qlge_main.c 134 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961
  1. /*
  2. * QLogic qlge NIC HBA Driver
  3. * Copyright (c) 2003-2008 QLogic Corporation
  4. * See LICENSE.qlge for copyright and licensing details.
  5. * Author: Linux qlge network device driver by
  6. * Ron Mercer <ron.mercer@qlogic.com>
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/init.h>
  10. #include <linux/types.h>
  11. #include <linux/module.h>
  12. #include <linux/list.h>
  13. #include <linux/pci.h>
  14. #include <linux/dma-mapping.h>
  15. #include <linux/pagemap.h>
  16. #include <linux/sched.h>
  17. #include <linux/slab.h>
  18. #include <linux/dmapool.h>
  19. #include <linux/mempool.h>
  20. #include <linux/spinlock.h>
  21. #include <linux/kthread.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/errno.h>
  24. #include <linux/ioport.h>
  25. #include <linux/in.h>
  26. #include <linux/ip.h>
  27. #include <linux/ipv6.h>
  28. #include <net/ipv6.h>
  29. #include <linux/tcp.h>
  30. #include <linux/udp.h>
  31. #include <linux/if_arp.h>
  32. #include <linux/if_ether.h>
  33. #include <linux/netdevice.h>
  34. #include <linux/etherdevice.h>
  35. #include <linux/ethtool.h>
  36. #include <linux/skbuff.h>
  37. #include <linux/if_vlan.h>
  38. #include <linux/delay.h>
  39. #include <linux/mm.h>
  40. #include <linux/vmalloc.h>
  41. #include <linux/prefetch.h>
  42. #include <net/ip6_checksum.h>
  43. #include "qlge.h"
  44. char qlge_driver_name[] = DRV_NAME;
  45. const char qlge_driver_version[] = DRV_VERSION;
  46. MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
  47. MODULE_DESCRIPTION(DRV_STRING " ");
  48. MODULE_LICENSE("GPL");
  49. MODULE_VERSION(DRV_VERSION);
  50. static const u32 default_msg =
  51. NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
  52. /* NETIF_MSG_TIMER | */
  53. NETIF_MSG_IFDOWN |
  54. NETIF_MSG_IFUP |
  55. NETIF_MSG_RX_ERR |
  56. NETIF_MSG_TX_ERR |
  57. /* NETIF_MSG_TX_QUEUED | */
  58. /* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
  59. /* NETIF_MSG_PKTDATA | */
  60. NETIF_MSG_HW | NETIF_MSG_WOL | 0;
  61. static int debug = -1; /* defaults above */
  62. module_param(debug, int, 0664);
  63. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  64. #define MSIX_IRQ 0
  65. #define MSI_IRQ 1
  66. #define LEG_IRQ 2
  67. static int qlge_irq_type = MSIX_IRQ;
  68. module_param(qlge_irq_type, int, 0664);
  69. MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
  70. static int qlge_mpi_coredump;
  71. module_param(qlge_mpi_coredump, int, 0);
  72. MODULE_PARM_DESC(qlge_mpi_coredump,
  73. "Option to enable MPI firmware dump. "
  74. "Default is OFF - Do Not allocate memory. ");
  75. static int qlge_force_coredump;
  76. module_param(qlge_force_coredump, int, 0);
  77. MODULE_PARM_DESC(qlge_force_coredump,
  78. "Option to allow force of firmware core dump. "
  79. "Default is OFF - Do not allow.");
  80. static DEFINE_PCI_DEVICE_TABLE(qlge_pci_tbl) = {
  81. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
  82. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
  83. /* required last entry */
  84. {0,}
  85. };
  86. MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
  87. static int ql_wol(struct ql_adapter *qdev);
  88. static void qlge_set_multicast_list(struct net_device *ndev);
  89. /* This hardware semaphore causes exclusive access to
  90. * resources shared between the NIC driver, MPI firmware,
  91. * FCOE firmware and the FC driver.
  92. */
  93. static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
  94. {
  95. u32 sem_bits = 0;
  96. switch (sem_mask) {
  97. case SEM_XGMAC0_MASK:
  98. sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
  99. break;
  100. case SEM_XGMAC1_MASK:
  101. sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
  102. break;
  103. case SEM_ICB_MASK:
  104. sem_bits = SEM_SET << SEM_ICB_SHIFT;
  105. break;
  106. case SEM_MAC_ADDR_MASK:
  107. sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
  108. break;
  109. case SEM_FLASH_MASK:
  110. sem_bits = SEM_SET << SEM_FLASH_SHIFT;
  111. break;
  112. case SEM_PROBE_MASK:
  113. sem_bits = SEM_SET << SEM_PROBE_SHIFT;
  114. break;
  115. case SEM_RT_IDX_MASK:
  116. sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
  117. break;
  118. case SEM_PROC_REG_MASK:
  119. sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
  120. break;
  121. default:
  122. netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
  123. return -EINVAL;
  124. }
  125. ql_write32(qdev, SEM, sem_bits | sem_mask);
  126. return !(ql_read32(qdev, SEM) & sem_bits);
  127. }
  128. int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
  129. {
  130. unsigned int wait_count = 30;
  131. do {
  132. if (!ql_sem_trylock(qdev, sem_mask))
  133. return 0;
  134. udelay(100);
  135. } while (--wait_count);
  136. return -ETIMEDOUT;
  137. }
  138. void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
  139. {
  140. ql_write32(qdev, SEM, sem_mask);
  141. ql_read32(qdev, SEM); /* flush */
  142. }
  143. /* This function waits for a specific bit to come ready
  144. * in a given register. It is used mostly by the initialize
  145. * process, but is also used in kernel thread API such as
  146. * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
  147. */
  148. int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
  149. {
  150. u32 temp;
  151. int count = UDELAY_COUNT;
  152. while (count) {
  153. temp = ql_read32(qdev, reg);
  154. /* check for errors */
  155. if (temp & err_bit) {
  156. netif_alert(qdev, probe, qdev->ndev,
  157. "register 0x%.08x access error, value = 0x%.08x!.\n",
  158. reg, temp);
  159. return -EIO;
  160. } else if (temp & bit)
  161. return 0;
  162. udelay(UDELAY_DELAY);
  163. count--;
  164. }
  165. netif_alert(qdev, probe, qdev->ndev,
  166. "Timed out waiting for reg %x to come ready.\n", reg);
  167. return -ETIMEDOUT;
  168. }
  169. /* The CFG register is used to download TX and RX control blocks
  170. * to the chip. This function waits for an operation to complete.
  171. */
  172. static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
  173. {
  174. int count = UDELAY_COUNT;
  175. u32 temp;
  176. while (count) {
  177. temp = ql_read32(qdev, CFG);
  178. if (temp & CFG_LE)
  179. return -EIO;
  180. if (!(temp & bit))
  181. return 0;
  182. udelay(UDELAY_DELAY);
  183. count--;
  184. }
  185. return -ETIMEDOUT;
  186. }
  187. /* Used to issue init control blocks to hw. Maps control block,
  188. * sets address, triggers download, waits for completion.
  189. */
  190. int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
  191. u16 q_id)
  192. {
  193. u64 map;
  194. int status = 0;
  195. int direction;
  196. u32 mask;
  197. u32 value;
  198. direction =
  199. (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
  200. PCI_DMA_FROMDEVICE;
  201. map = pci_map_single(qdev->pdev, ptr, size, direction);
  202. if (pci_dma_mapping_error(qdev->pdev, map)) {
  203. netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
  204. return -ENOMEM;
  205. }
  206. status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
  207. if (status)
  208. return status;
  209. status = ql_wait_cfg(qdev, bit);
  210. if (status) {
  211. netif_err(qdev, ifup, qdev->ndev,
  212. "Timed out waiting for CFG to come ready.\n");
  213. goto exit;
  214. }
  215. ql_write32(qdev, ICB_L, (u32) map);
  216. ql_write32(qdev, ICB_H, (u32) (map >> 32));
  217. mask = CFG_Q_MASK | (bit << 16);
  218. value = bit | (q_id << CFG_Q_SHIFT);
  219. ql_write32(qdev, CFG, (mask | value));
  220. /*
  221. * Wait for the bit to clear after signaling hw.
  222. */
  223. status = ql_wait_cfg(qdev, bit);
  224. exit:
  225. ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
  226. pci_unmap_single(qdev->pdev, map, size, direction);
  227. return status;
  228. }
  229. /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
  230. int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
  231. u32 *value)
  232. {
  233. u32 offset = 0;
  234. int status;
  235. switch (type) {
  236. case MAC_ADDR_TYPE_MULTI_MAC:
  237. case MAC_ADDR_TYPE_CAM_MAC:
  238. {
  239. status =
  240. ql_wait_reg_rdy(qdev,
  241. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  242. if (status)
  243. goto exit;
  244. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  245. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  246. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  247. status =
  248. ql_wait_reg_rdy(qdev,
  249. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  250. if (status)
  251. goto exit;
  252. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  253. status =
  254. ql_wait_reg_rdy(qdev,
  255. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  256. if (status)
  257. goto exit;
  258. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  259. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  260. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  261. status =
  262. ql_wait_reg_rdy(qdev,
  263. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  264. if (status)
  265. goto exit;
  266. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  267. if (type == MAC_ADDR_TYPE_CAM_MAC) {
  268. status =
  269. ql_wait_reg_rdy(qdev,
  270. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  271. if (status)
  272. goto exit;
  273. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  274. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  275. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  276. status =
  277. ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
  278. MAC_ADDR_MR, 0);
  279. if (status)
  280. goto exit;
  281. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  282. }
  283. break;
  284. }
  285. case MAC_ADDR_TYPE_VLAN:
  286. case MAC_ADDR_TYPE_MULTI_FLTR:
  287. default:
  288. netif_crit(qdev, ifup, qdev->ndev,
  289. "Address type %d not yet supported.\n", type);
  290. status = -EPERM;
  291. }
  292. exit:
  293. return status;
  294. }
  295. /* Set up a MAC, multicast or VLAN address for the
  296. * inbound frame matching.
  297. */
  298. static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
  299. u16 index)
  300. {
  301. u32 offset = 0;
  302. int status = 0;
  303. switch (type) {
  304. case MAC_ADDR_TYPE_MULTI_MAC:
  305. {
  306. u32 upper = (addr[0] << 8) | addr[1];
  307. u32 lower = (addr[2] << 24) | (addr[3] << 16) |
  308. (addr[4] << 8) | (addr[5]);
  309. status =
  310. ql_wait_reg_rdy(qdev,
  311. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  312. if (status)
  313. goto exit;
  314. ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
  315. (index << MAC_ADDR_IDX_SHIFT) |
  316. type | MAC_ADDR_E);
  317. ql_write32(qdev, MAC_ADDR_DATA, lower);
  318. status =
  319. ql_wait_reg_rdy(qdev,
  320. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  321. if (status)
  322. goto exit;
  323. ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
  324. (index << MAC_ADDR_IDX_SHIFT) |
  325. type | MAC_ADDR_E);
  326. ql_write32(qdev, MAC_ADDR_DATA, upper);
  327. status =
  328. ql_wait_reg_rdy(qdev,
  329. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  330. if (status)
  331. goto exit;
  332. break;
  333. }
  334. case MAC_ADDR_TYPE_CAM_MAC:
  335. {
  336. u32 cam_output;
  337. u32 upper = (addr[0] << 8) | addr[1];
  338. u32 lower =
  339. (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
  340. (addr[5]);
  341. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  342. "Adding %s address %pM at index %d in the CAM.\n",
  343. type == MAC_ADDR_TYPE_MULTI_MAC ?
  344. "MULTICAST" : "UNICAST",
  345. addr, index);
  346. status =
  347. ql_wait_reg_rdy(qdev,
  348. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  349. if (status)
  350. goto exit;
  351. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  352. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  353. type); /* type */
  354. ql_write32(qdev, MAC_ADDR_DATA, lower);
  355. status =
  356. ql_wait_reg_rdy(qdev,
  357. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  358. if (status)
  359. goto exit;
  360. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  361. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  362. type); /* type */
  363. ql_write32(qdev, MAC_ADDR_DATA, upper);
  364. status =
  365. ql_wait_reg_rdy(qdev,
  366. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  367. if (status)
  368. goto exit;
  369. ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
  370. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  371. type); /* type */
  372. /* This field should also include the queue id
  373. and possibly the function id. Right now we hardcode
  374. the route field to NIC core.
  375. */
  376. cam_output = (CAM_OUT_ROUTE_NIC |
  377. (qdev->
  378. func << CAM_OUT_FUNC_SHIFT) |
  379. (0 << CAM_OUT_CQ_ID_SHIFT));
  380. if (qdev->vlgrp)
  381. cam_output |= CAM_OUT_RV;
  382. /* route to NIC core */
  383. ql_write32(qdev, MAC_ADDR_DATA, cam_output);
  384. break;
  385. }
  386. case MAC_ADDR_TYPE_VLAN:
  387. {
  388. u32 enable_bit = *((u32 *) &addr[0]);
  389. /* For VLAN, the addr actually holds a bit that
  390. * either enables or disables the vlan id we are
  391. * addressing. It's either MAC_ADDR_E on or off.
  392. * That's bit-27 we're talking about.
  393. */
  394. netif_info(qdev, ifup, qdev->ndev,
  395. "%s VLAN ID %d %s the CAM.\n",
  396. enable_bit ? "Adding" : "Removing",
  397. index,
  398. enable_bit ? "to" : "from");
  399. status =
  400. ql_wait_reg_rdy(qdev,
  401. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  402. if (status)
  403. goto exit;
  404. ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
  405. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  406. type | /* type */
  407. enable_bit); /* enable/disable */
  408. break;
  409. }
  410. case MAC_ADDR_TYPE_MULTI_FLTR:
  411. default:
  412. netif_crit(qdev, ifup, qdev->ndev,
  413. "Address type %d not yet supported.\n", type);
  414. status = -EPERM;
  415. }
  416. exit:
  417. return status;
  418. }
  419. /* Set or clear MAC address in hardware. We sometimes
  420. * have to clear it to prevent wrong frame routing
  421. * especially in a bonding environment.
  422. */
  423. static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
  424. {
  425. int status;
  426. char zero_mac_addr[ETH_ALEN];
  427. char *addr;
  428. if (set) {
  429. addr = &qdev->current_mac_addr[0];
  430. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  431. "Set Mac addr %pM\n", addr);
  432. } else {
  433. memset(zero_mac_addr, 0, ETH_ALEN);
  434. addr = &zero_mac_addr[0];
  435. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  436. "Clearing MAC address\n");
  437. }
  438. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  439. if (status)
  440. return status;
  441. status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
  442. MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
  443. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  444. if (status)
  445. netif_err(qdev, ifup, qdev->ndev,
  446. "Failed to init mac address.\n");
  447. return status;
  448. }
  449. void ql_link_on(struct ql_adapter *qdev)
  450. {
  451. netif_err(qdev, link, qdev->ndev, "Link is up.\n");
  452. netif_carrier_on(qdev->ndev);
  453. ql_set_mac_addr(qdev, 1);
  454. }
  455. void ql_link_off(struct ql_adapter *qdev)
  456. {
  457. netif_err(qdev, link, qdev->ndev, "Link is down.\n");
  458. netif_carrier_off(qdev->ndev);
  459. ql_set_mac_addr(qdev, 0);
  460. }
  461. /* Get a specific frame routing value from the CAM.
  462. * Used for debug and reg dump.
  463. */
  464. int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
  465. {
  466. int status = 0;
  467. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  468. if (status)
  469. goto exit;
  470. ql_write32(qdev, RT_IDX,
  471. RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
  472. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
  473. if (status)
  474. goto exit;
  475. *value = ql_read32(qdev, RT_DATA);
  476. exit:
  477. return status;
  478. }
  479. /* The NIC function for this chip has 16 routing indexes. Each one can be used
  480. * to route different frame types to various inbound queues. We send broadcast/
  481. * multicast/error frames to the default queue for slow handling,
  482. * and CAM hit/RSS frames to the fast handling queues.
  483. */
  484. static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
  485. int enable)
  486. {
  487. int status = -EINVAL; /* Return error if no mask match. */
  488. u32 value = 0;
  489. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  490. "%s %s mask %s the routing reg.\n",
  491. enable ? "Adding" : "Removing",
  492. index == RT_IDX_ALL_ERR_SLOT ? "MAC ERROR/ALL ERROR" :
  493. index == RT_IDX_IP_CSUM_ERR_SLOT ? "IP CSUM ERROR" :
  494. index == RT_IDX_TCP_UDP_CSUM_ERR_SLOT ? "TCP/UDP CSUM ERROR" :
  495. index == RT_IDX_BCAST_SLOT ? "BROADCAST" :
  496. index == RT_IDX_MCAST_MATCH_SLOT ? "MULTICAST MATCH" :
  497. index == RT_IDX_ALLMULTI_SLOT ? "ALL MULTICAST MATCH" :
  498. index == RT_IDX_UNUSED6_SLOT ? "UNUSED6" :
  499. index == RT_IDX_UNUSED7_SLOT ? "UNUSED7" :
  500. index == RT_IDX_RSS_MATCH_SLOT ? "RSS ALL/IPV4 MATCH" :
  501. index == RT_IDX_RSS_IPV6_SLOT ? "RSS IPV6" :
  502. index == RT_IDX_RSS_TCP4_SLOT ? "RSS TCP4" :
  503. index == RT_IDX_RSS_TCP6_SLOT ? "RSS TCP6" :
  504. index == RT_IDX_CAM_HIT_SLOT ? "CAM HIT" :
  505. index == RT_IDX_UNUSED013 ? "UNUSED13" :
  506. index == RT_IDX_UNUSED014 ? "UNUSED14" :
  507. index == RT_IDX_PROMISCUOUS_SLOT ? "PROMISCUOUS" :
  508. "(Bad index != RT_IDX)",
  509. enable ? "to" : "from");
  510. switch (mask) {
  511. case RT_IDX_CAM_HIT:
  512. {
  513. value = RT_IDX_DST_CAM_Q | /* dest */
  514. RT_IDX_TYPE_NICQ | /* type */
  515. (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
  516. break;
  517. }
  518. case RT_IDX_VALID: /* Promiscuous Mode frames. */
  519. {
  520. value = RT_IDX_DST_DFLT_Q | /* dest */
  521. RT_IDX_TYPE_NICQ | /* type */
  522. (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
  523. break;
  524. }
  525. case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
  526. {
  527. value = RT_IDX_DST_DFLT_Q | /* dest */
  528. RT_IDX_TYPE_NICQ | /* type */
  529. (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
  530. break;
  531. }
  532. case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */
  533. {
  534. value = RT_IDX_DST_DFLT_Q | /* dest */
  535. RT_IDX_TYPE_NICQ | /* type */
  536. (RT_IDX_IP_CSUM_ERR_SLOT <<
  537. RT_IDX_IDX_SHIFT); /* index */
  538. break;
  539. }
  540. case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */
  541. {
  542. value = RT_IDX_DST_DFLT_Q | /* dest */
  543. RT_IDX_TYPE_NICQ | /* type */
  544. (RT_IDX_TCP_UDP_CSUM_ERR_SLOT <<
  545. RT_IDX_IDX_SHIFT); /* index */
  546. break;
  547. }
  548. case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
  549. {
  550. value = RT_IDX_DST_DFLT_Q | /* dest */
  551. RT_IDX_TYPE_NICQ | /* type */
  552. (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
  553. break;
  554. }
  555. case RT_IDX_MCAST: /* Pass up All Multicast frames. */
  556. {
  557. value = RT_IDX_DST_DFLT_Q | /* dest */
  558. RT_IDX_TYPE_NICQ | /* type */
  559. (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
  560. break;
  561. }
  562. case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
  563. {
  564. value = RT_IDX_DST_DFLT_Q | /* dest */
  565. RT_IDX_TYPE_NICQ | /* type */
  566. (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  567. break;
  568. }
  569. case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
  570. {
  571. value = RT_IDX_DST_RSS | /* dest */
  572. RT_IDX_TYPE_NICQ | /* type */
  573. (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  574. break;
  575. }
  576. case 0: /* Clear the E-bit on an entry. */
  577. {
  578. value = RT_IDX_DST_DFLT_Q | /* dest */
  579. RT_IDX_TYPE_NICQ | /* type */
  580. (index << RT_IDX_IDX_SHIFT);/* index */
  581. break;
  582. }
  583. default:
  584. netif_err(qdev, ifup, qdev->ndev,
  585. "Mask type %d not yet supported.\n", mask);
  586. status = -EPERM;
  587. goto exit;
  588. }
  589. if (value) {
  590. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  591. if (status)
  592. goto exit;
  593. value |= (enable ? RT_IDX_E : 0);
  594. ql_write32(qdev, RT_IDX, value);
  595. ql_write32(qdev, RT_DATA, enable ? mask : 0);
  596. }
  597. exit:
  598. return status;
  599. }
  600. static void ql_enable_interrupts(struct ql_adapter *qdev)
  601. {
  602. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
  603. }
  604. static void ql_disable_interrupts(struct ql_adapter *qdev)
  605. {
  606. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
  607. }
  608. /* If we're running with multiple MSI-X vectors then we enable on the fly.
