process.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922
  1. /* arch/sparc64/kernel/process.c
  2. *
  3. * Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net)
  4. * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
  5. * Copyright (C) 1997, 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  6. */
  7. /*
  8. * This file handles the architecture-dependent parts of process handling..
  9. */
  10. #include <stdarg.h>
  11. #include <linux/errno.h>
  12. #include <linux/module.h>
  13. #include <linux/sched.h>
  14. #include <linux/kernel.h>
  15. #include <linux/mm.h>
  16. #include <linux/fs.h>
  17. #include <linux/smp.h>
  18. #include <linux/stddef.h>
  19. #include <linux/ptrace.h>
  20. #include <linux/slab.h>
  21. #include <linux/user.h>
  22. #include <linux/reboot.h>
  23. #include <linux/delay.h>
  24. #include <linux/compat.h>
  25. #include <linux/tick.h>
  26. #include <linux/init.h>
  27. #include <linux/cpu.h>
  28. #include <linux/elfcore.h>
  29. #include <linux/sysrq.h>
  30. #include <asm/oplib.h>
  31. #include <asm/uaccess.h>
  32. #include <asm/system.h>
  33. #include <asm/page.h>
  34. #include <asm/pgalloc.h>
  35. #include <asm/pgtable.h>
  36. #include <asm/processor.h>
  37. #include <asm/pstate.h>
  38. #include <asm/elf.h>
  39. #include <asm/fpumacro.h>
  40. #include <asm/head.h>
  41. #include <asm/cpudata.h>
  42. #include <asm/mmu_context.h>
  43. #include <asm/unistd.h>
  44. #include <asm/hypervisor.h>
  45. #include <asm/sstate.h>
  46. #include <asm/reboot.h>
  47. #include <asm/syscalls.h>
  48. #include <asm/irq_regs.h>
  49. #include <asm/smp.h>
  50. /* #define VERBOSE_SHOWREGS */
  51. static void sparc64_yield(int cpu)
  52. {
  53. if (tlb_type != hypervisor)
  54. return;
  55. clear_thread_flag(TIF_POLLING_NRFLAG);
  56. smp_mb__after_clear_bit();
  57. while (!need_resched() && !cpu_is_offline(cpu)) {
  58. unsigned long pstate;
  59. /* Disable interrupts. */
  60. __asm__ __volatile__(
  61. "rdpr %%pstate, %0\n\t"
  62. "andn %0, %1, %0\n\t"
  63. "wrpr %0, %%g0, %%pstate"
  64. : "=&r" (pstate)
  65. : "i" (PSTATE_IE));
  66. if (!need_resched() && !cpu_is_offline(cpu))
  67. sun4v_cpu_yield();
  68. /* Re-enable interrupts. */
  69. __asm__ __volatile__(
  70. "rdpr %%pstate, %0\n\t"
  71. "or %0, %1, %0\n\t"
  72. "wrpr %0, %%g0, %%pstate"
  73. : "=&r" (pstate)
  74. : "i" (PSTATE_IE));
  75. }
  76. set_thread_flag(TIF_POLLING_NRFLAG);
  77. }
  78. /* The idle loop on sparc64. */
  79. void cpu_idle(void)
  80. {
  81. int cpu = smp_processor_id();
  82. set_thread_flag(TIF_POLLING_NRFLAG);
  83. while(1) {
  84. tick_nohz_stop_sched_tick(1);
  85. while (!need_resched() && !cpu_is_offline(cpu))
  86. sparc64_yield(cpu);
  87. tick_nohz_restart_sched_tick();
  88. preempt_enable_no_resched();
  89. #ifdef CONFIG_HOTPLUG_CPU
  90. if (cpu_is_offline(cpu))
  91. cpu_play_dead();
  92. #endif
  93. schedule();
  94. preempt_disable();
  95. }
  96. }
  97. void machine_halt(void)
  98. {
  99. sstate_halt();
  100. prom_halt();
  101. panic("Halt failed!");
  102. }
  103. void machine_alt_power_off(void)
  104. {
  105. sstate_poweroff();
  106. prom_halt_power_off();
  107. panic("Power-off failed!");
  108. }
  109. void machine_restart(char * cmd)
  110. {
  111. char *p;
  112. sstate_reboot();
  113. p = strchr (reboot_command, '\n');
  114. if (p) *p = 0;
  115. if (cmd)
  116. prom_reboot(cmd);
  117. if (*reboot_command)
