mlock.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771
  1. /*
  2. * linux/mm/mlock.c
  3. *
  4. * (C) Copyright 1995 Linus Torvalds
  5. * (C) Copyright 2002 Christoph Hellwig
  6. */
  7. #include <linux/capability.h>
  8. #include <linux/mman.h>
  9. #include <linux/mm.h>
  10. #include <linux/swap.h>
  11. #include <linux/swapops.h>
  12. #include <linux/pagemap.h>
  13. #include <linux/pagevec.h>
  14. #include <linux/mempolicy.h>
  15. #include <linux/syscalls.h>
  16. #include <linux/sched.h>
  17. #include <linux/export.h>
  18. #include <linux/rmap.h>
  19. #include <linux/mmzone.h>
  20. #include <linux/hugetlb.h>
  21. #include <linux/memcontrol.h>
  22. #include <linux/mm_inline.h>
  23. #include "internal.h"
  24. int can_do_mlock(void)
  25. {
  26. if (capable(CAP_IPC_LOCK))
  27. return 1;
  28. if (rlimit(RLIMIT_MEMLOCK) != 0)
  29. return 1;
  30. return 0;
  31. }
  32. EXPORT_SYMBOL(can_do_mlock);
  33. /*
  34. * Mlocked pages are marked with PageMlocked() flag for efficient testing
  35. * in vmscan and, possibly, the fault path; and to support semi-accurate
  36. * statistics.
  37. *
  38. * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
  39. * be placed on the LRU "unevictable" list, rather than the [in]active lists.
  40. * The unevictable list is an LRU sibling list to the [in]active lists.
  41. * PageUnevictable is set to indicate the unevictable state.
  42. *
  43. * When lazy mlocking via vmscan, it is important to ensure that the
  44. * vma's VM_LOCKED status is not concurrently being modified, otherwise we
  45. * may have mlocked a page that is being munlocked. So lazy mlock must take
  46. * the mmap_sem for read, and verify that the vma really is locked
  47. * (see mm/rmap.c).
  48. */
  49. /*
  50. * LRU accounting for clear_page_mlock()
  51. */
  52. void clear_page_mlock(struct page *page)
  53. {
  54. if (!TestClearPageMlocked(page))
  55. return;
  56. mod_zone_page_state(page_zone(page), NR_MLOCK,
  57. -hpage_nr_pages(page));
  58. count_vm_event(UNEVICTABLE_PGCLEARED);
  59. if (!isolate_lru_page(page)) {
  60. putback_lru_page(page);
  61. } else {
  62. /*
  63. * We lost the race. the page already moved to evictable list.
  64. */
  65. if (PageUnevictable(page))
  66. count_vm_event(UNEVICTABLE_PGSTRANDED);
  67. }
  68. }
  69. /*
  70. * Mark page as mlocked if not already.
  71. * If page on LRU, isolate and putback to move to unevictable list.
  72. */
  73. void mlock_vma_page(struct page *page)
  74. {
  75. BUG_ON(!PageLocked(page));
  76. if (!TestSetPageMlocked(page)) {
  77. mod_zone_page_state(page_zone(page), NR_MLOCK,
  78. hpage_nr_pages(page));
  79. count_vm_event(UNEVICTABLE_PGMLOCKED);
  80. if (!isolate_lru_page(page))
  81. putback_lru_page(page);
  82. }
  83. }
  84. /*
  85. * Finish munlock after successful page isolation
  86. *
  87. * Page must be locked. This is a wrapper for try_to_munlock()
  88. * and putback_lru_page() with munlock accounting.
  89. */
  90. static void __munlock_isolated_page(struct page *page)
  91. {
  92. int ret = SWAP_AGAIN;
  93. /*
  94. * Optimization: if the page was mapped just once, that's our mapping
  95. * and we don't need to check all the other vmas.
  96. */
  97. if (page_mapcount(page) > 1)
  98. ret = try_to_munlock(page);
  99. /* Did try_to_unlock() succeed or punt? */
  100. if (ret != SWAP_MLOCK)
  101. count_vm_event(UNEVICTABLE_PGMUNLOCKED);
  102. putback_lru_page(page);
  103. }
  104. /*
  105. * Accounting for page isolation fail during munlock
  106. *
  107. * Performs accounting when page isolation fails in munlock. There is nothing
  108. * else to do because it means some other task has already removed the page
  109. * from the LRU. putback_lru_page() will take care of removing the page from
  110. * the unevictable list, if necessary. vmscan [page_referenced()] will move
  111. * the page back to the unevictable list if some other vma has it mlocked.