  609. * Otherwise, we may have multiple outstanding workers and don't want to
  610. * enable until the last one finishes. In this case, the irq_cnt gets
  611. * incremented every time we queue a worker and decremented every time
  612. * a worker finishes. Once it hits zero we enable the interrupt.
  613. */
  614. u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  615. {
  616. u32 var = 0;
  617. unsigned long hw_flags = 0;
  618. struct intr_context *ctx = qdev->intr_context + intr;
  619. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
  620. /* Always enable if we're MSIX multi interrupts and
  621. * it's not the default (zeroeth) interrupt.
  622. */
  623. ql_write32(qdev, INTR_EN,
  624. ctx->intr_en_mask);
  625. var = ql_read32(qdev, STS);
  626. return var;
  627. }
  628. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  629. if (atomic_dec_and_test(&ctx->irq_cnt)) {
  630. ql_write32(qdev, INTR_EN,
  631. ctx->intr_en_mask);
  632. var = ql_read32(qdev, STS);
  633. }
  634. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  635. return var;
  636. }
  637. static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  638. {
  639. u32 var = 0;
  640. struct intr_context *ctx;
  641. /* HW disables for us if we're MSIX multi interrupts and
  642. * it's not the default (zeroeth) interrupt.
  643. */
  644. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
  645. return 0;
  646. ctx = qdev->intr_context + intr;
  647. spin_lock(&qdev->hw_lock);
  648. if (!atomic_read(&ctx->irq_cnt)) {
  649. ql_write32(qdev, INTR_EN,
  650. ctx->intr_dis_mask);
  651. var = ql_read32(qdev, STS);
  652. }
  653. atomic_inc(&ctx->irq_cnt);
  654. spin_unlock(&qdev->hw_lock);
  655. return var;
  656. }
  657. static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
  658. {
  659. int i;
  660. for (i = 0; i < qdev->intr_count; i++) {
  661. /* The enable call does a atomic_dec_and_test
  662. * and enables only if the result is zero.
  663. * So we precharge it here.
  664. */
  665. if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
  666. i == 0))
  667. atomic_set(&qdev->intr_context[i].irq_cnt, 1);
  668. ql_enable_completion_interrupt(qdev, i);
  669. }
  670. }
  671. static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
  672. {
  673. int status, i;
  674. u16 csum = 0;
  675. __le16 *flash = (__le16 *)&qdev->flash;
  676. status = strncmp((char *)&qdev->flash, str, 4);
  677. if (status) {
  678. netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
  679. return status;
  680. }
  681. for (i = 0; i < size; i++)
  682. csum += le16_to_cpu(*flash++);
  683. if (csum)
  684. netif_err(qdev, ifup, qdev->ndev,
  685. "Invalid flash checksum, csum = 0x%.04x.\n", csum);
  686. return csum;
  687. }
  688. static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
  689. {
  690. int status = 0;
  691. /* wait for reg to come ready */
  692. status = ql_wait_reg_rdy(qdev,
  693. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  694. if (status)
  695. goto exit;
  696. /* set up for reg read */
  697. ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
  698. /* wait for reg to come ready */
  699. status = ql_wait_reg_rdy(qdev,
  700. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  701. if (status)
  702. goto exit;
  703. /* This data is stored on flash as an array of
  704. * __le32. Since ql_read32() returns cpu endian
  705. * we need to swap it back.
  706. */
  707. *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
  708. exit:
  709. return status;
  710. }
  711. static int ql_get_8000_flash_params(struct ql_adapter *qdev)
  712. {
  713. u32 i, size;
  714. int status;
  715. __le32 *p = (__le32 *)&qdev->flash;
  716. u32 offset;
  717. u8 mac_addr[6];
  718. /* Get flash offset for function and adjust
  719. * for dword access.
  720. */
  721. if (!qdev->port)
  722. offset = FUNC0_FLASH_OFFSET / sizeof(u32);
  723. else
  724. offset = FUNC1_FLASH_OFFSET / sizeof(u32);
  725. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  726. return -ETIMEDOUT;
  727. size = sizeof(struct flash_params_8000) / sizeof(u32);
  728. for (i = 0; i < size; i++, p++) {
  729. status = ql_read_flash_word(qdev, i+offset, p);
  730. if (status) {
  731. netif_err(qdev, ifup, qdev->ndev,
  732. "Error reading flash.\n");
  733. goto exit;
  734. }
  735. }
  736. status = ql_validate_flash(qdev,
  737. sizeof(struct flash_params_8000) / sizeof(u16),
  738. "8000");
  739. if (status) {
  740. netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
  741. status = -EINVAL;
  742. goto exit;
  743. }
  744. /* Extract either manufacturer or BOFM modified
  745. * MAC address.
  746. */
  747. if (qdev->flash.flash_params_8000.data_type1 == 2)
  748. memcpy(mac_addr,
  749. qdev->flash.flash_params_8000.mac_addr1,
  750. qdev->ndev->addr_len);
  751. else
  752. memcpy(mac_addr,
  753. qdev->flash.flash_params_8000.mac_addr,
  754. qdev->ndev->addr_len);
  755. if (!is_valid_ether_addr(mac_addr)) {
  756. netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
  757. status = -EINVAL;
  758. goto exit;
  759. }
  760. memcpy(qdev->ndev->dev_addr,
  761. mac_addr,
  762. qdev->ndev->addr_len);
  763. exit:
  764. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  765. return status;
  766. }
  767. static int ql_get_8012_flash_params(struct ql_adapter *qdev)
  768. {
  769. int i;
  770. int status;
  771. __le32 *p = (__le32 *)&qdev->flash;
  772. u32 offset = 0;
  773. u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
  774. /* Second function's parameters follow the first
  775. * function's.
  776. */
  777. if (qdev->port)
  778. offset = size;
  779. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  780. return -ETIMEDOUT;
  781. for (i = 0; i < size; i++, p++) {
  782. status = ql_read_flash_word(qdev, i+offset, p);
  783. if (status) {
  784. netif_err(qdev, ifup, qdev->ndev,
  785. "Error reading flash.\n");
  786. goto exit;
  787. }
  788. }
  789. status = ql_validate_flash(qdev,
  790. sizeof(struct flash_params_8012) / sizeof(u16),
  791. "8012");
  792. if (status) {
  793. netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
  794. status = -EINVAL;
  795. goto exit;
  796. }
  797. if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
  798. status = -EINVAL;
  799. goto exit;
  800. }
  801. memcpy(qdev->ndev->dev_addr,
  802. qdev->flash.flash_params_8012.mac_addr,
  803. qdev->ndev->addr_len);
  804. exit:
  805. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  806. return status;
  807. }
  808. /* xgmac register are located behind the xgmac_addr and xgmac_data
  809. * register pair. Each read/write requires us to wait for the ready
  810. * bit before reading/writing the data.
  811. */
  812. static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
  813. {
  814. int status;
  815. /* wait for reg to come ready */
  816. status = ql_wait_reg_rdy(qdev,
  817. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  818. if (status)
  819. return status;
  820. /* write the data to the data reg */
  821. ql_write32(qdev, XGMAC_DATA, data);
  822. /* trigger the write */
  823. ql_write32(qdev, XGMAC_ADDR, reg);
  824. return status;
  825. }
  826. /* xgmac register are located behind the xgmac_addr and xgmac_data
  827. * register pair. Each read/write requires us to wait for the ready
  828. * bit before reading/writing the data.
  829. */
  830. int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
  831. {
  832. int status = 0;
  833. /* wait for reg to come ready */
  834. status = ql_wait_reg_rdy(qdev,
  835. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  836. if (status)
  837. goto exit;
  838. /* set up for reg read */
  839. ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
  840. /* wait for reg to come ready */
  841. status = ql_wait_reg_rdy(qdev,
  842. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  843. if (status)
  844. goto exit;
  845. /* get the data */
  846. *data = ql_read32(qdev, XGMAC_DATA);
  847. exit:
  848. return status;
  849. }
  850. /* This is used for reading the 64-bit statistics regs. */
  851. int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
  852. {
  853. int status = 0;
  854. u32 hi = 0;
  855. u32 lo = 0;
  856. status = ql_read_xgmac_reg(qdev, reg, &lo);
  857. if (status)
  858. goto exit;
  859. status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
  860. if (status)
  861. goto exit;
  862. *data = (u64) lo | ((u64) hi << 32);
  863. exit:
  864. return status;
  865. }
  866. static int ql_8000_port_initialize(struct ql_adapter *qdev)
  867. {
  868. int status;
  869. /*
  870. * Get MPI firmware version for driver banner
  871. * and ethool info.
  872. */
  873. status = ql_mb_about_fw(qdev);
  874. if (status)
  875. goto exit;
  876. status = ql_mb_get_fw_state(qdev);
  877. if (status)
  878. goto exit;
  879. /* Wake up a worker to get/set the TX/RX frame sizes. */
  880. queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
  881. exit:
  882. return status;
  883. }
  884. /* Take the MAC Core out of reset.
  885. * Enable statistics counting.
  886. * Take the transmitter/receiver out of reset.
  887. * This functionality may be done in the MPI firmware at a
  888. * later date.
  889. */
  890. static int ql_8012_port_initialize(struct ql_adapter *qdev)
  891. {
  892. int status = 0;
  893. u32 data;
  894. if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
  895. /* Another function has the semaphore, so
  896. * wait for the port init bit to come ready.
  897. */
  898. netif_info(qdev, link, qdev->ndev,
  899. "Another function has the semaphore, so wait for the port init bit to come ready.\n");
  900. status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
  901. if (status) {
  902. netif_crit(qdev, link, qdev->ndev,
  903. "Port initialize timed out.\n");
  904. }
  905. return status;
  906. }
  907. netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
  908. /* Set the core reset. */
  909. status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
  910. if (status)
  911. goto end;
  912. data |= GLOBAL_CFG_RESET;
  913. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  914. if (status)
  915. goto end;
  916. /* Clear the core reset and turn on jumbo for receiver. */
  917. data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
  918. data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
  919. data |= GLOBAL_CFG_TX_STAT_EN;
  920. data |= GLOBAL_CFG_RX_STAT_EN;
  921. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  922. if (status)
  923. goto end;
  924. /* Enable transmitter, and clear it's reset. */
  925. status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
  926. if (status)
  927. goto end;
  928. data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
  929. data |= TX_CFG_EN; /* Enable the transmitter. */
  930. status = ql_write_xgmac_reg(qdev, TX_CFG, data);
  931. if (status)
  932. goto end;
  933. /* Enable receiver and clear it's reset. */
  934. status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
  935. if (status)
  936. goto end;
  937. data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
  938. data |= RX_CFG_EN; /* Enable the receiver. */
  939. status = ql_write_xgmac_reg(qdev, RX_CFG, data);
  940. if (status)
  941. goto end;
  942. /* Turn on jumbo. */
  943. status =
  944. ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
  945. if (status)
  946. goto end;
  947. status =
  948. ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
  949. if (status)
  950. goto end;
  951. /* Signal to the world that the port is enabled. */
  952. ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
  953. end:
  954. ql_sem_unlock(qdev, qdev->xg_sem_mask);
  955. return status;
  956. }
  957. static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
  958. {
  959. return PAGE_SIZE << qdev->lbq_buf_order;
  960. }
  961. /* Get the next large buffer. */
  962. static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
  963. {
  964. struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
  965. rx_ring->lbq_curr_idx++;
  966. if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
  967. rx_ring->lbq_curr_idx = 0;
  968. rx_ring->lbq_free_cnt++;
  969. return lbq_desc;
  970. }
  971. static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
  972. struct rx_ring *rx_ring)
  973. {
  974. struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
  975. pci_dma_sync_single_for_cpu(qdev->pdev,
  976. dma_unmap_addr(lbq_desc, mapaddr),
  977. rx_ring->lbq_buf_size,
  978. PCI_DMA_FROMDEVICE);
  979. /* If it's the last chunk of our master page then
  980. * we unmap it.
  981. */
  982. if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
  983. == ql_lbq_block_size(qdev))
  984. pci_unmap_page(qdev->pdev,
  985. lbq_desc->p.pg_chunk.map,
  986. ql_lbq_block_size(qdev),
  987. PCI_DMA_FROMDEVICE);
  988. return lbq_desc;
  989. }
  990. /* Get the next small buffer. */
  991. static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
  992. {
  993. struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
  994. rx_ring->sbq_curr_idx++;
  995. if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
  996. rx_ring->sbq_curr_idx = 0;
  997. rx_ring->sbq_free_cnt++;
  998. return sbq_desc;
  999. }
  1000. /* Update an rx ring index. */
  1001. static void ql_update_cq(struct rx_ring *rx_ring)
  1002. {
  1003. rx_ring->cnsmr_idx++;
  1004. rx_ring->curr_entry++;
  1005. if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
  1006. rx_ring->cnsmr_idx = 0;
  1007. rx_ring->curr_entry = rx_ring->cq_base;
  1008. }
  1009. }
  1010. static void ql_write_cq_idx(struct rx_ring *rx_ring)
  1011. {
  1012. ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
  1013. }
  1014. static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
  1015. struct bq_desc *lbq_desc)
  1016. {
  1017. if (!rx_ring->pg_chunk.page) {
  1018. u64 map;
  1019. rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
  1020. GFP_ATOMIC,
  1021. qdev->lbq_buf_order);
  1022. if (unlikely(!rx_ring->pg_chunk.page)) {
  1023. netif_err(qdev, drv, qdev->ndev,
  1024. "page allocation failed.\n");
  1025. return -ENOMEM;
  1026. }
  1027. rx_ring->pg_chunk.offset = 0;
  1028. map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
  1029. 0, ql_lbq_block_size(qdev),
  1030. PCI_DMA_FROMDEVICE);
  1031. if (pci_dma_mapping_error(qdev->pdev, map)) {
  1032. __free_pages(rx_ring->pg_chunk.page,
  1033. qdev->lbq_buf_order);
  1034. netif_err(qdev, drv, qdev->ndev,
  1035. "PCI mapping failed.\n");
  1036. return -ENOMEM;
  1037. }
  1038. rx_ring->pg_chunk.map = map;
  1039. rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
  1040. }
  1041. /* Copy the current master pg_chunk info
  1042. * to the current descriptor.
  1043. */
  1044. lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
  1045. /* Adjust the master page chunk for next
  1046. * buffer get.
  1047. */
  1048. rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
  1049. if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
  1050. rx_ring->pg_chunk.page = NULL;
  1051. lbq_desc->p.pg_chunk.last_flag = 1;
  1052. } else {
  1053. rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
  1054. get_page(rx_ring->pg_chunk.page);
  1055. lbq_desc->p.pg_chunk.last_flag = 0;
  1056. }
  1057. return 0;
  1058. }
  1059. /* Process (refill) a large buffer queue. */
  1060. static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  1061. {
  1062. u32 clean_idx = rx_ring->lbq_clean_idx;
  1063. u32 start_idx = clean_idx;
  1064. struct bq_desc *lbq_desc;
  1065. u64 map;
  1066. int i;
  1067. while (rx_ring->lbq_free_cnt > 32) {
  1068. for (i = 0; i < 16; i++) {
  1069. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1070. "lbq: try cleaning clean_idx = %d.\n",
  1071. clean_idx);
  1072. lbq_desc = &rx_ring->lbq[clean_idx];
  1073. if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
  1074. netif_err(qdev, ifup, qdev->ndev,
  1075. "Could not get a page chunk.\n");
  1076. return;
  1077. }
  1078. map = lbq_desc->p.pg_chunk.map +
  1079. lbq_desc->p.pg_chunk.offset;
  1080. dma_unmap_addr_set(lbq_desc, mapaddr, map);
  1081. dma_unmap_len_set(lbq_desc, maplen,
  1082. rx_ring->lbq_buf_size);
  1083. *lbq_desc->addr = cpu_to_le64(map);
  1084. pci_dma_sync_single_for_device(qdev->pdev, map,
  1085. rx_ring->lbq_buf_size,
  1086. PCI_DMA_FROMDEVICE);
  1087. clean_idx++;
  1088. if (clean_idx == rx_ring->lbq_len)
  1089. clean_idx = 0;
  1090. }
  1091. rx_ring->lbq_clean_idx = clean_idx;
  1092. rx_ring->lbq_prod_idx += 16;
  1093. if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
  1094. rx_ring->lbq_prod_idx = 0;
  1095. rx_ring->lbq_free_cnt -= 16;
  1096. }
  1097. if (start_idx != clean_idx) {
  1098. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1099. "lbq: updating prod idx = %d.\n",
  1100. rx_ring->lbq_prod_idx);
  1101. ql_write_db_reg(rx_ring->lbq_prod_idx,
  1102. rx_ring->lbq_prod_idx_db_reg);
  1103. }
  1104. }
  1105. /* Process (refill) a small buffer queue. */
  1106. static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  1107. {
  1108. u32 clean_idx = rx_ring->sbq_clean_idx;
  1109. u32 start_idx = clean_idx;
  1110. struct bq_desc *sbq_desc;
  1111. u64 map;
  1112. int i;
  1113. while (rx_ring->sbq_free_cnt > 16) {
  1114. for (i = 0; i < 16; i++) {
  1115. sbq_desc = &rx_ring->sbq[clean_idx];
  1116. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1117. "sbq: try cleaning clean_idx = %d.\n",
  1118. clean_idx);
  1119. if (sbq_desc->p.skb == NULL) {
  1120. netif_printk(qdev, rx_status, KERN_DEBUG,
  1121. qdev->ndev,
  1122. "sbq: getting new skb for index %d.\n",
  1123. sbq_desc->index);
  1124. sbq_desc->p.skb =
  1125. netdev_alloc_skb(qdev->ndev,
  1126. SMALL_BUFFER_SIZE);
  1127. if (sbq_desc->p.skb == NULL) {
  1128. netif_err(qdev, probe, qdev->ndev,
  1129. "Couldn't get an skb.\n");
  1130. rx_ring->sbq_clean_idx = clean_idx;
  1131. return;
  1132. }
  1133. skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
  1134. map = pci_map_single(qdev->pdev,
  1135. sbq_desc->p.skb->data,
  1136. rx_ring->sbq_buf_size,
  1137. PCI_DMA_FROMDEVICE);
  1138. if (pci_dma_mapping_error(qdev->pdev, map)) {
  1139. netif_err(qdev, ifup, qdev->ndev,
  1140. "PCI mapping failed.\n");
  1141. rx_ring->sbq_clean_idx = clean_idx;
  1142. dev_kfree_skb_any(sbq_desc->p.skb);
  1143. sbq_desc->p.skb = NULL;
  1144. return;
  1145. }
  1146. dma_unmap_addr_set(sbq_desc, mapaddr, map);
  1147. dma_unmap_len_set(sbq_desc, maplen,
  1148. rx_ring->sbq_buf_size);
  1149. *sbq_desc->addr = cpu_to_le64(map);
  1150. }
  1151. clean_idx++;
  1152. if (clean_idx == rx_ring->sbq_len)
  1153. clean_idx = 0;
  1154. }
  1155. rx_ring->sbq_clean_idx = clean_idx;
  1156. rx_ring->sbq_prod_idx += 16;
  1157. if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
  1158. rx_ring->sbq_prod_idx = 0;
  1159. rx_ring->sbq_free_cnt -= 16;
  1160. }
  1161. if (start_idx != clean_idx) {
  1162. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1163. "sbq: updating prod idx = %d.\n",
  1164. rx_ring->sbq_prod_idx);
  1165. ql_write_db_reg(rx_ring->sbq_prod_idx,
  1166. rx_ring->sbq_prod_idx_db_reg);
  1167. }
  1168. }
  1169. static void ql_update_buffer_queues(struct ql_adapter *qdev,
  1170. struct rx_ring *rx_ring)
  1171. {
  1172. ql_update_sbq(qdev, rx_ring);
  1173. ql_update_lbq(qdev, rx_ring);
  1174. }
  1175. /* Unmaps tx buffers. Can be called from send() if a pci mapping
  1176. * fails at some stage, or from the interrupt when a tx completes.
  1177. */
  1178. static void ql_unmap_send(struct ql_adapter *qdev,
  1179. struct tx_ring_desc *tx_ring_desc, int mapped)
  1180. {
  1181. int i;
  1182. for (i = 0; i < mapped; i++) {
  1183. if (i == 0 || (i == 7 && mapped > 7)) {
  1184. /*
  1185. * Unmap the skb->data area, or the
  1186. * external sglist (AKA the Outbound
  1187. * Address List (OAL)).
  1188. * If its the zeroeth element, then it's
  1189. * the skb->data area. If it's the 7th
  1190. * element and there is more than 6 frags,
  1191. * then its an OAL.