  118. prom_reboot(reboot_command);
  119. prom_reboot("");
  120. panic("Reboot failed!");
  121. }
  122. #ifdef CONFIG_COMPAT
  123. static void show_regwindow32(struct pt_regs *regs)
  124. {
  125. struct reg_window32 __user *rw;
  126. struct reg_window32 r_w;
  127. mm_segment_t old_fs;
  128. __asm__ __volatile__ ("flushw");
  129. rw = compat_ptr((unsigned)regs->u_regs[14]);
  130. old_fs = get_fs();
  131. set_fs (USER_DS);
  132. if (copy_from_user (&r_w, rw, sizeof(r_w))) {
  133. set_fs (old_fs);
  134. return;
  135. }
  136. set_fs (old_fs);
  137. printk("l0: %08x l1: %08x l2: %08x l3: %08x "
  138. "l4: %08x l5: %08x l6: %08x l7: %08x\n",
  139. r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
  140. r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
  141. printk("i0: %08x i1: %08x i2: %08x i3: %08x "
  142. "i4: %08x i5: %08x i6: %08x i7: %08x\n",
  143. r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
  144. r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
  145. }
  146. #else
  147. #define show_regwindow32(regs) do { } while (0)
  148. #endif
  149. static void show_regwindow(struct pt_regs *regs)
  150. {
  151. struct reg_window __user *rw;
  152. struct reg_window *rwk;
  153. struct reg_window r_w;
  154. mm_segment_t old_fs;
  155. if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
  156. __asm__ __volatile__ ("flushw");
  157. rw = (struct reg_window __user *)
  158. (regs->u_regs[14] + STACK_BIAS);
  159. rwk = (struct reg_window *)
  160. (regs->u_regs[14] + STACK_BIAS);
  161. if (!(regs->tstate & TSTATE_PRIV)) {
  162. old_fs = get_fs();
  163. set_fs (USER_DS);
  164. if (copy_from_user (&r_w, rw, sizeof(r_w))) {
  165. set_fs (old_fs);
  166. return;
  167. }
  168. rwk = &r_w;
  169. set_fs (old_fs);
  170. }
  171. } else {
  172. show_regwindow32(regs);
  173. return;
  174. }
  175. printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
  176. rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
  177. printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
  178. rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
  179. printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
  180. rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
  181. printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
  182. rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
  183. if (regs->tstate & TSTATE_PRIV)
  184. printk("I7: <%pS>\n", (void *) rwk->ins[7]);
  185. }
  186. #ifdef CONFIG_SMP
  187. static DEFINE_SPINLOCK(regdump_lock);
  188. #endif
  189. void __show_regs(struct pt_regs * regs)
  190. {
  191. #ifdef CONFIG_SMP
  192. unsigned long flags;
  193. /* Protect against xcall ipis which might lead to livelock on the lock */
  194. __asm__ __volatile__("rdpr %%pstate, %0\n\t"
  195. "wrpr %0, %1, %%pstate"
  196. : "=r" (flags)
  197. : "i" (PSTATE_IE));
  198. spin_lock(&regdump_lock);
  199. #endif
  200. printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x %s\n", regs->tstate,
  201. regs->tpc, regs->tnpc, regs->y, print_tainted());
  202. printk("TPC: <%pS>\n", (void *) regs->tpc);
  203. printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
  204. regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
  205. regs->u_regs[3]);
  206. printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
  207. regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
  208. regs->u_regs[7]);
