);
  1359. hw_stats->prog_event_vnum3 =
  1360. (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM3(val64);
  1361. val64 = readq(&vp_reg->rx_multi_cast_stats);
  1362. hw_stats->rx_multi_cast_frame_discard =
  1363. (u16)VXGE_HW_RX_MULTI_CAST_STATS_GET_FRAME_DISCARD(val64);
  1364. val64 = readq(&vp_reg->rx_frm_transferred);
  1365. hw_stats->rx_frm_transferred =
  1366. (u32)VXGE_HW_RX_FRM_TRANSFERRED_GET_RX_FRM_TRANSFERRED(val64);
  1367. val64 = readq(&vp_reg->rxd_returned);
  1368. hw_stats->rxd_returned =
  1369. (u16)VXGE_HW_RXD_RETURNED_GET_RXD_RETURNED(val64);
  1370. val64 = readq(&vp_reg->dbg_stats_rx_mpa);
  1371. hw_stats->rx_mpa_len_fail_frms =
  1372. (u16)VXGE_HW_DBG_STATS_GET_RX_MPA_LEN_FAIL_FRMS(val64);
  1373. hw_stats->rx_mpa_mrk_fail_frms =
  1374. (u16)VXGE_HW_DBG_STATS_GET_RX_MPA_MRK_FAIL_FRMS(val64);
  1375. hw_stats->rx_mpa_crc_fail_frms =
  1376. (u16)VXGE_HW_DBG_STATS_GET_RX_MPA_CRC_FAIL_FRMS(val64);
  1377. val64 = readq(&vp_reg->dbg_stats_rx_fau);
  1378. hw_stats->rx_permitted_frms =
  1379. (u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_PERMITTED_FRMS(val64);
  1380. hw_stats->rx_vp_reset_discarded_frms =
  1381. (u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_VP_RESET_DISCARDED_FRMS(val64);
  1382. hw_stats->rx_wol_frms =
  1383. (u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_WOL_FRMS(val64);
  1384. val64 = readq(&vp_reg->tx_vp_reset_discarded_frms);
  1385. hw_stats->tx_vp_reset_discarded_frms =
  1386. (u16)VXGE_HW_TX_VP_RESET_DISCARDED_FRMS_GET_TX_VP_RESET_DISCARDED_FRMS(
  1387. val64);
  1388. exit:
  1389. return status;
  1390. }
  1391. /*
  1392. * vxge_hw_device_stats_get - Get the device hw statistics.
  1393. * Returns the vpath h/w stats for the device.
  1394. */
  1395. enum vxge_hw_status
  1396. vxge_hw_device_stats_get(struct __vxge_hw_device *hldev,
  1397. struct vxge_hw_device_stats_hw_info *hw_stats)
  1398. {
  1399. u32 i;
  1400. enum vxge_hw_status status = VXGE_HW_OK;
  1401. for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
  1402. if (!(hldev->vpaths_deployed & vxge_mBIT(i)) ||
  1403. (hldev->virtual_paths[i].vp_open ==
  1404. VXGE_HW_VP_NOT_OPEN))
  1405. continue;
  1406. memcpy(hldev->virtual_paths[i].hw_stats_sav,
  1407. hldev->virtual_paths[i].hw_stats,
  1408. sizeof(struct vxge_hw_vpath_stats_hw_info));
  1409. status = __vxge_hw_vpath_stats_get(
  1410. &hldev->virtual_paths[i],
  1411. hldev->virtual_paths[i].hw_stats);
  1412. }
  1413. memcpy(hw_stats, &hldev->stats.hw_dev_info_stats,
  1414. sizeof(struct vxge_hw_device_stats_hw_info));
  1415. return status;
  1416. }
  1417. /*
  1418. * vxge_hw_driver_stats_get - Get the device sw statistics.
  1419. * Returns the vpath s/w stats for the device.
  1420. */
  1421. enum vxge_hw_status vxge_hw_driver_stats_get(
  1422. struct __vxge_hw_device *hldev,
  1423. struct vxge_hw_device_stats_sw_info *sw_stats)
  1424. {
  1425. enum vxge_hw_status status = VXGE_HW_OK;
  1426. memcpy(sw_stats, &hldev->stats.sw_dev_info_stats,
  1427. sizeof(struct vxge_hw_device_stats_sw_info));
  1428. return status;
  1429. }
  1430. /*
  1431. * vxge_hw_mrpcim_stats_access - Access the statistics from the given location
  1432. * and offset and perform an operation
  1433. * Get the statistics from the given location and offset.
  1434. */
  1435. enum vxge_hw_status
  1436. vxge_hw_mrpcim_stats_access(struct __vxge_hw_device *hldev,
  1437. u32 operation, u32 location, u32 offset, u64 *stat)
  1438. {
  1439. u64 val64;
  1440. enum vxge_hw_status status = VXGE_HW_OK;
  1441. status = __vxge_hw_device_is_privilaged(hldev->host_type,
  1442. hldev->func_id);
  1443. if (status != VXGE_HW_OK)
  1444. goto exit;
  1445. val64 = VXGE_HW_XMAC_STATS_SYS_CMD_OP(operation) |
  1446. VXGE_HW_XMAC_STATS_SYS_CMD_STROBE |
  1447. VXGE_HW_XMAC_STATS_SYS_CMD_LOC_SEL(location) |
  1448. VXGE_HW_XMAC_STATS_SYS_CMD_OFFSET_SEL(offset);
  1449. status = __vxge_hw_pio_mem_write64(val64,
  1450. &hldev->mrpcim_reg->xmac_stats_sys_cmd,
  1451. VXGE_HW_XMAC_STATS_SYS_CMD_STROBE,
  1452. hldev->config.device_poll_millis);
  1453. if ((status == VXGE_HW_OK) && (operation == VXGE_HW_STATS_OP_READ))
  1454. *stat = readq(&hldev->mrpcim_reg->xmac_stats_sys_data);
  1455. else
  1456. *stat = 0;
  1457. exit:
  1458. return status;
  1459. }
  1460. /*
  1461. * vxge_hw_device_xmac_aggr_stats_get - Get the Statistics on aggregate port
  1462. * Get the Statistics on aggregate port
  1463. */
  1464. static enum vxge_hw_status
  1465. vxge_hw_device_xmac_aggr_stats_get(struct __vxge_hw_device *hldev, u32 port,
  1466. struct vxge_hw_xmac_aggr_stats *aggr_stats)
  1467. {
  1468. u64 *val64;
  1469. int i;
  1470. u32 offset = VXGE_HW_STATS_AGGRn_OFFSET;
  1471. enum vxge_hw_status status = VXGE_HW_OK;
  1472. val64 = (u64 *)aggr_stats;
  1473. status = __vxge_hw_device_is_privilaged(hldev->host_type,
  1474. hldev->func_id);
  1475. if (status != VXGE_HW_OK)
  1476. goto exit;
  1477. for (i = 0; i < sizeof(struct vxge_hw_xmac_aggr_stats) / 8; i++) {
  1478. status = vxge_hw_mrpcim_stats_access(hldev,
  1479. VXGE_HW_STATS_OP_READ,
  1480. VXGE_HW_STATS_LOC_AGGR,
  1481. ((offset + (104 * port)) >> 3), val64);
  1482. if (status != VXGE_HW_OK)
  1483. goto exit;
  1484. offset += 8;
  1485. val64++;
  1486. }
  1487. exit:
  1488. return status;
  1489. }
  1490. /*
  1491. * vxge_hw_device_xmac_port_stats_get - Get the Statistics on a port
  1492. * Get the Statistics on port
  1493. */
  1494. static enum vxge_hw_status
  1495. vxge_hw_device_xmac_port_stats_get(struct __vxge_hw_device *hldev, u32 port,
  1496. struct vxge_hw_xmac_port_stats *port_stats)
  1497. {
  1498. u64 *val64;
  1499. enum vxge_hw_status status = VXGE_HW_OK;
  1500. int i;
  1501. u32 offset = 0x0;
  1502. val64 = (u64 *) port_stats;
  1503. status = __vxge_hw_device_is_privilaged(hldev->host_type,
  1504. hldev->func_id);
  1505. if (status != VXGE_HW_OK)
  1506. goto exit;
  1507. for (i = 0; i < sizeof(struct vxge_hw_xmac_port_stats) / 8; i++) {
  1508. status = vxge_hw_mrpcim_stats_access(hldev,
  1509. VXGE_HW_STATS_OP_READ,
  1510. VXGE_HW_STATS_LOC_AGGR,
  1511. ((offset + (608 * port)) >> 3), val64);
  1512. if (status != VXGE_HW_OK)
  1513. goto exit;
  1514. offset += 8;
  1515. val64++;
  1516. }
  1517. exit:
  1518. return status;
  1519. }
  1520. /*
  1521. * vxge_hw_device_xmac_stats_get - Get the XMAC Statistics
  1522. * Get the XMAC Statistics
  1523. */
  1524. enum vxge_hw_status
  1525. vxge_hw_device_xmac_stats_get(struct __vxge_hw_device *hldev,
  1526. struct vxge_hw_xmac_stats *xmac_stats)
  1527. {
  1528. enum vxge_hw_status status = VXGE_HW_OK;
  1529. u32 i;
  1530. status = vxge_hw_device_xmac_aggr_stats_get(hldev,
  1531. 0, &xmac_stats->aggr_stats[0]);
  1532. if (status != VXGE_HW_OK)
  1533. goto exit;
  1534. status = vxge_hw_device_xmac_aggr_stats_get(hldev,
  1535. 1, &xmac_stats->aggr_stats[1]);
  1536. if (status != VXGE_HW_OK)
  1537. goto exit;
  1538. for (i = 0; i <= VXGE_HW_MAC_MAX_MAC_PORT_ID; i++) {
  1539. status = vxge_hw_device_xmac_port_stats_get(hldev,
  1540. i, &xmac_stats->port_stats[i]);
  1541. if (status != VXGE_HW_OK)
  1542. goto exit;
  1543. }
  1544. for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
  1545. if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
  1546. continue;
  1547. status = __vxge_hw_vpath_xmac_tx_stats_get(
  1548. &hldev->virtual_paths[i],
  1549. &xmac_stats->vpath_tx_stats[i]);
  1550. if (status != VXGE_HW_OK)
  1551. goto exit;
  1552. status = __vxge_hw_vpath_xmac_rx_stats_get(
  1553. &hldev->virtual_paths[i],
  1554. &xmac_stats->vpath_rx_stats[i]);
  1555. if (status != VXGE_HW_OK)
  1556. goto exit;
  1557. }
  1558. exit:
  1559. return status;
  1560. }
  1561. /*
  1562. * vxge_hw_device_debug_set - Set the debug module, level and timestamp
  1563. * This routine is used to dynamically change the debug output
  1564. */
  1565. void vxge_hw_device_debug_set(struct __vxge_hw_device *hldev,
  1566. enum vxge_debug_level level, u32 mask)
  1567. {
  1568. if (hldev == NULL)
  1569. return;
  1570. #if defined(VXGE_DEBUG_TRACE_MASK) || \
  1571. defined(VXGE_DEBUG_ERR_MASK)
  1572. hldev->debug_module_mask = mask;
  1573. hldev->debug_level = level;
  1574. #endif
  1575. #if defined(VXGE_DEBUG_ERR_MASK)
  1576. hldev->level_err = level & VXGE_ERR;
  1577. #endif
  1578. #if defined(VXGE_DEBUG_TRACE_MASK)
  1579. hldev->level_trace = level & VXGE_TRACE;
  1580. #endif
  1581. }
  1582. /*
  1583. * vxge_hw_device_error_level_get - Get the error level
  1584. * This routine returns the current error level set
  1585. */
  1586. u32 vxge_hw_device_error_level_get(struct __vxge_hw_device *hldev)
  1587. {
  1588. #if defined(VXGE_DEBUG_ERR_MASK)
  1589. if (hldev == NULL)
  1590. return VXGE_ERR;
  1591. else
  1592. return hldev->level_err;
  1593. #else
  1594. return 0;
  1595. #endif
  1596. }
  1597. /*
  1598. * vxge_hw_device_trace_level_get - Get the trace level
  1599. * This routine returns the current trace level set
  1600. */
  1601. u32 vxge_hw_device_trace_level_get(struct __vxge_hw_device *hldev)
  1602. {
  1603. #if defined(VXGE_DEBUG_TRACE_MASK)
  1604. if (hldev == NULL)
  1605. return VXGE_TRACE;
  1606. else
  1607. return hldev->level_trace;
  1608. #else
  1609. return 0;
  1610. #endif
  1611. }
  1612. /*
  1613. * vxge_hw_getpause_data -Pause frame frame generation and reception.
  1614. * Returns the Pause frame generation and reception capability of the NIC.
  1615. */
  1616. enum vxge_hw_status vxge_hw_device_getpause_data(struct __vxge_hw_device *hldev,
  1617. u32 port, u32 *tx, u32 *rx)
  1618. {
  1619. u64 val64;
  1620. enum vxge_hw_status status = VXGE_HW_OK;
  1621. if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
  1622. status = VXGE_HW_ERR_INVALID_DEVICE;
  1623. goto exit;
  1624. }
  1625. if (port > VXGE_HW_MAC_MAX_MAC_PORT_ID) {
  1626. status = VXGE_HW_ERR_INVALID_PORT;
  1627. goto exit;
  1628. }
  1629. if (!(hldev->access_rights & VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
  1630. status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
  1631. goto exit;
  1632. }
  1633. val64 = readq(&hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
  1634. if (val64 & VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN)
  1635. *tx = 1;
  1636. if (val64 & VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN)
  1637. *rx = 1;
  1638. exit:
  1639. return status;
  1640. }
  1641. /*
  1642. * vxge_hw_device_setpause_data - set/reset pause frame generation.
  1643. * It can be used to set or reset Pause frame generation or reception
  1644. * support of the NIC.