  112. */
  113. static void __munlock_isolation_failed(struct page *page)
  114. {
  115. if (PageUnevictable(page))
  116. count_vm_event(UNEVICTABLE_PGSTRANDED);
  117. else
  118. count_vm_event(UNEVICTABLE_PGMUNLOCKED);
  119. }
  120. /**
  121. * munlock_vma_page - munlock a vma page
  122. * @page - page to be unlocked
  123. *
  124. * called from munlock()/munmap() path with page supposedly on the LRU.
  125. * When we munlock a page, because the vma where we found the page is being
  126. * munlock()ed or munmap()ed, we want to check whether other vmas hold the
  127. * page locked so that we can leave it on the unevictable lru list and not
  128. * bother vmscan with it. However, to walk the page's rmap list in
  129. * try_to_munlock() we must isolate the page from the LRU. If some other
  130. * task has removed the page from the LRU, we won't be able to do that.
  131. * So we clear the PageMlocked as we might not get another chance. If we
  132. * can't isolate the page, we leave it for putback_lru_page() and vmscan
  133. * [page_referenced()/try_to_unmap()] to deal with.
  134. */
  135. unsigned int munlock_vma_page(struct page *page)
  136. {
  137. unsigned int page_mask = 0;
  138. BUG_ON(!PageLocked(page));
  139. if (TestClearPageMlocked(page)) {
  140. unsigned int nr_pages = hpage_nr_pages(page);
  141. mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
  142. page_mask = nr_pages - 1;
  143. if (!isolate_lru_page(page))
  144. __munlock_isolated_page(page);
  145. else
  146. __munlock_isolation_failed(page);
  147. }
  148. return page_mask;
  149. }
  150. /**
  151. * __mlock_vma_pages_range() - mlock a range of pages in the vma.
  152. * @vma: target vma
  153. * @start: start address
  154. * @end: end address
  155. *
  156. * This takes care of making the pages present too.
  157. *
  158. * return 0 on success, negative error code on error.
  159. *
  160. * vma->vm_mm->mmap_sem must be held for at least read.
  161. */
  162. long __mlock_vma_pages_range(struct vm_area_struct *vma,
  163. unsigned long start, unsigned long end, int *nonblocking)
  164. {
  165. struct mm_struct *mm = vma->vm_mm;
  166. unsigned long nr_pages = (end - start) / PAGE_SIZE;
  167. int gup_flags;
  168. VM_BUG_ON(start & ~PAGE_MASK);
  169. VM_BUG_ON(end & ~PAGE_MASK);
  170. VM_BUG_ON(start < vma->vm_start);
  171. VM_BUG_ON(end > vma->vm_end);
  172. VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
  173. gup_flags = FOLL_TOUCH | FOLL_MLOCK;
  174. /*
  175. * We want to touch writable mappings with a write fault in order
  176. * to break COW, except for shared mappings because these don't COW
  177. * and we would not want to dirty them for nothing.
  178. */
  179. if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
  180. gup_flags |= FOLL_WRITE;
  181. /*
  182. * We want mlock to succeed for regions that have any permissions
  183. * other than PROT_NONE.
  184. */
  185. if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
  186. gup_flags |= FOLL_FORCE;
  187. /*
  188. * We made sure addr is within a VMA, so the following will
  189. * not result in a stack expansion that recurses back here.
  190. */
  191. return __get_user_pages(current, mm, start, nr_pages, gup_flags,
  192. NULL, NULL, nonblocking);
  193. }
  194. /*
  195. * convert get_user_pages() return value to posix mlock() error
  196. */
  197. static int __mlock_posix_error_return(long retval)
  198. {
  199. if (retval == -EFAULT)
  200. retval = -ENOMEM;
  201. else if (retval == -ENOMEM)
  202. retval = -EAGAIN;
  203. return retval;
  204. }
  205. /*
  206. * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
  207. *
  208. * The fast path is available only for evictable pages with single mapping.
  209. * Then we can bypass the per-cpu pvec and get better performance.