  209. printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
  210. regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
  211. regs->u_regs[11]);
  212. printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
  213. regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
  214. regs->u_regs[15]);
  215. printk("RPC: <%pS>\n", (void *) regs->u_regs[15]);
  216. show_regwindow(regs);
  217. #ifdef CONFIG_SMP
  218. spin_unlock(&regdump_lock);
  219. __asm__ __volatile__("wrpr %0, 0, %%pstate"
  220. : : "r" (flags));
  221. #endif
  222. }
  223. #ifdef VERBOSE_SHOWREGS
  224. static void idump_from_user (unsigned int *pc)
  225. {
  226. int i;
  227. int code;
  228. if((((unsigned long) pc) & 3))
  229. return;
  230. pc -= 3;
  231. for(i = -3; i < 6; i++) {
  232. get_user(code, pc);
  233. printk("%c%08x%c",i?' ':'<',code,i?' ':'>');
  234. pc++;
  235. }
  236. printk("\n");
  237. }
  238. #endif
  239. void show_regs(struct pt_regs *regs)
  240. {
  241. #ifdef VERBOSE_SHOWREGS
  242. extern long etrap, etraptl1;
  243. #endif
  244. __show_regs(regs);
  245. #if 0
  246. #ifdef CONFIG_SMP
  247. {
  248. extern void smp_report_regs(void);
  249. smp_report_regs();
  250. }
  251. #endif
  252. #endif
  253. #ifdef VERBOSE_SHOWREGS
  254. if (regs->tpc >= &etrap && regs->tpc < &etraptl1 &&
  255. regs->u_regs[14] >= (long)current - PAGE_SIZE &&
  256. regs->u_regs[14] < (long)current + 6 * PAGE_SIZE) {
  257. printk ("*********parent**********\n");
  258. __show_regs((struct pt_regs *)(regs->u_regs[14] + PTREGS_OFF));
  259. idump_from_user(((struct pt_regs *)(regs->u_regs[14] + PTREGS_OFF))->tpc);
  260. printk ("*********endpar**********\n");
  261. }
  262. #endif
  263. }
  264. #ifdef CONFIG_MAGIC_SYSRQ
  265. struct global_reg_snapshot global_reg_snapshot[NR_CPUS];
  266. static DEFINE_SPINLOCK(global_reg_snapshot_lock);
  267. static bool kstack_valid(struct thread_info *tp, struct reg_window *rw)
  268. {
  269. unsigned long thread_base, fp;
  270. thread_base = (unsigned long) tp;
  271. fp = (unsigned long) rw;
  272. if (fp < (thread_base + sizeof(struct thread_info)) ||
  273. fp >= (thread_base + THREAD_SIZE))
  274. return false;
  275. return true;
  276. }
  277. static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs,
  278. int this_cpu)
  279. {
  280. flushw_all();
  281. global_reg_snapshot[this_cpu].tstate = regs->tstate;
  282. global_reg_snapshot[this_cpu].tpc = regs->tpc;
  283. global_reg_snapshot[this_cpu].tnpc = regs->tnpc;
  284. global_reg_snapshot[this_cpu].o7 = regs->u_regs[UREG_I7];
  285. if (regs->tstate & TSTATE_PRIV) {
  286. struct thread_info *tp = current_thread_info();
  287. struct reg_window *rw;
  288. rw = (struct reg_window *)
  289. (regs->u_regs[UREG_FP] + STACK_BIAS);
  290. if (kstack_valid(tp, rw)) {
  291. global_reg_snapshot[this_cpu].i7 = rw->ins[7];
  292. rw = (struct reg_window *)
  293. (rw->ins[6] + STACK_BIAS);
  294. if (kstack_valid(tp, rw))
  295. global_reg_snapshot[this_cpu].rpc = rw->ins[7];
  296. }
  297. } else {
  298. global_reg_snapshot[this_cpu].i7 = 0;
  299. global_reg_snapshot[this_cpu].rpc = 0;
  300. }
  301. global_reg_snapshot[this_cpu].thread = tp;
  302. }
  303. /* In order to avoid hangs we do not try to synchronize with the
  304. * global register dump client cpus. The last store they make is to
  305. * the thread pointer, so do a short poll waiting for that to become
  306. * non-NULL.