  1645. */
  1646. enum vxge_hw_status vxge_hw_device_setpause_data(struct __vxge_hw_device *hldev,
  1647. u32 port, u32 tx, u32 rx)
  1648. {
  1649. u64 val64;
  1650. enum vxge_hw_status status = VXGE_HW_OK;
  1651. if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
  1652. status = VXGE_HW_ERR_INVALID_DEVICE;
  1653. goto exit;
  1654. }
  1655. if (port > VXGE_HW_MAC_MAX_MAC_PORT_ID) {
  1656. status = VXGE_HW_ERR_INVALID_PORT;
  1657. goto exit;
  1658. }
  1659. status = __vxge_hw_device_is_privilaged(hldev->host_type,
  1660. hldev->func_id);
  1661. if (status != VXGE_HW_OK)
  1662. goto exit;
  1663. val64 = readq(&hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
  1664. if (tx)
  1665. val64 |= VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN;
  1666. else
  1667. val64 &= ~VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN;
  1668. if (rx)
  1669. val64 |= VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN;
  1670. else
  1671. val64 &= ~VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN;
  1672. writeq(val64, &hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
  1673. exit:
  1674. return status;
  1675. }
  1676. u16 vxge_hw_device_link_width_get(struct __vxge_hw_device *hldev)
  1677. {
  1678. int link_width, exp_cap;
  1679. u16 lnk;
  1680. exp_cap = pci_find_capability(hldev->pdev, PCI_CAP_ID_EXP);
  1681. pci_read_config_word(hldev->pdev, exp_cap + PCI_EXP_LNKSTA, &lnk);
  1682. link_width = (lnk & VXGE_HW_PCI_EXP_LNKCAP_LNK_WIDTH) >> 4;
  1683. return link_width;
  1684. }
  1685. /*
  1686. * __vxge_hw_ring_block_memblock_idx - Return the memblock index
  1687. * This function returns the index of memory block
  1688. */
  1689. static inline u32
  1690. __vxge_hw_ring_block_memblock_idx(u8 *block)
  1691. {
  1692. return (u32)*((u64 *)(block + VXGE_HW_RING_MEMBLOCK_IDX_OFFSET));
  1693. }
  1694. /*
  1695. * __vxge_hw_ring_block_memblock_idx_set - Sets the memblock index
  1696. * This function sets index to a memory block
  1697. */
  1698. static inline void
  1699. __vxge_hw_ring_block_memblock_idx_set(u8 *block, u32 memblock_idx)
  1700. {
  1701. *((u64 *)(block + VXGE_HW_RING_MEMBLOCK_IDX_OFFSET)) = memblock_idx;
  1702. }
  1703. /*
  1704. * __vxge_hw_ring_block_next_pointer_set - Sets the next block pointer
  1705. * in RxD block
  1706. * Sets the next block pointer in RxD block
  1707. */
  1708. static inline void
  1709. __vxge_hw_ring_block_next_pointer_set(u8 *block, dma_addr_t dma_next)
  1710. {
  1711. *((u64 *)(block + VXGE_HW_RING_NEXT_BLOCK_POINTER_OFFSET)) = dma_next;
  1712. }
  1713. /*
  1714. * __vxge_hw_ring_first_block_address_get - Returns the dma address of the
  1715. * first block
  1716. * Returns the dma address of the first RxD block
  1717. */
  1718. static u64 __vxge_hw_ring_first_block_address_get(struct __vxge_hw_ring *ring)
  1719. {
  1720. struct vxge_hw_mempool_dma *dma_object;
  1721. dma_object = ring->mempool->memblocks_dma_arr;
  1722. vxge_assert(dma_object != NULL);
  1723. return dma_object->addr;
  1724. }
  1725. /*
  1726. * __vxge_hw_ring_item_dma_addr - Return the dma address of an item
  1727. * This function returns the dma address of a given item
  1728. */
  1729. static dma_addr_t __vxge_hw_ring_item_dma_addr(struct vxge_hw_mempool *mempoolh,
  1730. void *item)
  1731. {
  1732. u32 memblock_idx;
  1733. void *memblock;
  1734. struct vxge_hw_mempool_dma *memblock_dma_object;
  1735. ptrdiff_t dma_item_offset;
  1736. /* get owner memblock index */
  1737. memblock_idx = __vxge_hw_ring_block_memblock_idx(item);
  1738. /* get owner memblock by memblock index */
  1739. memblock = mempoolh->memblocks_arr[memblock_idx];
  1740. /* get memblock DMA object by memblock index */
  1741. memblock_dma_object = mempoolh->memblocks_dma_arr + memblock_idx;
  1742. /* calculate offset in the memblock of this item */
  1743. dma_item_offset = (u8 *)item - (u8 *)memblock;
  1744. return memblock_dma_object->addr + dma_item_offset;
  1745. }
  1746. /*
  1747. * __vxge_hw_ring_rxdblock_link - Link the RxD blocks
  1748. * This function returns the dma address of a given item
  1749. */
  1750. static void __vxge_hw_ring_rxdblock_link(struct vxge_hw_mempool *mempoolh,
  1751. struct __vxge_hw_ring *ring, u32 from,
  1752. u32 to)
  1753. {
  1754. u8 *to_item , *from_item;
  1755. dma_addr_t to_dma;
  1756. /* get "from" RxD block */
  1757. from_item = mempoolh->items_arr[from];
  1758. vxge_assert(from_item);
  1759. /* get "to" RxD block */
  1760. to_item = mempoolh->items_arr[to];
  1761. vxge_assert(to_item);
  1762. /* return address of the beginning of previous RxD block */
  1763. to_dma = __vxge_hw_ring_item_dma_addr(mempoolh, to_item);
  1764. /* set next pointer for this RxD block to point on
  1765. * previous item's DMA start address */
  1766. __vxge_hw_ring_block_next_pointer_set(from_item, to_dma);
  1767. }
  1768. /*
  1769. * __vxge_hw_ring_mempool_item_alloc - Allocate List blocks for RxD
  1770. * block callback
  1771. * This function is callback passed to __vxge_hw_mempool_create to create memory
  1772. * pool for RxD block
  1773. */
  1774. static void
  1775. __vxge_hw_ring_mempool_item_alloc(struct vxge_hw_mempool *mempoolh,
  1776. u32 memblock_index,
  1777. struct vxge_hw_mempool_dma *dma_object,
  1778. u32 index, u32 is_last)
  1779. {
  1780. u32 i;
  1781. void *item = mempoolh->items_arr[index];
  1782. struct __vxge_hw_ring *ring =
  1783. (struct __vxge_hw_ring *)mempoolh->userdata;
  1784. /* format rxds array */
  1785. for (i = 0; i < ring->rxds_per_block; i++) {
  1786. void *rxdblock_priv;
  1787. void *uld_priv;
  1788. struct vxge_hw_ring_rxd_1 *rxdp;
  1789. u32 reserve_index = ring->channel.reserve_ptr -
  1790. (index * ring->rxds_per_block + i + 1);
  1791. u32 memblock_item_idx;
  1792. ring->channel.reserve_arr[reserve_index] = ((u8 *)item) +
  1793. i * ring->rxd_size;
  1794. /* Note: memblock_item_idx is index of the item within
  1795. * the memblock. For instance, in case of three RxD-blocks
  1796. * per memblock this value can be 0, 1 or 2. */
  1797. rxdblock_priv = __vxge_hw_mempool_item_priv(mempoolh,
  1798. memblock_index, item,
  1799. &memblock_item_idx);
  1800. rxdp = (struct vxge_hw_ring_rxd_1 *)
  1801. ring->channel.reserve_arr[reserve_index];
  1802. uld_priv = ((u8 *)rxdblock_priv + ring->rxd_priv_size * i);
  1803. /* pre-format Host_Control */
  1804. rxdp->host_control = (u64)(size_t)uld_priv;
  1805. }
  1806. __vxge_hw_ring_block_memblock_idx_set(item, memblock_index);
  1807. if (is_last) {
  1808. /* link last one with first one */
  1809. __vxge_hw_ring_rxdblock_link(mempoolh, ring, index, 0);
  1810. }
  1811. if (index > 0) {
  1812. /* link this RxD block with previous one */
  1813. __vxge_hw_ring_rxdblock_link(mempoolh, ring, index - 1, index);
  1814. }
  1815. }
  1816. /*
  1817. * __vxge_hw_ring_replenish - Initial replenish of RxDs
  1818. * This function replenishes the RxDs from reserve array to work array
  1819. */
  1820. enum vxge_hw_status
  1821. vxge_hw_ring_replenish(struct __vxge_hw_ring *ring)
  1822. {
  1823. void *rxd;
  1824. struct __vxge_hw_channel *channel;
  1825. enum vxge_hw_status status = VXGE_HW_OK;
  1826. channel = &ring->channel;
  1827. while (vxge_hw_channel_dtr_count(channel) > 0) {
  1828. status = vxge_hw_ring_rxd_reserve(ring, &rxd);
  1829. vxge_assert(status == VXGE_HW_OK);
  1830. if (ring->rxd_init) {
  1831. status = ring->rxd_init(rxd, channel->userdata);
  1832. if (status != VXGE_HW_OK) {
  1833. vxge_hw_ring_rxd_free(ring, rxd);
  1834. goto exit;
  1835. }
  1836. }
  1837. vxge_hw_ring_rxd_post(ring, rxd);
  1838. }
  1839. status = VXGE_HW_OK;
  1840. exit:
  1841. return status;
  1842. }
  1843. /*
  1844. * __vxge_hw_channel_allocate - Allocate memory for channel
  1845. * This function allocates required memory for the channel and various arrays
  1846. * in the channel
  1847. */
  1848. static struct __vxge_hw_channel *
  1849. __vxge_hw_channel_allocate(struct __vxge_hw_vpath_handle *vph,
  1850. enum __vxge_hw_channel_type type,
  1851. u32 length, u32 per_dtr_space,
  1852. void *userdata)
  1853. {
  1854. struct __vxge_hw_channel *channel;
  1855. struct __vxge_hw_device *hldev;
  1856. int size = 0;
  1857. u32 vp_id;
  1858. hldev = vph->vpath->hldev;
  1859. vp_id = vph->vpath->vp_id;
  1860. switch (type) {
  1861. case VXGE_HW_CHANNEL_TYPE_FIFO:
  1862. size = sizeof(struct __vxge_hw_fifo);
  1863. break;
  1864. case VXGE_HW_CHANNEL_TYPE_RING:
  1865. size = sizeof(struct __vxge_hw_ring);
  1866. break;
  1867. default:
  1868. break;
  1869. }
  1870. channel = kzalloc(size, GFP_KERNEL);
  1871. if (channel == NULL)
  1872. goto exit0;
  1873. INIT_LIST_HEAD(&channel->item);
  1874. channel->common_reg = hldev->common_reg;
  1875. channel->first_vp_id = hldev->first_vp_id;
  1876. channel->type = type;
  1877. channel->devh = hldev;
  1878. channel->vph = vph;
  1879. channel->userdata = userdata;
  1880. channel->per_dtr_space = per_dtr_space;
  1881. channel->length = length;
  1882. channel->vp_id = vp_id;
  1883. channel->work_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
  1884. if (channel->work_arr == NULL)
  1885. goto exit1;
  1886. channel->free_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
  1887. if (channel->free_arr == NULL)
  1888. goto exit1;
  1889. channel->free_ptr = length;
  1890. channel->reserve_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
  1891. if (channel->reserve_arr == NULL)
  1892. goto exit1;
  1893. channel->reserve_ptr = length;
  1894. channel->reserve_top = 0;
  1895. channel->orig_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
  1896. if (channel->orig_arr == NULL)
  1897. goto exit1;
  1898. return channel;
  1899. exit1:
  1900. __vxge_hw_channel_free(channel);
  1901. exit0:
  1902. return NULL;
  1903. }
  1904. /*
  1905. * vxge_hw_blockpool_block_add - callback for vxge_os_dma_malloc_async
  1906. * Adds a block to block pool
  1907. */
  1908. static void vxge_hw_blockpool_block_add(struct __vxge_hw_device *devh,
  1909. void *block_addr,
  1910. u32 length,
  1911. struct pci_dev *dma_h,
  1912. struct pci_dev *acc_handle)
  1913. {
  1914. struct __vxge_hw_blockpool *blockpool;
  1915. struct __vxge_hw_blockpool_entry *entry = NULL;
  1916. dma_addr_t dma_addr;
  1917. enum vxge_hw_status status = VXGE_HW_OK;
  1918. u32 req_out;
  1919. blockpool = &devh->block_pool;
  1920. if (block_addr == NULL) {
  1921. blockpool->req_out--;
  1922. status = VXGE_HW_FAIL;
  1923. goto exit;
  1924. }
  1925. dma_addr = pci_map_single(devh->pdev, block_addr, length,
  1926. PCI_DMA_BIDIRECTIONAL);
  1927. if (unlikely(pci_dma_mapping_error(devh->pdev, dma_addr))) {
  1928. vxge_os_dma_free(devh->pdev, block_addr, &acc_handle);
  1929. blockpool->req_out--;
  1930. status = VXGE_HW_FAIL;
  1931. goto exit;
  1932. }
  1933. if (!list_empty(&blockpool->free_entry_list))
  1934. entry = (struct __vxge_hw_blockpool_entry *)
  1935. list_first_entry(&blockpool->free_entry_list,
  1936. struct __vxge_hw_blockpool_entry,
  1937. item);
  1938. if (entry == NULL)
  1939. entry = vmalloc(sizeof(struct __vxge_hw_blockpool_entry));
  1940. else
  1941. list_del(&entry->item);
  1942. if (entry != NULL) {
  1943. entry->length = length;
  1944. entry->memblock = block_addr;
  1945. entry->dma_addr = dma_addr;
  1946. entry->acc_handle = acc_handle;
  1947. entry->dma_handle = dma_h;
  1948. list_add(&entry->item, &blockpool->free_block_list);
  1949. blockpool->pool_size++;
  1950. status = VXGE_HW_OK;
  1951. } else
  1952. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  1953. blockpool->req_out--;
  1954. req_out = blockpool->req_out;
  1955. exit:
  1956. return;
  1957. }
  1958. static inline void
  1959. vxge_os_dma_malloc_async(struct pci_dev *pdev, void *devh, unsigned long size)
  1960. {
  1961. gfp_t flags;
  1962. void *vaddr;
  1963. if (in_interrupt())
  1964. flags = GFP_ATOMIC | GFP_DMA;
  1965. else
  1966. flags = GFP_KERNEL | GFP_DMA;
  1967. vaddr = kmalloc((size), flags);
  1968. vxge_hw_blockpool_block_add(devh, vaddr, size, pdev, pdev);
  1969. }
  1970. /*
  1971. * __vxge_hw_blockpool_blocks_add - Request additional blocks
  1972. */
  1973. static
  1974. void __vxge_hw_blockpool_blocks_add(struct __vxge_hw_blockpool *blockpool)
  1975. {
  1976. u32 nreq = 0, i;
  1977. if ((blockpool->pool_size + blockpool->req_out) <
  1978. VXGE_HW_MIN_DMA_BLOCK_POOL_SIZE) {
  1979. nreq = VXGE_HW_INCR_DMA_BLOCK_POOL_SIZE;
  1980. blockpool->req_out += nreq;
  1981. }
  1982. for (i = 0; i < nreq; i++)
  1983. vxge_os_dma_malloc_async(
  1984. ((struct __vxge_hw_device *)blockpool->hldev)->pdev,
  1985. blockpool->hldev, VXGE_HW_BLOCK_SIZE);
  1986. }
  1987. /*
  1988. * __vxge_hw_blockpool_malloc - Allocate a memory block from pool
  1989. * Allocates a block of memory of given size, either from block pool
  1990. * or by calling vxge_os_dma_malloc()
  1991. */
  1992. static void *__vxge_hw_blockpool_malloc(struct __vxge_hw_device *devh, u32 size,
  1993. struct vxge_hw_mempool_dma *dma_object)
  1994. {
  1995. struct __vxge_hw_blockpool_entry *entry = NULL;
  1996. struct __vxge_hw_blockpool *blockpool;
  1997. void *memblock = NULL;
  1998. enum vxge_hw_status status = VXGE_HW_OK;
  1999. blockpool = &devh->block_pool;
  2000. if (size != blockpool->block_size) {
  2001. memblock = vxge_os_dma_malloc(devh->pdev, size,
  2002. &dma_object->handle,
  2003. &dma_object->acc_handle);
  2004. if (memblock == NULL) {
  2005. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  2006. goto exit;
  2007. }
  2008. dma_object->addr = pci_map_single(devh->pdev, memblock, size,
  2009. PCI_DMA_BIDIRECTIONAL);
  2010. if (unlikely(pci_dma_mapping_error(devh->pdev,
  2011. dma_object->addr))) {
  2012. vxge_os_dma_free(devh->pdev, memblock,
  2013. &dma_object->acc_handle);
  2014. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  2015. goto exit;
  2016. }
  2017. } else {
  2018. if (!list_empty(&blockpool->free_block_list))
  2019. entry = (struct __vxge_hw_blockpool_entry *)
  2020. list_first_entry(&blockpool->free_block_list,
  2021. struct __vxge_hw_blockpool_entry,
  2022. item);
  2023. if (entry != NULL) {
  2024. list_del(&entry->item);
  2025. dma_object->addr = entry->dma_addr;
  2026. dma_object->handle = entry->dma_handle;
  2027. dma_object->acc_handle = entry->acc_handle;
  2028. memblock = entry->memblock;
  2029. list_add(&entry->item,
  2030. &blockpool->free_entry_list);
  2031. blockpool->pool_size--;
  2032. }
  2033. if (memblock != NULL)
  2034. __vxge_hw_blockpool_blocks_add(blockpool);
  2035. }
  2036. exit:
  2037. return memblock;
  2038. }
  2039. /*
  2040. * __vxge_hw_blockpool_blocks_remove - Free additional blocks
  2041. */
  2042. static void
  2043. __vxge_hw_blockpool_blocks_remove(struct __vxge_hw_blockpool *blockpool)
  2044. {
  2045. struct list_head *p, *n;
  2046. list_for_each_safe(p, n, &blockpool->free_block_list) {
  2047. if (blockpool->pool_size < blockpool->pool_max)
  2048. break;
  2049. pci_unmap_single(
  2050. ((struct __vxge_hw_device *)blockpool->hldev)->pdev,
  2051. ((struct __vxge_hw_blockpool_entry *)p)->dma_addr,
  2052. ((struct __vxge_hw_blockpool_entry *)p)->length,
  2053. PCI_DMA_BIDIRECTIONAL);
  2054. vxge_os_dma_free(
  2055. ((struct __vxge_hw_device *)blockpool->hldev)->pdev,
  2056. ((struct __vxge_hw_blockpool_entry *)p)->memblock,
  2057. &((struct __vxge_hw_blockpool_entry *)p)->acc_handle);
  2058. list_del(&((struct __vxge_hw_blockpool_entry *)p)->item);
  2059. list_add(p, &blockpool->free_entry_list);
  2060. blockpool->pool_size--;
  2061. }
  2062. }
  2063. /*
  2064. * __vxge_hw_blockpool_free - Frees the memory allcoated with
  2065. * __vxge_hw_blockpool_malloc
  2066. */
  2067. static void __vxge_hw_blockpool_free(struct __vxge_hw_device *devh,
  2068. void *memblock, u32 size,
  2069. struct vxge_hw_mempool_dma *dma_object)
  2070. {
  2071. struct __vxge_hw_blockpool_entry *entry = NULL;
  2072. struct __vxge_hw_blockpool *blockpool;
  2073. enum vxge_hw_status status = VXGE_HW_OK;
  2074. blockpool = &devh->block_pool;
  2075. if (size != blockpool->block_size) {
  2076. pci_unmap_single(devh->pdev, dma_object->addr, size,
  2077. PCI_DMA_BIDIRECTIONAL);
  2078. vxge_os_dma_free(devh->pdev, memblock, &dma_object->acc_handle);
  2079. } else {
  2080. if (!list_empty(&blockpool->free_entry_list))
  2081. entry = (struct __vxge_hw_blockpool_entry *)
  2082. list_first_entry(&blockpool->free_entry_list,
  2083. struct __vxge_hw_blockpool_entry,
  2084. item);
  2085. if (entry == NULL)
  2086. entry = vmalloc(sizeof(
  2087. struct __vxge_hw_blockpool_entry));
  2088. else
  2089. list_del(&entry->item);
  2090. if (entry != NULL) {
  2091. entry->length = size;
  2092. entry->memblock = memblock;
  2093. entry->dma_addr = dma_object->addr;
  2094. entry->acc_handle = dma_object->acc_handle;
  2095. entry->dma_handle = dma_object->handle;
  2096. list_add(&entry->item,
  2097. &blockpool->free_block_list);
  2098. blockpool->pool_size++;
  2099. status = VXGE_HW_OK;
  2100. } else
  2101. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  2102. if (status == VXGE_HW_OK)
  2103. __vxge_hw_blockpool_blocks_remove(blockpool);
  2104. }
  2105. }
  2106. /*
  2107. * vxge_hw_mempool_destroy
  2108. */
  2109. static void __vxge_hw_mempool_destroy(struct vxge_hw_mempool *mempool)
  2110. {
  2111. u32 i, j;
  2112. struct __vxge_hw_device *devh = mempool->devh;
  2113. for (i = 0; i < mempool->memblocks_allocated; i++) {
  2114. struct vxge_hw_mempool_dma *dma_object;
  2115. vxge_assert(mempool->memblocks_arr[i]);
  2116. vxge_assert(mempool->memblocks_dma_arr + i);
  2117. dma_object = mempool->memblocks_dma_arr + i;
  2118. for (j = 0; j < mempool->items_per_memblock; j++) {
  2119. u32 index = i * mempool->items_per_memblock + j;
  2120. /* to skip last partially filled(if any) memblock */
  2121. if (index >= mempool->items_current)
  2122. break;
  2123. }
  2124. vfree(mempool->memblocks_priv_arr[i]);
  2125. __vxge_hw_blockpool_free(devh, mempool->memblocks_arr[i],
  2126. mempool->memblock_size, dma_object);
  2127. }
  2128. vfree(mempool->items_arr);
  2129. vfree(mempool->memblocks_dma_arr);
  2130. vfree(mempool->memblocks_priv_arr);
  2131. vfree(mempool->memblocks_arr);
  2132. vfree(mempool);
  2133. }
  2134. /*
  2135. * __vxge_hw_mempool_grow
  2136. * Will resize mempool up to %num_allocate value.