  1192. */
  1193. if (i == 7) {
  1194. netif_printk(qdev, tx_done, KERN_DEBUG,
  1195. qdev->ndev,
  1196. "unmapping OAL area.\n");
  1197. }
  1198. pci_unmap_single(qdev->pdev,
  1199. dma_unmap_addr(&tx_ring_desc->map[i],
  1200. mapaddr),
  1201. dma_unmap_len(&tx_ring_desc->map[i],
  1202. maplen),
  1203. PCI_DMA_TODEVICE);
  1204. } else {
  1205. netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
  1206. "unmapping frag %d.\n", i);
  1207. pci_unmap_page(qdev->pdev,
  1208. dma_unmap_addr(&tx_ring_desc->map[i],
  1209. mapaddr),
  1210. dma_unmap_len(&tx_ring_desc->map[i],
  1211. maplen), PCI_DMA_TODEVICE);
  1212. }
  1213. }
  1214. }
  1215. /* Map the buffers for this transmit. This will return
  1216. * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
  1217. */
  1218. static int ql_map_send(struct ql_adapter *qdev,
  1219. struct ob_mac_iocb_req *mac_iocb_ptr,
  1220. struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
  1221. {
  1222. int len = skb_headlen(skb);
  1223. dma_addr_t map;
  1224. int frag_idx, err, map_idx = 0;
  1225. struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
  1226. int frag_cnt = skb_shinfo(skb)->nr_frags;
  1227. if (frag_cnt) {
  1228. netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
  1229. "frag_cnt = %d.\n", frag_cnt);
  1230. }
  1231. /*
  1232. * Map the skb buffer first.
  1233. */
  1234. map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
  1235. err = pci_dma_mapping_error(qdev->pdev, map);
  1236. if (err) {
  1237. netif_err(qdev, tx_queued, qdev->ndev,
  1238. "PCI mapping failed with error: %d\n", err);
  1239. return NETDEV_TX_BUSY;
  1240. }
  1241. tbd->len = cpu_to_le32(len);
  1242. tbd->addr = cpu_to_le64(map);
  1243. dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1244. dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
  1245. map_idx++;
  1246. /*
  1247. * This loop fills the remainder of the 8 address descriptors
  1248. * in the IOCB. If there are more than 7 fragments, then the
  1249. * eighth address desc will point to an external list (OAL).
  1250. * When this happens, the remainder of the frags will be stored
  1251. * in this list.
  1252. */
  1253. for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
  1254. skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
  1255. tbd++;
  1256. if (frag_idx == 6 && frag_cnt > 7) {
  1257. /* Let's tack on an sglist.
  1258. * Our control block will now
  1259. * look like this:
  1260. * iocb->seg[0] = skb->data
  1261. * iocb->seg[1] = frag[0]
  1262. * iocb->seg[2] = frag[1]
  1263. * iocb->seg[3] = frag[2]
  1264. * iocb->seg[4] = frag[3]
  1265. * iocb->seg[5] = frag[4]
  1266. * iocb->seg[6] = frag[5]
  1267. * iocb->seg[7] = ptr to OAL (external sglist)
  1268. * oal->seg[0] = frag[6]
  1269. * oal->seg[1] = frag[7]
  1270. * oal->seg[2] = frag[8]
  1271. * oal->seg[3] = frag[9]
  1272. * oal->seg[4] = frag[10]
  1273. * etc...
  1274. */
  1275. /* Tack on the OAL in the eighth segment of IOCB. */
  1276. map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
  1277. sizeof(struct oal),
  1278. PCI_DMA_TODEVICE);
  1279. err = pci_dma_mapping_error(qdev->pdev, map);
  1280. if (err) {
  1281. netif_err(qdev, tx_queued, qdev->ndev,
  1282. "PCI mapping outbound address list with error: %d\n",
  1283. err);
  1284. goto map_error;
  1285. }
  1286. tbd->addr = cpu_to_le64(map);
  1287. /*
  1288. * The length is the number of fragments
  1289. * that remain to be mapped times the length
  1290. * of our sglist (OAL).
  1291. */
  1292. tbd->len =
  1293. cpu_to_le32((sizeof(struct tx_buf_desc) *
  1294. (frag_cnt - frag_idx)) | TX_DESC_C);
  1295. dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
  1296. map);
  1297. dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1298. sizeof(struct oal));
  1299. tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
  1300. map_idx++;
  1301. }
  1302. map =
  1303. pci_map_page(qdev->pdev, frag->page,
  1304. frag->page_offset, frag->size,
  1305. PCI_DMA_TODEVICE);
  1306. err = pci_dma_mapping_error(qdev->pdev, map);
  1307. if (err) {
  1308. netif_err(qdev, tx_queued, qdev->ndev,
  1309. "PCI mapping frags failed with error: %d.\n",
  1310. err);
  1311. goto map_error;
  1312. }
  1313. tbd->addr = cpu_to_le64(map);
  1314. tbd->len = cpu_to_le32(frag->size);
  1315. dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1316. dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1317. frag->size);
  1318. }
  1319. /* Save the number of segments we've mapped. */
  1320. tx_ring_desc->map_cnt = map_idx;
  1321. /* Terminate the last segment. */
  1322. tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
  1323. return NETDEV_TX_OK;
  1324. map_error:
  1325. /*
  1326. * If the first frag mapping failed, then i will be zero.
  1327. * This causes the unmap of the skb->data area. Otherwise
  1328. * we pass in the number of frags that mapped successfully
  1329. * so they can be umapped.
  1330. */
  1331. ql_unmap_send(qdev, tx_ring_desc, map_idx);
  1332. return NETDEV_TX_BUSY;
  1333. }
  1334. /* Process an inbound completion from an rx ring. */
  1335. static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
  1336. struct rx_ring *rx_ring,
  1337. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1338. u32 length,
  1339. u16 vlan_id)
  1340. {
  1341. struct sk_buff *skb;
  1342. struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1343. struct skb_frag_struct *rx_frag;
  1344. int nr_frags;
  1345. struct napi_struct *napi = &rx_ring->napi;
  1346. napi->dev = qdev->ndev;
  1347. skb = napi_get_frags(napi);
  1348. if (!skb) {
  1349. netif_err(qdev, drv, qdev->ndev,
  1350. "Couldn't get an skb, exiting.\n");
  1351. rx_ring->rx_dropped++;
  1352. put_page(lbq_desc->p.pg_chunk.page);
  1353. return;
  1354. }
  1355. prefetch(lbq_desc->p.pg_chunk.va);
  1356. rx_frag = skb_shinfo(skb)->frags;
  1357. nr_frags = skb_shinfo(skb)->nr_frags;
  1358. rx_frag += nr_frags;
  1359. rx_frag->page = lbq_desc->p.pg_chunk.page;
  1360. rx_frag->page_offset = lbq_desc->p.pg_chunk.offset;
  1361. rx_frag->size = length;
  1362. skb->len += length;
  1363. skb->data_len += length;
  1364. skb->truesize += length;
  1365. skb_shinfo(skb)->nr_frags++;
  1366. rx_ring->rx_packets++;
  1367. rx_ring->rx_bytes += length;
  1368. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1369. skb_record_rx_queue(skb, rx_ring->cq_id);
  1370. if (qdev->vlgrp && (vlan_id != 0xffff))
  1371. vlan_gro_frags(&rx_ring->napi, qdev->vlgrp, vlan_id);
  1372. else
  1373. napi_gro_frags(napi);
  1374. }
  1375. /* Process an inbound completion from an rx ring. */
  1376. static void ql_process_mac_rx_page(struct ql_adapter *qdev,
  1377. struct rx_ring *rx_ring,
  1378. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1379. u32 length,
  1380. u16 vlan_id)
  1381. {
  1382. struct net_device *ndev = qdev->ndev;
  1383. struct sk_buff *skb = NULL;
  1384. void *addr;
  1385. struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1386. struct napi_struct *napi = &rx_ring->napi;
  1387. skb = netdev_alloc_skb(ndev, length);
  1388. if (!skb) {
  1389. netif_err(qdev, drv, qdev->ndev,
  1390. "Couldn't get an skb, need to unwind!.\n");
  1391. rx_ring->rx_dropped++;
  1392. put_page(lbq_desc->p.pg_chunk.page);
  1393. return;
  1394. }
  1395. addr = lbq_desc->p.pg_chunk.va;
  1396. prefetch(addr);
  1397. /* Frame error, so drop the packet. */
  1398. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
  1399. netif_info(qdev, drv, qdev->ndev,
  1400. "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2);
  1401. rx_ring->rx_errors++;
  1402. goto err_out;
  1403. }
  1404. /* The max framesize filter on this chip is set higher than
  1405. * MTU since FCoE uses 2k frames.
  1406. */
  1407. if (skb->len > ndev->mtu + ETH_HLEN) {
  1408. netif_err(qdev, drv, qdev->ndev,
  1409. "Segment too small, dropping.\n");
  1410. rx_ring->rx_dropped++;
  1411. goto err_out;
  1412. }
  1413. memcpy(skb_put(skb, ETH_HLEN), addr, ETH_HLEN);
  1414. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1415. "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
  1416. length);
  1417. skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
  1418. lbq_desc->p.pg_chunk.offset+ETH_HLEN,
  1419. length-ETH_HLEN);
  1420. skb->len += length-ETH_HLEN;
  1421. skb->data_len += length-ETH_HLEN;
  1422. skb->truesize += length-ETH_HLEN;
  1423. rx_ring->rx_packets++;
  1424. rx_ring->rx_bytes += skb->len;
  1425. skb->protocol = eth_type_trans(skb, ndev);
  1426. skb_checksum_none_assert(skb);
  1427. if ((ndev->features & NETIF_F_RXCSUM) &&
  1428. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
  1429. /* TCP frame. */
  1430. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
  1431. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1432. "TCP checksum done!\n");
  1433. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1434. } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1435. (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
  1436. /* Unfragmented ipv4 UDP frame. */
  1437. struct iphdr *iph = (struct iphdr *) skb->data;
  1438. if (!(iph->frag_off &
  1439. cpu_to_be16(IP_MF|IP_OFFSET))) {
  1440. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1441. netif_printk(qdev, rx_status, KERN_DEBUG,
  1442. qdev->ndev,
  1443. "TCP checksum done!\n");
  1444. }
  1445. }
  1446. }
  1447. skb_record_rx_queue(skb, rx_ring->cq_id);
  1448. if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
  1449. if (qdev->vlgrp && (vlan_id != 0xffff))
  1450. vlan_gro_receive(napi, qdev->vlgrp, vlan_id, skb);
  1451. else
  1452. napi_gro_receive(napi, skb);
  1453. } else {
  1454. if (qdev->vlgrp && (vlan_id != 0xffff))
  1455. vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
  1456. else
  1457. netif_receive_skb(skb);
  1458. }
  1459. return;
  1460. err_out:
  1461. dev_kfree_skb_any(skb);
  1462. put_page(lbq_desc->p.pg_chunk.page);
  1463. }
  1464. /* Process an inbound completion from an rx ring. */
  1465. static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
  1466. struct rx_ring *rx_ring,
  1467. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1468. u32 length,
  1469. u16 vlan_id)
  1470. {
  1471. struct net_device *ndev = qdev->ndev;
  1472. struct sk_buff *skb = NULL;
  1473. struct sk_buff *new_skb = NULL;
  1474. struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
  1475. skb = sbq_desc->p.skb;
  1476. /* Allocate new_skb and copy */
  1477. new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
  1478. if (new_skb == NULL) {
  1479. netif_err(qdev, probe, qdev->ndev,
  1480. "No skb available, drop the packet.\n");
  1481. rx_ring->rx_dropped++;
  1482. return;
  1483. }
  1484. skb_reserve(new_skb, NET_IP_ALIGN);
  1485. memcpy(skb_put(new_skb, length), skb->data, length);
  1486. skb = new_skb;
  1487. /* Frame error, so drop the packet. */
  1488. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
  1489. netif_info(qdev, drv, qdev->ndev,
  1490. "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2);
  1491. dev_kfree_skb_any(skb);
  1492. rx_ring->rx_errors++;
  1493. return;
  1494. }
  1495. /* loopback self test for ethtool */
  1496. if (test_bit(QL_SELFTEST, &qdev->flags)) {
  1497. ql_check_lb_frame(qdev, skb);
  1498. dev_kfree_skb_any(skb);
  1499. return;
  1500. }
  1501. /* The max framesize filter on this chip is set higher than
  1502. * MTU since FCoE uses 2k frames.
  1503. */
  1504. if (skb->len > ndev->mtu + ETH_HLEN) {
  1505. dev_kfree_skb_any(skb);
  1506. rx_ring->rx_dropped++;
  1507. return;
  1508. }
  1509. prefetch(skb->data);
  1510. skb->dev = ndev;
  1511. if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
  1512. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1513. "%s Multicast.\n",
  1514. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1515. IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
  1516. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1517. IB_MAC_IOCB_RSP_M_REG ? "Registered" :
  1518. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1519. IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
  1520. }
  1521. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
  1522. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1523. "Promiscuous Packet.\n");
  1524. rx_ring->rx_packets++;
  1525. rx_ring->rx_bytes += skb->len;
  1526. skb->protocol = eth_type_trans(skb, ndev);
  1527. skb_checksum_none_assert(skb);
  1528. /* If rx checksum is on, and there are no
  1529. * csum or frame errors.
  1530. */
  1531. if ((ndev->features & NETIF_F_RXCSUM) &&
  1532. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
  1533. /* TCP frame. */
  1534. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
  1535. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1536. "TCP checksum done!\n");
  1537. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1538. } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1539. (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
  1540. /* Unfragmented ipv4 UDP frame. */
  1541. struct iphdr *iph = (struct iphdr *) skb->data;
  1542. if (!(iph->frag_off &
  1543. ntohs(IP_MF|IP_OFFSET))) {
  1544. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1545. netif_printk(qdev, rx_status, KERN_DEBUG,
  1546. qdev->ndev,
  1547. "TCP checksum done!\n");
  1548. }
  1549. }
  1550. }
  1551. skb_record_rx_queue(skb, rx_ring->cq_id);
  1552. if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
  1553. if (qdev->vlgrp && (vlan_id != 0xffff))
  1554. vlan_gro_receive(&rx_ring->napi, qdev->vlgrp,
  1555. vlan_id, skb);
  1556. else
  1557. napi_gro_receive(&rx_ring->napi, skb);
  1558. } else {
  1559. if (qdev->vlgrp && (vlan_id != 0xffff))
  1560. vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
  1561. else
  1562. netif_receive_skb(skb);
  1563. }
  1564. }
  1565. static void ql_realign_skb(struct sk_buff *skb, int len)
  1566. {
  1567. void *temp_addr = skb->data;
  1568. /* Undo the skb_reserve(skb,32) we did before
  1569. * giving to hardware, and realign data on
  1570. * a 2-byte boundary.
  1571. */
  1572. skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
  1573. skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
  1574. skb_copy_to_linear_data(skb, temp_addr,
  1575. (unsigned int)len);
  1576. }
  1577. /*
  1578. * This function builds an skb for the given inbound
  1579. * completion. It will be rewritten for readability in the near
  1580. * future, but for not it works well.
  1581. */
  1582. static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
  1583. struct rx_ring *rx_ring,
  1584. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1585. {
  1586. struct bq_desc *lbq_desc;
  1587. struct bq_desc *sbq_desc;
  1588. struct sk_buff *skb = NULL;
  1589. u32 length = le32_to_cpu(ib_mac_rsp->data_len);
  1590. u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
  1591. /*
  1592. * Handle the header buffer if present.
  1593. */
  1594. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
  1595. ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1596. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1597. "Header of %d bytes in small buffer.\n", hdr_len);
  1598. /*
  1599. * Headers fit nicely into a small buffer.
  1600. */
  1601. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1602. pci_unmap_single(qdev->pdev,
  1603. dma_unmap_addr(sbq_desc, mapaddr),
  1604. dma_unmap_len(sbq_desc, maplen),
  1605. PCI_DMA_FROMDEVICE);
  1606. skb = sbq_desc->p.skb;
  1607. ql_realign_skb(skb, hdr_len);
  1608. skb_put(skb, hdr_len);
  1609. sbq_desc->p.skb = NULL;
  1610. }
  1611. /*
  1612. * Handle the data buffer(s).
  1613. */
  1614. if (unlikely(!length)) { /* Is there data too? */
  1615. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1616. "No Data buffer in this packet.\n");
  1617. return skb;
  1618. }
  1619. if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
  1620. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1621. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1622. "Headers in small, data of %d bytes in small, combine them.\n",
  1623. length);
  1624. /*
  1625. * Data is less than small buffer size so it's
  1626. * stuffed in a small buffer.
  1627. * For this case we append the data
  1628. * from the "data" small buffer to the "header" small
  1629. * buffer.
  1630. */
  1631. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1632. pci_dma_sync_single_for_cpu(qdev->pdev,
  1633. dma_unmap_addr
  1634. (sbq_desc, mapaddr),
  1635. dma_unmap_len
  1636. (sbq_desc, maplen),
  1637. PCI_DMA_FROMDEVICE);
  1638. memcpy(skb_put(skb, length),
  1639. sbq_desc->p.skb->data, length);
  1640. pci_dma_sync_single_for_device(qdev->pdev,
  1641. dma_unmap_addr
  1642. (sbq_desc,
  1643. mapaddr),
  1644. dma_unmap_len
  1645. (sbq_desc,
  1646. maplen),
  1647. PCI_DMA_FROMDEVICE);
  1648. } else {
  1649. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1650. "%d bytes in a single small buffer.\n",
  1651. length);
  1652. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1653. skb = sbq_desc->p.skb;
  1654. ql_realign_skb(skb, length);
  1655. skb_put(skb, length);
  1656. pci_unmap_single(qdev->pdev,
  1657. dma_unmap_addr(sbq_desc,
  1658. mapaddr),
  1659. dma_unmap_len(sbq_desc,
  1660. maplen),
  1661. PCI_DMA_FROMDEVICE);
  1662. sbq_desc->p.skb = NULL;
  1663. }
  1664. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
  1665. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1666. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1667. "Header in small, %d bytes in large. Chain large to small!\n",
  1668. length);
  1669. /*
  1670. * The data is in a single large buffer. We
  1671. * chain it to the header buffer's skb and let
  1672. * it rip.
  1673. */
  1674. lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1675. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1676. "Chaining page at offset = %d, for %d bytes to skb.\n",
  1677. lbq_desc->p.pg_chunk.offset, length);
  1678. skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
  1679. lbq_desc->p.pg_chunk.offset,
  1680. length);
  1681. skb->len += length;
  1682. skb->data_len += length;
  1683. skb->truesize += length;
  1684. } else {
  1685. /*
  1686. * The headers and data are in a single large buffer. We
  1687. * copy it to a new skb and let it go. This can happen with
  1688. * jumbo mtu on a non-TCP/UDP frame.
  1689. */
  1690. lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1691. skb = netdev_alloc_skb(qdev->ndev, length);
  1692. if (skb == NULL) {
  1693. netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
  1694. "No skb available, drop the packet.\n");
  1695. return NULL;
  1696. }
  1697. pci_unmap_page(qdev->pdev,
  1698. dma_unmap_addr(lbq_desc,
  1699. mapaddr),
  1700. dma_unmap_len(lbq_desc, maplen),
  1701. PCI_DMA_FROMDEVICE);
  1702. skb_reserve(skb, NET_IP_ALIGN);
  1703. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1704. "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
  1705. length);
  1706. skb_fill_page_desc(skb, 0,
  1707. lbq_desc->p.pg_chunk.page,
  1708. lbq_desc->p.pg_chunk.offset,
  1709. length);
  1710. skb->len += length;
  1711. skb->data_len += length;
  1712. skb->truesize += length;
  1713. length -= length;
  1714. __pskb_pull_tail(skb,
  1715. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1716. VLAN_ETH_HLEN : ETH_HLEN);
  1717. }
  1718. } else {
  1719. /*
  1720. * The data is in a chain of large buffers
  1721. * pointed to by a small buffer. We loop
  1722. * thru and chain them to the our small header
  1723. * buffer's skb.
  1724. * frags: There are 18 max frags and our small
  1725. * buffer will hold 32 of them. The thing is,
  1726. * we'll use 3 max for our 9000 byte jumbo
  1727. * frames. If the MTU goes up we could
  1728. * eventually be in trouble.
  1729. */
  1730. int size, i = 0;
  1731. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1732. pci_unmap_single(qdev->pdev,
  1733. dma_unmap_addr(sbq_desc, mapaddr),
  1734. dma_unmap_len(sbq_desc, maplen),
  1735. PCI_DMA_FROMDEVICE);
  1736. if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
  1737. /*
  1738. * This is an non TCP/UDP IP frame, so
  1739. * the headers aren't split into a small
  1740. * buffer. We have to use the small buffer
  1741. * that contains our sg list as our skb to
  1742. * send upstairs. Copy the sg list here to
  1743. * a local buffer and use it to find the
  1744. * pages to chain.