  307. */
  308. static void __global_reg_poll(struct global_reg_snapshot *gp)
  309. {
  310. int limit = 0;
  311. while (!gp->thread && ++limit < 100) {
  312. barrier();
  313. udelay(1);
  314. }
  315. }
  316. static void sysrq_handle_globreg(int key, struct tty_struct *tty)
  317. {
  318. struct thread_info *tp = current_thread_info();
  319. struct pt_regs *regs = get_irq_regs();
  320. unsigned long flags;
  321. int this_cpu, cpu;
  322. if (!regs)
  323. regs = tp->kregs;
  324. spin_lock_irqsave(&global_reg_snapshot_lock, flags);
  325. memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot));
  326. this_cpu = raw_smp_processor_id();
  327. __global_reg_self(tp, regs, this_cpu);
  328. smp_fetch_global_regs();
  329. for_each_online_cpu(cpu) {
  330. struct global_reg_snapshot *gp = &global_reg_snapshot[cpu];
  331. struct thread_info *tp;
  332. __global_reg_poll(gp);
  333. tp = gp->thread;
  334. printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n",
  335. (cpu == this_cpu ? '*' : ' '), cpu,
  336. gp->tstate, gp->tpc, gp->tnpc,
  337. ((tp && tp->task) ? tp->task->comm : "NULL"),
  338. ((tp && tp->task) ? tp->task->pid : -1));
  339. if (gp->tstate & TSTATE_PRIV) {
  340. printk(" TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n",
  341. (void *) gp->tpc,
  342. (void *) gp->o7,
  343. (void *) gp->i7,
  344. (void *) gp->rpc);
  345. } else {
  346. printk(" TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n",
  347. gp->tpc, gp->o7, gp->i7, gp->rpc);
  348. }
  349. }
  350. memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot));
  351. spin_unlock_irqrestore(&global_reg_snapshot_lock, flags);
  352. }
  353. static struct sysrq_key_op sparc_globalreg_op = {
  354. .handler = sysrq_handle_globreg,
  355. .help_msg = "Globalregs",
  356. .action_msg = "Show Global CPU Regs",
  357. };
  358. static int __init sparc_globreg_init(void)
  359. {
  360. return register_sysrq_key('y', &sparc_globalreg_op);
  361. }
  362. core_initcall(sparc_globreg_init);
  363. #endif
  364. unsigned long thread_saved_pc(struct task_struct *tsk)
  365. {
  366. struct thread_info *ti = task_thread_info(tsk);
  367. unsigned long ret = 0xdeadbeefUL;
  368. if (ti && ti->ksp) {
  369. unsigned long *sp;
  370. sp = (unsigned long *)(ti->ksp + STACK_BIAS);
  371. if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL &&
  372. sp[14]) {
  373. unsigned long *fp;
  374. fp = (unsigned long *)(sp[14] + STACK_BIAS);
  375. if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL)
  376. ret = fp[15];
  377. }
  378. }
  379. return ret;
  380. }
  381. /* Free current thread data structures etc.. */
  382. void exit_thread(void)
  383. {
  384. struct thread_info *t = current_thread_info();
  385. if (t->utraps) {
  386. if (t->utraps[0] < 2)
  387. kfree (t->utraps);
  388. else
  389. t->utraps[0]--;
  390. }
  391. if (test_and_clear_thread_flag(TIF_PERFCTR)) {
  392. t->user_cntd0 = t->user_cntd1 = NULL;
  393. t->pcr_reg = 0;
  394. write_pcr(0);
  395. }
  396. }
  397. void flush_thread(void)
  398. {
  399. struct thread_info *t = current_thread_info();
  400. struct mm_struct *mm;
  401. if (test_ti_thread_flag(t, TIF_ABI_PENDING)) {
  402. clear_ti_thread_flag(t, TIF_ABI_PENDING);
  403. if (test_ti_thread_flag(t, TIF_32BIT))
  404. clear_ti_thread_flag(t, TIF_32BIT);
  405. else
  406. set_ti_thread_flag(t, TIF_32BIT);
  407. }
  408. mm = t->task->mm;
  409. if (mm)
  410. tsb_context_switch(mm);