  210. * when mapcount > 1 we need try_to_munlock() which can fail.
  211. * when !page_evictable(), we need the full redo logic of putback_lru_page to
  212. * avoid leaving evictable page in unevictable list.
  213. *
  214. * In case of success, @page is added to @pvec and @pgrescued is incremented
  215. * in case that the page was previously unevictable. @page is also unlocked.
  216. */
  217. static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
  218. int *pgrescued)
  219. {
  220. VM_BUG_ON(PageLRU(page));
  221. VM_BUG_ON(!PageLocked(page));
  222. if (page_mapcount(page) <= 1 && page_evictable(page)) {
  223. pagevec_add(pvec, page);
  224. if (TestClearPageUnevictable(page))
  225. (*pgrescued)++;
  226. unlock_page(page);
  227. return true;
  228. }
  229. return false;
  230. }
  231. /*
  232. * Putback multiple evictable pages to the LRU
  233. *
  234. * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
  235. * the pages might have meanwhile become unevictable but that is OK.
  236. */
  237. static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
  238. {
  239. count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
  240. /*
  241. *__pagevec_lru_add() calls release_pages() so we don't call
  242. * put_page() explicitly
  243. */
  244. __pagevec_lru_add(pvec);
  245. count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
  246. }
  247. /*
  248. * Munlock a batch of pages from the same zone
  249. *
  250. * The work is split to two main phases. First phase clears the Mlocked flag
  251. * and attempts to isolate the pages, all under a single zone lru lock.
  252. * The second phase finishes the munlock only for pages where isolation
  253. * succeeded.
  254. *
  255. * Note that pvec is modified during the process. Before returning
  256. * pagevec_reinit() is called on it.
  257. */
  258. static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
  259. {
  260. int i;
  261. int nr = pagevec_count(pvec);
  262. int delta_munlocked = -nr;
  263. struct pagevec pvec_putback;
  264. int pgrescued = 0;
  265. /* Phase 1: page isolation */
  266. spin_lock_irq(&zone->lru_lock);
  267. for (i = 0; i < nr; i++) {
  268. struct page *page = pvec->pages[i];
  269. if (TestClearPageMlocked(page)) {
  270. struct lruvec *lruvec;
  271. int lru;
  272. if (PageLRU(page)) {
  273. lruvec = mem_cgroup_page_lruvec(page, zone);
  274. lru = page_lru(page);
  275. /*
  276. * We already have pin from follow_page_mask()
  277. * so we can spare the get_page() here.
  278. */
  279. ClearPageLRU(page);
  280. del_page_from_lru_list(page, lruvec, lru);
  281. } else {
  282. __munlock_isolation_failed(page);
  283. goto skip_munlock;
  284. }
  285. } else {
  286. skip_munlock:
  287. /*
  288. * We won't be munlocking this page in the next phase
  289. * but we still need to release the follow_page_mask()
  290. * pin.
  291. */
  292. pvec->pages[i] = NULL;
  293. put_page(page);
  294. delta_munlocked++;
  295. }
  296. }
  297. __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
  298. spin_unlock_irq(&zone->lru_lock);
  299. /* Phase 2: page munlock */
  300. pagevec_init(&pvec_putback, 0);
  301. for (i = 0; i < nr; i++) {
  302. struct page *page = pvec->pages[i];
  303. if (page) {
  304. lock_page(page);
  305. if (!__putback_lru_fast_prepare(page, &pvec_putback,
  306. &pgrescued)) {
  307. /*
  308. * Slow path. We don't want to lose the last
  309. * pin before unlock_page()
  310. */
  311. get_page(page); /* for putback_lru_page() */
  312. __munlock_isolated_page(page);
  313. unlock_page(page);
  314. put_page(page); /* from follow_page_mask() */
  315. }
  316. }
  317. }
  318. /*
  319. * Phase 3: page putback for pages that qualified for the fast path
  320. * This will also call put_page() to return pin from follow_page_mask()
  321. */
  322. if (pagevec_count(&pvec_putback))
  323. __putback_lru_fast(&pvec_putback, pgrescued);
  324. pagevec_reinit(pvec);
  325. }
  326. /*
  327. * munlock_vma_pages_range() - munlock all pages in the vma range.'
  328. * @vma - vma containing range to be munlock()ed.