  1745. */
  1746. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1747. "%d bytes of headers & data in chain of large.\n",
  1748. length);
  1749. skb = sbq_desc->p.skb;
  1750. sbq_desc->p.skb = NULL;
  1751. skb_reserve(skb, NET_IP_ALIGN);
  1752. }
  1753. while (length > 0) {
  1754. lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1755. size = (length < rx_ring->lbq_buf_size) ? length :
  1756. rx_ring->lbq_buf_size;
  1757. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1758. "Adding page %d to skb for %d bytes.\n",
  1759. i, size);
  1760. skb_fill_page_desc(skb, i,
  1761. lbq_desc->p.pg_chunk.page,
  1762. lbq_desc->p.pg_chunk.offset,
  1763. size);
  1764. skb->len += size;
  1765. skb->data_len += size;
  1766. skb->truesize += size;
  1767. length -= size;
  1768. i++;
  1769. }
  1770. __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1771. VLAN_ETH_HLEN : ETH_HLEN);
  1772. }
  1773. return skb;
  1774. }
  1775. /* Process an inbound completion from an rx ring. */
  1776. static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
  1777. struct rx_ring *rx_ring,
  1778. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1779. u16 vlan_id)
  1780. {
  1781. struct net_device *ndev = qdev->ndev;
  1782. struct sk_buff *skb = NULL;
  1783. QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
  1784. skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
  1785. if (unlikely(!skb)) {
  1786. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1787. "No skb available, drop packet.\n");
  1788. rx_ring->rx_dropped++;
  1789. return;
  1790. }
  1791. /* Frame error, so drop the packet. */
  1792. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
  1793. netif_info(qdev, drv, qdev->ndev,
  1794. "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2);
  1795. dev_kfree_skb_any(skb);
  1796. rx_ring->rx_errors++;
  1797. return;
  1798. }
  1799. /* The max framesize filter on this chip is set higher than
  1800. * MTU since FCoE uses 2k frames.
  1801. */
  1802. if (skb->len > ndev->mtu + ETH_HLEN) {
  1803. dev_kfree_skb_any(skb);
  1804. rx_ring->rx_dropped++;
  1805. return;
  1806. }
  1807. /* loopback self test for ethtool */
  1808. if (test_bit(QL_SELFTEST, &qdev->flags)) {
  1809. ql_check_lb_frame(qdev, skb);
  1810. dev_kfree_skb_any(skb);
  1811. return;
  1812. }
  1813. prefetch(skb->data);
  1814. skb->dev = ndev;
  1815. if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
  1816. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
  1817. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1818. IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
  1819. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1820. IB_MAC_IOCB_RSP_M_REG ? "Registered" :
  1821. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1822. IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
  1823. rx_ring->rx_multicast++;
  1824. }
  1825. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
  1826. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1827. "Promiscuous Packet.\n");
  1828. }
  1829. skb->protocol = eth_type_trans(skb, ndev);
  1830. skb_checksum_none_assert(skb);
  1831. /* If rx checksum is on, and there are no
  1832. * csum or frame errors.
  1833. */
  1834. if ((ndev->features & NETIF_F_RXCSUM) &&
  1835. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
  1836. /* TCP frame. */
  1837. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
  1838. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1839. "TCP checksum done!\n");
  1840. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1841. } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1842. (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
  1843. /* Unfragmented ipv4 UDP frame. */
  1844. struct iphdr *iph = (struct iphdr *) skb->data;
  1845. if (!(iph->frag_off &
  1846. ntohs(IP_MF|IP_OFFSET))) {
  1847. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1848. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1849. "TCP checksum done!\n");
  1850. }
  1851. }
  1852. }
  1853. rx_ring->rx_packets++;
  1854. rx_ring->rx_bytes += skb->len;
  1855. skb_record_rx_queue(skb, rx_ring->cq_id);
  1856. if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
  1857. if (qdev->vlgrp &&
  1858. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
  1859. (vlan_id != 0))
  1860. vlan_gro_receive(&rx_ring->napi, qdev->vlgrp,
  1861. vlan_id, skb);
  1862. else
  1863. napi_gro_receive(&rx_ring->napi, skb);
  1864. } else {
  1865. if (qdev->vlgrp &&
  1866. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
  1867. (vlan_id != 0))
  1868. vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
  1869. else
  1870. netif_receive_skb(skb);
  1871. }
  1872. }
  1873. /* Process an inbound completion from an rx ring. */
  1874. static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
  1875. struct rx_ring *rx_ring,
  1876. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1877. {
  1878. u32 length = le32_to_cpu(ib_mac_rsp->data_len);
  1879. u16 vlan_id = (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1880. ((le16_to_cpu(ib_mac_rsp->vlan_id) &
  1881. IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
  1882. QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
  1883. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
  1884. /* The data and headers are split into
  1885. * separate buffers.
  1886. */
  1887. ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
  1888. vlan_id);
  1889. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
  1890. /* The data fit in a single small buffer.
  1891. * Allocate a new skb, copy the data and
  1892. * return the buffer to the free pool.
  1893. */
  1894. ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
  1895. length, vlan_id);
  1896. } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
  1897. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
  1898. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
  1899. /* TCP packet in a page chunk that's been checksummed.
  1900. * Tack it on to our GRO skb and let it go.
  1901. */
  1902. ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
  1903. length, vlan_id);
  1904. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
  1905. /* Non-TCP packet in a page chunk. Allocate an
  1906. * skb, tack it on frags, and send it up.
  1907. */
  1908. ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
  1909. length, vlan_id);
  1910. } else {
  1911. /* Non-TCP/UDP large frames that span multiple buffers
  1912. * can be processed corrrectly by the split frame logic.
  1913. */
  1914. ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
  1915. vlan_id);
  1916. }
  1917. return (unsigned long)length;
  1918. }
  1919. /* Process an outbound completion from an rx ring. */
  1920. static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
  1921. struct ob_mac_iocb_rsp *mac_rsp)
  1922. {
  1923. struct tx_ring *tx_ring;
  1924. struct tx_ring_desc *tx_ring_desc;
  1925. QL_DUMP_OB_MAC_RSP(mac_rsp);
  1926. tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
  1927. tx_ring_desc = &tx_ring->q[mac_rsp->tid];
  1928. ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
  1929. tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
  1930. tx_ring->tx_packets++;
  1931. dev_kfree_skb(tx_ring_desc->skb);
  1932. tx_ring_desc->skb = NULL;
  1933. if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
  1934. OB_MAC_IOCB_RSP_S |
  1935. OB_MAC_IOCB_RSP_L |
  1936. OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
  1937. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
  1938. netif_warn(qdev, tx_done, qdev->ndev,
  1939. "Total descriptor length did not match transfer length.\n");
  1940. }
  1941. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
  1942. netif_warn(qdev, tx_done, qdev->ndev,
  1943. "Frame too short to be valid, not sent.\n");
  1944. }
  1945. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
  1946. netif_warn(qdev, tx_done, qdev->ndev,
  1947. "Frame too long, but sent anyway.\n");
  1948. }
  1949. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
  1950. netif_warn(qdev, tx_done, qdev->ndev,
  1951. "PCI backplane error. Frame not sent.\n");
  1952. }
  1953. }
  1954. atomic_inc(&tx_ring->tx_count);
  1955. }
  1956. /* Fire up a handler to reset the MPI processor. */
  1957. void ql_queue_fw_error(struct ql_adapter *qdev)
  1958. {
  1959. ql_link_off(qdev);
  1960. queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
  1961. }
  1962. void ql_queue_asic_error(struct ql_adapter *qdev)
  1963. {
  1964. ql_link_off(qdev);
  1965. ql_disable_interrupts(qdev);
  1966. /* Clear adapter up bit to signal the recovery
  1967. * process that it shouldn't kill the reset worker
  1968. * thread
  1969. */
  1970. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  1971. queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
  1972. }
  1973. static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
  1974. struct ib_ae_iocb_rsp *ib_ae_rsp)
  1975. {
  1976. switch (ib_ae_rsp->event) {
  1977. case MGMT_ERR_EVENT:
  1978. netif_err(qdev, rx_err, qdev->ndev,
  1979. "Management Processor Fatal Error.\n");
  1980. ql_queue_fw_error(qdev);
  1981. return;
  1982. case CAM_LOOKUP_ERR_EVENT:
  1983. netif_err(qdev, link, qdev->ndev,
  1984. "Multiple CAM hits lookup occurred.\n");
  1985. netif_err(qdev, drv, qdev->ndev,
  1986. "This event shouldn't occur.\n");
  1987. ql_queue_asic_error(qdev);
  1988. return;
  1989. case SOFT_ECC_ERROR_EVENT:
  1990. netif_err(qdev, rx_err, qdev->ndev,
  1991. "Soft ECC error detected.\n");
  1992. ql_queue_asic_error(qdev);
  1993. break;
  1994. case PCI_ERR_ANON_BUF_RD:
  1995. netif_err(qdev, rx_err, qdev->ndev,
  1996. "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
  1997. ib_ae_rsp->q_id);
  1998. ql_queue_asic_error(qdev);
  1999. break;
  2000. default:
  2001. netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
  2002. ib_ae_rsp->event);
  2003. ql_queue_asic_error(qdev);
  2004. break;
  2005. }
  2006. }
  2007. static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
  2008. {
  2009. struct ql_adapter *qdev = rx_ring->qdev;
  2010. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  2011. struct ob_mac_iocb_rsp *net_rsp = NULL;
  2012. int count = 0;
  2013. struct tx_ring *tx_ring;
  2014. /* While there are entries in the completion queue. */
  2015. while (prod != rx_ring->cnsmr_idx) {
  2016. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  2017. "cq_id = %d, prod = %d, cnsmr = %d.\n.",
  2018. rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
  2019. net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
  2020. rmb();
  2021. switch (net_rsp->opcode) {
  2022. case OPCODE_OB_MAC_TSO_IOCB:
  2023. case OPCODE_OB_MAC_IOCB:
  2024. ql_process_mac_tx_intr(qdev, net_rsp);
  2025. break;
  2026. default:
  2027. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  2028. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  2029. net_rsp->opcode);
  2030. }
  2031. count++;
  2032. ql_update_cq(rx_ring);
  2033. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  2034. }
  2035. if (!net_rsp)
  2036. return 0;
  2037. ql_write_cq_idx(rx_ring);
  2038. tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
  2039. if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) {
  2040. if (atomic_read(&tx_ring->queue_stopped) &&
  2041. (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
  2042. /*
  2043. * The queue got stopped because the tx_ring was full.
  2044. * Wake it up, because it's now at least 25% empty.
  2045. */
  2046. netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
  2047. }
  2048. return count;
  2049. }
  2050. static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
  2051. {
  2052. struct ql_adapter *qdev = rx_ring->qdev;
  2053. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  2054. struct ql_net_rsp_iocb *net_rsp;
  2055. int count = 0;
  2056. /* While there are entries in the completion queue. */
  2057. while (prod != rx_ring->cnsmr_idx) {
  2058. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  2059. "cq_id = %d, prod = %d, cnsmr = %d.\n.",
  2060. rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
  2061. net_rsp = rx_ring->curr_entry;
  2062. rmb();
  2063. switch (net_rsp->opcode) {
  2064. case OPCODE_IB_MAC_IOCB:
  2065. ql_process_mac_rx_intr(qdev, rx_ring,
  2066. (struct ib_mac_iocb_rsp *)
  2067. net_rsp);
  2068. break;
  2069. case OPCODE_IB_AE_IOCB:
  2070. ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
  2071. net_rsp);
  2072. break;
  2073. default:
  2074. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  2075. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  2076. net_rsp->opcode);
  2077. break;
  2078. }
  2079. count++;
  2080. ql_update_cq(rx_ring);
  2081. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  2082. if (count == budget)
  2083. break;
  2084. }
  2085. ql_update_buffer_queues(qdev, rx_ring);
  2086. ql_write_cq_idx(rx_ring);
  2087. return count;
  2088. }
  2089. static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
  2090. {
  2091. struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
  2092. struct ql_adapter *qdev = rx_ring->qdev;
  2093. struct rx_ring *trx_ring;
  2094. int i, work_done = 0;
  2095. struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
  2096. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  2097. "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);
  2098. /* Service the TX rings first. They start
  2099. * right after the RSS rings. */
  2100. for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
  2101. trx_ring = &qdev->rx_ring[i];
  2102. /* If this TX completion ring belongs to this vector and
  2103. * it's not empty then service it.
  2104. */
  2105. if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
  2106. (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
  2107. trx_ring->cnsmr_idx)) {
  2108. netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
  2109. "%s: Servicing TX completion ring %d.\n",
  2110. __func__, trx_ring->cq_id);
  2111. ql_clean_outbound_rx_ring(trx_ring);
  2112. }
  2113. }
  2114. /*
  2115. * Now service the RSS ring if it's active.
  2116. */
  2117. if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
  2118. rx_ring->cnsmr_idx) {
  2119. netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
  2120. "%s: Servicing RX completion ring %d.\n",
  2121. __func__, rx_ring->cq_id);
  2122. work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
  2123. }
  2124. if (work_done < budget) {
  2125. napi_complete(napi);
  2126. ql_enable_completion_interrupt(qdev, rx_ring->irq);
  2127. }
  2128. return work_done;
  2129. }
  2130. static void qlge_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
  2131. {
  2132. struct ql_adapter *qdev = netdev_priv(ndev);
  2133. qdev->vlgrp = grp;
  2134. if (grp) {
  2135. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  2136. "Turning on VLAN in NIC_RCV_CFG.\n");
  2137. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
  2138. NIC_RCV_CFG_VLAN_MATCH_AND_NON);
  2139. } else {
  2140. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  2141. "Turning off VLAN in NIC_RCV_CFG.\n");
  2142. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
  2143. }
  2144. }
  2145. static void qlge_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
  2146. {
  2147. struct ql_adapter *qdev = netdev_priv(ndev);
  2148. u32 enable_bit = MAC_ADDR_E;
  2149. int status;
  2150. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  2151. if (status)
  2152. return;
  2153. if (ql_set_mac_addr_reg
  2154. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  2155. netif_err(qdev, ifup, qdev->ndev,
  2156. "Failed to init vlan address.\n");
  2157. }
  2158. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  2159. }
  2160. static void qlge_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
  2161. {
  2162. struct ql_adapter *qdev = netdev_priv(ndev);
  2163. u32 enable_bit = 0;
  2164. int status;
  2165. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  2166. if (status)
  2167. return;
  2168. if (ql_set_mac_addr_reg
  2169. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  2170. netif_err(qdev, ifup, qdev->ndev,
  2171. "Failed to clear vlan address.\n");
  2172. }
  2173. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  2174. }
  2175. static void qlge_restore_vlan(struct ql_adapter *qdev)
  2176. {
  2177. qlge_vlan_rx_register(qdev->ndev, qdev->vlgrp);
  2178. if (qdev->vlgrp) {
  2179. u16 vid;
  2180. for (vid = 0; vid < VLAN_N_VID; vid++) {
  2181. if (!vlan_group_get_device(qdev->vlgrp, vid))
  2182. continue;
  2183. qlge_vlan_rx_add_vid(qdev->ndev, vid);
  2184. }
  2185. }
  2186. }
  2187. /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
  2188. static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
  2189. {
  2190. struct rx_ring *rx_ring = dev_id;
  2191. napi_schedule(&rx_ring->napi);
  2192. return IRQ_HANDLED;
  2193. }
  2194. /* This handles a fatal error, MPI activity, and the default
  2195. * rx_ring in an MSI-X multiple vector environment.
  2196. * In MSI/Legacy environment it also process the rest of
  2197. * the rx_rings.
  2198. */
  2199. static irqreturn_t qlge_isr(int irq, void *dev_id)
  2200. {
  2201. struct rx_ring *rx_ring = dev_id;
  2202. struct ql_adapter *qdev = rx_ring->qdev;
  2203. struct intr_context *intr_context = &qdev->intr_context[0];
  2204. u32 var;
  2205. int work_done = 0;
  2206. spin_lock(&qdev->hw_lock);
  2207. if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
  2208. netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
  2209. "Shared Interrupt, Not ours!\n");
  2210. spin_unlock(&qdev->hw_lock);
  2211. return IRQ_NONE;
  2212. }
  2213. spin_unlock(&qdev->hw_lock);
  2214. var = ql_disable_completion_interrupt(qdev, intr_context->intr);
  2215. /*
  2216. * Check for fatal error.
  2217. */
  2218. if (var & STS_FE) {
  2219. ql_queue_asic_error(qdev);
  2220. netif_err(qdev, intr, qdev->ndev,
  2221. "Got fatal error, STS = %x.\n", var);
  2222. var = ql_read32(qdev, ERR_STS);
  2223. netif_err(qdev, intr, qdev->ndev,
  2224. "Resetting chip. Error Status Register = 0x%x\n", var);
  2225. return IRQ_HANDLED;
  2226. }
  2227. /*
  2228. * Check MPI processor activity.
  2229. */
  2230. if ((var & STS_PI) &&
  2231. (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
  2232. /*
  2233. * We've got an async event or mailbox completion.
  2234. * Handle it and clear the source of the interrupt.
  2235. */
  2236. netif_err(qdev, intr, qdev->ndev,
  2237. "Got MPI processor interrupt.\n");
  2238. ql_disable_completion_interrupt(qdev, intr_context->intr);
  2239. ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
  2240. queue_delayed_work_on(smp_processor_id(),
  2241. qdev->workqueue, &qdev->mpi_work, 0);
  2242. work_done++;
  2243. }
  2244. /*
  2245. * Get the bit-mask that shows the active queues for this
  2246. * pass. Compare it to the queues that this irq services
  2247. * and call napi if there's a match.
  2248. */
  2249. var = ql_read32(qdev, ISR1);
  2250. if (var & intr_context->irq_mask) {
  2251. netif_info(qdev, intr, qdev->ndev,
  2252. "Waking handler for rx_ring[0].\n");
  2253. ql_disable_completion_interrupt(qdev, intr_context->intr);
  2254. napi_schedule(&rx_ring->napi);
  2255. work_done++;
  2256. }
  2257. ql_enable_completion_interrupt(qdev, intr_context->intr);
  2258. return work_done ? IRQ_HANDLED : IRQ_NONE;
  2259. }
  2260. static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  2261. {
  2262. if (skb_is_gso(skb)) {
  2263. int err;
  2264. if (skb_header_cloned(skb)) {
  2265. err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
  2266. if (err)
  2267. return err;
  2268. }
  2269. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  2270. mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
  2271. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  2272. mac_iocb_ptr->total_hdrs_len =
  2273. cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
  2274. mac_iocb_ptr->net_trans_offset =
  2275. cpu_to_le16(skb_network_offset(skb) |
  2276. skb_transport_offset(skb)
  2277. << OB_MAC_TRANSPORT_HDR_SHIFT);
  2278. mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
  2279. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
  2280. if (likely(skb->protocol == htons(ETH_P_IP))) {
  2281. struct iphdr *iph = ip_hdr(skb);
  2282. iph->check = 0;
  2283. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  2284. tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
  2285. iph->daddr, 0,
  2286. IPPROTO_TCP,
  2287. 0);
  2288. } else if (skb->protocol == htons(ETH_P_IPV6)) {
  2289. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
  2290. tcp_hdr(skb)->check =
  2291. ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
  2292. &ipv6_hdr(skb)->daddr,
  2293. 0, IPPROTO_TCP, 0);
  2294. }
  2295. return 1;
  2296. }
  2297. return 0;
  2298. }
  2299. static void ql_hw_csum_setup(struct sk_buff *skb,
  2300. struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  2301. {
  2302. int len;
  2303. struct iphdr *iph = ip_hdr(skb);
  2304. __sum16 *check;
  2305. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  2306. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  2307. mac_iocb_ptr->net_trans_offset =
  2308. cpu_to_le16(skb_network_offset(skb) |
  2309. skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
  2310. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  2311. len = (ntohs(iph->tot_len) - (iph->ihl << 2));
  2312. if (likely(iph->protocol == IPPROTO_TCP)) {
  2313. check = &(tcp_hdr(skb)->check);
  2314. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
  2315. mac_iocb_ptr->total_hdrs_len =
  2316. cpu_to_le16(skb_transport_offset(skb) +
  2317. (tcp_hdr(skb)->doff << 2));
  2318. } else {
  2319. check = &(udp_hdr(skb)->check);
  2320. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
  2321. mac_iocb_ptr->total_hdrs_len =
  2322. cpu_to_le16(skb_transport_offset(skb) +
  2323. sizeof(struct udphdr));
  2324. }
  2325. *check = ~csum_tcpudp_magic(iph->saddr,
  2326. iph->daddr, len, iph->protocol, 0);
  2327. }
  2328. static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
  2329. {
  2330. struct tx_ring_desc *tx_ring_desc;
  2331. struct ob_mac_iocb_req *mac_iocb_ptr;
  2332. struct ql_adapter *qdev = netdev_priv(ndev);
  2333. int tso;
  2334. struct tx_ring *tx_ring;
  2335. u32 tx_ring_idx = (u32) skb->queue_mapping;
  2336. tx_ring = &qdev->tx_ring[tx_ring_idx];
  2337. if (skb_padto(skb, ETH_ZLEN))
  2338. return NETDEV_TX_OK;
  2339. if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
  2340. netif_info(qdev, tx_queued, qdev->ndev,
  2341. "%s: shutting down tx queue %d du to lack of resources.\n",
  2342. __func__, tx_ring_idx);
  2343. netif_stop_subqueue(ndev, tx_ring->wq_id);
  2344. atomic_inc(&tx_ring->queue_stopped);
  2345. tx_ring->tx_errors++;
  2346. return NETDEV_TX_BUSY;
  2347. }
  2348. tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
  2349. mac_iocb_ptr = tx_ring_desc->queue_entry;
  2350. memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
  2351. mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
  2352. mac_iocb_ptr->tid = tx_ring_desc->index;
  2353. /* We use the upper 32-bits to store the tx queue for this IO.