  411. set_thread_wsaved(0);
  412. /* Turn off performance counters if on. */
  413. if (test_and_clear_thread_flag(TIF_PERFCTR)) {
  414. t->user_cntd0 = t->user_cntd1 = NULL;
  415. t->pcr_reg = 0;
  416. write_pcr(0);
  417. }
  418. /* Clear FPU register state. */
  419. t->fpsaved[0] = 0;
  420. if (get_thread_current_ds() != ASI_AIUS)
  421. set_fs(USER_DS);
  422. }
  423. /* It's a bit more tricky when 64-bit tasks are involved... */
  424. static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
  425. {
  426. unsigned long fp, distance, rval;
  427. if (!(test_thread_flag(TIF_32BIT))) {
  428. csp += STACK_BIAS;
  429. psp += STACK_BIAS;
  430. __get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
  431. fp += STACK_BIAS;
  432. } else
  433. __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
  434. /* Now 8-byte align the stack as this is mandatory in the
  435. * Sparc ABI due to how register windows work. This hides
  436. * the restriction from thread libraries etc. -DaveM
  437. */
  438. csp &= ~7UL;
  439. distance = fp - psp;
  440. rval = (csp - distance);
  441. if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
  442. rval = 0;
  443. else if (test_thread_flag(TIF_32BIT)) {
  444. if (put_user(((u32)csp),
  445. &(((struct reg_window32 __user *)rval)->ins[6])))
  446. rval = 0;
  447. } else {
  448. if (put_user(((u64)csp - STACK_BIAS),
  449. &(((struct reg_window __user *)rval)->ins[6])))
  450. rval = 0;
  451. else
  452. rval = rval - STACK_BIAS;
  453. }
  454. return rval;
  455. }
  456. /* Standard stuff. */
  457. static inline void shift_window_buffer(int first_win, int last_win,
  458. struct thread_info *t)
  459. {
  460. int i;
  461. for (i = first_win; i < last_win; i++) {
  462. t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
  463. memcpy(&t->reg_window[i], &t->reg_window[i+1],
  464. sizeof(struct reg_window));
  465. }
  466. }
  467. void synchronize_user_stack(void)
  468. {
  469. struct thread_info *t = current_thread_info();
  470. unsigned long window;
  471. flush_user_windows();
  472. if ((window = get_thread_wsaved()) != 0) {
  473. int winsize = sizeof(struct reg_window);
  474. int bias = 0;
  475. if (test_thread_flag(TIF_32BIT))
  476. winsize = sizeof(struct reg_window32);
  477. else
  478. bias = STACK_BIAS;
  479. window -= 1;
  480. do {
  481. unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
  482. struct reg_window *rwin = &t->reg_window[window];
  483. if (!copy_to_user((char __user *)sp, rwin, winsize)) {
  484. shift_window_buffer(window, get_thread_wsaved() - 1, t);
  485. set_thread_wsaved(get_thread_wsaved() - 1);
  486. }
  487. } while (window--);
  488. }
  489. }
  490. static void stack_unaligned(unsigned long sp)
  491. {
  492. siginfo_t info;
  493. info.si_signo = SIGBUS;
  494. info.si_errno = 0;
  495. info.si_code = BUS_ADRALN;
  496. info.si_addr = (void __user *) sp;
  497. info.si_trapno = 0;
  498. force_sig_info(SIGBUS, &info, current);
  499. }
  500. void fault_in_user_windows(void)
  501. {
  502. struct thread_info *t = current_thread_info();
  503. unsigned long window;
  504. int winsize = sizeof(struct reg_window);
  505. int bias = 0;
  506. if (test_thread_flag(TIF_32BIT))
  507. winsize = sizeof(struct reg_window32);
  508. else
  509. bias = STACK_BIAS;
  510. flush_user_windows();
  511. window = get_thread_wsaved();
  512. if (likely(window != 0)) {
  513. window -= 1;
  514. do {