  329. * @start - start address in @vma of the range
  330. * @end - end of range in @vma.
  331. *
  332. * For mremap(), munmap() and exit().
  333. *
  334. * Called with @vma VM_LOCKED.
  335. *
  336. * Returns with VM_LOCKED cleared. Callers must be prepared to
  337. * deal with this.
  338. *
  339. * We don't save and restore VM_LOCKED here because pages are
  340. * still on lru. In unmap path, pages might be scanned by reclaim
  341. * and re-mlocked by try_to_{munlock|unmap} before we unmap and
  342. * free them. This will result in freeing mlocked pages.
  343. */
  344. void munlock_vma_pages_range(struct vm_area_struct *vma,
  345. unsigned long start, unsigned long end)
  346. {
  347. struct pagevec pvec;
  348. struct zone *zone = NULL;
  349. pagevec_init(&pvec, 0);
  350. vma->vm_flags &= ~VM_LOCKED;
  351. while (start < end) {
  352. struct page *page;
  353. unsigned int page_mask, page_increm;
  354. struct zone *pagezone;
  355. /*
  356. * Although FOLL_DUMP is intended for get_dump_page(),
  357. * it just so happens that its special treatment of the
  358. * ZERO_PAGE (returning an error instead of doing get_page)
  359. * suits munlock very well (and if somehow an abnormal page
  360. * has sneaked into the range, we won't oops here: great).
  361. */
  362. page = follow_page_mask(vma, start, FOLL_GET | FOLL_DUMP,
  363. &page_mask);
  364. if (page && !IS_ERR(page)) {
  365. pagezone = page_zone(page);
  366. /* The whole pagevec must be in the same zone */
  367. if (pagezone != zone) {
  368. if (pagevec_count(&pvec))
  369. __munlock_pagevec(&pvec, zone);
  370. zone = pagezone;
  371. }
  372. if (PageTransHuge(page)) {
  373. /*
  374. * THP pages are not handled by pagevec due
  375. * to their possible split (see below).
  376. */
  377. if (pagevec_count(&pvec))
  378. __munlock_pagevec(&pvec, zone);
  379. lock_page(page);
  380. /*
  381. * Any THP page found by follow_page_mask() may
  382. * have gotten split before reaching
  383. * munlock_vma_page(), so we need to recompute
  384. * the page_mask here.
  385. */
  386. page_mask = munlock_vma_page(page);
  387. unlock_page(page);
  388. put_page(page); /* follow_page_mask() */
  389. } else {
  390. /*
  391. * Non-huge pages are handled in batches
  392. * via pagevec. The pin from
  393. * follow_page_mask() prevents them from
  394. * collapsing by THP.
  395. */
  396. if (pagevec_add(&pvec, page) == 0)
  397. __munlock_pagevec(&pvec, zone);
  398. }
  399. }
  400. page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
  401. start += page_increm * PAGE_SIZE;
  402. cond_resched();
  403. }
  404. if (pagevec_count(&pvec))
  405. __munlock_pagevec(&pvec, zone);
  406. }
  407. /*
  408. * mlock_fixup - handle mlock[all]/munlock[all] requests.
  409. *
  410. * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
  411. * munlock is a no-op. However, for some special vmas, we go ahead and
  412. * populate the ptes.
  413. *
  414. * For vmas that pass the filters, merge/split as appropriate.
  415. */
  416. static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
  417. unsigned long start, unsigned long end, vm_flags_t newflags)
  418. {
  419. struct mm_struct *mm = vma->vm_mm;
  420. pgoff_t pgoff;
  421. int nr_pages;
  422. int ret = 0;
  423. int lock = !!(newflags & VM_LOCKED);
  424. if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
  425. is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
  426. goto out; /* don't set VM_LOCKED, don't count */
  427. pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
  428. *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
  429. vma->vm_file, pgoff, vma_policy(vma));
  430. if (*prev) {
  431. vma = *prev;
  432. goto success;
  433. }
  434. if (start != vma->vm_start) {
  435. ret = split_vma(mm, vma, start, 1);
  436. if (ret)
  437. goto out;
  438. }
  439. if (end != vma->vm_end) {
  440. ret = split_vma(mm, vma, end, 0);
  441. if (ret)
  442. goto out;
  443. }
  444. success:
  445. /*
  446. * Keep track of amount of locked VM.