  2354. * When we get the completion we can use it to establish the context.
  2355. */
  2356. mac_iocb_ptr->txq_idx = tx_ring_idx;
  2357. tx_ring_desc->skb = skb;
  2358. mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
  2359. if (vlan_tx_tag_present(skb)) {
  2360. netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
  2361. "Adding a vlan tag %d.\n", vlan_tx_tag_get(skb));
  2362. mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
  2363. mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
  2364. }
  2365. tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  2366. if (tso < 0) {
  2367. dev_kfree_skb_any(skb);
  2368. return NETDEV_TX_OK;
  2369. } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
  2370. ql_hw_csum_setup(skb,
  2371. (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  2372. }
  2373. if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
  2374. NETDEV_TX_OK) {
  2375. netif_err(qdev, tx_queued, qdev->ndev,
  2376. "Could not map the segments.\n");
  2377. tx_ring->tx_errors++;
  2378. return NETDEV_TX_BUSY;
  2379. }
  2380. QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
  2381. tx_ring->prod_idx++;
  2382. if (tx_ring->prod_idx == tx_ring->wq_len)
  2383. tx_ring->prod_idx = 0;
  2384. wmb();
  2385. ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
  2386. netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
  2387. "tx queued, slot %d, len %d\n",
  2388. tx_ring->prod_idx, skb->len);
  2389. atomic_dec(&tx_ring->tx_count);
  2390. return NETDEV_TX_OK;
  2391. }
  2392. static void ql_free_shadow_space(struct ql_adapter *qdev)
  2393. {
  2394. if (qdev->rx_ring_shadow_reg_area) {
  2395. pci_free_consistent(qdev->pdev,
  2396. PAGE_SIZE,
  2397. qdev->rx_ring_shadow_reg_area,
  2398. qdev->rx_ring_shadow_reg_dma);
  2399. qdev->rx_ring_shadow_reg_area = NULL;
  2400. }
  2401. if (qdev->tx_ring_shadow_reg_area) {
  2402. pci_free_consistent(qdev->pdev,
  2403. PAGE_SIZE,
  2404. qdev->tx_ring_shadow_reg_area,
  2405. qdev->tx_ring_shadow_reg_dma);
  2406. qdev->tx_ring_shadow_reg_area = NULL;
  2407. }
  2408. }
  2409. static int ql_alloc_shadow_space(struct ql_adapter *qdev)
  2410. {
  2411. qdev->rx_ring_shadow_reg_area =
  2412. pci_alloc_consistent(qdev->pdev,
  2413. PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
  2414. if (qdev->rx_ring_shadow_reg_area == NULL) {
  2415. netif_err(qdev, ifup, qdev->ndev,
  2416. "Allocation of RX shadow space failed.\n");
  2417. return -ENOMEM;
  2418. }
  2419. memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
  2420. qdev->tx_ring_shadow_reg_area =
  2421. pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
  2422. &qdev->tx_ring_shadow_reg_dma);
  2423. if (qdev->tx_ring_shadow_reg_area == NULL) {
  2424. netif_err(qdev, ifup, qdev->ndev,
  2425. "Allocation of TX shadow space failed.\n");
  2426. goto err_wqp_sh_area;
  2427. }
  2428. memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
  2429. return 0;
  2430. err_wqp_sh_area:
  2431. pci_free_consistent(qdev->pdev,
  2432. PAGE_SIZE,
  2433. qdev->rx_ring_shadow_reg_area,
  2434. qdev->rx_ring_shadow_reg_dma);
  2435. return -ENOMEM;
  2436. }
  2437. static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2438. {
  2439. struct tx_ring_desc *tx_ring_desc;
  2440. int i;
  2441. struct ob_mac_iocb_req *mac_iocb_ptr;
  2442. mac_iocb_ptr = tx_ring->wq_base;
  2443. tx_ring_desc = tx_ring->q;
  2444. for (i = 0; i < tx_ring->wq_len; i++) {
  2445. tx_ring_desc->index = i;
  2446. tx_ring_desc->skb = NULL;
  2447. tx_ring_desc->queue_entry = mac_iocb_ptr;
  2448. mac_iocb_ptr++;
  2449. tx_ring_desc++;
  2450. }
  2451. atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
  2452. atomic_set(&tx_ring->queue_stopped, 0);
  2453. }
  2454. static void ql_free_tx_resources(struct ql_adapter *qdev,
  2455. struct tx_ring *tx_ring)
  2456. {
  2457. if (tx_ring->wq_base) {
  2458. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  2459. tx_ring->wq_base, tx_ring->wq_base_dma);
  2460. tx_ring->wq_base = NULL;
  2461. }
  2462. kfree(tx_ring->q);
  2463. tx_ring->q = NULL;
  2464. }
  2465. static int ql_alloc_tx_resources(struct ql_adapter *qdev,
  2466. struct tx_ring *tx_ring)
  2467. {
  2468. tx_ring->wq_base =
  2469. pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
  2470. &tx_ring->wq_base_dma);
  2471. if ((tx_ring->wq_base == NULL) ||
  2472. tx_ring->wq_base_dma & WQ_ADDR_ALIGN) {
  2473. netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
  2474. return -ENOMEM;
  2475. }
  2476. tx_ring->q =
  2477. kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
  2478. if (tx_ring->q == NULL)
  2479. goto err;
  2480. return 0;
  2481. err:
  2482. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  2483. tx_ring->wq_base, tx_ring->wq_base_dma);
  2484. return -ENOMEM;
  2485. }
  2486. static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2487. {
  2488. struct bq_desc *lbq_desc;
  2489. uint32_t curr_idx, clean_idx;
  2490. curr_idx = rx_ring->lbq_curr_idx;
  2491. clean_idx = rx_ring->lbq_clean_idx;
  2492. while (curr_idx != clean_idx) {
  2493. lbq_desc = &rx_ring->lbq[curr_idx];
  2494. if (lbq_desc->p.pg_chunk.last_flag) {
  2495. pci_unmap_page(qdev->pdev,
  2496. lbq_desc->p.pg_chunk.map,
  2497. ql_lbq_block_size(qdev),
  2498. PCI_DMA_FROMDEVICE);
  2499. lbq_desc->p.pg_chunk.last_flag = 0;
  2500. }
  2501. put_page(lbq_desc->p.pg_chunk.page);
  2502. lbq_desc->p.pg_chunk.page = NULL;
  2503. if (++curr_idx == rx_ring->lbq_len)
  2504. curr_idx = 0;
  2505. }
  2506. }
  2507. static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2508. {
  2509. int i;
  2510. struct bq_desc *sbq_desc;
  2511. for (i = 0; i < rx_ring->sbq_len; i++) {
  2512. sbq_desc = &rx_ring->sbq[i];
  2513. if (sbq_desc == NULL) {
  2514. netif_err(qdev, ifup, qdev->ndev,
  2515. "sbq_desc %d is NULL.\n", i);
  2516. return;
  2517. }
  2518. if (sbq_desc->p.skb) {
  2519. pci_unmap_single(qdev->pdev,
  2520. dma_unmap_addr(sbq_desc, mapaddr),
  2521. dma_unmap_len(sbq_desc, maplen),
  2522. PCI_DMA_FROMDEVICE);
  2523. dev_kfree_skb(sbq_desc->p.skb);
  2524. sbq_desc->p.skb = NULL;
  2525. }
  2526. }
  2527. }
  2528. /* Free all large and small rx buffers associated
  2529. * with the completion queues for this device.
  2530. */
  2531. static void ql_free_rx_buffers(struct ql_adapter *qdev)
  2532. {
  2533. int i;
  2534. struct rx_ring *rx_ring;
  2535. for (i = 0; i < qdev->rx_ring_count; i++) {
  2536. rx_ring = &qdev->rx_ring[i];
  2537. if (rx_ring->lbq)
  2538. ql_free_lbq_buffers(qdev, rx_ring);
  2539. if (rx_ring->sbq)
  2540. ql_free_sbq_buffers(qdev, rx_ring);
  2541. }
  2542. }
  2543. static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
  2544. {
  2545. struct rx_ring *rx_ring;
  2546. int i;
  2547. for (i = 0; i < qdev->rx_ring_count; i++) {
  2548. rx_ring = &qdev->rx_ring[i];
  2549. if (rx_ring->type != TX_Q)
  2550. ql_update_buffer_queues(qdev, rx_ring);
  2551. }
  2552. }
  2553. static void ql_init_lbq_ring(struct ql_adapter *qdev,
  2554. struct rx_ring *rx_ring)
  2555. {
  2556. int i;
  2557. struct bq_desc *lbq_desc;
  2558. __le64 *bq = rx_ring->lbq_base;
  2559. memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
  2560. for (i = 0; i < rx_ring->lbq_len; i++) {
  2561. lbq_desc = &rx_ring->lbq[i];
  2562. memset(lbq_desc, 0, sizeof(*lbq_desc));
  2563. lbq_desc->index = i;
  2564. lbq_desc->addr = bq;
  2565. bq++;
  2566. }
  2567. }
  2568. static void ql_init_sbq_ring(struct ql_adapter *qdev,
  2569. struct rx_ring *rx_ring)
  2570. {
  2571. int i;
  2572. struct bq_desc *sbq_desc;
  2573. __le64 *bq = rx_ring->sbq_base;
  2574. memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
  2575. for (i = 0; i < rx_ring->sbq_len; i++) {
  2576. sbq_desc = &rx_ring->sbq[i];
  2577. memset(sbq_desc, 0, sizeof(*sbq_desc));
  2578. sbq_desc->index = i;
  2579. sbq_desc->addr = bq;
  2580. bq++;
  2581. }
  2582. }
  2583. static void ql_free_rx_resources(struct ql_adapter *qdev,
  2584. struct rx_ring *rx_ring)
  2585. {
  2586. /* Free the small buffer queue. */
  2587. if (rx_ring->sbq_base) {
  2588. pci_free_consistent(qdev->pdev,
  2589. rx_ring->sbq_size,
  2590. rx_ring->sbq_base, rx_ring->sbq_base_dma);
  2591. rx_ring->sbq_base = NULL;
  2592. }
  2593. /* Free the small buffer queue control blocks. */
  2594. kfree(rx_ring->sbq);
  2595. rx_ring->sbq = NULL;
  2596. /* Free the large buffer queue. */
  2597. if (rx_ring->lbq_base) {
  2598. pci_free_consistent(qdev->pdev,
  2599. rx_ring->lbq_size,
  2600. rx_ring->lbq_base, rx_ring->lbq_base_dma);
  2601. rx_ring->lbq_base = NULL;
  2602. }
  2603. /* Free the large buffer queue control blocks. */
  2604. kfree(rx_ring->lbq);
  2605. rx_ring->lbq = NULL;
  2606. /* Free the rx queue. */
  2607. if (rx_ring->cq_base) {
  2608. pci_free_consistent(qdev->pdev,
  2609. rx_ring->cq_size,
  2610. rx_ring->cq_base, rx_ring->cq_base_dma);
  2611. rx_ring->cq_base = NULL;
  2612. }
  2613. }
  2614. /* Allocate queues and buffers for this completions queue based
  2615. * on the values in the parameter structure. */
  2616. static int ql_alloc_rx_resources(struct ql_adapter *qdev,
  2617. struct rx_ring *rx_ring)
  2618. {
  2619. /*
  2620. * Allocate the completion queue for this rx_ring.
  2621. */
  2622. rx_ring->cq_base =
  2623. pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
  2624. &rx_ring->cq_base_dma);
  2625. if (rx_ring->cq_base == NULL) {
  2626. netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
  2627. return -ENOMEM;
  2628. }
  2629. if (rx_ring->sbq_len) {
  2630. /*
  2631. * Allocate small buffer queue.
  2632. */
  2633. rx_ring->sbq_base =
  2634. pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
  2635. &rx_ring->sbq_base_dma);
  2636. if (rx_ring->sbq_base == NULL) {
  2637. netif_err(qdev, ifup, qdev->ndev,
  2638. "Small buffer queue allocation failed.\n");
  2639. goto err_mem;
  2640. }
  2641. /*
  2642. * Allocate small buffer queue control blocks.
  2643. */
  2644. rx_ring->sbq =
  2645. kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
  2646. GFP_KERNEL);
  2647. if (rx_ring->sbq == NULL) {
  2648. netif_err(qdev, ifup, qdev->ndev,
  2649. "Small buffer queue control block allocation failed.\n");
  2650. goto err_mem;
  2651. }
  2652. ql_init_sbq_ring(qdev, rx_ring);
  2653. }
  2654. if (rx_ring->lbq_len) {
  2655. /*
  2656. * Allocate large buffer queue.
  2657. */
  2658. rx_ring->lbq_base =
  2659. pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
  2660. &rx_ring->lbq_base_dma);
  2661. if (rx_ring->lbq_base == NULL) {
  2662. netif_err(qdev, ifup, qdev->ndev,
  2663. "Large buffer queue allocation failed.\n");
  2664. goto err_mem;
  2665. }
  2666. /*
  2667. * Allocate large buffer queue control blocks.
  2668. */
  2669. rx_ring->lbq =
  2670. kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
  2671. GFP_KERNEL);
  2672. if (rx_ring->lbq == NULL) {
  2673. netif_err(qdev, ifup, qdev->ndev,
  2674. "Large buffer queue control block allocation failed.\n");
  2675. goto err_mem;
  2676. }
  2677. ql_init_lbq_ring(qdev, rx_ring);
  2678. }
  2679. return 0;
  2680. err_mem:
  2681. ql_free_rx_resources(qdev, rx_ring);
  2682. return -ENOMEM;
  2683. }
  2684. static void ql_tx_ring_clean(struct ql_adapter *qdev)
  2685. {
  2686. struct tx_ring *tx_ring;
  2687. struct tx_ring_desc *tx_ring_desc;
  2688. int i, j;
  2689. /*
  2690. * Loop through all queues and free
  2691. * any resources.
  2692. */
  2693. for (j = 0; j < qdev->tx_ring_count; j++) {
  2694. tx_ring = &qdev->tx_ring[j];
  2695. for (i = 0; i < tx_ring->wq_len; i++) {
  2696. tx_ring_desc = &tx_ring->q[i];
  2697. if (tx_ring_desc && tx_ring_desc->skb) {
  2698. netif_err(qdev, ifdown, qdev->ndev,
  2699. "Freeing lost SKB %p, from queue %d, index %d.\n",
  2700. tx_ring_desc->skb, j,
  2701. tx_ring_desc->index);
  2702. ql_unmap_send(qdev, tx_ring_desc,
  2703. tx_ring_desc->map_cnt);
  2704. dev_kfree_skb(tx_ring_desc->skb);
  2705. tx_ring_desc->skb = NULL;
  2706. }
  2707. }
  2708. }
  2709. }
  2710. static void ql_free_mem_resources(struct ql_adapter *qdev)
  2711. {
  2712. int i;
  2713. for (i = 0; i < qdev->tx_ring_count; i++)
  2714. ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
  2715. for (i = 0; i < qdev->rx_ring_count; i++)
  2716. ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
  2717. ql_free_shadow_space(qdev);
  2718. }
  2719. static int ql_alloc_mem_resources(struct ql_adapter *qdev)
  2720. {
  2721. int i;
  2722. /* Allocate space for our shadow registers and such. */
  2723. if (ql_alloc_shadow_space(qdev))
  2724. return -ENOMEM;
  2725. for (i = 0; i < qdev->rx_ring_count; i++) {
  2726. if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
  2727. netif_err(qdev, ifup, qdev->ndev,
  2728. "RX resource allocation failed.\n");
  2729. goto err_mem;
  2730. }
  2731. }
  2732. /* Allocate tx queue resources */
  2733. for (i = 0; i < qdev->tx_ring_count; i++) {
  2734. if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
  2735. netif_err(qdev, ifup, qdev->ndev,
  2736. "TX resource allocation failed.\n");
  2737. goto err_mem;
  2738. }
  2739. }
  2740. return 0;
  2741. err_mem:
  2742. ql_free_mem_resources(qdev);
  2743. return -ENOMEM;
  2744. }
  2745. /* Set up the rx ring control block and pass it to the chip.
  2746. * The control block is defined as
  2747. * "Completion Queue Initialization Control Block", or cqicb.
  2748. */
  2749. static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2750. {
  2751. struct cqicb *cqicb = &rx_ring->cqicb;
  2752. void *shadow_reg = qdev->rx_ring_shadow_reg_area +
  2753. (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
  2754. u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
  2755. (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
  2756. void __iomem *doorbell_area =
  2757. qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
  2758. int err = 0;
  2759. u16 bq_len;
  2760. u64 tmp;
  2761. __le64 *base_indirect_ptr;
  2762. int page_entries;
  2763. /* Set up the shadow registers for this ring. */
  2764. rx_ring->prod_idx_sh_reg = shadow_reg;
  2765. rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
  2766. *rx_ring->prod_idx_sh_reg = 0;
  2767. shadow_reg += sizeof(u64);
  2768. shadow_reg_dma += sizeof(u64);
  2769. rx_ring->lbq_base_indirect = shadow_reg;
  2770. rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
  2771. shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2772. shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2773. rx_ring->sbq_base_indirect = shadow_reg;
  2774. rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
  2775. /* PCI doorbell mem area + 0x00 for consumer index register */
  2776. rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
  2777. rx_ring->cnsmr_idx = 0;
  2778. rx_ring->curr_entry = rx_ring->cq_base;
  2779. /* PCI doorbell mem area + 0x04 for valid register */
  2780. rx_ring->valid_db_reg = doorbell_area + 0x04;
  2781. /* PCI doorbell mem area + 0x18 for large buffer consumer */
  2782. rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
  2783. /* PCI doorbell mem area + 0x1c */
  2784. rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
  2785. memset((void *)cqicb, 0, sizeof(struct cqicb));
  2786. cqicb->msix_vect = rx_ring->irq;
  2787. bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
  2788. cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
  2789. cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
  2790. cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
  2791. /*
  2792. * Set up the control block load flags.
  2793. */
  2794. cqicb->flags = FLAGS_LC | /* Load queue base address */
  2795. FLAGS_LV | /* Load MSI-X vector */
  2796. FLAGS_LI; /* Load irq delay values */
  2797. if (rx_ring->lbq_len) {
  2798. cqicb->flags |= FLAGS_LL; /* Load lbq values */
  2799. tmp = (u64)rx_ring->lbq_base_dma;
  2800. base_indirect_ptr = (__le64 *) rx_ring->lbq_base_indirect;
  2801. page_entries = 0;
  2802. do {
  2803. *base_indirect_ptr = cpu_to_le64(tmp);
  2804. tmp += DB_PAGE_SIZE;
  2805. base_indirect_ptr++;
  2806. page_entries++;
  2807. } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2808. cqicb->lbq_addr =
  2809. cpu_to_le64(rx_ring->lbq_base_indirect_dma);
  2810. bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
  2811. (u16) rx_ring->lbq_buf_size;
  2812. cqicb->lbq_buf_size = cpu_to_le16(bq_len);
  2813. bq_len = (rx_ring->lbq_len == 65536) ? 0 :
  2814. (u16) rx_ring->lbq_len;
  2815. cqicb->lbq_len = cpu_to_le16(bq_len);
  2816. rx_ring->lbq_prod_idx = 0;
  2817. rx_ring->lbq_curr_idx = 0;
  2818. rx_ring->lbq_clean_idx = 0;
  2819. rx_ring->lbq_free_cnt = rx_ring->lbq_len;
  2820. }
  2821. if (rx_ring->sbq_len) {
  2822. cqicb->flags |= FLAGS_LS; /* Load sbq values */
  2823. tmp = (u64)rx_ring->sbq_base_dma;
  2824. base_indirect_ptr = (__le64 *) rx_ring->sbq_base_indirect;
  2825. page_entries = 0;
  2826. do {
  2827. *base_indirect_ptr = cpu_to_le64(tmp);
  2828. tmp += DB_PAGE_SIZE;
  2829. base_indirect_ptr++;
  2830. page_entries++;
  2831. } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
  2832. cqicb->sbq_addr =
  2833. cpu_to_le64(rx_ring->sbq_base_indirect_dma);
  2834. cqicb->sbq_buf_size =
  2835. cpu_to_le16((u16)(rx_ring->sbq_buf_size));
  2836. bq_len = (rx_ring->sbq_len == 65536) ? 0 :
  2837. (u16) rx_ring->sbq_len;
  2838. cqicb->sbq_len = cpu_to_le16(bq_len);
  2839. rx_ring->sbq_prod_idx = 0;
  2840. rx_ring->sbq_curr_idx = 0;
  2841. rx_ring->sbq_clean_idx = 0;
  2842. rx_ring->sbq_free_cnt = rx_ring->sbq_len;
  2843. }
  2844. switch (rx_ring->type) {
  2845. case TX_Q:
  2846. cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
  2847. cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
  2848. break;
  2849. case RX_Q:
  2850. /* Inbound completion handling rx_rings run in
  2851. * separate NAPI contexts.