  2137. */
  2138. static enum vxge_hw_status
  2139. __vxge_hw_mempool_grow(struct vxge_hw_mempool *mempool, u32 num_allocate,
  2140. u32 *num_allocated)
  2141. {
  2142. u32 i, first_time = mempool->memblocks_allocated == 0 ? 1 : 0;
  2143. u32 n_items = mempool->items_per_memblock;
  2144. u32 start_block_idx = mempool->memblocks_allocated;
  2145. u32 end_block_idx = mempool->memblocks_allocated + num_allocate;
  2146. enum vxge_hw_status status = VXGE_HW_OK;
  2147. *num_allocated = 0;
  2148. if (end_block_idx > mempool->memblocks_max) {
  2149. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  2150. goto exit;
  2151. }
  2152. for (i = start_block_idx; i < end_block_idx; i++) {
  2153. u32 j;
  2154. u32 is_last = ((end_block_idx - 1) == i);
  2155. struct vxge_hw_mempool_dma *dma_object =
  2156. mempool->memblocks_dma_arr + i;
  2157. void *the_memblock;
  2158. /* allocate memblock's private part. Each DMA memblock
  2159. * has a space allocated for item's private usage upon
  2160. * mempool's user request. Each time mempool grows, it will
  2161. * allocate new memblock and its private part at once.
  2162. * This helps to minimize memory usage a lot. */
  2163. mempool->memblocks_priv_arr[i] =
  2164. vzalloc(mempool->items_priv_size * n_items);
  2165. if (mempool->memblocks_priv_arr[i] == NULL) {
  2166. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  2167. goto exit;
  2168. }
  2169. /* allocate DMA-capable memblock */
  2170. mempool->memblocks_arr[i] =
  2171. __vxge_hw_blockpool_malloc(mempool->devh,
  2172. mempool->memblock_size, dma_object);
  2173. if (mempool->memblocks_arr[i] == NULL) {
  2174. vfree(mempool->memblocks_priv_arr[i]);
  2175. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  2176. goto exit;
  2177. }
  2178. (*num_allocated)++;
  2179. mempool->memblocks_allocated++;
  2180. memset(mempool->memblocks_arr[i], 0, mempool->memblock_size);
  2181. the_memblock = mempool->memblocks_arr[i];
  2182. /* fill the items hash array */
  2183. for (j = 0; j < n_items; j++) {
  2184. u32 index = i * n_items + j;
  2185. if (first_time && index >= mempool->items_initial)
  2186. break;
  2187. mempool->items_arr[index] =
  2188. ((char *)the_memblock + j*mempool->item_size);
  2189. /* let caller to do more job on each item */
  2190. if (mempool->item_func_alloc != NULL)
  2191. mempool->item_func_alloc(mempool, i,
  2192. dma_object, index, is_last);
  2193. mempool->items_current = index + 1;
  2194. }
  2195. if (first_time && mempool->items_current ==
  2196. mempool->items_initial)
  2197. break;
  2198. }
  2199. exit:
  2200. return status;
  2201. }
  2202. /*
  2203. * vxge_hw_mempool_create
  2204. * This function will create memory pool object. Pool may grow but will
  2205. * never shrink. Pool consists of number of dynamically allocated blocks
  2206. * with size enough to hold %items_initial number of items. Memory is
  2207. * DMA-able but client must map/unmap before interoperating with the device.
  2208. */
  2209. static struct vxge_hw_mempool *
  2210. __vxge_hw_mempool_create(struct __vxge_hw_device *devh,
  2211. u32 memblock_size,
  2212. u32 item_size,
  2213. u32 items_priv_size,
  2214. u32 items_initial,
  2215. u32 items_max,
  2216. struct vxge_hw_mempool_cbs *mp_callback,
  2217. void *userdata)
  2218. {
  2219. enum vxge_hw_status status = VXGE_HW_OK;
  2220. u32 memblocks_to_allocate;
  2221. struct vxge_hw_mempool *mempool = NULL;
  2222. u32 allocated;
  2223. if (memblock_size < item_size) {
  2224. status = VXGE_HW_FAIL;
  2225. goto exit;
  2226. }
  2227. mempool = vzalloc(sizeof(struct vxge_hw_mempool));
  2228. if (mempool == NULL) {
  2229. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  2230. goto exit;
  2231. }
  2232. mempool->devh = devh;
  2233. mempool->memblock_size = memblock_size;
  2234. mempool->items_max = items_max;
  2235. mempool->items_initial = items_initial;
  2236. mempool->item_size = item_size;
  2237. mempool->items_priv_size = items_priv_size;
  2238. mempool->item_func_alloc = mp_callback->item_func_alloc;
  2239. mempool->userdata = userdata;
  2240. mempool->memblocks_allocated = 0;
  2241. mempool->items_per_memblock = memblock_size / item_size;
  2242. mempool->memblocks_max = (items_max + mempool->items_per_memblock - 1) /
  2243. mempool->items_per_memblock;
  2244. /* allocate array of memblocks */
  2245. mempool->memblocks_arr =
  2246. vzalloc(sizeof(void *) * mempool->memblocks_max);
  2247. if (mempool->memblocks_arr == NULL) {
  2248. __vxge_hw_mempool_destroy(mempool);
  2249. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  2250. mempool = NULL;
  2251. goto exit;
  2252. }
  2253. /* allocate array of private parts of items per memblocks */
  2254. mempool->memblocks_priv_arr =
  2255. vzalloc(sizeof(void *) * mempool->memblocks_max);
  2256. if (mempool->memblocks_priv_arr == NULL) {
  2257. __vxge_hw_mempool_destroy(mempool);
  2258. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  2259. mempool = NULL;
  2260. goto exit;
  2261. }
  2262. /* allocate array of memblocks DMA objects */
  2263. mempool->memblocks_dma_arr =
  2264. vzalloc(sizeof(struct vxge_hw_mempool_dma) *
  2265. mempool->memblocks_max);
  2266. if (mempool->memblocks_dma_arr == NULL) {
  2267. __vxge_hw_mempool_destroy(mempool);
  2268. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  2269. mempool = NULL;
  2270. goto exit;
  2271. }
  2272. /* allocate hash array of items */
  2273. mempool->items_arr = vzalloc(sizeof(void *) * mempool->items_max);
  2274. if (mempool->items_arr == NULL) {
  2275. __vxge_hw_mempool_destroy(mempool);
  2276. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  2277. mempool = NULL;
  2278. goto exit;
  2279. }
  2280. /* calculate initial number of memblocks */
  2281. memblocks_to_allocate = (mempool->items_initial +
  2282. mempool->items_per_memblock - 1) /
  2283. mempool->items_per_memblock;
  2284. /* pre-allocate the mempool */
  2285. status = __vxge_hw_mempool_grow(mempool, memblocks_to_allocate,
  2286. &allocated);
  2287. if (status != VXGE_HW_OK) {
  2288. __vxge_hw_mempool_destroy(mempool);
  2289. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  2290. mempool = NULL;
  2291. goto exit;
  2292. }
  2293. exit:
  2294. return mempool;
  2295. }
  2296. /*
  2297. * __vxge_hw_ring_abort - Returns the RxD
  2298. * This function terminates the RxDs of ring
  2299. */
  2300. static enum vxge_hw_status __vxge_hw_ring_abort(struct __vxge_hw_ring *ring)
  2301. {
  2302. void *rxdh;
  2303. struct __vxge_hw_channel *channel;
  2304. channel = &ring->channel;
  2305. for (;;) {
  2306. vxge_hw_channel_dtr_try_complete(channel, &rxdh);
  2307. if (rxdh == NULL)
  2308. break;
  2309. vxge_hw_channel_dtr_complete(channel);
  2310. if (ring->rxd_term)
  2311. ring->rxd_term(rxdh, VXGE_HW_RXD_STATE_POSTED,
  2312. channel->userdata);
  2313. vxge_hw_channel_dtr_free(channel, rxdh);
  2314. }
  2315. return VXGE_HW_OK;
  2316. }
  2317. /*
  2318. * __vxge_hw_ring_reset - Resets the ring
  2319. * This function resets the ring during vpath reset operation
  2320. */
  2321. static enum vxge_hw_status __vxge_hw_ring_reset(struct __vxge_hw_ring *ring)
  2322. {
  2323. enum vxge_hw_status status = VXGE_HW_OK;
  2324. struct __vxge_hw_channel *channel;
  2325. channel = &ring->channel;
  2326. __vxge_hw_ring_abort(ring);
  2327. status = __vxge_hw_channel_reset(channel);
  2328. if (status != VXGE_HW_OK)
  2329. goto exit;
  2330. if (ring->rxd_init) {
  2331. status = vxge_hw_ring_replenish(ring);
  2332. if (status != VXGE_HW_OK)
  2333. goto exit;
  2334. }
  2335. exit:
  2336. return status;
  2337. }
  2338. /*
  2339. * __vxge_hw_ring_delete - Removes the ring
  2340. * This function freeup the memory pool and removes the ring
  2341. */
  2342. static enum vxge_hw_status
  2343. __vxge_hw_ring_delete(struct __vxge_hw_vpath_handle *vp)
  2344. {
  2345. struct __vxge_hw_ring *ring = vp->vpath->ringh;
  2346. __vxge_hw_ring_abort(ring);
  2347. if (ring->mempool)
  2348. __vxge_hw_mempool_destroy(ring->mempool);
  2349. vp->vpath->ringh = NULL;
  2350. __vxge_hw_channel_free(&ring->channel);
  2351. return VXGE_HW_OK;
  2352. }
  2353. /*
  2354. * __vxge_hw_ring_create - Create a Ring
  2355. * This function creates Ring and initializes it.
  2356. */
  2357. static enum vxge_hw_status
  2358. __vxge_hw_ring_create(struct __vxge_hw_vpath_handle *vp,
  2359. struct vxge_hw_ring_attr *attr)
  2360. {
  2361. enum vxge_hw_status status = VXGE_HW_OK;
  2362. struct __vxge_hw_ring *ring;
  2363. u32 ring_length;
  2364. struct vxge_hw_ring_config *config;
  2365. struct __vxge_hw_device *hldev;
  2366. u32 vp_id;
  2367. struct vxge_hw_mempool_cbs ring_mp_callback;
  2368. if ((vp == NULL) || (attr == NULL)) {
  2369. status = VXGE_HW_FAIL;
  2370. goto exit;
  2371. }
  2372. hldev = vp->vpath->hldev;
  2373. vp_id = vp->vpath->vp_id;
  2374. config = &hldev->config.vp_config[vp_id].ring;
  2375. ring_length = config->ring_blocks *
  2376. vxge_hw_ring_rxds_per_block_get(config->buffer_mode);
  2377. ring = (struct __vxge_hw_ring *)__vxge_hw_channel_allocate(vp,
  2378. VXGE_HW_CHANNEL_TYPE_RING,
  2379. ring_length,
  2380. attr->per_rxd_space,
  2381. attr->userdata);
  2382. if (ring == NULL) {
  2383. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  2384. goto exit;
  2385. }
  2386. vp->vpath->ringh = ring;
  2387. ring->vp_id = vp_id;
  2388. ring->vp_reg = vp->vpath->vp_reg;
  2389. ring->common_reg = hldev->common_reg;
  2390. ring->stats = &vp->vpath->sw_stats->ring_stats;
  2391. ring->config = config;
  2392. ring->callback = attr->callback;
  2393. ring->rxd_init = attr->rxd_init;
  2394. ring->rxd_term = attr->rxd_term;
  2395. ring->buffer_mode = config->buffer_mode;
  2396. ring->tim_rti_cfg1_saved = vp->vpath->tim_rti_cfg1_saved;
  2397. ring->tim_rti_cfg3_saved = vp->vpath->tim_rti_cfg3_saved;
  2398. ring->rxds_limit = config->rxds_limit;
  2399. ring->rxd_size = vxge_hw_ring_rxd_size_get(config->buffer_mode);
  2400. ring->rxd_priv_size =
  2401. sizeof(struct __vxge_hw_ring_rxd_priv) + attr->per_rxd_space;
  2402. ring->per_rxd_space = attr->per_rxd_space;
  2403. ring->rxd_priv_size =
  2404. ((ring->rxd_priv_size + VXGE_CACHE_LINE_SIZE - 1) /
  2405. VXGE_CACHE_LINE_SIZE) * VXGE_CACHE_LINE_SIZE;
  2406. /* how many RxDs can fit into one block. Depends on configured
  2407. * buffer_mode. */
  2408. ring->rxds_per_block =
  2409. vxge_hw_ring_rxds_per_block_get(config->buffer_mode);
  2410. /* calculate actual RxD block private size */
  2411. ring->rxdblock_priv_size = ring->rxd_priv_size * ring->rxds_per_block;
  2412. ring_mp_callback.item_func_alloc = __vxge_hw_ring_mempool_item_alloc;
  2413. ring->mempool = __vxge_hw_mempool_create(hldev,
  2414. VXGE_HW_BLOCK_SIZE,
  2415. VXGE_HW_BLOCK_SIZE,
  2416. ring->rxdblock_priv_size,
  2417. ring->config->ring_blocks,
  2418. ring->config->ring_blocks,
  2419. &ring_mp_callback,
  2420. ring);
  2421. if (ring->mempool == NULL) {
  2422. __vxge_hw_ring_delete(vp);
  2423. return VXGE_HW_ERR_OUT_OF_MEMORY;
  2424. }
  2425. status = __vxge_hw_channel_initialize(&ring->channel);
  2426. if (status != VXGE_HW_OK) {
  2427. __vxge_hw_ring_delete(vp);
  2428. goto exit;
  2429. }
  2430. /* Note:
  2431. * Specifying rxd_init callback means two things:
  2432. * 1) rxds need to be initialized by driver at channel-open time;
  2433. * 2) rxds need to be posted at channel-open time
  2434. * (that's what the initial_replenish() below does)
  2435. * Currently we don't have a case when the 1) is done without the 2).
  2436. */
  2437. if (ring->rxd_init) {
  2438. status = vxge_hw_ring_replenish(ring);
  2439. if (status != VXGE_HW_OK) {
  2440. __vxge_hw_ring_delete(vp);
  2441. goto exit;
  2442. }
  2443. }
  2444. /* initial replenish will increment the counter in its post() routine,
  2445. * we have to reset it */
  2446. ring->stats->common_stats.usage_cnt = 0;
  2447. exit:
  2448. return status;
  2449. }
  2450. /*
  2451. * vxge_hw_device_config_default_get - Initialize device config with defaults.
  2452. * Initialize Titan device config with default values.