  447. */
  448. nr_pages = (end - start) >> PAGE_SHIFT;
  449. if (!lock)
  450. nr_pages = -nr_pages;
  451. mm->locked_vm += nr_pages;
  452. /*
  453. * vm_flags is protected by the mmap_sem held in write mode.
  454. * It's okay if try_to_unmap_one unmaps a page just after we
  455. * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
  456. */
  457. if (lock)
  458. vma->vm_flags = newflags;
  459. else
  460. munlock_vma_pages_range(vma, start, end);
  461. out:
  462. *prev = vma;
  463. return ret;
  464. }
  465. static int do_mlock(unsigned long start, size_t len, int on)
  466. {
  467. unsigned long nstart, end, tmp;
  468. struct vm_area_struct * vma, * prev;
  469. int error;
  470. VM_BUG_ON(start & ~PAGE_MASK);
  471. VM_BUG_ON(len != PAGE_ALIGN(len));
  472. end = start + len;
  473. if (end < start)
  474. return -EINVAL;
  475. if (end == start)
  476. return 0;
  477. vma = find_vma(current->mm, start);
  478. if (!vma || vma->vm_start > start)
  479. return -ENOMEM;
  480. prev = vma->vm_prev;
  481. if (start > vma->vm_start)
  482. prev = vma;
  483. for (nstart = start ; ; ) {
  484. vm_flags_t newflags;
  485. /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
  486. newflags = vma->vm_flags & ~VM_LOCKED;
  487. if (on)
  488. newflags |= VM_LOCKED;
  489. tmp = vma->vm_end;
  490. if (tmp > end)
  491. tmp = end;
  492. error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
  493. if (error)
  494. break;
  495. nstart = tmp;
  496. if (nstart < prev->vm_end)
  497. nstart = prev->vm_end;
  498. if (nstart >= end)
  499. break;
  500. vma = prev->vm_next;
  501. if (!vma || vma->vm_start != nstart) {
  502. error = -ENOMEM;
  503. break;
  504. }
  505. }
  506. return error;
  507. }
  508. /*
  509. * __mm_populate - populate and/or mlock pages within a range of address space.
  510. *
  511. * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
  512. * flags. VMAs must be already marked with the desired vm_flags, and
  513. * mmap_sem must not be held.
  514. */
  515. int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
  516. {
  517. struct mm_struct *mm = current->mm;
  518. unsigned long end, nstart, nend;
  519. struct vm_area_struct *vma = NULL;
  520. int locked = 0;
  521. long ret = 0;
  522. VM_BUG_ON(start & ~PAGE_MASK);
  523. VM_BUG_ON(len != PAGE_ALIGN(len));
  524. end = start + len;
  525. for (nstart = start; nstart < end; nstart = nend) {
  526. /*
  527. * We want to fault in pages for [nstart; end) address range.
  528. * Find first corresponding VMA.
  529. */
  530. if (!locked) {
  531. locked = 1;
  532. down_read(&mm->mmap_sem);
  533. vma = find_vma(mm, nstart);
  534. } else if (nstart >= vma->vm_end)
  535. vma = vma->vm_next;
  536. if (!vma || vma->vm_start >= end)
  537. break;
  538. /*
  539. * Set [nstart; nend) to intersection of desired address
  540. * range with the first VMA. Also, skip undesirable VMA types.
  541. */
  542. nend = min(end, vma->vm_end);
  543. if (vma->vm_flags & (VM_IO | VM_PFNMAP))
  544. continue;
  545. if (nstart < vma->vm_start)
  546. nstart = vma->vm_start;
  547. /*
  548. * Now fault in a range of pages. __mlock_vma_pages_range()
  549. * double checks the vma flags, so that it won't mlock pages
  550. * if the vma was already munlocked.