  515. unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
  516. struct reg_window *rwin = &t->reg_window[window];
  517. if (unlikely(sp & 0x7UL))
  518. stack_unaligned(sp);
  519. if (unlikely(copy_to_user((char __user *)sp,
  520. rwin, winsize)))
  521. goto barf;
  522. } while (window--);
  523. }
  524. set_thread_wsaved(0);
  525. return;
  526. barf:
  527. set_thread_wsaved(window + 1);
  528. do_exit(SIGILL);
  529. }
  530. asmlinkage long sparc_do_fork(unsigned long clone_flags,
  531. unsigned long stack_start,
  532. struct pt_regs *regs,
  533. unsigned long stack_size)
  534. {
  535. int __user *parent_tid_ptr, *child_tid_ptr;
  536. unsigned long orig_i1 = regs->u_regs[UREG_I1];
  537. long ret;
  538. #ifdef CONFIG_COMPAT
  539. if (test_thread_flag(TIF_32BIT)) {
  540. parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]);
  541. child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]);
  542. } else
  543. #endif
  544. {
  545. parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2];
  546. child_tid_ptr = (int __user *) regs->u_regs[UREG_I4];
  547. }
  548. ret = do_fork(clone_flags, stack_start,
  549. regs, stack_size,
  550. parent_tid_ptr, child_tid_ptr);
  551. /* If we get an error and potentially restart the system
  552. * call, we're screwed because copy_thread() clobbered
  553. * the parent's %o1. So detect that case and restore it
  554. * here.
  555. */
  556. if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK)
  557. regs->u_regs[UREG_I1] = orig_i1;
  558. return ret;
  559. }
  560. /* Copy a Sparc thread. The fork() return value conventions
  561. * under SunOS are nothing short of bletcherous:
  562. * Parent --> %o0 == childs pid, %o1 == 0
  563. * Child --> %o0 == parents pid, %o1 == 1
  564. */
  565. int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
  566. unsigned long unused,
  567. struct task_struct *p, struct pt_regs *regs)
  568. {
  569. struct thread_info *t = task_thread_info(p);
  570. struct sparc_stackf *parent_sf;
  571. unsigned long child_stack_sz;
  572. char *child_trap_frame;
  573. int kernel_thread;
  574. kernel_thread = (regs->tstate & TSTATE_PRIV) ? 1 : 0;
  575. parent_sf = ((struct sparc_stackf *) regs) - 1;
  576. /* Calculate offset to stack_frame & pt_regs */
  577. child_stack_sz = ((STACKFRAME_SZ + TRACEREG_SZ) +
  578. (kernel_thread ? STACKFRAME_SZ : 0));
  579. child_trap_frame = (task_stack_page(p) +
  580. (THREAD_SIZE - child_stack_sz));
  581. memcpy(child_trap_frame, parent_sf, child_stack_sz);
  582. t->flags = (t->flags & ~((0xffUL << TI_FLAG_CWP_SHIFT) |
  583. (0xffUL << TI_FLAG_CURRENT_DS_SHIFT))) |
  584. (((regs->tstate + 1) & TSTATE_CWP) << TI_FLAG_CWP_SHIFT);
  585. t->new_child = 1;
  586. t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
  587. t->kregs = (struct pt_regs *) (child_trap_frame +
  588. sizeof(struct sparc_stackf));
  589. t->fpsaved[0] = 0;
  590. if (kernel_thread) {
  591. struct sparc_stackf *child_sf = (struct sparc_stackf *)
  592. (child_trap_frame + (STACKFRAME_SZ + TRACEREG_SZ));
  593. /* Zero terminate the stack backtrace. */
  594. child_sf->fp = NULL;
  595. t->kregs->u_regs[UREG_FP] =
  596. ((unsigned long) child_sf) - STACK_BIAS;
  597. /* Special case, if we are spawning a kernel thread from
  598. * a userspace task (usermode helper, NFS or similar), we
  599. * must disable performance counters in the child because
  600. * the address space and protection realm are changing.