  2453. */
  2454. enum vxge_hw_status __devinit
  2455. vxge_hw_device_config_default_get(struct vxge_hw_device_config *device_config)
  2456. {
  2457. u32 i;
  2458. device_config->dma_blockpool_initial =
  2459. VXGE_HW_INITIAL_DMA_BLOCK_POOL_SIZE;
  2460. device_config->dma_blockpool_max = VXGE_HW_MAX_DMA_BLOCK_POOL_SIZE;
  2461. device_config->intr_mode = VXGE_HW_INTR_MODE_DEF;
  2462. device_config->rth_en = VXGE_HW_RTH_DEFAULT;
  2463. device_config->rth_it_type = VXGE_HW_RTH_IT_TYPE_DEFAULT;
  2464. device_config->device_poll_millis = VXGE_HW_DEF_DEVICE_POLL_MILLIS;
  2465. device_config->rts_mac_en = VXGE_HW_RTS_MAC_DEFAULT;
  2466. for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
  2467. device_config->vp_config[i].vp_id = i;
  2468. device_config->vp_config[i].min_bandwidth =
  2469. VXGE_HW_VPATH_BANDWIDTH_DEFAULT;
  2470. device_config->vp_config[i].ring.enable = VXGE_HW_RING_DEFAULT;
  2471. device_config->vp_config[i].ring.ring_blocks =
  2472. VXGE_HW_DEF_RING_BLOCKS;
  2473. device_config->vp_config[i].ring.buffer_mode =
  2474. VXGE_HW_RING_RXD_BUFFER_MODE_DEFAULT;
  2475. device_config->vp_config[i].ring.scatter_mode =
  2476. VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT;
  2477. device_config->vp_config[i].ring.rxds_limit =
  2478. VXGE_HW_DEF_RING_RXDS_LIMIT;
  2479. device_config->vp_config[i].fifo.enable = VXGE_HW_FIFO_ENABLE;
  2480. device_config->vp_config[i].fifo.fifo_blocks =
  2481. VXGE_HW_MIN_FIFO_BLOCKS;
  2482. device_config->vp_config[i].fifo.max_frags =
  2483. VXGE_HW_MAX_FIFO_FRAGS;
  2484. device_config->vp_config[i].fifo.memblock_size =
  2485. VXGE_HW_DEF_FIFO_MEMBLOCK_SIZE;
  2486. device_config->vp_config[i].fifo.alignment_size =
  2487. VXGE_HW_DEF_FIFO_ALIGNMENT_SIZE;
  2488. device_config->vp_config[i].fifo.intr =
  2489. VXGE_HW_FIFO_QUEUE_INTR_DEFAULT;
  2490. device_config->vp_config[i].fifo.no_snoop_bits =
  2491. VXGE_HW_FIFO_NO_SNOOP_DEFAULT;
  2492. device_config->vp_config[i].tti.intr_enable =
  2493. VXGE_HW_TIM_INTR_DEFAULT;
  2494. device_config->vp_config[i].tti.btimer_val =
  2495. VXGE_HW_USE_FLASH_DEFAULT;
  2496. device_config->vp_config[i].tti.timer_ac_en =
  2497. VXGE_HW_USE_FLASH_DEFAULT;
  2498. device_config->vp_config[i].tti.timer_ci_en =
  2499. VXGE_HW_USE_FLASH_DEFAULT;
  2500. device_config->vp_config[i].tti.timer_ri_en =
  2501. VXGE_HW_USE_FLASH_DEFAULT;
  2502. device_config->vp_config[i].tti.rtimer_val =
  2503. VXGE_HW_USE_FLASH_DEFAULT;
  2504. device_config->vp_config[i].tti.util_sel =
  2505. VXGE_HW_USE_FLASH_DEFAULT;
  2506. device_config->vp_config[i].tti.ltimer_val =
  2507. VXGE_HW_USE_FLASH_DEFAULT;
  2508. device_config->vp_config[i].tti.urange_a =
  2509. VXGE_HW_USE_FLASH_DEFAULT;
  2510. device_config->vp_config[i].tti.uec_a =
  2511. VXGE_HW_USE_FLASH_DEFAULT;
  2512. device_config->vp_config[i].tti.urange_b =
  2513. VXGE_HW_USE_FLASH_DEFAULT;
  2514. device_config->vp_config[i].tti.uec_b =
  2515. VXGE_HW_USE_FLASH_DEFAULT;
  2516. device_config->vp_config[i].tti.urange_c =
  2517. VXGE_HW_USE_FLASH_DEFAULT;
  2518. device_config->vp_config[i].tti.uec_c =
  2519. VXGE_HW_USE_FLASH_DEFAULT;
  2520. device_config->vp_config[i].tti.uec_d =
  2521. VXGE_HW_USE_FLASH_DEFAULT;
  2522. device_config->vp_config[i].rti.intr_enable =
  2523. VXGE_HW_TIM_INTR_DEFAULT;
  2524. device_config->vp_config[i].rti.btimer_val =
  2525. VXGE_HW_USE_FLASH_DEFAULT;
  2526. device_config->vp_config[i].rti.timer_ac_en =
  2527. VXGE_HW_USE_FLASH_DEFAULT;
  2528. device_config->vp_config[i].rti.timer_ci_en =
  2529. VXGE_HW_USE_FLASH_DEFAULT;
  2530. device_config->vp_config[i].rti.timer_ri_en =
  2531. VXGE_HW_USE_FLASH_DEFAULT;
  2532. device_config->vp_config[i].rti.rtimer_val =
  2533. VXGE_HW_USE_FLASH_DEFAULT;
  2534. device_config->vp_config[i].rti.util_sel =
  2535. VXGE_HW_USE_FLASH_DEFAULT;
  2536. device_config->vp_config[i].rti.ltimer_val =
  2537. VXGE_HW_USE_FLASH_DEFAULT;
  2538. device_config->vp_config[i].rti.urange_a =
  2539. VXGE_HW_USE_FLASH_DEFAULT;
  2540. device_config->vp_config[i].rti.uec_a =
  2541. VXGE_HW_USE_FLASH_DEFAULT;
  2542. device_config->vp_config[i].rti.urange_b =
  2543. VXGE_HW_USE_FLASH_DEFAULT;
  2544. device_config->vp_config[i].rti.uec_b =
  2545. VXGE_HW_USE_FLASH_DEFAULT;
  2546. device_config->vp_config[i].rti.urange_c =
  2547. VXGE_HW_USE_FLASH_DEFAULT;
  2548. device_config->vp_config[i].rti.uec_c =
  2549. VXGE_HW_USE_FLASH_DEFAULT;
  2550. device_config->vp_config[i].rti.uec_d =
  2551. VXGE_HW_USE_FLASH_DEFAULT;
  2552. device_config->vp_config[i].mtu =
  2553. VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU;
  2554. device_config->vp_config[i].rpa_strip_vlan_tag =
  2555. VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT;
  2556. }
  2557. return VXGE_HW_OK;
  2558. }
  2559. /*
  2560. * __vxge_hw_vpath_swapper_set - Set the swapper bits for the vpath.
  2561. * Set the swapper bits appropriately for the vpath.
  2562. */
  2563. static enum vxge_hw_status
  2564. __vxge_hw_vpath_swapper_set(struct vxge_hw_vpath_reg __iomem *vpath_reg)
  2565. {
  2566. #ifndef __BIG_ENDIAN
  2567. u64 val64;
  2568. val64 = readq(&vpath_reg->vpath_general_cfg1);
  2569. wmb();
  2570. val64 |= VXGE_HW_VPATH_GENERAL_CFG1_CTL_BYTE_SWAPEN;
  2571. writeq(val64, &vpath_reg->vpath_general_cfg1);
  2572. wmb();
  2573. #endif
  2574. return VXGE_HW_OK;
  2575. }
  2576. /*
  2577. * __vxge_hw_kdfc_swapper_set - Set the swapper bits for the kdfc.
  2578. * Set the swapper bits appropriately for the vpath.
  2579. */
  2580. static enum vxge_hw_status
  2581. __vxge_hw_kdfc_swapper_set(struct vxge_hw_legacy_reg __iomem *legacy_reg,
  2582. struct vxge_hw_vpath_reg __iomem *vpath_reg)
  2583. {
  2584. u64 val64;
  2585. val64 = readq(&legacy_reg->pifm_wr_swap_en);
  2586. if (val64 == VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE) {
  2587. val64 = readq(&vpath_reg->kdfcctl_cfg0);
  2588. wmb();
  2589. val64 |= VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO0 |
  2590. VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO1 |
  2591. VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO2;
  2592. writeq(val64, &vpath_reg->kdfcctl_cfg0);
  2593. wmb();
  2594. }
  2595. return VXGE_HW_OK;
  2596. }
  2597. /*
  2598. * vxge_hw_mgmt_reg_read - Read Titan register.
  2599. */
  2600. enum vxge_hw_status
  2601. vxge_hw_mgmt_reg_read(struct __vxge_hw_device *hldev,
  2602. enum vxge_hw_mgmt_reg_type type,
  2603. u32 index, u32 offset, u64 *value)
  2604. {
  2605. enum vxge_hw_status status = VXGE_HW_OK;
  2606. if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
  2607. status = VXGE_HW_ERR_INVALID_DEVICE;
  2608. goto exit;
  2609. }
  2610. switch (type) {
  2611. case vxge_hw_mgmt_reg_type_legacy:
  2612. if (offset > sizeof(struct vxge_hw_legacy_reg) - 8) {
  2613. status = VXGE_HW_ERR_INVALID_OFFSET;
  2614. break;
  2615. }
  2616. *value = readq((void __iomem *)hldev->legacy_reg + offset);
  2617. break;
  2618. case vxge_hw_mgmt_reg_type_toc:
  2619. if (offset > sizeof(struct vxge_hw_toc_reg) - 8) {
  2620. status = VXGE_HW_ERR_INVALID_OFFSET;
  2621. break;
  2622. }
  2623. *value = readq((void __iomem *)hldev->toc_reg + offset);
  2624. break;
  2625. case vxge_hw_mgmt_reg_type_common:
  2626. if (offset > sizeof(struct vxge_hw_common_reg) - 8) {
  2627. status = VXGE_HW_ERR_INVALID_OFFSET;
  2628. break;
  2629. }
  2630. *value = readq((void __iomem *)hldev->common_reg + offset);
  2631. break;
  2632. case vxge_hw_mgmt_reg_type_mrpcim:
  2633. if (!(hldev->access_rights &
  2634. VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
  2635. status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
  2636. break;
  2637. }
  2638. if (offset > sizeof(struct vxge_hw_mrpcim_reg) - 8) {
  2639. status = VXGE_HW_ERR_INVALID_OFFSET;
  2640. break;
  2641. }
  2642. *value = readq((void __iomem *)hldev->mrpcim_reg + offset);
  2643. break;
  2644. case vxge_hw_mgmt_reg_type_srpcim:
  2645. if (!(hldev->access_rights &
  2646. VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM)) {
  2647. status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
  2648. break;
  2649. }
  2650. if (index > VXGE_HW_TITAN_SRPCIM_REG_SPACES - 1) {
  2651. status = VXGE_HW_ERR_INVALID_INDEX;
  2652. break;
  2653. }
  2654. if (offset > sizeof(struct vxge_hw_srpcim_reg) - 8) {
  2655. status = VXGE_HW_ERR_INVALID_OFFSET;
  2656. break;
  2657. }
  2658. *value = readq((void __iomem *)hldev->srpcim_reg[index] +
  2659. offset);
  2660. break;
  2661. case vxge_hw_mgmt_reg_type_vpmgmt:
  2662. if ((index > VXGE_HW_TITAN_VPMGMT_REG_SPACES - 1) ||
  2663. (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
  2664. status = VXGE_HW_ERR_INVALID_INDEX;
  2665. break;
  2666. }
  2667. if (offset > sizeof(struct vxge_hw_vpmgmt_reg) - 8) {
  2668. status = VXGE_HW_ERR_INVALID_OFFSET;
  2669. break;
  2670. }
  2671. *value = readq((void __iomem *)hldev->vpmgmt_reg[index] +
  2672. offset);
  2673. break;
  2674. case vxge_hw_mgmt_reg_type_vpath:
  2675. if ((index > VXGE_HW_TITAN_VPATH_REG_SPACES - 1) ||
  2676. (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
  2677. status = VXGE_HW_ERR_INVALID_INDEX;
  2678. break;
  2679. }
  2680. if (index > VXGE_HW_TITAN_VPATH_REG_SPACES - 1) {
  2681. status = VXGE_HW_ERR_INVALID_INDEX;
  2682. break;
  2683. }
  2684. if (offset > sizeof(struct vxge_hw_vpath_reg) - 8) {
  2685. status = VXGE_HW_ERR_INVALID_OFFSET;
  2686. break;
  2687. }
  2688. *value = readq((void __iomem *)hldev->vpath_reg[index] +
  2689. offset);
  2690. break;
  2691. default:
  2692. status = VXGE_HW_ERR_INVALID_TYPE;
  2693. break;
  2694. }
  2695. exit:
  2696. return status;
  2697. }
  2698. /*
  2699. * vxge_hw_vpath_strip_fcs_check - Check for FCS strip.
  2700. */
  2701. enum vxge_hw_status
  2702. vxge_hw_vpath_strip_fcs_check(struct __vxge_hw_device *hldev, u64 vpath_mask)
  2703. {
  2704. struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg;
  2705. enum vxge_hw_status status = VXGE_HW_OK;
  2706. int i = 0, j = 0;
  2707. for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
  2708. if (!((vpath_mask) & vxge_mBIT(i)))
  2709. continue;
  2710. vpmgmt_reg = hldev->vpmgmt_reg[i];
  2711. for (j = 0; j < VXGE_HW_MAC_MAX_MAC_PORT_ID; j++) {
  2712. if (readq(&vpmgmt_reg->rxmac_cfg0_port_vpmgmt_clone[j])
  2713. & VXGE_HW_RXMAC_CFG0_PORT_VPMGMT_CLONE_STRIP_FCS)
  2714. return VXGE_HW_FAIL;
  2715. }
  2716. }
  2717. return status;
  2718. }
  2719. /*
  2720. * vxge_hw_mgmt_reg_Write - Write Titan register.