  2852. */
  2853. netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
  2854. 64);
  2855. cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
  2856. cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
  2857. break;
  2858. default:
  2859. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  2860. "Invalid rx_ring->type = %d.\n", rx_ring->type);
  2861. }
  2862. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  2863. "Initializing rx work queue.\n");
  2864. err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
  2865. CFG_LCQ, rx_ring->cq_id);
  2866. if (err) {
  2867. netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
  2868. return err;
  2869. }
  2870. return err;
  2871. }
  2872. static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2873. {
  2874. struct wqicb *wqicb = (struct wqicb *)tx_ring;
  2875. void __iomem *doorbell_area =
  2876. qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
  2877. void *shadow_reg = qdev->tx_ring_shadow_reg_area +
  2878. (tx_ring->wq_id * sizeof(u64));
  2879. u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
  2880. (tx_ring->wq_id * sizeof(u64));
  2881. int err = 0;
  2882. /*
  2883. * Assign doorbell registers for this tx_ring.
  2884. */
  2885. /* TX PCI doorbell mem area for tx producer index */
  2886. tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
  2887. tx_ring->prod_idx = 0;
  2888. /* TX PCI doorbell mem area + 0x04 */
  2889. tx_ring->valid_db_reg = doorbell_area + 0x04;
  2890. /*
  2891. * Assign shadow registers for this tx_ring.
  2892. */
  2893. tx_ring->cnsmr_idx_sh_reg = shadow_reg;
  2894. tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
  2895. wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
  2896. wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
  2897. Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
  2898. wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
  2899. wqicb->rid = 0;
  2900. wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
  2901. wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
  2902. ql_init_tx_ring(qdev, tx_ring);
  2903. err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
  2904. (u16) tx_ring->wq_id);
  2905. if (err) {
  2906. netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
  2907. return err;
  2908. }
  2909. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  2910. "Successfully loaded WQICB.\n");
  2911. return err;
  2912. }
  2913. static void ql_disable_msix(struct ql_adapter *qdev)
  2914. {
  2915. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2916. pci_disable_msix(qdev->pdev);
  2917. clear_bit(QL_MSIX_ENABLED, &qdev->flags);
  2918. kfree(qdev->msi_x_entry);
  2919. qdev->msi_x_entry = NULL;
  2920. } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
  2921. pci_disable_msi(qdev->pdev);
  2922. clear_bit(QL_MSI_ENABLED, &qdev->flags);
  2923. }
  2924. }
  2925. /* We start by trying to get the number of vectors
  2926. * stored in qdev->intr_count. If we don't get that
  2927. * many then we reduce the count and try again.
  2928. */
  2929. static void ql_enable_msix(struct ql_adapter *qdev)
  2930. {
  2931. int i, err;
  2932. /* Get the MSIX vectors. */
  2933. if (qlge_irq_type == MSIX_IRQ) {
  2934. /* Try to alloc space for the msix struct,
  2935. * if it fails then go to MSI/legacy.
  2936. */
  2937. qdev->msi_x_entry = kcalloc(qdev->intr_count,
  2938. sizeof(struct msix_entry),
  2939. GFP_KERNEL);
  2940. if (!qdev->msi_x_entry) {
  2941. qlge_irq_type = MSI_IRQ;
  2942. goto msi;
  2943. }
  2944. for (i = 0; i < qdev->intr_count; i++)
  2945. qdev->msi_x_entry[i].entry = i;
  2946. /* Loop to get our vectors. We start with
  2947. * what we want and settle for what we get.
  2948. */
  2949. do {
  2950. err = pci_enable_msix(qdev->pdev,
  2951. qdev->msi_x_entry, qdev->intr_count);
  2952. if (err > 0)
  2953. qdev->intr_count = err;
  2954. } while (err > 0);
  2955. if (err < 0) {
  2956. kfree(qdev->msi_x_entry);
  2957. qdev->msi_x_entry = NULL;
  2958. netif_warn(qdev, ifup, qdev->ndev,
  2959. "MSI-X Enable failed, trying MSI.\n");
  2960. qdev->intr_count = 1;
  2961. qlge_irq_type = MSI_IRQ;
  2962. } else if (err == 0) {
  2963. set_bit(QL_MSIX_ENABLED, &qdev->flags);
  2964. netif_info(qdev, ifup, qdev->ndev,
  2965. "MSI-X Enabled, got %d vectors.\n",
  2966. qdev->intr_count);
  2967. return;
  2968. }
  2969. }
  2970. msi:
  2971. qdev->intr_count = 1;
  2972. if (qlge_irq_type == MSI_IRQ) {
  2973. if (!pci_enable_msi(qdev->pdev)) {
  2974. set_bit(QL_MSI_ENABLED, &qdev->flags);
  2975. netif_info(qdev, ifup, qdev->ndev,
  2976. "Running with MSI interrupts.\n");
  2977. return;
  2978. }
  2979. }
  2980. qlge_irq_type = LEG_IRQ;
  2981. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  2982. "Running with legacy interrupts.\n");
  2983. }
  2984. /* Each vector services 1 RSS ring and and 1 or more
  2985. * TX completion rings. This function loops through
  2986. * the TX completion rings and assigns the vector that
  2987. * will service it. An example would be if there are
  2988. * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
  2989. * This would mean that vector 0 would service RSS ring 0
  2990. * and TX completion rings 0,1,2 and 3. Vector 1 would
  2991. * service RSS ring 1 and TX completion rings 4,5,6 and 7.
  2992. */
  2993. static void ql_set_tx_vect(struct ql_adapter *qdev)
  2994. {
  2995. int i, j, vect;
  2996. u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
  2997. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  2998. /* Assign irq vectors to TX rx_rings.*/
  2999. for (vect = 0, j = 0, i = qdev->rss_ring_count;
  3000. i < qdev->rx_ring_count; i++) {
  3001. if (j == tx_rings_per_vector) {
  3002. vect++;
  3003. j = 0;
  3004. }
  3005. qdev->rx_ring[i].irq = vect;
  3006. j++;
  3007. }
  3008. } else {
  3009. /* For single vector all rings have an irq
  3010. * of zero.
  3011. */
  3012. for (i = 0; i < qdev->rx_ring_count; i++)
  3013. qdev->rx_ring[i].irq = 0;
  3014. }
  3015. }
  3016. /* Set the interrupt mask for this vector. Each vector
  3017. * will service 1 RSS ring and 1 or more TX completion
  3018. * rings. This function sets up a bit mask per vector
  3019. * that indicates which rings it services.
  3020. */
  3021. static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
  3022. {
  3023. int j, vect = ctx->intr;
  3024. u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
  3025. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  3026. /* Add the RSS ring serviced by this vector
  3027. * to the mask.
  3028. */
  3029. ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
  3030. /* Add the TX ring(s) serviced by this vector
  3031. * to the mask. */
  3032. for (j = 0; j < tx_rings_per_vector; j++) {
  3033. ctx->irq_mask |=
  3034. (1 << qdev->rx_ring[qdev->rss_ring_count +
  3035. (vect * tx_rings_per_vector) + j].cq_id);
  3036. }
  3037. } else {
  3038. /* For single vector we just shift each queue's
  3039. * ID into the mask.
  3040. */
  3041. for (j = 0; j < qdev->rx_ring_count; j++)
  3042. ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
  3043. }
  3044. }
  3045. /*
  3046. * Here we build the intr_context structures based on
  3047. * our rx_ring count and intr vector count.
  3048. * The intr_context structure is used to hook each vector
  3049. * to possibly different handlers.
  3050. */
  3051. static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
  3052. {
  3053. int i = 0;
  3054. struct intr_context *intr_context = &qdev->intr_context[0];
  3055. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  3056. /* Each rx_ring has it's
  3057. * own intr_context since we have separate
  3058. * vectors for each queue.
  3059. */
  3060. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  3061. qdev->rx_ring[i].irq = i;
  3062. intr_context->intr = i;
  3063. intr_context->qdev = qdev;
  3064. /* Set up this vector's bit-mask that indicates
  3065. * which queues it services.
  3066. */
  3067. ql_set_irq_mask(qdev, intr_context);
  3068. /*
  3069. * We set up each vectors enable/disable/read bits so
  3070. * there's no bit/mask calculations in the critical path.
  3071. */
  3072. intr_context->intr_en_mask =
  3073. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  3074. INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
  3075. | i;
  3076. intr_context->intr_dis_mask =
  3077. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  3078. INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
  3079. INTR_EN_IHD | i;
  3080. intr_context->intr_read_mask =
  3081. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  3082. INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
  3083. i;
  3084. if (i == 0) {
  3085. /* The first vector/queue handles
  3086. * broadcast/multicast, fatal errors,
  3087. * and firmware events. This in addition
  3088. * to normal inbound NAPI processing.
  3089. */
  3090. intr_context->handler = qlge_isr;
  3091. sprintf(intr_context->name, "%s-rx-%d",
  3092. qdev->ndev->name, i);
  3093. } else {
  3094. /*
  3095. * Inbound queues handle unicast frames only.
  3096. */
  3097. intr_context->handler = qlge_msix_rx_isr;
  3098. sprintf(intr_context->name, "%s-rx-%d",
  3099. qdev->ndev->name, i);
  3100. }
  3101. }
  3102. } else {
  3103. /*
  3104. * All rx_rings use the same intr_context since
  3105. * there is only one vector.
  3106. */
  3107. intr_context->intr = 0;
  3108. intr_context->qdev = qdev;
  3109. /*
  3110. * We set up each vectors enable/disable/read bits so
  3111. * there's no bit/mask calculations in the critical path.
  3112. */
  3113. intr_context->intr_en_mask =
  3114. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
  3115. intr_context->intr_dis_mask =
  3116. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  3117. INTR_EN_TYPE_DISABLE;
  3118. intr_context->intr_read_mask =
  3119. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
  3120. /*
  3121. * Single interrupt means one handler for all rings.
  3122. */
  3123. intr_context->handler = qlge_isr;
  3124. sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
  3125. /* Set up this vector's bit-mask that indicates
  3126. * which queues it services. In this case there is
  3127. * a single vector so it will service all RSS and
  3128. * TX completion rings.
  3129. */
  3130. ql_set_irq_mask(qdev, intr_context);
  3131. }
  3132. /* Tell the TX completion rings which MSIx vector
  3133. * they will be using.
  3134. */
  3135. ql_set_tx_vect(qdev);
  3136. }
  3137. static void ql_free_irq(struct ql_adapter *qdev)
  3138. {
  3139. int i;
  3140. struct intr_context *intr_context = &qdev->intr_context[0];
  3141. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  3142. if (intr_context->hooked) {
  3143. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  3144. free_irq(qdev->msi_x_entry[i].vector,
  3145. &qdev->rx_ring[i]);
  3146. netif_printk(qdev, ifdown, KERN_DEBUG, qdev->ndev,
  3147. "freeing msix interrupt %d.\n", i);
  3148. } else {
  3149. free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
  3150. netif_printk(qdev, ifdown, KERN_DEBUG, qdev->ndev,
  3151. "freeing msi interrupt %d.\n", i);
  3152. }
  3153. }
  3154. }
  3155. ql_disable_msix(qdev);
  3156. }
  3157. static int ql_request_irq(struct ql_adapter *qdev)
  3158. {
  3159. int i;
  3160. int status = 0;
  3161. struct pci_dev *pdev = qdev->pdev;
  3162. struct intr_context *intr_context = &qdev->intr_context[0];
  3163. ql_resolve_queues_to_irqs(qdev);
  3164. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  3165. atomic_set(&intr_context->irq_cnt, 0);
  3166. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  3167. status = request_irq(qdev->msi_x_entry[i].vector,
  3168. intr_context->handler,
  3169. 0,
  3170. intr_context->name,
  3171. &qdev->rx_ring[i]);
  3172. if (status) {
  3173. netif_err(qdev, ifup, qdev->ndev,
  3174. "Failed request for MSIX interrupt %d.\n",
  3175. i);
  3176. goto err_irq;
  3177. } else {
  3178. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3179. "Hooked intr %d, queue type %s, with name %s.\n",
  3180. i,
  3181. qdev->rx_ring[i].type == DEFAULT_Q ?
  3182. "DEFAULT_Q" :
  3183. qdev->rx_ring[i].type == TX_Q ?
  3184. "TX_Q" :
  3185. qdev->rx_ring[i].type == RX_Q ?
  3186. "RX_Q" : "",
  3187. intr_context->name);
  3188. }
  3189. } else {
  3190. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3191. "trying msi or legacy interrupts.\n");
  3192. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3193. "%s: irq = %d.\n", __func__, pdev->irq);
  3194. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3195. "%s: context->name = %s.\n", __func__,
  3196. intr_context->name);
  3197. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3198. "%s: dev_id = 0x%p.\n", __func__,
  3199. &qdev->rx_ring[0]);
  3200. status =
  3201. request_irq(pdev->irq, qlge_isr,
  3202. test_bit(QL_MSI_ENABLED,
  3203. &qdev->
  3204. flags) ? 0 : IRQF_SHARED,
  3205. intr_context->name, &qdev->rx_ring[0]);
  3206. if (status)
  3207. goto err_irq;
  3208. netif_err(qdev, ifup, qdev->ndev,
  3209. "Hooked intr %d, queue type %s, with name %s.\n",
  3210. i,
  3211. qdev->rx_ring[0].type == DEFAULT_Q ?
  3212. "DEFAULT_Q" :
  3213. qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
  3214. qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
  3215. intr_context->name);
  3216. }
  3217. intr_context->hooked = 1;
  3218. }
  3219. return status;
  3220. err_irq:
  3221. netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!/n");
  3222. ql_free_irq(qdev);
  3223. return status;
  3224. }
  3225. static int ql_start_rss(struct ql_adapter *qdev)
  3226. {
  3227. static const u8 init_hash_seed[] = {
  3228. 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
  3229. 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
  3230. 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
  3231. 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
  3232. 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa
  3233. };
  3234. struct ricb *ricb = &qdev->ricb;
  3235. int status = 0;
  3236. int i;
  3237. u8 *hash_id = (u8 *) ricb->hash_cq_id;
  3238. memset((void *)ricb, 0, sizeof(*ricb));
  3239. ricb->base_cq = RSS_L4K;
  3240. ricb->flags =
  3241. (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
  3242. ricb->mask = cpu_to_le16((u16)(0x3ff));
  3243. /*
  3244. * Fill out the Indirection Table.
  3245. */
  3246. for (i = 0; i < 1024; i++)
  3247. hash_id[i] = (i & (qdev->rss_ring_count - 1));
  3248. memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
  3249. memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
  3250. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev, "Initializing RSS.\n");
  3251. status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
  3252. if (status) {
  3253. netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
  3254. return status;
  3255. }
  3256. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3257. "Successfully loaded RICB.\n");
  3258. return status;
  3259. }
  3260. static int ql_clear_routing_entries(struct ql_adapter *qdev)
  3261. {
  3262. int i, status = 0;
  3263. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  3264. if (status)
  3265. return status;
  3266. /* Clear all the entries in the routing table. */
  3267. for (i = 0; i < 16; i++) {
  3268. status = ql_set_routing_reg(qdev, i, 0, 0);
  3269. if (status) {
  3270. netif_err(qdev, ifup, qdev->ndev,
  3271. "Failed to init routing register for CAM packets.\n");
  3272. break;
  3273. }
  3274. }
  3275. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  3276. return status;
  3277. }
  3278. /* Initialize the frame-to-queue routing. */
  3279. static int ql_route_initialize(struct ql_adapter *qdev)
  3280. {
  3281. int status = 0;
  3282. /* Clear all the entries in the routing table. */
  3283. status = ql_clear_routing_entries(qdev);
  3284. if (status)
  3285. return status;
  3286. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  3287. if (status)
  3288. return status;
  3289. status = ql_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT,
  3290. RT_IDX_IP_CSUM_ERR, 1);
  3291. if (status) {
  3292. netif_err(qdev, ifup, qdev->ndev,
  3293. "Failed to init routing register "
  3294. "for IP CSUM error packets.\n");
  3295. goto exit;
  3296. }
  3297. status = ql_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT,
  3298. RT_IDX_TU_CSUM_ERR, 1);
  3299. if (status) {
  3300. netif_err(qdev, ifup, qdev->ndev,
  3301. "Failed to init routing register "
  3302. "for TCP/UDP CSUM error packets.\n");
  3303. goto exit;
  3304. }
  3305. status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
  3306. if (status) {
  3307. netif_err(qdev, ifup, qdev->ndev,
  3308. "Failed to init routing register for broadcast packets.\n");
  3309. goto exit;
  3310. }
  3311. /* If we have more than one inbound queue, then turn on RSS in the
  3312. * routing block.
  3313. */
  3314. if (qdev->rss_ring_count > 1) {
  3315. status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
  3316. RT_IDX_RSS_MATCH, 1);
  3317. if (status) {
  3318. netif_err(qdev, ifup, qdev->ndev,
  3319. "Failed to init routing register for MATCH RSS packets.\n");
  3320. goto exit;
  3321. }
  3322. }
  3323. status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
  3324. RT_IDX_CAM_HIT, 1);
  3325. if (status)
  3326. netif_err(qdev, ifup, qdev->ndev,
  3327. "Failed to init routing register for CAM packets.\n");
  3328. exit:
  3329. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  3330. return status;
  3331. }
  3332. int ql_cam_route_initialize(struct ql_adapter *qdev)
  3333. {
  3334. int status, set;
  3335. /* If check if the link is up and use to
  3336. * determine if we are setting or clearing
  3337. * the MAC address in the CAM.
  3338. */
  3339. set = ql_read32(qdev, STS);
  3340. set &= qdev->port_link_up;
  3341. status = ql_set_mac_addr(qdev, set);
  3342. if (status) {
  3343. netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
  3344. return status;
  3345. }
  3346. status = ql_route_initialize(qdev);
  3347. if (status)
  3348. netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");
  3349. return status;
  3350. }
  3351. static int ql_adapter_initialize(struct ql_adapter *qdev)
  3352. {
  3353. u32 value, mask;
  3354. int i;
  3355. int status = 0;
  3356. /*
  3357. * Set up the System register to halt on errors.
  3358. */
  3359. value = SYS_EFE | SYS_FAE;
  3360. mask = value << 16;
  3361. ql_write32(qdev, SYS, mask | value);
  3362. /* Set the default queue, and VLAN behavior. */
  3363. value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
  3364. mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
  3365. ql_write32(qdev, NIC_RCV_CFG, (mask | value));
  3366. /* Set the MPI interrupt to enabled. */
  3367. ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
  3368. /* Enable the function, set pagesize, enable error checking. */
  3369. value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
  3370. FSC_EC | FSC_VM_PAGE_4K;
  3371. value |= SPLT_SETTING;
  3372. /* Set/clear header splitting. */
  3373. mask = FSC_VM_PAGESIZE_MASK |
  3374. FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
  3375. ql_write32(qdev, FSC, mask | value);
  3376. ql_write32(qdev, SPLT_HDR, SPLT_LEN);
  3377. /* Set RX packet routing to use port/pci function on which the
  3378. * packet arrived on in addition to usual frame routing.
  3379. * This is helpful on bonding where both interfaces can have
  3380. * the same MAC address.
  3381. */
  3382. ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
  3383. /* Reroute all packets to our Interface.
  3384. * They may have been routed to MPI firmware
  3385. * due to WOL.