  601. */
  602. if (t->flags & _TIF_PERFCTR) {
  603. t->user_cntd0 = t->user_cntd1 = NULL;
  604. t->pcr_reg = 0;
  605. t->flags &= ~_TIF_PERFCTR;
  606. }
  607. t->flags |= ((long)ASI_P << TI_FLAG_CURRENT_DS_SHIFT);
  608. t->kregs->u_regs[UREG_G6] = (unsigned long) t;
  609. t->kregs->u_regs[UREG_G4] = (unsigned long) t->task;
  610. } else {
  611. if (t->flags & _TIF_32BIT) {
  612. sp &= 0x00000000ffffffffUL;
  613. regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
  614. }
  615. t->kregs->u_regs[UREG_FP] = sp;
  616. t->flags |= ((long)ASI_AIUS << TI_FLAG_CURRENT_DS_SHIFT);
  617. if (sp != regs->u_regs[UREG_FP]) {
  618. unsigned long csp;
  619. csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
  620. if (!csp)
  621. return -EFAULT;
  622. t->kregs->u_regs[UREG_FP] = csp;
  623. }
  624. if (t->utraps)
  625. t->utraps[0]++;
  626. }
  627. /* Set the return value for the child. */
  628. t->kregs->u_regs[UREG_I0] = current->pid;
  629. t->kregs->u_regs[UREG_I1] = 1;
  630. /* Set the second return value for the parent. */
  631. regs->u_regs[UREG_I1] = 0;
  632. if (clone_flags & CLONE_SETTLS)
  633. t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
  634. return 0;
  635. }
  636. /*
  637. * This is the mechanism for creating a new kernel thread.
  638. *
  639. * NOTE! Only a kernel-only process(ie the swapper or direct descendants
  640. * who haven't done an "execve()") should use this: it will work within
  641. * a system call from a "real" process, but the process memory space will
  642. * not be freed until both the parent and the child have exited.
  643. */
  644. pid_t kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
  645. {
  646. long retval;
  647. /* If the parent runs before fn(arg) is called by the child,
  648. * the input registers of this function can be clobbered.
  649. * So we stash 'fn' and 'arg' into global registers which
  650. * will not be modified by the parent.
  651. */
  652. __asm__ __volatile__("mov %4, %%g2\n\t" /* Save FN into global */
  653. "mov %5, %%g3\n\t" /* Save ARG into global */
  654. "mov %1, %%g1\n\t" /* Clone syscall nr. */
  655. "mov %2, %%o0\n\t" /* Clone flags. */
  656. "mov 0, %%o1\n\t" /* usp arg == 0 */
  657. "t 0x6d\n\t" /* Linux/Sparc clone(). */
  658. "brz,a,pn %%o1, 1f\n\t" /* Parent, just return. */
  659. " mov %%o0, %0\n\t"
  660. "jmpl %%g2, %%o7\n\t" /* Call the function. */
  661. " mov %%g3, %%o0\n\t" /* Set arg in delay. */
  662. "mov %3, %%g1\n\t"
  663. "t 0x6d\n\t" /* Linux/Sparc exit(). */
  664. /* Notreached by child. */
  665. "1:" :
  666. "=r" (retval) :
  667. "i" (__NR_clone), "r" (flags | CLONE_VM | CLONE_UNTRACED),
  668. "i" (__NR_exit), "r" (fn), "r" (arg) :
  669. "g1", "g2", "g3", "o0", "o1", "memory", "cc");
  670. return retval;
  671. }
  672. typedef struct {
  673. union {
  674. unsigned int pr_regs[32];
  675. unsigned long pr_dregs[16];
  676. } pr_fr;
  677. unsigned int __unused;
  678. unsigned int pr_fsr;
  679. unsigned char pr_qcnt;
  680. unsigned char pr_q_entrysize;
  681. unsigned char pr_en;
  682. unsigned int pr_q[64];
  683. } elf_fpregset_t32;
  684. /*
  685. * fill in the fpu structure for a core dump.