  2721. */
  2722. enum vxge_hw_status
  2723. vxge_hw_mgmt_reg_write(struct __vxge_hw_device *hldev,
  2724. enum vxge_hw_mgmt_reg_type type,
  2725. u32 index, u32 offset, u64 value)
  2726. {
  2727. enum vxge_hw_status status = VXGE_HW_OK;
  2728. if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
  2729. status = VXGE_HW_ERR_INVALID_DEVICE;
  2730. goto exit;
  2731. }
  2732. switch (type) {
  2733. case vxge_hw_mgmt_reg_type_legacy:
  2734. if (offset > sizeof(struct vxge_hw_legacy_reg) - 8) {
  2735. status = VXGE_HW_ERR_INVALID_OFFSET;
  2736. break;
  2737. }
  2738. writeq(value, (void __iomem *)hldev->legacy_reg + offset);
  2739. break;
  2740. case vxge_hw_mgmt_reg_type_toc:
  2741. if (offset > sizeof(struct vxge_hw_toc_reg) - 8) {
  2742. status = VXGE_HW_ERR_INVALID_OFFSET;
  2743. break;
  2744. }
  2745. writeq(value, (void __iomem *)hldev->toc_reg + offset);
  2746. break;
  2747. case vxge_hw_mgmt_reg_type_common:
  2748. if (offset > sizeof(struct vxge_hw_common_reg) - 8) {
  2749. status = VXGE_HW_ERR_INVALID_OFFSET;
  2750. break;
  2751. }
  2752. writeq(value, (void __iomem *)hldev->common_reg + offset);
  2753. break;
  2754. case vxge_hw_mgmt_reg_type_mrpcim:
  2755. if (!(hldev->access_rights &
  2756. VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
  2757. status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
  2758. break;
  2759. }
  2760. if (offset > sizeof(struct vxge_hw_mrpcim_reg) - 8) {
  2761. status = VXGE_HW_ERR_INVALID_OFFSET;
  2762. break;
  2763. }
  2764. writeq(value, (void __iomem *)hldev->mrpcim_reg + offset);
  2765. break;
  2766. case vxge_hw_mgmt_reg_type_srpcim:
  2767. if (!(hldev->access_rights &
  2768. VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM)) {
  2769. status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
  2770. break;
  2771. }
  2772. if (index > VXGE_HW_TITAN_SRPCIM_REG_SPACES - 1) {
  2773. status = VXGE_HW_ERR_INVALID_INDEX;
  2774. break;
  2775. }
  2776. if (offset > sizeof(struct vxge_hw_srpcim_reg) - 8) {
  2777. status = VXGE_HW_ERR_INVALID_OFFSET;
  2778. break;
  2779. }
  2780. writeq(value, (void __iomem *)hldev->srpcim_reg[index] +
  2781. offset);
  2782. break;
  2783. case vxge_hw_mgmt_reg_type_vpmgmt:
  2784. if ((index > VXGE_HW_TITAN_VPMGMT_REG_SPACES - 1) ||
  2785. (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
  2786. status = VXGE_HW_ERR_INVALID_INDEX;
  2787. break;
  2788. }
  2789. if (offset > sizeof(struct vxge_hw_vpmgmt_reg) - 8) {
  2790. status = VXGE_HW_ERR_INVALID_OFFSET;
  2791. break;
  2792. }
  2793. writeq(value, (void __iomem *)hldev->vpmgmt_reg[index] +
  2794. offset);
  2795. break;
  2796. case vxge_hw_mgmt_reg_type_vpath:
  2797. if ((index > VXGE_HW_TITAN_VPATH_REG_SPACES-1) ||
  2798. (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
  2799. status = VXGE_HW_ERR_INVALID_INDEX;
  2800. break;
  2801. }
  2802. if (offset > sizeof(struct vxge_hw_vpath_reg) - 8) {
  2803. status = VXGE_HW_ERR_INVALID_OFFSET;
  2804. break;
  2805. }
  2806. writeq(value, (void __iomem *)hldev->vpath_reg[index] +
  2807. offset);
  2808. break;
  2809. default:
  2810. status = VXGE_HW_ERR_INVALID_TYPE;
  2811. break;
  2812. }
  2813. exit:
  2814. return status;
  2815. }
  2816. /*
  2817. * __vxge_hw_fifo_abort - Returns the TxD
  2818. * This function terminates the TxDs of fifo
  2819. */
  2820. static enum vxge_hw_status __vxge_hw_fifo_abort(struct __vxge_hw_fifo *fifo)
  2821. {
  2822. void *txdlh;
  2823. for (;;) {
  2824. vxge_hw_channel_dtr_try_complete(&fifo->channel, &txdlh);
  2825. if (txdlh == NULL)
  2826. break;
  2827. vxge_hw_channel_dtr_complete(&fifo->channel);
  2828. if (fifo->txdl_term) {
  2829. fifo->txdl_term(txdlh,
  2830. VXGE_HW_TXDL_STATE_POSTED,
  2831. fifo->channel.userdata);
  2832. }
  2833. vxge_hw_channel_dtr_free(&fifo->channel, txdlh);
  2834. }
  2835. return VXGE_HW_OK;
  2836. }
  2837. /*
  2838. * __vxge_hw_fifo_reset - Resets the fifo
  2839. * This function resets the fifo during vpath reset operation
  2840. */
  2841. static enum vxge_hw_status __vxge_hw_fifo_reset(struct __vxge_hw_fifo *fifo)
  2842. {
  2843. enum vxge_hw_status status = VXGE_HW_OK;
  2844. __vxge_hw_fifo_abort(fifo);
  2845. status = __vxge_hw_channel_reset(&fifo->channel);
  2846. return status;
  2847. }
  2848. /*
  2849. * __vxge_hw_fifo_delete - Removes the FIFO
  2850. * This function freeup the memory pool and removes the FIFO
  2851. */
  2852. static enum vxge_hw_status
  2853. __vxge_hw_fifo_delete(struct __vxge_hw_vpath_handle *vp)
  2854. {
  2855. struct __vxge_hw_fifo *fifo = vp->vpath->fifoh;
  2856. __vxge_hw_fifo_abort(fifo);
  2857. if (fifo->mempool)
  2858. __vxge_hw_mempool_destroy(fifo->mempool);
  2859. vp->vpath->fifoh = NULL;
  2860. __vxge_hw_channel_free(&fifo->channel);
  2861. return VXGE_HW_OK;
  2862. }
  2863. /*
  2864. * __vxge_hw_fifo_mempool_item_alloc - Allocate List blocks for TxD
  2865. * list callback
  2866. * This function is callback passed to __vxge_hw_mempool_create to create memory
  2867. * pool for TxD list
  2868. */
  2869. static void
  2870. __vxge_hw_fifo_mempool_item_alloc(
  2871. struct vxge_hw_mempool *mempoolh,
  2872. u32 memblock_index, struct vxge_hw_mempool_dma *dma_object,
  2873. u32 index, u32 is_last)
  2874. {
  2875. u32 memblock_item_idx;
  2876. struct __vxge_hw_fifo_txdl_priv *txdl_priv;
  2877. struct vxge_hw_fifo_txd *txdp =
  2878. (struct vxge_hw_fifo_txd *)mempoolh->items_arr[index];
  2879. struct __vxge_hw_fifo *fifo =
  2880. (struct __vxge_hw_fifo *)mempoolh->userdata;
  2881. void *memblock = mempoolh->memblocks_arr[memblock_index];
  2882. vxge_assert(txdp);
  2883. txdp->host_control = (u64) (size_t)
  2884. __vxge_hw_mempool_item_priv(mempoolh, memblock_index, txdp,
  2885. &memblock_item_idx);
  2886. txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdp);
  2887. vxge_assert(txdl_priv);
  2888. fifo->channel.reserve_arr[fifo->channel.reserve_ptr - 1 - index] = txdp;
  2889. /* pre-format HW's TxDL's private */
  2890. txdl_priv->dma_offset = (char *)txdp - (char *)memblock;
  2891. txdl_priv->dma_addr = dma_object->addr + txdl_priv->dma_offset;
  2892. txdl_priv->dma_handle = dma_object->handle;
  2893. txdl_priv->memblock = memblock;
  2894. txdl_priv->first_txdp = txdp;
  2895. txdl_priv->next_txdl_priv = NULL;
  2896. txdl_priv->alloc_frags = 0;
  2897. }
  2898. /*
  2899. * __vxge_hw_fifo_create - Create a FIFO
  2900. * This function creates FIFO and initializes it.
  2901. */
  2902. static enum vxge_hw_status
  2903. __vxge_hw_fifo_create(struct __vxge_hw_vpath_handle *vp,
  2904. struct vxge_hw_fifo_attr *attr)
  2905. {
  2906. enum vxge_hw_status status = VXGE_HW_OK;
  2907. struct __vxge_hw_fifo *fifo;
  2908. struct vxge_hw_fifo_config *config;
  2909. u32 txdl_size, txdl_per_memblock;
  2910. struct vxge_hw_mempool_cbs fifo_mp_callback;
  2911. struct __vxge_hw_virtualpath *vpath;
  2912. if ((vp == NULL) || (attr == NULL)) {
  2913. status = VXGE_HW_ERR_INVALID_HANDLE;
  2914. goto exit;
  2915. }
  2916. vpath = vp->vpath;
  2917. config = &vpath->hldev->config.vp_config[vpath->vp_id].fifo;
  2918. txdl_size = config->max_frags * sizeof(struct vxge_hw_fifo_txd);
  2919. txdl_per_memblock = config->memblock_size / txdl_size;
  2920. fifo = (struct __vxge_hw_fifo *)__vxge_hw_channel_allocate(vp,
  2921. VXGE_HW_CHANNEL_TYPE_FIFO,
  2922. config->fifo_blocks * txdl_per_memblock,
  2923. attr->per_txdl_space, attr->userdata);
  2924. if (fifo == NULL) {
  2925. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  2926. goto exit;
  2927. }
  2928. vpath->fifoh = fifo;
  2929. fifo->nofl_db = vpath->nofl_db;
  2930. fifo->vp_id = vpath->vp_id;
  2931. fifo->vp_reg = vpath->vp_reg;
  2932. fifo->stats = &vpath->sw_stats->fifo_stats;
  2933. fifo->config = config;
  2934. /* apply "interrupts per txdl" attribute */
  2935. fifo->interrupt_type = VXGE_HW_FIFO_TXD_INT_TYPE_UTILZ;
  2936. fifo->tim_tti_cfg1_saved = vpath->tim_tti_cfg1_saved;
  2937. fifo->tim_tti_cfg3_saved = vpath->tim_tti_cfg3_saved;
  2938. if (fifo->config->intr)
  2939. fifo->interrupt_type = VXGE_HW_FIFO_TXD_INT_TYPE_PER_LIST;
  2940. fifo->no_snoop_bits = config->no_snoop_bits;
  2941. /*
  2942. * FIFO memory management strategy:
  2943. *
  2944. * TxDL split into three independent parts:
  2945. * - set of TxD's
  2946. * - TxD HW private part
  2947. * - driver private part
  2948. *
  2949. * Adaptative memory allocation used. i.e. Memory allocated on
  2950. * demand with the size which will fit into one memory block.
  2951. * One memory block may contain more than one TxDL.
  2952. *
  2953. * During "reserve" operations more memory can be allocated on demand
  2954. * for example due to FIFO full condition.
  2955. *
  2956. * Pool of memory memblocks never shrinks except in __vxge_hw_fifo_close
  2957. * routine which will essentially stop the channel and free resources.
  2958. */
  2959. /* TxDL common private size == TxDL private + driver private */
  2960. fifo->priv_size =
  2961. sizeof(struct __vxge_hw_fifo_txdl_priv) + attr->per_txdl_space;
  2962. fifo->priv_size = ((fifo->priv_size + VXGE_CACHE_LINE_SIZE - 1) /
  2963. VXGE_CACHE_LINE_SIZE) * VXGE_CACHE_LINE_SIZE;
  2964. fifo->per_txdl_space = attr->per_txdl_space;
  2965. /* recompute txdl size to be cacheline aligned */
  2966. fifo->txdl_size = txdl_size;
  2967. fifo->txdl_per_memblock = txdl_per_memblock;
  2968. fifo->txdl_term = attr->txdl_term;
  2969. fifo->callback = attr->callback;
  2970. if (fifo->txdl_per_memblock == 0) {
  2971. __vxge_hw_fifo_delete(vp);
  2972. status = VXGE_HW_ERR_INVALID_BLOCK_SIZE;
  2973. goto exit;
  2974. }
  2975. fifo_mp_callback.item_func_alloc = __vxge_hw_fifo_mempool_item_alloc;
  2976. fifo->mempool =
  2977. __vxge_hw_mempool_create(vpath->hldev,
  2978. fifo->config->memblock_size,
  2979. fifo->txdl_size,
  2980. fifo->priv_size,
  2981. (fifo->config->fifo_blocks * fifo->txdl_per_memblock),
  2982. (fifo->config->fifo_blocks * fifo->txdl_per_memblock),
  2983. &fifo_mp_callback,
  2984. fifo);
  2985. if (fifo->mempool == NULL) {
  2986. __vxge_hw_fifo_delete(vp);
  2987. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  2988. goto exit;
  2989. }
  2990. status = __vxge_hw_channel_initialize(&fifo->channel);
  2991. if (status != VXGE_HW_OK) {
  2992. __vxge_hw_fifo_delete(vp);
  2993. goto exit;
  2994. }
  2995. vxge_assert(fifo->channel.reserve_ptr);
  2996. exit:
  2997. return status;
  2998. }
  2999. /*
  3000. * __vxge_hw_vpath_pci_read - Read the content of given address
  3001. * in pci config space.
  3002. * Read from the vpath pci config space.
  3003. */
  3004. static enum vxge_hw_status
  3005. __vxge_hw_vpath_pci_read(struct __vxge_hw_virtualpath *vpath,
  3006. u32 phy_func_0, u32 offset, u32 *val)
  3007. {
  3008. u64 val64;
  3009. enum vxge_hw_status status = VXGE_HW_OK;
  3010. struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
  3011. val64 = VXGE_HW_PCI_CONFIG_ACCESS_CFG1_ADDRESS(offset);
  3012. if (phy_func_0)
  3013. val64 |= VXGE_HW_PCI_CONFIG_ACCESS_CFG1_SEL_FUNC0;
  3014. writeq(val64, &vp_reg->pci_config_access_cfg1);
  3015. wmb();
  3016. writeq(VXGE_HW_PCI_CONFIG_ACCESS_CFG2_REQ,
  3017. &vp_reg->pci_config_access_cfg2);
  3018. wmb();
  3019. status = __vxge_hw_device_register_poll(
  3020. &vp_reg->pci_config_access_cfg2,
  3021. VXGE_HW_INTR_MASK_ALL, VXGE_HW_DEF_DEVICE_POLL_MILLIS);
  3022. if (status != VXGE_HW_OK)
  3023. goto exit;
  3024. val64 = readq(&vp_reg->pci_config_access_status);
  3025. if (val64 & VXGE_HW_PCI_CONFIG_ACCESS_STATUS_ACCESS_ERR) {
  3026. status = VXGE_HW_FAIL;
  3027. *val = 0;
  3028. } else
  3029. *val = (u32)vxge_bVALn(val64, 32, 32);
  3030. exit:
  3031. return status;
  3032. }
  3033. /**
  3034. * vxge_hw_device_flick_link_led - Flick (blink) link LED.
  3035. * @hldev: HW device.
  3036. * @on_off: TRUE if flickering to be on, FALSE to be off
  3037. *
  3038. * Flicker the link LED.
  3039. */
  3040. enum vxge_hw_status
  3041. vxge_hw_device_flick_link_led(struct __vxge_hw_device *hldev, u64 on_off)
  3042. {
  3043. struct __vxge_hw_virtualpath *vpath;
  3044. u64 data0, data1 = 0, steer_ctrl = 0;
  3045. enum vxge_hw_status status;
  3046. if (hldev == NULL) {
  3047. status = VXGE_HW_ERR_INVALID_DEVICE;
  3048. goto exit;
  3049. }
  3050. vpath = &hldev->virtual_paths[hldev->first_vp_id];
  3051. data0 = on_off;
  3052. status = vxge_hw_vpath_fw_api(vpath,
  3053. VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LED_CONTROL,
  3054. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
  3055. 0, &data0, &data1, &steer_ctrl);
  3056. exit:
  3057. return status;
  3058. }
  3059. /*
  3060. * __vxge_hw_vpath_rts_table_get - Get the entries from RTS access tables
  3061. */
  3062. enum vxge_hw_status
  3063. __vxge_hw_vpath_rts_table_get(struct __vxge_hw_vpath_handle *vp,
  3064. u32 action, u32 rts_table, u32 offset,
  3065. u64 *data0, u64 *data1)
  3066. {
  3067. enum vxge_hw_status status;
  3068. u64 steer_ctrl = 0;
  3069. if (vp == NULL) {
  3070. status = VXGE_HW_ERR_INVALID_HANDLE;
  3071. goto exit;
  3072. }
  3073. if ((rts_table ==
  3074. VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_SOLO_IT) ||
  3075. (rts_table ==
  3076. VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT) ||
  3077. (rts_table ==
  3078. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MASK) ||
  3079. (rts_table ==
  3080. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_KEY)) {
  3081. steer_ctrl = VXGE_HW_RTS_ACCESS_STEER_CTRL_TABLE_SEL;
  3082. }
  3083. status = vxge_hw_vpath_fw_api(vp->vpath, action, rts_table, offset,
  3084. data0, data1, &steer_ctrl);
  3085. if (status != VXGE_HW_OK)
  3086. goto exit;
  3087. if ((rts_table != VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) &&
  3088. (rts_table !=
  3089. VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT))
  3090. *data1 = 0;
  3091. exit:
  3092. return status;
  3093. }
  3094. /*
  3095. * __vxge_hw_vpath_rts_table_set - Set the entries of RTS access tables
  3096. */
  3097. enum vxge_hw_status
  3098. __vxge_hw_vpath_rts_table_set(struct __vxge_hw_vpath_handle *vp, u32 action,
  3099. u32 rts_table, u32 offset, u64 steer_data0,
  3100. u64 steer_data1)
  3101. {
  3102. u64 data0, data1 = 0, steer_ctrl = 0;
  3103. enum vxge_hw_status status;
  3104. if (vp == NULL) {
  3105. status = VXGE_HW_ERR_INVALID_HANDLE;
  3106. goto exit;
  3107. }
  3108. data0 = steer_data0;
  3109. if ((rts_table == VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) ||
  3110. (rts_table ==
  3111. VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT))
  3112. data1 = steer_data1;
  3113. status = vxge_hw_vpath_fw_api(vp->vpath, action, rts_table, offset,
  3114. &data0, &data1, &steer_ctrl);
  3115. exit:
  3116. return status;
  3117. }
  3118. /*
  3119. * vxge_hw_vpath_rts_rth_set - Set/configure RTS hashing.
  3120. */
  3121. enum vxge_hw_status vxge_hw_vpath_rts_rth_set(
  3122. struct __vxge_hw_vpath_handle *vp,
  3123. enum vxge_hw_rth_algoritms algorithm,
  3124. struct vxge_hw_rth_hash_types *hash_type,
  3125. u16 bucket_size)
  3126. {
  3127. u64 data0, data1;
  3128. enum vxge_hw_status status = VXGE_HW_OK;
  3129. if (vp == NULL) {
  3130. status = VXGE_HW_ERR_INVALID_HANDLE;
  3131. goto exit;
  3132. }
  3133. status = __vxge_hw_vpath_rts_table_get(vp,
  3134. VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_ENTRY,
  3135. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_GEN_CFG,
  3136. 0, &data0, &data1);
  3137. if (status != VXGE_HW_OK)
  3138. goto exit;
  3139. data0 &= ~(VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_BUCKET_SIZE(0xf) |
  3140. VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ALG_SEL(0x3));
  3141. data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_EN |
  3142. VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_BUCKET_SIZE(bucket_size) |
  3143. VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ALG_SEL(algorithm);
  3144. if (hash_type->hash_type_tcpipv4_en)
  3145. data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV4_EN;
  3146. if (hash_type->hash_type_ipv4_en)
  3147. data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV4_EN;
  3148. if (hash_type->hash_type_tcpipv6_en)
  3149. data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV6_EN;
  3150. if (hash_type->hash_type_ipv6_en)
  3151. data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV6_EN;
  3152. if (hash_type->hash_type_tcpipv6ex_en)
  3153. data0 |=
  3154. VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV6_EX_EN;
  3155. if (hash_type->hash_type_ipv6ex_en)
  3156. data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV6_EX_EN;
  3157. if (VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_RTH_GEN_ACTIVE_TABLE(data0))
  3158. data0 &= ~VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ACTIVE_TABLE;
  3159. else
  3160. data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ACTIVE_TABLE;
  3161. status = __vxge_hw_vpath_rts_table_set(vp,
  3162. VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY,
  3163. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_GEN_CFG,
  3164. 0, data0, 0);
  3165. exit:
  3166. return status;
  3167. }
  3168. static void
  3169. vxge_hw_rts_rth_data0_data1_get(u32 j, u64 *data0, u64 *data1,
  3170. u16 flag, u8 *itable)
  3171. {
  3172. switch (flag) {
  3173. case 1:
  3174. *data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_BUCKET_NUM(j)|
  3175. VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_ENTRY_EN |
  3176. VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_BUCKET_DATA(
  3177. itable[j]);
  3178. case 2:
  3179. *data0 |=
  3180. VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_BUCKET_NUM(j)|
  3181. VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_ENTRY_EN |
  3182. VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_BUCKET_DATA(
  3183. itable[j]);
  3184. case 3:
  3185. *data1 = VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_BUCKET_NUM(j)|
  3186. VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_ENTRY_EN |
  3187. VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_BUCKET_DATA(
  3188. itable[j]);
  3189. case 4:
  3190. *data1 |=
  3191. VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_BUCKET_NUM(j)|
  3192. VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_ENTRY_EN |
  3193. VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_BUCKET_DATA(
  3194. itable[j]);
  3195. default:
  3196. return;
  3197. }
  3198. }
  3199. /*
  3200. * vxge_hw_vpath_rts_rth_itable_set - Set/configure indirection table (IT).