  3386. */
  3387. value = ql_read32(qdev, MGMT_RCV_CFG);
  3388. value &= ~MGMT_RCV_CFG_RM;
  3389. mask = 0xffff0000;
  3390. /* Sticky reg needs clearing due to WOL. */
  3391. ql_write32(qdev, MGMT_RCV_CFG, mask);
  3392. ql_write32(qdev, MGMT_RCV_CFG, mask | value);
  3393. /* Default WOL is enable on Mezz cards */
  3394. if (qdev->pdev->subsystem_device == 0x0068 ||
  3395. qdev->pdev->subsystem_device == 0x0180)
  3396. qdev->wol = WAKE_MAGIC;
  3397. /* Start up the rx queues. */
  3398. for (i = 0; i < qdev->rx_ring_count; i++) {
  3399. status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
  3400. if (status) {
  3401. netif_err(qdev, ifup, qdev->ndev,
  3402. "Failed to start rx ring[%d].\n", i);
  3403. return status;
  3404. }
  3405. }
  3406. /* If there is more than one inbound completion queue
  3407. * then download a RICB to configure RSS.
  3408. */
  3409. if (qdev->rss_ring_count > 1) {
  3410. status = ql_start_rss(qdev);
  3411. if (status) {
  3412. netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
  3413. return status;
  3414. }
  3415. }
  3416. /* Start up the tx queues. */
  3417. for (i = 0; i < qdev->tx_ring_count; i++) {
  3418. status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
  3419. if (status) {
  3420. netif_err(qdev, ifup, qdev->ndev,
  3421. "Failed to start tx ring[%d].\n", i);
  3422. return status;
  3423. }
  3424. }
  3425. /* Initialize the port and set the max framesize. */
  3426. status = qdev->nic_ops->port_initialize(qdev);
  3427. if (status)
  3428. netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");
  3429. /* Set up the MAC address and frame routing filter. */
  3430. status = ql_cam_route_initialize(qdev);
  3431. if (status) {
  3432. netif_err(qdev, ifup, qdev->ndev,
  3433. "Failed to init CAM/Routing tables.\n");
  3434. return status;
  3435. }
  3436. /* Start NAPI for the RSS queues. */
  3437. for (i = 0; i < qdev->rss_ring_count; i++) {
  3438. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3439. "Enabling NAPI for rx_ring[%d].\n", i);
  3440. napi_enable(&qdev->rx_ring[i].napi);
  3441. }
  3442. return status;
  3443. }
  3444. /* Issue soft reset to chip. */
  3445. static int ql_adapter_reset(struct ql_adapter *qdev)
  3446. {
  3447. u32 value;
  3448. int status = 0;
  3449. unsigned long end_jiffies;
  3450. /* Clear all the entries in the routing table. */
  3451. status = ql_clear_routing_entries(qdev);
  3452. if (status) {
  3453. netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
  3454. return status;
  3455. }
  3456. end_jiffies = jiffies +
  3457. max((unsigned long)1, usecs_to_jiffies(30));
  3458. /* Stop management traffic. */
  3459. ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
  3460. /* Wait for the NIC and MGMNT FIFOs to empty. */
  3461. ql_wait_fifo_empty(qdev);
  3462. ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
  3463. do {
  3464. value = ql_read32(qdev, RST_FO);
  3465. if ((value & RST_FO_FR) == 0)
  3466. break;
  3467. cpu_relax();
  3468. } while (time_before(jiffies, end_jiffies));
  3469. if (value & RST_FO_FR) {
  3470. netif_err(qdev, ifdown, qdev->ndev,
  3471. "ETIMEDOUT!!! errored out of resetting the chip!\n");
  3472. status = -ETIMEDOUT;
  3473. }
  3474. /* Resume management traffic. */
  3475. ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
  3476. return status;
  3477. }
  3478. static void ql_display_dev_info(struct net_device *ndev)
  3479. {
  3480. struct ql_adapter *qdev = netdev_priv(ndev);
  3481. netif_info(qdev, probe, qdev->ndev,
  3482. "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
  3483. "XG Roll = %d, XG Rev = %d.\n",
  3484. qdev->func,
  3485. qdev->port,
  3486. qdev->chip_rev_id & 0x0000000f,
  3487. qdev->chip_rev_id >> 4 & 0x0000000f,
  3488. qdev->chip_rev_id >> 8 & 0x0000000f,
  3489. qdev->chip_rev_id >> 12 & 0x0000000f);
  3490. netif_info(qdev, probe, qdev->ndev,
  3491. "MAC address %pM\n", ndev->dev_addr);
  3492. }
  3493. static int ql_wol(struct ql_adapter *qdev)
  3494. {
  3495. int status = 0;
  3496. u32 wol = MB_WOL_DISABLE;
  3497. /* The CAM is still intact after a reset, but if we
  3498. * are doing WOL, then we may need to program the
  3499. * routing regs. We would also need to issue the mailbox
  3500. * commands to instruct the MPI what to do per the ethtool
  3501. * settings.
  3502. */
  3503. if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
  3504. WAKE_MCAST | WAKE_BCAST)) {
  3505. netif_err(qdev, ifdown, qdev->ndev,
  3506. "Unsupported WOL paramter. qdev->wol = 0x%x.\n",
  3507. qdev->wol);
  3508. return -EINVAL;
  3509. }
  3510. if (qdev->wol & WAKE_MAGIC) {
  3511. status = ql_mb_wol_set_magic(qdev, 1);
  3512. if (status) {
  3513. netif_err(qdev, ifdown, qdev->ndev,
  3514. "Failed to set magic packet on %s.\n",
  3515. qdev->ndev->name);
  3516. return status;
  3517. } else
  3518. netif_info(qdev, drv, qdev->ndev,
  3519. "Enabled magic packet successfully on %s.\n",
  3520. qdev->ndev->name);
  3521. wol |= MB_WOL_MAGIC_PKT;
  3522. }
  3523. if (qdev->wol) {
  3524. wol |= MB_WOL_MODE_ON;
  3525. status = ql_mb_wol_mode(qdev, wol);
  3526. netif_err(qdev, drv, qdev->ndev,
  3527. "WOL %s (wol code 0x%x) on %s\n",
  3528. (status == 0) ? "Successfully set" : "Failed",
  3529. wol, qdev->ndev->name);
  3530. }
  3531. return status;
  3532. }
  3533. static void ql_cancel_all_work_sync(struct ql_adapter *qdev)
  3534. {
  3535. /* Don't kill the reset worker thread if we
  3536. * are in the process of recovery.
  3537. */
  3538. if (test_bit(QL_ADAPTER_UP, &qdev->flags))
  3539. cancel_delayed_work_sync(&qdev->asic_reset_work);
  3540. cancel_delayed_work_sync(&qdev->mpi_reset_work);
  3541. cancel_delayed_work_sync(&qdev->mpi_work);
  3542. cancel_delayed_work_sync(&qdev->mpi_idc_work);
  3543. cancel_delayed_work_sync(&qdev->mpi_core_to_log);
  3544. cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
  3545. }
  3546. static int ql_adapter_down(struct ql_adapter *qdev)
  3547. {
  3548. int i, status = 0;
  3549. ql_link_off(qdev);
  3550. ql_cancel_all_work_sync(qdev);
  3551. for (i = 0; i < qdev->rss_ring_count; i++)
  3552. napi_disable(&qdev->rx_ring[i].napi);
  3553. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  3554. ql_disable_interrupts(qdev);
  3555. ql_tx_ring_clean(qdev);
  3556. /* Call netif_napi_del() from common point.
  3557. */
  3558. for (i = 0; i < qdev->rss_ring_count; i++)
  3559. netif_napi_del(&qdev->rx_ring[i].napi);
  3560. status = ql_adapter_reset(qdev);
  3561. if (status)
  3562. netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
  3563. qdev->func);
  3564. ql_free_rx_buffers(qdev);
  3565. return status;
  3566. }
  3567. static int ql_adapter_up(struct ql_adapter *qdev)
  3568. {
  3569. int err = 0;
  3570. err = ql_adapter_initialize(qdev);
  3571. if (err) {
  3572. netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
  3573. goto err_init;
  3574. }
  3575. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3576. ql_alloc_rx_buffers(qdev);
  3577. /* If the port is initialized and the
  3578. * link is up the turn on the carrier.
  3579. */
  3580. if ((ql_read32(qdev, STS) & qdev->port_init) &&
  3581. (ql_read32(qdev, STS) & qdev->port_link_up))
  3582. ql_link_on(qdev);
  3583. /* Restore rx mode. */
  3584. clear_bit(QL_ALLMULTI, &qdev->flags);
  3585. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3586. qlge_set_multicast_list(qdev->ndev);
  3587. /* Restore vlan setting. */
  3588. qlge_restore_vlan(qdev);
  3589. ql_enable_interrupts(qdev);
  3590. ql_enable_all_completion_interrupts(qdev);
  3591. netif_tx_start_all_queues(qdev->ndev);
  3592. return 0;
  3593. err_init:
  3594. ql_adapter_reset(qdev);
  3595. return err;
  3596. }
  3597. static void ql_release_adapter_resources(struct ql_adapter *qdev)
  3598. {
  3599. ql_free_mem_resources(qdev);
  3600. ql_free_irq(qdev);
  3601. }
  3602. static int ql_get_adapter_resources(struct ql_adapter *qdev)
  3603. {
  3604. int status = 0;
  3605. if (ql_alloc_mem_resources(qdev)) {
  3606. netif_err(qdev, ifup, qdev->ndev, "Unable to allocate memory.\n");
  3607. return -ENOMEM;
  3608. }
  3609. status = ql_request_irq(qdev);
  3610. return status;
  3611. }
  3612. static int qlge_close(struct net_device *ndev)
  3613. {
  3614. struct ql_adapter *qdev = netdev_priv(ndev);
  3615. /* If we hit pci_channel_io_perm_failure
  3616. * failure condition, then we already
  3617. * brought the adapter down.
  3618. */
  3619. if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
  3620. netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
  3621. clear_bit(QL_EEH_FATAL, &qdev->flags);
  3622. return 0;
  3623. }
  3624. /*
  3625. * Wait for device to recover from a reset.
  3626. * (Rarely happens, but possible.)
  3627. */
  3628. while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
  3629. msleep(1);
  3630. ql_adapter_down(qdev);
  3631. ql_release_adapter_resources(qdev);
  3632. return 0;
  3633. }
  3634. static int ql_configure_rings(struct ql_adapter *qdev)
  3635. {
  3636. int i;
  3637. struct rx_ring *rx_ring;
  3638. struct tx_ring *tx_ring;
  3639. int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
  3640. unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
  3641. LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
  3642. qdev->lbq_buf_order = get_order(lbq_buf_len);
  3643. /* In a perfect world we have one RSS ring for each CPU
  3644. * and each has it's own vector. To do that we ask for
  3645. * cpu_cnt vectors. ql_enable_msix() will adjust the
  3646. * vector count to what we actually get. We then
  3647. * allocate an RSS ring for each.
  3648. * Essentially, we are doing min(cpu_count, msix_vector_count).
  3649. */
  3650. qdev->intr_count = cpu_cnt;
  3651. ql_enable_msix(qdev);
  3652. /* Adjust the RSS ring count to the actual vector count. */
  3653. qdev->rss_ring_count = qdev->intr_count;
  3654. qdev->tx_ring_count = cpu_cnt;
  3655. qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
  3656. for (i = 0; i < qdev->tx_ring_count; i++) {
  3657. tx_ring = &qdev->tx_ring[i];
  3658. memset((void *)tx_ring, 0, sizeof(*tx_ring));
  3659. tx_ring->qdev = qdev;
  3660. tx_ring->wq_id = i;
  3661. tx_ring->wq_len = qdev->tx_ring_size;
  3662. tx_ring->wq_size =
  3663. tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
  3664. /*
  3665. * The completion queue ID for the tx rings start
  3666. * immediately after the rss rings.
  3667. */
  3668. tx_ring->cq_id = qdev->rss_ring_count + i;
  3669. }
  3670. for (i = 0; i < qdev->rx_ring_count; i++) {
  3671. rx_ring = &qdev->rx_ring[i];
  3672. memset((void *)rx_ring, 0, sizeof(*rx_ring));
  3673. rx_ring->qdev = qdev;
  3674. rx_ring->cq_id = i;
  3675. rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
  3676. if (i < qdev->rss_ring_count) {
  3677. /*
  3678. * Inbound (RSS) queues.
  3679. */
  3680. rx_ring->cq_len = qdev->rx_ring_size;
  3681. rx_ring->cq_size =
  3682. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3683. rx_ring->lbq_len = NUM_LARGE_BUFFERS;
  3684. rx_ring->lbq_size =
  3685. rx_ring->lbq_len * sizeof(__le64);
  3686. rx_ring->lbq_buf_size = (u16)lbq_buf_len;
  3687. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3688. "lbq_buf_size %d, order = %d\n",
  3689. rx_ring->lbq_buf_size,
  3690. qdev->lbq_buf_order);
  3691. rx_ring->sbq_len = NUM_SMALL_BUFFERS;
  3692. rx_ring->sbq_size =
  3693. rx_ring->sbq_len * sizeof(__le64);
  3694. rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
  3695. rx_ring->type = RX_Q;
  3696. } else {
  3697. /*
  3698. * Outbound queue handles outbound completions only.
  3699. */
  3700. /* outbound cq is same size as tx_ring it services. */
  3701. rx_ring->cq_len = qdev->tx_ring_size;
  3702. rx_ring->cq_size =
  3703. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3704. rx_ring->lbq_len = 0;
  3705. rx_ring->lbq_size = 0;
  3706. rx_ring->lbq_buf_size = 0;
  3707. rx_ring->sbq_len = 0;
  3708. rx_ring->sbq_size = 0;
  3709. rx_ring->sbq_buf_size = 0;
  3710. rx_ring->type = TX_Q;
  3711. }
  3712. }
  3713. return 0;
  3714. }
  3715. static int qlge_open(struct net_device *ndev)
  3716. {
  3717. int err = 0;
  3718. struct ql_adapter *qdev = netdev_priv(ndev);
  3719. err = ql_adapter_reset(qdev);
  3720. if (err)
  3721. return err;
  3722. err = ql_configure_rings(qdev);
  3723. if (err)
  3724. return err;
  3725. err = ql_get_adapter_resources(qdev);
  3726. if (err)
  3727. goto error_up;
  3728. err = ql_adapter_up(qdev);
  3729. if (err)
  3730. goto error_up;
  3731. return err;
  3732. error_up:
  3733. ql_release_adapter_resources(qdev);
  3734. return err;
  3735. }
  3736. static int ql_change_rx_buffers(struct ql_adapter *qdev)
  3737. {
  3738. struct rx_ring *rx_ring;
  3739. int i, status;
  3740. u32 lbq_buf_len;
  3741. /* Wait for an outstanding reset to complete. */
  3742. if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
  3743. int i = 3;
  3744. while (i-- && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
  3745. netif_err(qdev, ifup, qdev->ndev,
  3746. "Waiting for adapter UP...\n");
  3747. ssleep(1);
  3748. }
  3749. if (!i) {
  3750. netif_err(qdev, ifup, qdev->ndev,
  3751. "Timed out waiting for adapter UP\n");
  3752. return -ETIMEDOUT;
  3753. }
  3754. }
  3755. status = ql_adapter_down(qdev);
  3756. if (status)
  3757. goto error;
  3758. /* Get the new rx buffer size. */
  3759. lbq_buf_len = (qdev->ndev->mtu > 1500) ?
  3760. LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
  3761. qdev->lbq_buf_order = get_order(lbq_buf_len);
  3762. for (i = 0; i < qdev->rss_ring_count; i++) {
  3763. rx_ring = &qdev->rx_ring[i];
  3764. /* Set the new size. */
  3765. rx_ring->lbq_buf_size = lbq_buf_len;
  3766. }
  3767. status = ql_adapter_up(qdev);
  3768. if (status)
  3769. goto error;
  3770. return status;
  3771. error:
  3772. netif_alert(qdev, ifup, qdev->ndev,
  3773. "Driver up/down cycle failed, closing device.\n");
  3774. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3775. dev_close(qdev->ndev);
  3776. return status;
  3777. }
  3778. static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
  3779. {
  3780. struct ql_adapter *qdev = netdev_priv(ndev);
  3781. int status;
  3782. if (ndev->mtu == 1500 && new_mtu == 9000) {
  3783. netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
  3784. } else if (ndev->mtu == 9000 && new_mtu == 1500) {
  3785. netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
  3786. } else
  3787. return -EINVAL;
  3788. queue_delayed_work(qdev->workqueue,
  3789. &qdev->mpi_port_cfg_work, 3*HZ);
  3790. ndev->mtu = new_mtu;
  3791. if (!netif_running(qdev->ndev)) {
  3792. return 0;
  3793. }
  3794. status = ql_change_rx_buffers(qdev);
  3795. if (status) {
  3796. netif_err(qdev, ifup, qdev->ndev,
  3797. "Changing MTU failed.\n");
  3798. }
  3799. return status;
  3800. }
  3801. static struct net_device_stats *qlge_get_stats(struct net_device
  3802. *ndev)
  3803. {
  3804. struct ql_adapter *qdev = netdev_priv(ndev);
  3805. struct rx_ring *rx_ring = &qdev->rx_ring[0];
  3806. struct tx_ring *tx_ring = &qdev->tx_ring[0];
  3807. unsigned long pkts, mcast, dropped, errors, bytes;
  3808. int i;
  3809. /* Get RX stats. */
  3810. pkts = mcast = dropped = errors = bytes = 0;
  3811. for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
  3812. pkts += rx_ring->rx_packets;
  3813. bytes += rx_ring->rx_bytes;
  3814. dropped += rx_ring->rx_dropped;
  3815. errors += rx_ring->rx_errors;
  3816. mcast += rx_ring->rx_multicast;
  3817. }
  3818. ndev->stats.rx_packets = pkts;
  3819. ndev->stats.rx_bytes = bytes;
  3820. ndev->stats.rx_dropped = dropped;
  3821. ndev->stats.rx_errors = errors;
  3822. ndev->stats.multicast = mcast;
  3823. /* Get TX stats. */
  3824. pkts = errors = bytes = 0;
  3825. for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
  3826. pkts += tx_ring->tx_packets;
  3827. bytes += tx_ring->tx_bytes;
  3828. errors += tx_ring->tx_errors;
  3829. }
  3830. ndev->stats.tx_packets = pkts;
  3831. ndev->stats.tx_bytes = bytes;
  3832. ndev->stats.tx_errors = errors;
  3833. return &ndev->stats;
  3834. }
  3835. static void qlge_set_multicast_list(struct net_device *ndev)
  3836. {
  3837. struct ql_adapter *qdev = netdev_priv(ndev);
  3838. struct netdev_hw_addr *ha;
  3839. int i, status;
  3840. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  3841. if (status)
  3842. return;
  3843. /*
  3844. * Set or clear promiscuous mode if a
  3845. * transition is taking place.
  3846. */
  3847. if (ndev->flags & IFF_PROMISC) {
  3848. if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3849. if (ql_set_routing_reg
  3850. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
  3851. netif_err(qdev, hw, qdev->ndev,
  3852. "Failed to set promiscuous mode.\n");
  3853. } else {
  3854. set_bit(QL_PROMISCUOUS, &qdev->flags);
  3855. }
  3856. }
  3857. } else {
  3858. if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3859. if (ql_set_routing_reg
  3860. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
  3861. netif_err(qdev, hw, qdev->ndev,
  3862. "Failed to clear promiscuous mode.\n");
  3863. } else {
  3864. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3865. }
  3866. }
  3867. }
  3868. /*
  3869. * Set or clear all multicast mode if a
  3870. * transition is taking place.