  551. */
  552. ret = __mlock_vma_pages_range(vma, nstart, nend, &locked);
  553. if (ret < 0) {
  554. if (ignore_errors) {
  555. ret = 0;
  556. continue; /* continue at next VMA */
  557. }
  558. ret = __mlock_posix_error_return(ret);
  559. break;
  560. }
  561. nend = nstart + ret * PAGE_SIZE;
  562. ret = 0;
  563. }
  564. if (locked)
  565. up_read(&mm->mmap_sem);
  566. return ret; /* 0 or negative error code */
  567. }
  568. SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
  569. {
  570. unsigned long locked;
  571. unsigned long lock_limit;
  572. int error = -ENOMEM;
  573. if (!can_do_mlock())
  574. return -EPERM;
  575. lru_add_drain_all(); /* flush pagevec */
  576. down_write(&current->mm->mmap_sem);
  577. len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
  578. start &= PAGE_MASK;
  579. locked = len >> PAGE_SHIFT;
  580. locked += current->mm->locked_vm;
  581. lock_limit = rlimit(RLIMIT_MEMLOCK);
  582. lock_limit >>= PAGE_SHIFT;
  583. /* check against resource limits */
  584. if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
  585. error = do_mlock(start, len, 1);
  586. up_write(&current->mm->mmap_sem);
  587. if (!error)
  588. error = __mm_populate(start, len, 0);
  589. return error;
  590. }
  591. SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
  592. {
  593. int ret;
  594. down_write(&current->mm->mmap_sem);
  595. len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
  596. start &= PAGE_MASK;
  597. ret = do_mlock(start, len, 0);
  598. up_write(&current->mm->mmap_sem);
  599. return ret;
  600. }
  601. static int do_mlockall(int flags)
  602. {
  603. struct vm_area_struct * vma, * prev = NULL;
  604. if (flags & MCL_FUTURE)
  605. current->mm->def_flags |= VM_LOCKED;
  606. else
  607. current->mm->def_flags &= ~VM_LOCKED;
  608. if (flags == MCL_FUTURE)
  609. goto out;
  610. for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
  611. vm_flags_t newflags;
  612. newflags = vma->vm_flags & ~VM_LOCKED;
  613. if (flags & MCL_CURRENT)
  614. newflags |= VM_LOCKED;
  615. /* Ignore errors */
  616. mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
  617. }
  618. out:
  619. return 0;
  620. }
  621. SYSCALL_DEFINE1(mlockall, int, flags)
  622. {
  623. unsigned long lock_limit;
  624. int ret = -EINVAL;
  625. if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
  626. goto out;
  627. ret = -EPERM;
  628. if (!can_do_mlock())
  629. goto out;
  630. if (flags & MCL_CURRENT)
  631. lru_add_drain_all(); /* flush pagevec */
  632. down_write(&current->mm->mmap_sem);
  633. lock_limit = rlimit(RLIMIT_MEMLOCK);
  634. lock_limit >>= PAGE_SHIFT;
  635. ret = -ENOMEM;
  636. if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
  637. capable(CAP_IPC_LOCK))
  638. ret = do_mlockall(flags);
  639. up_write(&current->mm->mmap_sem);
  640. if (!ret && (flags & MCL_CURRENT))
  641. mm_populate(0, TASK_SIZE);
  642. out:
  643. return ret;
  644. }
  645. SYSCALL_DEFINE0(munlockall)
  646. {
  647. int ret;
  648. down_write(&current->mm->mmap_sem);
  649. ret = do_mlockall(0);
  650. up_write(&current->mm->mmap_sem);
  651. return ret;
  652. }
  653. /*
  654. * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
  655. * shm segments) get accounted against the user_struct instead.
  656. */
  657. static DEFINE_SPINLOCK(shmlock_user_lock);
  658. int user_shm_lock(size_t size, struct user_struct *user)
  659. {
  660. unsigned long lock_limit, locked;
  661. int allowed = 0;
  662. locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
  663. lock_limit = rlimit(RLIMIT_MEMLOCK);
  664. if (lock_limit == RLIM_INFINITY)
  665. allowed = 1;
  666. lock_limit >>= PAGE_SHIFT;
  667. spin_lock(&shmlock_user_lock);
  668. if (!allowed &&
  669. locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
  670. goto out;
  671. get_uid(user);
  672. user->locked_shm += locked;
  673. allowed = 1;
  674. out:
  675. spin_unlock(&shmlock_user_lock);
  676. return allowed;
  677. }
  678. void user_shm_unlock(size_t size, struct user_struct *user)
  679. {
  680. spin_lock(&shmlock_user_lock);
  681. user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
  682. spin_unlock(&shmlock_user_lock);
  683. free_uid(user);
  684. }