  3201. */
  3202. enum vxge_hw_status vxge_hw_vpath_rts_rth_itable_set(
  3203. struct __vxge_hw_vpath_handle **vpath_handles,
  3204. u32 vpath_count,
  3205. u8 *mtable,
  3206. u8 *itable,
  3207. u32 itable_size)
  3208. {
  3209. u32 i, j, action, rts_table;
  3210. u64 data0;
  3211. u64 data1;
  3212. u32 max_entries;
  3213. enum vxge_hw_status status = VXGE_HW_OK;
  3214. struct __vxge_hw_vpath_handle *vp = vpath_handles[0];
  3215. if (vp == NULL) {
  3216. status = VXGE_HW_ERR_INVALID_HANDLE;
  3217. goto exit;
  3218. }
  3219. max_entries = (((u32)1) << itable_size);
  3220. if (vp->vpath->hldev->config.rth_it_type
  3221. == VXGE_HW_RTH_IT_TYPE_SOLO_IT) {
  3222. action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY;
  3223. rts_table =
  3224. VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_SOLO_IT;
  3225. for (j = 0; j < max_entries; j++) {
  3226. data1 = 0;
  3227. data0 =
  3228. VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_BUCKET_DATA(
  3229. itable[j]);
  3230. status = __vxge_hw_vpath_rts_table_set(vpath_handles[0],
  3231. action, rts_table, j, data0, data1);
  3232. if (status != VXGE_HW_OK)
  3233. goto exit;
  3234. }
  3235. for (j = 0; j < max_entries; j++) {
  3236. data1 = 0;
  3237. data0 =
  3238. VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_ENTRY_EN |
  3239. VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_BUCKET_DATA(
  3240. itable[j]);
  3241. status = __vxge_hw_vpath_rts_table_set(
  3242. vpath_handles[mtable[itable[j]]], action,
  3243. rts_table, j, data0, data1);
  3244. if (status != VXGE_HW_OK)
  3245. goto exit;
  3246. }
  3247. } else {
  3248. action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY;
  3249. rts_table =
  3250. VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT;
  3251. for (i = 0; i < vpath_count; i++) {
  3252. for (j = 0; j < max_entries;) {
  3253. data0 = 0;
  3254. data1 = 0;
  3255. while (j < max_entries) {
  3256. if (mtable[itable[j]] != i) {
  3257. j++;
  3258. continue;
  3259. }
  3260. vxge_hw_rts_rth_data0_data1_get(j,
  3261. &data0, &data1, 1, itable);
  3262. j++;
  3263. break;
  3264. }
  3265. while (j < max_entries) {
  3266. if (mtable[itable[j]] != i) {
  3267. j++;
  3268. continue;
  3269. }
  3270. vxge_hw_rts_rth_data0_data1_get(j,
  3271. &data0, &data1, 2, itable);
  3272. j++;
  3273. break;
  3274. }
  3275. while (j < max_entries) {
  3276. if (mtable[itable[j]] != i) {
  3277. j++;
  3278. continue;
  3279. }
  3280. vxge_hw_rts_rth_data0_data1_get(j,
  3281. &data0, &data1, 3, itable);
  3282. j++;
  3283. break;
  3284. }
  3285. while (j < max_entries) {
  3286. if (mtable[itable[j]] != i) {
  3287. j++;
  3288. continue;
  3289. }
  3290. vxge_hw_rts_rth_data0_data1_get(j,
  3291. &data0, &data1, 4, itable);
  3292. j++;
  3293. break;
  3294. }
  3295. if (data0 != 0) {
  3296. status = __vxge_hw_vpath_rts_table_set(
  3297. vpath_handles[i],
  3298. action, rts_table,
  3299. 0, data0, data1);
  3300. if (status != VXGE_HW_OK)
  3301. goto exit;
  3302. }
  3303. }
  3304. }
  3305. }
  3306. exit:
  3307. return status;
  3308. }
  3309. /**
  3310. * vxge_hw_vpath_check_leak - Check for memory leak
  3311. * @ringh: Handle to the ring object used for receive
  3312. *
  3313. * If PRC_RXD_DOORBELL_VPn.NEW_QW_CNT is larger or equal to
  3314. * PRC_CFG6_VPn.RXD_SPAT then a leak has occurred.
  3315. * Returns: VXGE_HW_FAIL, if leak has occurred.
  3316. *
  3317. */
  3318. enum vxge_hw_status
  3319. vxge_hw_vpath_check_leak(struct __vxge_hw_ring *ring)
  3320. {
  3321. enum vxge_hw_status status = VXGE_HW_OK;
  3322. u64 rxd_new_count, rxd_spat;
  3323. if (ring == NULL)
  3324. return status;
  3325. rxd_new_count = readl(&ring->vp_reg->prc_rxd_doorbell);
  3326. rxd_spat = readq(&ring->vp_reg->prc_cfg6);
  3327. rxd_spat = VXGE_HW_PRC_CFG6_RXD_SPAT(rxd_spat);
  3328. if (rxd_new_count >= rxd_spat)
  3329. status = VXGE_HW_FAIL;
  3330. return status;
  3331. }
  3332. /*
  3333. * __vxge_hw_vpath_mgmt_read
  3334. * This routine reads the vpath_mgmt registers
  3335. */
  3336. static enum vxge_hw_status
  3337. __vxge_hw_vpath_mgmt_read(
  3338. struct __vxge_hw_device *hldev,
  3339. struct __vxge_hw_virtualpath *vpath)
  3340. {
  3341. u32 i, mtu = 0, max_pyld = 0;
  3342. u64 val64;
  3343. enum vxge_hw_status status = VXGE_HW_OK;
  3344. for (i = 0; i < VXGE_HW_MAC_MAX_MAC_PORT_ID; i++) {
  3345. val64 = readq(&vpath->vpmgmt_reg->
  3346. rxmac_cfg0_port_vpmgmt_clone[i]);
  3347. max_pyld =
  3348. (u32)
  3349. VXGE_HW_RXMAC_CFG0_PORT_VPMGMT_CLONE_GET_MAX_PYLD_LEN
  3350. (val64);
  3351. if (mtu < max_pyld)
  3352. mtu = max_pyld;
  3353. }
  3354. vpath->max_mtu = mtu + VXGE_HW_MAC_HEADER_MAX_SIZE;
  3355. val64 = readq(&vpath->vpmgmt_reg->xmac_vsport_choices_vp);
  3356. for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
  3357. if (val64 & vxge_mBIT(i))
  3358. vpath->vsport_number = i;
  3359. }
  3360. val64 = readq(&vpath->vpmgmt_reg->xgmac_gen_status_vpmgmt_clone);
  3361. if (val64 & VXGE_HW_XGMAC_GEN_STATUS_VPMGMT_CLONE_XMACJ_NTWK_OK)
  3362. VXGE_HW_DEVICE_LINK_STATE_SET(vpath->hldev, VXGE_HW_LINK_UP);
  3363. else
  3364. VXGE_HW_DEVICE_LINK_STATE_SET(vpath->hldev, VXGE_HW_LINK_DOWN);
  3365. return status;
  3366. }
  3367. /*
  3368. * __vxge_hw_vpath_reset_check - Check if resetting the vpath completed
  3369. * This routine checks the vpath_rst_in_prog register to see if
  3370. * adapter completed the reset process for the vpath
  3371. */
  3372. static enum vxge_hw_status
  3373. __vxge_hw_vpath_reset_check(struct __vxge_hw_virtualpath *vpath)
  3374. {
  3375. enum vxge_hw_status status;
  3376. status = __vxge_hw_device_register_poll(
  3377. &vpath->hldev->common_reg->vpath_rst_in_prog,
  3378. VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG(
  3379. 1 << (16 - vpath->vp_id)),
  3380. vpath->hldev->config.device_poll_millis);
  3381. return status;
  3382. }
  3383. /*
  3384. * __vxge_hw_vpath_reset
  3385. * This routine resets the vpath on the device
  3386. */
  3387. static enum vxge_hw_status
  3388. __vxge_hw_vpath_reset(struct __vxge_hw_device *hldev, u32 vp_id)
  3389. {
  3390. u64 val64;
  3391. enum vxge_hw_status status = VXGE_HW_OK;
  3392. val64 = VXGE_HW_CMN_RSTHDLR_CFG0_SW_RESET_VPATH(1 << (16 - vp_id));
  3393. __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
  3394. &hldev->common_reg->cmn_rsthdlr_cfg0);
  3395. return status;
  3396. }
  3397. /*
  3398. * __vxge_hw_vpath_sw_reset
  3399. * This routine resets the vpath structures
  3400. */
  3401. static enum vxge_hw_status
  3402. __vxge_hw_vpath_sw_reset(struct __vxge_hw_device *hldev, u32 vp_id)
  3403. {
  3404. enum vxge_hw_status status = VXGE_HW_OK;
  3405. struct __vxge_hw_virtualpath *vpath;
  3406. vpath = (struct __vxge_hw_virtualpath *)&hldev->virtual_paths[vp_id];
  3407. if (vpath->ringh) {
  3408. status = __vxge_hw_ring_reset(vpath->ringh);
  3409. if (status != VXGE_HW_OK)
  3410. goto exit;
  3411. }
  3412. if (vpath->fifoh)
  3413. status = __vxge_hw_fifo_reset(vpath->fifoh);
  3414. exit:
  3415. return status;
  3416. }
  3417. /*
  3418. * __vxge_hw_vpath_prc_configure
  3419. * This routine configures the prc registers of virtual path using the config
  3420. * passed
  3421. */
  3422. static void
  3423. __vxge_hw_vpath_prc_configure(struct __vxge_hw_device *hldev, u32 vp_id)
  3424. {
  3425. u64 val64;
  3426. struct __vxge_hw_virtualpath *vpath;
  3427. struct vxge_hw_vp_config *vp_config;
  3428. struct vxge_hw_vpath_reg __iomem *vp_reg;
  3429. vpath = &hldev->virtual_paths[vp_id];
  3430. vp_reg = vpath->vp_reg;
  3431. vp_config = vpath->vp_config;
  3432. if (vp_config->ring.enable == VXGE_HW_RING_DISABLE)
  3433. return;
  3434. val64 = readq(&vp_reg->prc_cfg1);
  3435. val64 |= VXGE_HW_PRC_CFG1_RTI_TINT_DISABLE;
  3436. writeq(val64, &vp_reg->prc_cfg1);
  3437. val64 = readq(&vpath->vp_reg->prc_cfg6);
  3438. val64 |= VXGE_HW_PRC_CFG6_DOORBELL_MODE_EN;
  3439. writeq(val64, &vpath->vp_reg->prc_cfg6);
  3440. val64 = readq(&vp_reg->prc_cfg7);
  3441. if (vpath->vp_config->ring.scatter_mode !=
  3442. VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT) {
  3443. val64 &= ~VXGE_HW_PRC_CFG7_SCATTER_MODE(0x3);
  3444. switch (vpath->vp_config->ring.scatter_mode) {
  3445. case VXGE_HW_RING_SCATTER_MODE_A:
  3446. val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
  3447. VXGE_HW_PRC_CFG7_SCATTER_MODE_A);
  3448. break;
  3449. case VXGE_HW_RING_SCATTER_MODE_B:
  3450. val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
  3451. VXGE_HW_PRC_CFG7_SCATTER_MODE_B);
  3452. break;
  3453. case VXGE_HW_RING_SCATTER_MODE_C:
  3454. val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
  3455. VXGE_HW_PRC_CFG7_SCATTER_MODE_C);
  3456. break;
  3457. }
  3458. }
  3459. writeq(val64, &vp_reg->prc_cfg7);
  3460. writeq(VXGE_HW_PRC_CFG5_RXD0_ADD(
  3461. __vxge_hw_ring_first_block_address_get(
  3462. vpath->ringh) >> 3), &vp_reg->prc_cfg5);
  3463. val64 = readq(&vp_reg->prc_cfg4);
  3464. val64 |= VXGE_HW_PRC_CFG4_IN_SVC;
  3465. val64 &= ~VXGE_HW_PRC_CFG4_RING_MODE(0x3);
  3466. val64 |= VXGE_HW_PRC_CFG4_RING_MODE(
  3467. VXGE_HW_PRC_CFG4_RING_MODE_ONE_BUFFER);
  3468. if (hldev->config.rth_en == VXGE_HW_RTH_DISABLE)
  3469. val64 |= VXGE_HW_PRC_CFG4_RTH_DISABLE;
  3470. else
  3471. val64 &= ~VXGE_HW_PRC_CFG4_RTH_DISABLE;
  3472. writeq(val64, &vp_reg->prc_cfg4);
  3473. }
  3474. /*
  3475. * __vxge_hw_vpath_kdfc_configure
  3476. * This routine configures the kdfc registers of virtual path using the
  3477. * config passed
  3478. */
  3479. static enum vxge_hw_status
  3480. __vxge_hw_vpath_kdfc_configure(struct __vxge_hw_device *hldev, u32 vp_id)
  3481. {
  3482. u64 val64;
  3483. u64 vpath_stride;
  3484. enum vxge_hw_status status = VXGE_HW_OK;
  3485. struct __vxge_hw_virtualpath *vpath;
  3486. struct vxge_hw_vpath_reg __iomem *vp_reg;
  3487. vpath = &hldev->virtual_paths[vp_id];
  3488. vp_reg = vpath->vp_reg;
  3489. status = __vxge_hw_kdfc_swapper_set(hldev->legacy_reg, vp_reg);
  3490. if (status != VXGE_HW_OK)
  3491. goto exit;
  3492. val64 = readq(&vp_reg->kdfc_drbl_triplet_total);
  3493. vpath->max_kdfc_db =
  3494. (u32)VXGE_HW_KDFC_DRBL_TRIPLET_TOTAL_GET_KDFC_MAX_SIZE(
  3495. val64+1)/2;
  3496. if (vpath->vp_config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
  3497. vpath->max_nofl_db = vpath->max_kdfc_db;
  3498. if (vpath->max_nofl_db <
  3499. ((vpath->vp_config->fifo.memblock_size /
  3500. (vpath->vp_config->fifo.max_frags *
  3501. sizeof(struct vxge_hw_fifo_txd))) *
  3502. vpath->vp_config->fifo.fifo_blocks)) {
  3503. return VXGE_HW_BADCFG_FIFO_BLOCKS;
  3504. }
  3505. val64 = VXGE_HW_KDFC_FIFO_TRPL_PARTITION_LENGTH_0(
  3506. (vpath->max_nofl_db*2)-1);
  3507. }
  3508. writeq(val64, &vp_reg->kdfc_fifo_trpl_partition);
  3509. writeq(VXGE_HW_KDFC_FIFO_TRPL_CTRL_TRIPLET_ENABLE,
  3510. &vp_reg->kdfc_fifo_trpl_ctrl);
  3511. val64 = readq(&vp_reg->kdfc_trpl_fifo_0_ctrl);
  3512. val64 &= ~(VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE(0x3) |
  3513. VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0xFF));
  3514. val64 |= VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE(
  3515. VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE_NON_OFFLOAD_ONLY) |
  3516. #ifndef __BIG_ENDIAN
  3517. VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SWAP_EN |
  3518. #endif
  3519. VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0);
  3520. writeq(val64, &vp_reg->kdfc_trpl_fifo_0_ctrl);
  3521. writeq((u64)0, &vp_reg->kdfc_trpl_fifo_0_wb_address);
  3522. wmb();
  3523. vpath_stride = readq(&hldev->toc_reg->toc_kdfc_vpath_stride);
  3524. vpath->nofl_db =
  3525. (struct __vxge_hw_non_offload_db_wrapper __iomem *)
  3526. (hldev->kdfc + (vp_id *
  3527. VXGE_HW_TOC_KDFC_VPATH_STRIDE_GET_TOC_KDFC_VPATH_STRIDE(
  3528. vpath_stride)));
  3529. exit:
  3530. return status;
  3531. }
  3532. /*
  3533. * __vxge_hw_vpath_mac_configure
  3534. * This routine configures the mac of virtual path using the config passed
  3535. */
  3536. static enum vxge_hw_status
  3537. __vxge_hw_vpath_mac_configure(struct __vxge_hw_device *hldev, u32 vp_id)
  3538. {
  3539. u64 val64;
  3540. enum vxge_hw_status status = VXGE_HW_OK;
  3541. struct __vxge_hw_virtualpath *vpath;
  3542. struct vxge_hw_vp_config *vp_config;
  3543. struct vxge_hw_vpath_reg __iomem *vp_reg;
  3544. vpath = &hldev->virtual_paths[vp_id];
  3545. vp_reg = vpath->vp_reg;
  3546. vp_config = vpath->vp_config;
  3547. writeq(VXGE_HW_XMAC_VSPORT_CHOICE_VSPORT_NUMBER(
  3548. vpath->vsport_number), &vp_reg->xmac_vsport_choice);
  3549. if (vp_config->ring.enable == VXGE_HW_RING_ENABLE) {
  3550. val64 = readq(&vp_reg->xmac_rpa_vcfg);
  3551. if (vp_config->rpa_strip_vlan_tag !=
  3552. VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT) {
  3553. if (vp_config->rpa_strip_vlan_tag)
  3554. val64 |= VXGE_HW_XMAC_RPA_VCFG_STRIP_VLAN_TAG;
  3555. else
  3556. val64 &= ~VXGE_HW_XMAC_RPA_VCFG_STRIP_VLAN_TAG;
  3557. }
  3558. writeq(val64, &vp_reg->xmac_rpa_vcfg);
  3559. val64 = readq(&vp_reg->rxmac_vcfg0);
  3560. if (vp_config->mtu !=
  3561. VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU) {
  3562. val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
  3563. if ((vp_config->mtu +
  3564. VXGE_HW_MAC_HEADER_MAX_SIZE) < vpath->max_mtu)
  3565. val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(
  3566. vp_config->mtu +
  3567. VXGE_HW_MAC_HEADER_MAX_SIZE);
  3568. else
  3569. val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(
  3570. vpath->max_mtu);
  3571. }
  3572. writeq(val64, &vp_reg->rxmac_vcfg0);
  3573. val64 = readq(&vp_reg->rxmac_vcfg1);
  3574. val64 &= ~(VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_BD_MODE(0x3) |
  3575. VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_EN_MODE);
  3576. if (hldev->config.rth_it_type ==
  3577. VXGE_HW_RTH_IT_TYPE_MULTI_IT) {
  3578. val64 |= VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_BD_MODE(