  3871. */
  3872. if ((ndev->flags & IFF_ALLMULTI) ||
  3873. (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
  3874. if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
  3875. if (ql_set_routing_reg
  3876. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
  3877. netif_err(qdev, hw, qdev->ndev,
  3878. "Failed to set all-multi mode.\n");
  3879. } else {
  3880. set_bit(QL_ALLMULTI, &qdev->flags);
  3881. }
  3882. }
  3883. } else {
  3884. if (test_bit(QL_ALLMULTI, &qdev->flags)) {
  3885. if (ql_set_routing_reg
  3886. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
  3887. netif_err(qdev, hw, qdev->ndev,
  3888. "Failed to clear all-multi mode.\n");
  3889. } else {
  3890. clear_bit(QL_ALLMULTI, &qdev->flags);
  3891. }
  3892. }
  3893. }
  3894. if (!netdev_mc_empty(ndev)) {
  3895. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  3896. if (status)
  3897. goto exit;
  3898. i = 0;
  3899. netdev_for_each_mc_addr(ha, ndev) {
  3900. if (ql_set_mac_addr_reg(qdev, (u8 *) ha->addr,
  3901. MAC_ADDR_TYPE_MULTI_MAC, i)) {
  3902. netif_err(qdev, hw, qdev->ndev,
  3903. "Failed to loadmulticast address.\n");
  3904. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3905. goto exit;
  3906. }
  3907. i++;
  3908. }
  3909. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3910. if (ql_set_routing_reg
  3911. (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
  3912. netif_err(qdev, hw, qdev->ndev,
  3913. "Failed to set multicast match mode.\n");
  3914. } else {
  3915. set_bit(QL_ALLMULTI, &qdev->flags);
  3916. }
  3917. }
  3918. exit:
  3919. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  3920. }
  3921. static int qlge_set_mac_address(struct net_device *ndev, void *p)
  3922. {
  3923. struct ql_adapter *qdev = netdev_priv(ndev);
  3924. struct sockaddr *addr = p;
  3925. int status;
  3926. if (!is_valid_ether_addr(addr->sa_data))
  3927. return -EADDRNOTAVAIL;
  3928. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  3929. /* Update local copy of current mac address. */
  3930. memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
  3931. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  3932. if (status)
  3933. return status;
  3934. status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
  3935. MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
  3936. if (status)
  3937. netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
  3938. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3939. return status;
  3940. }
  3941. static void qlge_tx_timeout(struct net_device *ndev)
  3942. {
  3943. struct ql_adapter *qdev = netdev_priv(ndev);
  3944. ql_queue_asic_error(qdev);
  3945. }
  3946. static void ql_asic_reset_work(struct work_struct *work)
  3947. {
  3948. struct ql_adapter *qdev =
  3949. container_of(work, struct ql_adapter, asic_reset_work.work);
  3950. int status;
  3951. rtnl_lock();
  3952. status = ql_adapter_down(qdev);
  3953. if (status)
  3954. goto error;
  3955. status = ql_adapter_up(qdev);
  3956. if (status)
  3957. goto error;
  3958. /* Restore rx mode. */
  3959. clear_bit(QL_ALLMULTI, &qdev->flags);
  3960. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3961. qlge_set_multicast_list(qdev->ndev);
  3962. rtnl_unlock();
  3963. return;
  3964. error:
  3965. netif_alert(qdev, ifup, qdev->ndev,
  3966. "Driver up/down cycle failed, closing device\n");
  3967. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3968. dev_close(qdev->ndev);
  3969. rtnl_unlock();
  3970. }
  3971. static const struct nic_operations qla8012_nic_ops = {
  3972. .get_flash = ql_get_8012_flash_params,
  3973. .port_initialize = ql_8012_port_initialize,
  3974. };
  3975. static const struct nic_operations qla8000_nic_ops = {
  3976. .get_flash = ql_get_8000_flash_params,
  3977. .port_initialize = ql_8000_port_initialize,
  3978. };
  3979. /* Find the pcie function number for the other NIC
  3980. * on this chip. Since both NIC functions share a
  3981. * common firmware we have the lowest enabled function
  3982. * do any common work. Examples would be resetting
  3983. * after a fatal firmware error, or doing a firmware
  3984. * coredump.
  3985. */
  3986. static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
  3987. {
  3988. int status = 0;
  3989. u32 temp;
  3990. u32 nic_func1, nic_func2;
  3991. status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
  3992. &temp);
  3993. if (status)
  3994. return status;
  3995. nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
  3996. MPI_TEST_NIC_FUNC_MASK);
  3997. nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
  3998. MPI_TEST_NIC_FUNC_MASK);
  3999. if (qdev->func == nic_func1)
  4000. qdev->alt_func = nic_func2;
  4001. else if (qdev->func == nic_func2)
  4002. qdev->alt_func = nic_func1;
  4003. else
  4004. status = -EIO;
  4005. return status;
  4006. }
  4007. static int ql_get_board_info(struct ql_adapter *qdev)
  4008. {
  4009. int status;
  4010. qdev->func =
  4011. (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
  4012. if (qdev->func > 3)
  4013. return -EIO;
  4014. status = ql_get_alt_pcie_func(qdev);
  4015. if (status)
  4016. return status;
  4017. qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
  4018. if (qdev->port) {
  4019. qdev->xg_sem_mask = SEM_XGMAC1_MASK;
  4020. qdev->port_link_up = STS_PL1;
  4021. qdev->port_init = STS_PI1;
  4022. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
  4023. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
  4024. } else {
  4025. qdev->xg_sem_mask = SEM_XGMAC0_MASK;
  4026. qdev->port_link_up = STS_PL0;
  4027. qdev->port_init = STS_PI0;
  4028. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
  4029. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
  4030. }
  4031. qdev->chip_rev_id = ql_read32(qdev, REV_ID);
  4032. qdev->device_id = qdev->pdev->device;
  4033. if (qdev->device_id == QLGE_DEVICE_ID_8012)
  4034. qdev->nic_ops = &qla8012_nic_ops;
  4035. else if (qdev->device_id == QLGE_DEVICE_ID_8000)
  4036. qdev->nic_ops = &qla8000_nic_ops;
  4037. return status;
  4038. }
  4039. static void ql_release_all(struct pci_dev *pdev)
  4040. {
  4041. struct net_device *ndev = pci_get_drvdata(pdev);
  4042. struct ql_adapter *qdev = netdev_priv(ndev);
  4043. if (qdev->workqueue) {
  4044. destroy_workqueue(qdev->workqueue);
  4045. qdev->workqueue = NULL;
  4046. }
  4047. if (qdev->reg_base)
  4048. iounmap(qdev->reg_base);
  4049. if (qdev->doorbell_area)
  4050. iounmap(qdev->doorbell_area);
  4051. vfree(qdev->mpi_coredump);
  4052. pci_release_regions(pdev);
  4053. pci_set_drvdata(pdev, NULL);
  4054. }
  4055. static int __devinit ql_init_device(struct pci_dev *pdev,
  4056. struct net_device *ndev, int cards_found)
  4057. {
  4058. struct ql_adapter *qdev = netdev_priv(ndev);
  4059. int err = 0;
  4060. memset((void *)qdev, 0, sizeof(*qdev));
  4061. err = pci_enable_device(pdev);
  4062. if (err) {
  4063. dev_err(&pdev->dev, "PCI device enable failed.\n");
  4064. return err;
  4065. }
  4066. qdev->ndev = ndev;
  4067. qdev->pdev = pdev;
  4068. pci_set_drvdata(pdev, ndev);
  4069. /* Set PCIe read request size */
  4070. err = pcie_set_readrq(pdev, 4096);
  4071. if (err) {
  4072. dev_err(&pdev->dev, "Set readrq failed.\n");
  4073. goto err_out1;
  4074. }
  4075. err = pci_request_regions(pdev, DRV_NAME);
  4076. if (err) {
  4077. dev_err(&pdev->dev, "PCI region request failed.\n");
  4078. return err;
  4079. }
  4080. pci_set_master(pdev);
  4081. if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
  4082. set_bit(QL_DMA64, &qdev->flags);
  4083. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
  4084. } else {
  4085. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  4086. if (!err)
  4087. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  4088. }
  4089. if (err) {
  4090. dev_err(&pdev->dev, "No usable DMA configuration.\n");
  4091. goto err_out2;
  4092. }
  4093. /* Set PCIe reset type for EEH to fundamental. */
  4094. pdev->needs_freset = 1;
  4095. pci_save_state(pdev);
  4096. qdev->reg_base =
  4097. ioremap_nocache(pci_resource_start(pdev, 1),
  4098. pci_resource_len(pdev, 1));
  4099. if (!qdev->reg_base) {
  4100. dev_err(&pdev->dev, "Register mapping failed.\n");
  4101. err = -ENOMEM;
  4102. goto err_out2;
  4103. }
  4104. qdev->doorbell_area_size = pci_resource_len(pdev, 3);
  4105. qdev->doorbell_area =
  4106. ioremap_nocache(pci_resource_start(pdev, 3),
  4107. pci_resource_len(pdev, 3));
  4108. if (!qdev->doorbell_area) {
  4109. dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
  4110. err = -ENOMEM;
  4111. goto err_out2;
  4112. }
  4113. err = ql_get_board_info(qdev);
  4114. if (err) {
  4115. dev_err(&pdev->dev, "Register access failed.\n");
  4116. err = -EIO;
  4117. goto err_out2;
  4118. }
  4119. qdev->msg_enable = netif_msg_init(debug, default_msg);
  4120. spin_lock_init(&qdev->hw_lock);
  4121. spin_lock_init(&qdev->stats_lock);
  4122. if (qlge_mpi_coredump) {
  4123. qdev->mpi_coredump =
  4124. vmalloc(sizeof(struct ql_mpi_coredump));
  4125. if (qdev->mpi_coredump == NULL) {
  4126. dev_err(&pdev->dev, "Coredump alloc failed.\n");
  4127. err = -ENOMEM;
  4128. goto err_out2;
  4129. }
  4130. if (qlge_force_coredump)
  4131. set_bit(QL_FRC_COREDUMP, &qdev->flags);
  4132. }
  4133. /* make sure the EEPROM is good */
  4134. err = qdev->nic_ops->get_flash(qdev);
  4135. if (err) {
  4136. dev_err(&pdev->dev, "Invalid FLASH.\n");
  4137. goto err_out2;
  4138. }
  4139. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  4140. /* Keep local copy of current mac address. */
  4141. memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
  4142. /* Set up the default ring sizes. */
  4143. qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
  4144. qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
  4145. /* Set up the coalescing parameters. */
  4146. qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
  4147. qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
  4148. qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  4149. qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  4150. /*
  4151. * Set up the operating parameters.
  4152. */
  4153. qdev->workqueue = create_singlethread_workqueue(ndev->name);
  4154. INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
  4155. INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
  4156. INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
  4157. INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
  4158. INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
  4159. INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
  4160. init_completion(&qdev->ide_completion);
  4161. mutex_init(&qdev->mpi_mutex);
  4162. if (!cards_found) {
  4163. dev_info(&pdev->dev, "%s\n", DRV_STRING);
  4164. dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
  4165. DRV_NAME, DRV_VERSION);
  4166. }
  4167. return 0;
  4168. err_out2:
  4169. ql_release_all(pdev);
  4170. err_out1:
  4171. pci_disable_device(pdev);
  4172. return err;
  4173. }
  4174. static const struct net_device_ops qlge_netdev_ops = {
  4175. .ndo_open = qlge_open,
  4176. .ndo_stop = qlge_close,
  4177. .ndo_start_xmit = qlge_send,
  4178. .ndo_change_mtu = qlge_change_mtu,
  4179. .ndo_get_stats = qlge_get_stats,
  4180. .ndo_set_multicast_list = qlge_set_multicast_list,
  4181. .ndo_set_mac_address = qlge_set_mac_address,
  4182. .ndo_validate_addr = eth_validate_addr,
  4183. .ndo_tx_timeout = qlge_tx_timeout,
  4184. .ndo_vlan_rx_register = qlge_vlan_rx_register,
  4185. .ndo_vlan_rx_add_vid = qlge_vlan_rx_add_vid,
  4186. .ndo_vlan_rx_kill_vid = qlge_vlan_rx_kill_vid,
  4187. };
  4188. static void ql_timer(unsigned long data)
  4189. {
  4190. struct ql_adapter *qdev = (struct ql_adapter *)data;
  4191. u32 var = 0;
  4192. var = ql_read32(qdev, STS);
  4193. if (pci_channel_offline(qdev->pdev)) {
  4194. netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
  4195. return;
  4196. }
  4197. mod_timer(&qdev->timer, jiffies + (5*HZ));
  4198. }
  4199. static int __devinit qlge_probe(struct pci_dev *pdev,
  4200. const struct pci_device_id *pci_entry)
  4201. {
  4202. struct net_device *ndev = NULL;
  4203. struct ql_adapter *qdev = NULL;
  4204. static int cards_found = 0;
  4205. int err = 0;
  4206. ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
  4207. min(MAX_CPUS, (int)num_online_cpus()));
  4208. if (!ndev)
  4209. return -ENOMEM;
  4210. err = ql_init_device(pdev, ndev, cards_found);
  4211. if (err < 0) {
  4212. free_netdev(ndev);
  4213. return err;
  4214. }
  4215. qdev = netdev_priv(ndev);
  4216. SET_NETDEV_DEV(ndev, &pdev->dev);
  4217. ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
  4218. NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN |
  4219. NETIF_F_HW_VLAN_TX | NETIF_F_RXCSUM;
  4220. ndev->features = ndev->hw_features |
  4221. NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER;
  4222. if (test_bit(QL_DMA64, &qdev->flags))
  4223. ndev->features |= NETIF_F_HIGHDMA;
  4224. /*
  4225. * Set up net_device structure.
  4226. */
  4227. ndev->tx_queue_len = qdev->tx_ring_size;
  4228. ndev->irq = pdev->irq;
  4229. ndev->netdev_ops = &qlge_netdev_ops;
  4230. SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
  4231. ndev->watchdog_timeo = 10 * HZ;
  4232. err = register_netdev(ndev);
  4233. if (err) {
  4234. dev_err(&pdev->dev, "net device registration failed.\n");
  4235. ql_release_all(pdev);
  4236. pci_disable_device(pdev);
  4237. return err;
  4238. }
  4239. /* Start up the timer to trigger EEH if
  4240. * the bus goes dead
  4241. */
  4242. init_timer_deferrable(&qdev->timer);
  4243. qdev->timer.data = (unsigned long)qdev;
  4244. qdev->timer.function = ql_timer;
  4245. qdev->timer.expires = jiffies + (5*HZ);
  4246. add_timer(&qdev->timer);
  4247. ql_link_off(qdev);
  4248. ql_display_dev_info(ndev);
  4249. atomic_set(&qdev->lb_count, 0);
  4250. cards_found++;
  4251. return 0;
  4252. }
  4253. netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
  4254. {
  4255. return qlge_send(skb, ndev);
  4256. }
  4257. int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
  4258. {
  4259. return ql_clean_inbound_rx_ring(rx_ring, budget);
  4260. }
  4261. static void __devexit qlge_remove(struct pci_dev *pdev)
  4262. {
  4263. struct net_device *ndev = pci_get_drvdata(pdev);
  4264. struct ql_adapter *qdev = netdev_priv(ndev);
  4265. del_timer_sync(&qdev->timer);
  4266. ql_cancel_all_work_sync(qdev);
  4267. unregister_netdev(ndev);
  4268. ql_release_all(pdev);
  4269. pci_disable_device(pdev);
  4270. free_netdev(ndev);
  4271. }
  4272. /* Clean up resources without touching hardware. */
  4273. static void ql_eeh_close(struct net_device *ndev)
  4274. {
  4275. int i;
  4276. struct ql_adapter *qdev = netdev_priv(ndev);
  4277. if (netif_carrier_ok(ndev)) {
  4278. netif_carrier_off(ndev);
  4279. netif_stop_queue(ndev);
  4280. }
  4281. /* Disabling the timer */
  4282. del_timer_sync(&qdev->timer);
  4283. ql_cancel_all_work_sync(qdev);
  4284. for (i = 0; i < qdev->rss_ring_count; i++)
  4285. netif_napi_del(&qdev->rx_ring[i].napi);
  4286. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  4287. ql_tx_ring_clean(qdev);
  4288. ql_free_rx_buffers(qdev);
  4289. ql_release_adapter_resources(qdev);
  4290. }
  4291. /*
  4292. * This callback is called by the PCI subsystem whenever
  4293. * a PCI bus error is detected.
  4294. */
  4295. static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
  4296. enum pci_channel_state state)
  4297. {
  4298. struct net_device *ndev = pci_get_drvdata(pdev);
  4299. struct ql_adapter *qdev = netdev_priv(ndev);
  4300. switch (state) {
  4301. case pci_channel_io_normal:
  4302. return PCI_ERS_RESULT_CAN_RECOVER;
  4303. case pci_channel_io_frozen:
  4304. netif_device_detach(ndev);
  4305. if (netif_running(ndev))
  4306. ql_eeh_close(ndev);
  4307. pci_disable_device(pdev);
  4308. return PCI_ERS_RESULT_NEED_RESET;
  4309. case pci_channel_io_perm_failure:
  4310. dev_err(&pdev->dev,
  4311. "%s: pci_channel_io_perm_failure.\n", __func__);
  4312. ql_eeh_close(ndev);
  4313. set_bit(QL_EEH_FATAL, &qdev->flags);
  4314. return PCI_ERS_RESULT_DISCONNECT;
  4315. }
  4316. /* Request a slot reset. */
  4317. return PCI_ERS_RESULT_NEED_RESET;
  4318. }
  4319. /*
  4320. * This callback is called after the PCI buss has been reset.
  4321. * Basically, this tries to restart the card from scratch.
  4322. * This is a shortened version of the device probe/discovery code,
  4323. * it resembles the first-half of the () routine.
  4324. */
  4325. static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
  4326. {
  4327. struct net_device *ndev = pci_get_drvdata(pdev);
  4328. struct ql_adapter *qdev = netdev_priv(ndev);
  4329. pdev->error_state = pci_channel_io_normal;
  4330. pci_restore_state(pdev);
  4331. if (pci_enable_device(pdev)) {
  4332. netif_err(qdev, ifup, qdev->ndev,
  4333. "Cannot re-enable PCI device after reset.\n");
  4334. return PCI_ERS_RESULT_DISCONNECT;
  4335. }
  4336. pci_set_master(pdev);
  4337. if (ql_adapter_reset(qdev)) {
  4338. netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
  4339. set_bit(QL_EEH_FATAL, &qdev->flags);
  4340. return PCI_ERS_RESULT_DISCONNECT;
  4341. }
  4342. return PCI_ERS_RESULT_RECOVERED;
  4343. }
  4344. static void qlge_io_resume(struct pci_dev *pdev)
  4345. {
  4346. struct net_device *ndev = pci_get_drvdata(pdev);
  4347. struct ql_adapter *qdev = netdev_priv(ndev);
  4348. int err = 0;
  4349. if (netif_running(ndev)) {
  4350. err = qlge_open(ndev);
  4351. if (err) {
  4352. netif_err(qdev, ifup, qdev->ndev,
  4353. "Device initialization failed after reset.\n");
  4354. return;
  4355. }
  4356. } else {
  4357. netif_err(qdev, ifup, qdev->ndev,
  4358. "Device was not running prior to EEH.\n");
  4359. }
  4360. mod_timer(&qdev->timer, jiffies + (5*HZ));
  4361. netif_device_attach(ndev);
  4362. }
  4363. static struct pci_error_handlers qlge_err_handler = {
  4364. .error_detected = qlge_io_error_detected,
  4365. .slot_reset = qlge_io_slot_reset,
  4366. .resume = qlge_io_resume,
  4367. };
  4368. static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
  4369. {
  4370. struct net_device *ndev = pci_get_drvdata(pdev);
  4371. struct ql_adapter *qdev = netdev_priv(ndev);
  4372. int err;
  4373. netif_device_detach(ndev);
  4374. del_timer_sync(&qdev->timer);
  4375. if (netif_running(ndev)) {
  4376. err = ql_adapter_down(qdev);
  4377. if (!err)
  4378. return err;
  4379. }
  4380. ql_wol(qdev);
  4381. err = pci_save_state(pdev);
  4382. if (err)
  4383. return err;
  4384. pci_disable_device(pdev);
  4385. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  4386. return 0;
  4387. }
  4388. #ifdef CONFIG_PM
  4389. static int qlge_resume(struct pci_dev *pdev)
  4390. {
  4391. struct net_device *ndev = pci_get_drvdata(pdev);
  4392. struct ql_adapter *qdev = netdev_priv(ndev);
  4393. int err;
  4394. pci_set_power_state(pdev, PCI_D0);
  4395. pci_restore_state(pdev);
  4396. err = pci_enable_device(pdev);
  4397. if (err) {
  4398. netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
  4399. return err;
  4400. }
  4401. pci_set_master(pdev);
  4402. pci_enable_wake(pdev, PCI_D3hot, 0);
  4403. pci_enable_wake(pdev, PCI_D3cold, 0);
  4404. if (netif_running(ndev)) {
  4405. err = ql_adapter_up(qdev);
  4406. if (err)
  4407. return err;
  4408. }
  4409. mod_timer(&qdev->timer, jiffies + (5*HZ));
  4410. netif_device_attach(ndev);
  4411. return 0;
  4412. }
  4413. #endif /* CONFIG_PM */
  4414. static void qlge_shutdown(struct pci_dev *pdev)
  4415. {
  4416. qlge_suspend(pdev, PMSG_SUSPEND);
  4417. }
  4418. static struct pci_driver qlge_driver = {
  4419. .name = DRV_NAME,
  4420. .id_table = qlge_pci_tbl,
  4421. .probe = qlge_probe,
  4422. .remove = __devexit_p(qlge_remove),
  4423. #ifdef CONFIG_PM
  4424. .suspend = qlge_suspend,
  4425. .resume = qlge_resume,
  4426. #endif
  4427. .shutdown = qlge_shutdown,
  4428. .err_handler = &qlge_err_handler
  4429. };
  4430. static int __init qlge_init_module(void)
  4431. {
  4432. return pci_register_driver(&qlge_driver);
  4433. }
  4434. static void __exit qlge_exit(void)
  4435. {
  4436. pci_unregister_driver(&qlge_driver);
  4437. }
  4438. module_init(qlge_init_module);
  4439. module_exit(qlge_exit);