  3579. 0x2) |
  3580. VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_EN_MODE;
  3581. }
  3582. writeq(val64, &vp_reg->rxmac_vcfg1);
  3583. }
  3584. return status;
  3585. }
  3586. /*
  3587. * __vxge_hw_vpath_tim_configure
  3588. * This routine configures the tim registers of virtual path using the config
  3589. * passed
  3590. */
  3591. static enum vxge_hw_status
  3592. __vxge_hw_vpath_tim_configure(struct __vxge_hw_device *hldev, u32 vp_id)
  3593. {
  3594. u64 val64;
  3595. enum vxge_hw_status status = VXGE_HW_OK;
  3596. struct __vxge_hw_virtualpath *vpath;
  3597. struct vxge_hw_vpath_reg __iomem *vp_reg;
  3598. struct vxge_hw_vp_config *config;
  3599. vpath = &hldev->virtual_paths[vp_id];
  3600. vp_reg = vpath->vp_reg;
  3601. config = vpath->vp_config;
  3602. writeq(0, &vp_reg->tim_dest_addr);
  3603. writeq(0, &vp_reg->tim_vpath_map);
  3604. writeq(0, &vp_reg->tim_bitmap);
  3605. writeq(0, &vp_reg->tim_remap);
  3606. if (config->ring.enable == VXGE_HW_RING_ENABLE)
  3607. writeq(VXGE_HW_TIM_RING_ASSN_INT_NUM(
  3608. (vp_id * VXGE_HW_MAX_INTR_PER_VP) +
  3609. VXGE_HW_VPATH_INTR_RX), &vp_reg->tim_ring_assn);
  3610. val64 = readq(&vp_reg->tim_pci_cfg);
  3611. val64 |= VXGE_HW_TIM_PCI_CFG_ADD_PAD;
  3612. writeq(val64, &vp_reg->tim_pci_cfg);
  3613. if (config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
  3614. val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
  3615. if (config->tti.btimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
  3616. val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
  3617. 0x3ffffff);
  3618. val64 |= VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
  3619. config->tti.btimer_val);
  3620. }
  3621. val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BITMP_EN;
  3622. if (config->tti.timer_ac_en != VXGE_HW_USE_FLASH_DEFAULT) {
  3623. if (config->tti.timer_ac_en)
  3624. val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
  3625. else
  3626. val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
  3627. }
  3628. if (config->tti.timer_ci_en != VXGE_HW_USE_FLASH_DEFAULT) {
  3629. if (config->tti.timer_ci_en)
  3630. val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
  3631. else
  3632. val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
  3633. }
  3634. if (config->tti.urange_a != VXGE_HW_USE_FLASH_DEFAULT) {
  3635. val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(0x3f);
  3636. val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(
  3637. config->tti.urange_a);
  3638. }
  3639. if (config->tti.urange_b != VXGE_HW_USE_FLASH_DEFAULT) {
  3640. val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(0x3f);
  3641. val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(
  3642. config->tti.urange_b);
  3643. }
  3644. if (config->tti.urange_c != VXGE_HW_USE_FLASH_DEFAULT) {
  3645. val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(0x3f);
  3646. val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(
  3647. config->tti.urange_c);
  3648. }
  3649. writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
  3650. vpath->tim_tti_cfg1_saved = val64;
  3651. val64 = readq(&vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_TX]);
  3652. if (config->tti.uec_a != VXGE_HW_USE_FLASH_DEFAULT) {
  3653. val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(0xffff);
  3654. val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(
  3655. config->tti.uec_a);
  3656. }
  3657. if (config->tti.uec_b != VXGE_HW_USE_FLASH_DEFAULT) {
  3658. val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(0xffff);
  3659. val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(
  3660. config->tti.uec_b);
  3661. }
  3662. if (config->tti.uec_c != VXGE_HW_USE_FLASH_DEFAULT) {
  3663. val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(0xffff);
  3664. val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(
  3665. config->tti.uec_c);
  3666. }
  3667. if (config->tti.uec_d != VXGE_HW_USE_FLASH_DEFAULT) {
  3668. val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(0xffff);
  3669. val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(
  3670. config->tti.uec_d);
  3671. }
  3672. writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_TX]);
  3673. val64 = readq(&vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
  3674. if (config->tti.timer_ri_en != VXGE_HW_USE_FLASH_DEFAULT) {
  3675. if (config->tti.timer_ri_en)
  3676. val64 |= VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
  3677. else
  3678. val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
  3679. }
  3680. if (config->tti.rtimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
  3681. val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
  3682. 0x3ffffff);
  3683. val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
  3684. config->tti.rtimer_val);
  3685. }
  3686. if (config->tti.util_sel != VXGE_HW_USE_FLASH_DEFAULT) {
  3687. val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(0x3f);
  3688. val64 |= VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(vp_id);
  3689. }
  3690. if (config->tti.ltimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
  3691. val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
  3692. 0x3ffffff);
  3693. val64 |= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
  3694. config->tti.ltimer_val);
  3695. }
  3696. writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
  3697. vpath->tim_tti_cfg3_saved = val64;
  3698. }
  3699. if (config->ring.enable == VXGE_HW_RING_ENABLE) {
  3700. val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
  3701. if (config->rti.btimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
  3702. val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
  3703. 0x3ffffff);
  3704. val64 |= VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
  3705. config->rti.btimer_val);
  3706. }
  3707. val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BITMP_EN;
  3708. if (config->rti.timer_ac_en != VXGE_HW_USE_FLASH_DEFAULT) {
  3709. if (config->rti.timer_ac_en)
  3710. val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
  3711. else
  3712. val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
  3713. }
  3714. if (config->rti.timer_ci_en != VXGE_HW_USE_FLASH_DEFAULT) {
  3715. if (config->rti.timer_ci_en)
  3716. val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
  3717. else
  3718. val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
  3719. }
  3720. if (config->rti.urange_a != VXGE_HW_USE_FLASH_DEFAULT) {
  3721. val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(0x3f);
  3722. val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(
  3723. config->rti.urange_a);
  3724. }
  3725. if (config->rti.urange_b != VXGE_HW_USE_FLASH_DEFAULT) {
  3726. val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(0x3f);
  3727. val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(
  3728. config->rti.urange_b);
  3729. }
  3730. if (config->rti.urange_c != VXGE_HW_USE_FLASH_DEFAULT) {
  3731. val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(0x3f);
  3732. val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(
  3733. config->rti.urange_c);
  3734. }
  3735. writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
  3736. vpath->tim_rti_cfg1_saved = val64;
  3737. val64 = readq(&vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_RX]);
  3738. if (config->rti.uec_a != VXGE_HW_USE_FLASH_DEFAULT) {
  3739. val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(0xffff);
  3740. val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(
  3741. config->rti.uec_a);
  3742. }
  3743. if (config->rti.uec_b != VXGE_HW_USE_FLASH_DEFAULT) {
  3744. val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(0xffff);
  3745. val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(
  3746. config->rti.uec_b);
  3747. }
  3748. if (config->rti.uec_c != VXGE_HW_USE_FLASH_DEFAULT) {
  3749. val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(0xffff);
  3750. val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(
  3751. config->rti.uec_c);
  3752. }
  3753. if (config->rti.uec_d != VXGE_HW_USE_FLASH_DEFAULT) {
  3754. val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(0xffff);
  3755. val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(
  3756. config->rti.uec_d);
  3757. }
  3758. writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_RX]);
  3759. val64 = readq(&vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
  3760. if (config->rti.timer_ri_en != VXGE_HW_USE_FLASH_DEFAULT) {
  3761. if (config->rti.timer_ri_en)
  3762. val64 |= VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
  3763. else
  3764. val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
  3765. }
  3766. if (config->rti.rtimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
  3767. val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
  3768. 0x3ffffff);
  3769. val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
  3770. config->rti.rtimer_val);
  3771. }
  3772. if (config->rti.util_sel != VXGE_HW_USE_FLASH_DEFAULT) {
  3773. val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(0x3f);
  3774. val64 |= VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(vp_id);
  3775. }
  3776. if (config->rti.ltimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
  3777. val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
  3778. 0x3ffffff);
  3779. val64 |= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
  3780. config->rti.ltimer_val);
  3781. }
  3782. writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
  3783. vpath->tim_rti_cfg3_saved = val64;
  3784. }
  3785. val64 = 0;
  3786. writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_EINTA]);
  3787. writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_EINTA]);
  3788. writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_EINTA]);
  3789. writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_BMAP]);
  3790. writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_BMAP]);
  3791. writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_BMAP]);
  3792. val64 = VXGE_HW_TIM_WRKLD_CLC_WRKLD_EVAL_PRD(150);
  3793. val64 |= VXGE_HW_TIM_WRKLD_CLC_WRKLD_EVAL_DIV(0);
  3794. val64 |= VXGE_HW_TIM_WRKLD_CLC_CNT_RX_TX(3);
  3795. writeq(val64, &vp_reg->tim_wrkld_clc);
  3796. return status;
  3797. }
  3798. /*
  3799. * __vxge_hw_vpath_initialize
  3800. * This routine is the final phase of init which initializes the
  3801. * registers of the vpath using the configuration passed.
  3802. */
  3803. static enum vxge_hw_status
  3804. __vxge_hw_vpath_initialize(struct __vxge_hw_device *hldev, u32 vp_id)
  3805. {
  3806. u64 val64;
  3807. u32 val32;
  3808. enum vxge_hw_status status = VXGE_HW_OK;
  3809. struct __vxge_hw_virtualpath *vpath;
  3810. struct vxge_hw_vpath_reg __iomem *vp_reg;
  3811. vpath = &hldev->virtual_paths[vp_id];
  3812. if (!(hldev->vpath_assignments & vxge_mBIT(vp_id))) {
  3813. status = VXGE_HW_ERR_VPATH_NOT_AVAILABLE;
  3814. goto exit;
  3815. }
  3816. vp_reg = vpath->vp_reg;
  3817. status = __vxge_hw_vpath_swapper_set(vpath->vp_reg);
  3818. if (status != VXGE_HW_OK)
  3819. goto exit;
  3820. status = __vxge_hw_vpath_mac_configure(hldev, vp_id);
  3821. if (status != VXGE_HW_OK)
  3822. goto exit;
  3823. status = __vxge_hw_vpath_kdfc_configure(hldev, vp_id);
  3824. if (status != VXGE_HW_OK)
  3825. goto exit;
  3826. status = __vxge_hw_vpath_tim_configure(hldev, vp_id);
  3827. if (status != VXGE_HW_OK)
  3828. goto exit;
  3829. val64 = readq(&vp_reg->rtdma_rd_optimization_ctrl);
  3830. /* Get MRRS value from device control */
  3831. status = __vxge_hw_vpath_pci_read(vpath, 1, 0x78, &val32);
  3832. if (status == VXGE_HW_OK) {
  3833. val32 = (val32 & VXGE_HW_PCI_EXP_DEVCTL_READRQ) >> 12;
  3834. val64 &=
  3835. ~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(7));
  3836. val64 |=
  3837. VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(val32);
  3838. val64 |= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_WAIT_FOR_SPACE;
  3839. }
  3840. val64 &= ~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY(7));
  3841. val64 |=
  3842. VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY(
  3843. VXGE_HW_MAX_PAYLOAD_SIZE_512);
  3844. val64 |= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY_EN;
  3845. writeq(val64, &vp_reg->rtdma_rd_optimization_ctrl);
  3846. exit:
  3847. return status;
  3848. }
  3849. /*
  3850. * __vxge_hw_vp_terminate - Terminate Virtual Path structure
  3851. * This routine closes all channels it opened and freeup memory
  3852. */
  3853. static void __vxge_hw_vp_terminate(struct __vxge_hw_device *hldev, u32 vp_id)
  3854. {
  3855. struct __vxge_hw_virtualpath *vpath;
  3856. vpath = &hldev->virtual_paths[vp_id];
  3857. if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN)
  3858. goto exit;
  3859. VXGE_HW_DEVICE_TIM_INT_MASK_RESET(vpath->hldev->tim_int_mask0,
  3860. vpath->hldev->tim_int_mask1, vpath->vp_id);
  3861. hldev->stats.hw_dev_info_stats.vpath_info[vpath->vp_id] = NULL;
  3862. /* If the whole struct __vxge_hw_virtualpath is zeroed, nothing will
  3863. * work after the interface is brought down.
  3864. */
  3865. spin_lock(&vpath->lock);
  3866. vpath->vp_open = VXGE_HW_VP_NOT_OPEN;
  3867. spin_unlock(&vpath->lock);
  3868. vpath->vpmgmt_reg = NULL;
  3869. vpath->nofl_db = NULL;
  3870. vpath->max_mtu = 0;
  3871. vpath->vsport_number = 0;
  3872. vpath->max_kdfc_db = 0;
  3873. vpath->max_nofl_db = 0;
  3874. vpath->ringh = NULL;
  3875. vpath->fifoh = NULL;
  3876. memset(&vpath->vpath_handles, 0, sizeof(struct list_head));
  3877. vpath->stats_block = 0;
  3878. vpath->hw_stats = NULL;
  3879. vpath->hw_stats_sav = NULL;
  3880. vpath->sw_stats = NULL;
  3881. exit:
  3882. return;
  3883. }
  3884. /*
  3885. * __vxge_hw_vp_initialize - Initialize Virtual Path structure
  3886. * This routine is the initial phase of init which resets the vpath and
  3887. * initializes the software support structures.
  3888. */
  3889. static enum vxge_hw_status
  3890. __vxge_hw_vp_initialize(struct __vxge_hw_device *hldev, u32 vp_id,
  3891. struct vxge_hw_vp_config *config)
  3892. {
  3893. struct __vxge_hw_virtualpath *vpath;
  3894. enum vxge_hw_status status = VXGE_HW_OK;
  3895. if (!(hldev->vpath_assignments & vxge_mBIT(vp_id))) {
  3896. status = VXGE_HW_ERR_VPATH_NOT_AVAILABLE;
  3897. goto exit;
  3898. }
  3899. vpath = &hldev->virtual_paths[vp_id];
  3900. spin_lock_init(&vpath->lock);
  3901. vpath->vp_id = vp_id;
  3902. vpath->vp_open = VXGE_HW_VP_OPEN;
  3903. vpath->hldev = hldev;
  3904. vpath->vp_config = config;
  3905. vpath->vp_reg = hldev->vpath_reg[vp_id];
  3906. vpath->vpmgmt_reg = hldev->vpmgmt_reg[vp_id];
  3907. __vxge_hw_vpath_reset(hldev, vp_id);
  3908. status = __vxge_hw_vpath_reset_check(vpath);
  3909. if (status != VXGE_HW_OK) {
  3910. memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath));
  3911. goto exit;
  3912. }
  3913. status = __vxge_hw_vpath_mgmt_read(hldev, vpath);
  3914. if (status != VXGE_HW_OK) {
  3915. memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath));
  3916. goto exit;
  3917. }
  3918. INIT_LIST_HEAD(&vpath->vpath_handles);
  3919. vpath->sw_stats = &hldev->stats.sw_dev_info_stats.vpath_info[vp_id];
  3920. VXGE_HW_DEVICE_TIM_INT_MASK_SET(hldev->tim_int_mask0,
  3921. hldev->tim_int_mask1, vp_id);
  3922. status = __vxge_hw_vpath_initialize(hldev, vp_id);
  3923. if (status != VXGE_HW_OK)
  3924. __vxge_hw_vp_terminate(hldev, vp_id);
  3925. exit:
  3926. return status;
  3927. }
  3928. /*
  3929. * vxge_hw_vpath_mtu_set - Set MTU.
  3930. * Set new MTU value. Example, to use jumbo frames:
  3931. * vxge_hw_vpath_mtu_set(my_device, 9600);
  3932. */
  3933. enum vxge_hw_status
  3934. vxge_hw_vpath_mtu_set(struct __vxge_hw_vpath_handle *vp, u32 new_mtu)
  3935. {
  3936. u64 val64;
  3937. enum vxge_hw_status status = VXGE_HW_OK;
  3938. struct __vxge_hw_virtualpath *vpath;
  3939. if (vp == NULL) {
  3940. status = VXGE_HW_ERR_INVALID_HANDLE;
  3941. goto exit;
  3942. }
  3943. vpath = vp->vpath;
  3944. new_mtu += VXGE_HW_MAC_HEADER_MAX_SIZE;
  3945. if ((new_mtu < VXGE_HW_MIN_MTU) || (new_mtu > vpath->max_mtu))
  3946. status = VXGE_HW_ERR_INVALID_MTU_SIZE;
  3947. val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
  3948. val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
  3949. val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(new_mtu);
  3950. writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
  3951. vpath->vp_config->mtu = new_mtu - VXGE_HW_MAC_HEADER_MAX_SIZE;
  3952. exit:
  3953. return status;
  3954. }
  3955. /*
  3956. * vxge_hw_vpath_stats_enable - Enable vpath h/wstatistics.
  3957. * Enable the DMA vpath statistics. The function is to be called to re-enable
  3958. * the adapter to update stats into the host memory
  3959. */
  3960. static enum vxge_hw_status
  3961. vxge_hw_vpath_stats_enable(struct __vxge_hw_vpath_handle *vp)
  3962. {
  3963. enum vxge_hw_status status = VXGE_HW_OK;
  3964. struct __vxge_hw_virtualpath *vpath;
  3965. vpath = vp->vpath;
  3966. if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
  3967. status = VXGE_HW_ERR_VPATH_NOT_OPEN;
  3968. goto exit;
  3969. }
  3970. memcpy(vpath->hw_stats_sav, vpath->hw_stats,
  3971. sizeof(struct vxge_hw_vpath_stats_hw_info));
  3972. status = __vxge_hw_vpath_stats_get(vpath, vpath->hw_stats);
  3973. exit:
  3974. return status;
  3975. }
  3976. /*
  3977. * __vxge_hw_blockpool_block_allocate - Allocates a block from block pool
  3978. * This function allocates a block from block pool or from the system
  3979. */
  3980. static struct __vxge_hw_blockpool_entry *
  3981. __vxge_hw_blockpool_block_allocate(struct __vxge_hw_device *devh, u32 size)
  3982. {
  3983. struct __vxge_hw_blockpool_entry *entry = NULL;
  3984. struct __vxge_hw_blockpool *blockpool;
  3985. blockpool = &devh->block_pool;
  3986. if (size == blockpool->block_size) {
  3987. if (!list_empty(&blockpool->free_block_list))
  3988. entry = (struct __vxge_hw_blockpool_entry *)
  3989. list_first_entry(&blockpool->free_block_list,
  3990. struct __vxge_hw_blockpool_entry,
  3991. item);
  3992. if (entry != NULL) {
  3993. list_del(&entry->item);
  3994. blockpool->pool_size--;
  3995. }
  3996. }
  3997. if (entry != NULL)
  3998. __vxge_hw_blockpool_blocks_add(blockpool);
  3999. return entry;
  4000. }
  4001. /*
  4002. * vxge_hw_vpath_open - Open a virtual path on a given adapter
  4003. * This function is used to open access to virtual path of an
  4004. * adapter for offload, GRO operations. This function returns
  4005. * synchronously.
  4006. */
  4007. enum vxge_hw_status
  4008. vxge_hw_vpath_open(struct __vxge_hw_device *hldev,
  4009. struct vxge_hw_vpath_attr *attr,
  4010. struct __vxge_hw_vpath_handle **vpath_handle)
  4011. {
  4012. struct __vxge_hw_virtualpath *vpath;
  4013. struct __vxge_hw_vpath_handle *vp;
  4014. enum vxge_hw_status status;
  4015. vpath = &hldev->virtual_paths[attr->vp_id];
  4016. if (vpath->vp_open == VXGE_HW_VP_OPEN) {
  4017. status = VXGE_HW_ERR_INVALID_STATE;
  4018. goto vpath_open_exit1;
  4019. }
  4020. status = __vxge_hw_vp_initialize(hldev, attr->vp_id,
  4021. &hldev->config.vp_config[attr->vp_id]);
  4022. if (status != VXGE_HW_OK)
  4023. goto vpath_open_exit1;
  4024. vp = vzalloc(sizeof(struct __vxge_hw_vpath_handle));
  4025. if (vp == NULL) {
  4026. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  4027. goto vpath_open_exit2;
  4028. }
  4029. vp->vpath = vpath;
  4030. if (vpath->vp_config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
  4031. status = __vxge_hw_fifo_create(vp, &attr->fifo_attr);
  4032. if (status != VXGE_HW_OK)
  4033. goto vpath_open_exit6;
  4034. }
  4035. if (vpath->vp_config->ring.enable == VXGE_HW_RING_ENABLE) {
  4036. status = __vxge_hw_ring_create(vp, &attr->ring_attr);
  4037. if (status != VXGE_HW_OK)
  4038. goto vpath_open_exit7;
  4039. __vxge_hw_vpath_prc_configure(hldev, attr->vp_id);
  4040. }
  4041. vpath->fifoh->tx_intr_num =
  4042. (attr->vp_id * VXGE_HW_MAX_INTR_PER_VP) +
  4043. VXGE_HW_VPATH_INTR_TX;
  4044. vpath->stats_block = __vxge_hw_blockpool_block_allocate(hldev,
  4045. VXGE_HW_BLOCK_SIZE);
  4046. if (vpath->stats_block == NULL) {
  4047. status = VXGE_HW_ERR_OUT_OF_MEMORY;
  4048. goto vpath_open_exit8;
  4049. }
  4050. vpath->hw_stats = (struct vxge_hw_vpath_stats_hw_info *)vpath->
  4051. stats_block->memblock;
  4052. memset(vpath->hw_stats, 0,
  4053. sizeof(struct vxge_hw_vpath_stats_hw_info));
  4054. hldev->stats.hw_dev_info_stats.vpath_info[attr->vp_id] =
  4055. vpath->hw_stats;
  4056. vpath->hw_stats_sav =
  4057. &hldev->stats.hw_dev_info_stats.vpath_info_sav[attr->vp_id];
  4058. memset(vpath->hw_stats_sav, 0,
  4059. sizeof(struct vxge_hw_vpath_stats_hw_info));
  4060. writeq(vpath->stats_block->dma_addr, &vpath->vp_reg->stats_cfg);
  4061. status = vxge_hw_vpath_stats_enable(vp);
  4062. if (status != VXGE_HW_OK)
  4063. goto vpath_open_exit8;
  4064. list_add(&vp->item, &vpath->vpath_handles);
  4065. hldev->vpaths_deployed |= vxge_mBIT(vpath->vp_id);
  4066. *vpath_handle = vp;
  4067. attr->fifo_attr.userdata = vpath->fifoh;
  4068. attr->ring_attr.userdata = vpath->ringh;
  4069. return VXGE_HW_OK;
  4070. vpath_open_exit8:
  4071. if (vpath->ringh != NULL)
  4072. __vxge_hw_ring_delete(vp);
  4073. vpath_open_exit7:
  4074. if (vpath->fifoh != NULL)
  4075. __vxge_hw_fifo_delete(vp);
  4076. vpath_open_exit6:
  4077. vfree(vp);
  4078. vpath_open_exit2:
  4079. __vxge_hw_vp_terminate(hldev, attr->vp_id);
  4080. vpath_open_exit1:
  4081. return status;
  4082. }
  4083. /**
  4084. * vxge_hw_vpath_rx_doorbell_post - Close the handle got from previous vpath
  4085. * (vpath) open
  4086. * @vp: Handle got from previous vpath open
  4087. *
  4088. * This function is used to close access to virtual path opened
  4089. * earlier.
  4090. */
  4091. void vxge_hw_vpath_rx_doorbell_init(struct __vxge_hw_vpath_handle *vp)
  4092. {
  4093. struct __vxge_hw_virtualpath *vpath = vp->vpath;
  4094. struct __vxge_hw_ring *ring = vpath->ringh;
  4095. struct vxgedev *vdev = netdev_priv(vpath->hldev->ndev);
  4096. u64 new_count, val64, val164;
  4097. if (vdev->titan1) {
  4098. new_count = readq(&vpath->vp_reg->rxdmem_size);
  4099. new_count &= 0x1fff;
  4100. } else
  4101. new_count = ring->config->ring_blocks * VXGE_HW_BLOCK_SIZE / 8;
  4102. val164 = VXGE_HW_RXDMEM_SIZE_PRC_RXDMEM_SIZE(new_count);
  4103. writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(val164),
  4104. &vpath->vp_reg->prc_rxd_doorbell);
  4105. readl(&vpath->vp_reg->prc_rxd_doorbell);
  4106. val164 /= 2;
  4107. val64 = readq(&vpath->vp_reg->prc_cfg6);
  4108. val64 = VXGE_HW_PRC_CFG6_RXD_SPAT(val64);
  4109. val64 &= 0x1ff;
  4110. /*
  4111. * Each RxD is of 4 qwords
  4112. */
  4113. new_count -= (val64 + 1);
  4114. val64 = min(val164, new_count) / 4;
  4115. ring->rxds_limit = min(ring->rxds_limit, val64);
  4116. if (ring->rxds_limit < 4)
  4117. ring->rxds_limit = 4;
  4118. }
  4119. /*
  4120. * __vxge_hw_blockpool_block_free - Frees a block from block pool
  4121. * @devh: Hal device
  4122. * @entry: Entry of block to be freed
  4123. *
  4124. * This function frees a block from block pool
  4125. */
  4126. static void
  4127. __vxge_hw_blockpool_block_free(struct __vxge_hw_device *devh,
  4128. struct __vxge_hw_blockpool_entry *entry)
  4129. {
  4130. struct __vxge_hw_blockpool *blockpool;
  4131. blockpool = &devh->block_pool;
  4132. if (entry->length == blockpool->block_size) {
  4133. list_add(&entry->item, &blockpool->free_block_list);
  4134. blockpool->pool_size++;
  4135. }
  4136. __vxge_hw_blockpool_blocks_remove(blockpool);
  4137. }
  4138. /*
  4139. * vxge_hw_vpath_close - Close the handle got from previous vpath (vpath) open
  4140. * This function is used to close access to virtual path opened
  4141. * earlier.
  4142. */
  4143. enum vxge_hw_status vxge_hw_vpath_close(struct __vxge_hw_vpath_handle *vp)
  4144. {
  4145. struct __vxge_hw_virtualpath *vpath = NULL;
  4146. struct __vxge_hw_device *devh = NULL;
  4147. u32 vp_id = vp->vpath->vp_id;
  4148. u32 is_empty = TRUE;
  4149. enum vxge_hw_status status = VXGE_HW_OK;
  4150. vpath = vp->vpath;
  4151. devh = vpath->hldev;
  4152. if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
  4153. status = VXGE_HW_ERR_VPATH_NOT_OPEN;
  4154. goto vpath_close_exit;
  4155. }
  4156. list_del(&vp->item);
  4157. if (!list_empty(&vpath->vpath_handles)) {
  4158. list_add(&vp->item, &vpath->vpath_handles);
  4159. is_empty = FALSE;
  4160. }
  4161. if (!is_empty) {
  4162. status = VXGE_HW_FAIL;
  4163. goto vpath_close_exit;
  4164. }
  4165. devh->vpaths_deployed &= ~vxge_mBIT(vp_id);
  4166. if (vpath->ringh != NULL)
  4167. __vxge_hw_ring_delete(vp);
  4168. if (vpath->fifoh != NULL)
  4169. __vxge_hw_fifo_delete(vp);
  4170. if (vpath->stats_block != NULL)
  4171. __vxge_hw_blockpool_block_free(devh, vpath->stats_block);
  4172. vfree(vp);
  4173. __vxge_hw_vp_terminate(devh, vp_id);
  4174. vpath_close_exit:
  4175. return status;
  4176. }
  4177. /*
  4178. * vxge_hw_vpath_reset - Resets vpath
  4179. * This function is used to request a reset of vpath
  4180. */
  4181. enum vxge_hw_status vxge_hw_vpath_reset(struct __vxge_hw_vpath_handle *vp)
  4182. {
  4183. enum vxge_hw_status status;
  4184. u32 vp_id;
  4185. struct __vxge_hw_virtualpath *vpath = vp->vpath;
  4186. vp_id = vpath->vp_id;
  4187. if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
  4188. status = VXGE_HW_ERR_VPATH_NOT_OPEN;
  4189. goto exit;
  4190. }
  4191. status = __vxge_hw_vpath_reset(vpath->hldev, vp_id);
  4192. if (status == VXGE_HW_OK)
  4193. vpath->sw_stats->soft_reset_cnt++;
  4194. exit:
  4195. return status;
  4196. }
  4197. /*
  4198. * vxge_hw_vpath_recover_from_reset - Poll for reset complete and re-initialize.
  4199. * This function poll's for the vpath reset completion and re initializes
  4200. * the vpath.
  4201. */
  4202. enum vxge_hw_status
  4203. vxge_hw_vpath_recover_from_reset(struct __vxge_hw_vpath_handle *vp)
  4204. {
  4205. struct __vxge_hw_virtualpath *vpath = NULL;
  4206. enum vxge_hw_status status;
  4207. struct __vxge_hw_device *hldev;
  4208. u32 vp_id;
  4209. vp_id = vp->vpath->vp_id;
  4210. vpath = vp->vpath;
  4211. hldev = vpath->hldev;
  4212. if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
  4213. status = VXGE_HW_ERR_VPATH_NOT_OPEN;
  4214. goto exit;
  4215. }
  4216. status = __vxge_hw_vpath_reset_check(vpath);
  4217. if (status != VXGE_HW_OK)
  4218. goto exit;
  4219. status = __vxge_hw_vpath_sw_reset(hldev, vp_id);
  4220. if (status != VXGE_HW_OK)
  4221. goto exit;
  4222. status = __vxge_hw_vpath_initialize(hldev, vp_id);
  4223. if (status != VXGE_HW_OK)
  4224. goto exit;
  4225. if (vpath->ringh != NULL)
  4226. __vxge_hw_vpath_prc_configure(hldev, vp_id);
  4227. memset(vpath->hw_stats, 0,
  4228. sizeof(struct vxge_hw_vpath_stats_hw_info));
  4229. memset(vpath->hw_stats_sav, 0,
  4230. sizeof(struct vxge_hw_vpath_stats_hw_info));
  4231. writeq(vpath->stats_block->dma_addr,
  4232. &vpath->vp_reg->stats_cfg);
  4233. status = vxge_hw_vpath_stats_enable(vp);
  4234. exit:
  4235. return status;
  4236. }
  4237. /*
  4238. * vxge_hw_vpath_enable - Enable vpath.
  4239. * This routine clears the vpath reset thereby enabling a vpath
  4240. * to start forwarding frames and generating interrupts.
  4241. */
  4242. void
  4243. vxge_hw_vpath_enable(struct __vxge_hw_vpath_handle *vp)
  4244. {
  4245. struct __vxge_hw_device *hldev;
  4246. u64 val64;
  4247. hldev = vp->vpath->hldev;
  4248. val64 = VXGE_HW_CMN_RSTHDLR_CFG1_CLR_VPATH_RESET(
  4249. 1 << (16 - vp->vpath->vp_id));
  4250. __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
  4251. &hldev->common_reg->cmn_rsthdlr_cfg1);
  4252. }