  686. */
  687. int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
  688. {
  689. unsigned long *kfpregs = current_thread_info()->fpregs;
  690. unsigned long fprs = current_thread_info()->fpsaved[0];
  691. if (test_thread_flag(TIF_32BIT)) {
  692. elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs;
  693. if (fprs & FPRS_DL)
  694. memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs,
  695. sizeof(unsigned int) * 32);
  696. else
  697. memset(&fpregs32->pr_fr.pr_regs[0], 0,
  698. sizeof(unsigned int) * 32);
  699. fpregs32->pr_qcnt = 0;
  700. fpregs32->pr_q_entrysize = 8;
  701. memset(&fpregs32->pr_q[0], 0,
  702. (sizeof(unsigned int) * 64));
  703. if (fprs & FPRS_FEF) {
  704. fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0];
  705. fpregs32->pr_en = 1;
  706. } else {
  707. fpregs32->pr_fsr = 0;
  708. fpregs32->pr_en = 0;
  709. }
  710. } else {
  711. if(fprs & FPRS_DL)
  712. memcpy(&fpregs->pr_regs[0], kfpregs,
  713. sizeof(unsigned int) * 32);
  714. else
  715. memset(&fpregs->pr_regs[0], 0,
  716. sizeof(unsigned int) * 32);
  717. if(fprs & FPRS_DU)
  718. memcpy(&fpregs->pr_regs[16], kfpregs+16,
  719. sizeof(unsigned int) * 32);
  720. else
  721. memset(&fpregs->pr_regs[16], 0,
  722. sizeof(unsigned int) * 32);
  723. if(fprs & FPRS_FEF) {
  724. fpregs->pr_fsr = current_thread_info()->xfsr[0];
  725. fpregs->pr_gsr = current_thread_info()->gsr[0];
  726. } else {
  727. fpregs->pr_fsr = fpregs->pr_gsr = 0;
  728. }
  729. fpregs->pr_fprs = fprs;
  730. }
  731. return 1;
  732. }
  733. /*
  734. * sparc_execve() executes a new program after the asm stub has set
  735. * things up for us. This should basically do what I want it to.
  736. */
  737. asmlinkage int sparc_execve(struct pt_regs *regs)
  738. {
  739. int error, base = 0;
  740. char *filename;
  741. /* User register window flush is done by entry.S */
  742. /* Check for indirect call. */
  743. if (regs->u_regs[UREG_G1] == 0)
  744. base = 1;
  745. filename = getname((char __user *)regs->u_regs[base + UREG_I0]);
  746. error = PTR_ERR(filename);
  747. if (IS_ERR(filename))
  748. goto out;
  749. error = do_execve(filename,
  750. (char __user * __user *)
  751. regs->u_regs[base + UREG_I1],
  752. (char __user * __user *)
  753. regs->u_regs[base + UREG_I2], regs);
  754. putname(filename);
  755. if (!error) {
  756. fprs_write(0);
  757. current_thread_info()->xfsr[0] = 0;
  758. current_thread_info()->fpsaved[0] = 0;
  759. regs->tstate &= ~TSTATE_PEF;
  760. }
  761. out:
  762. return error;
  763. }
  764. unsigned long get_wchan(struct task_struct *task)
  765. {
  766. unsigned long pc, fp, bias = 0;
  767. unsigned long thread_info_base;
  768. struct reg_window *rw;
  769. unsigned long ret = 0;
  770. int count = 0;
  771. if (!task || task == current ||
  772. task->state == TASK_RUNNING)
  773. goto out;
  774. thread_info_base = (unsigned long) task_stack_page(task);
  775. bias = STACK_BIAS;
  776. fp = task_thread_info(task)->ksp + bias;
  777. do {
  778. /* Bogus frame pointer? */
  779. if (fp < (thread_info_base + sizeof(struct thread_info)) ||
  780. fp >= (thread_info_base + THREAD_SIZE))
  781. break;
  782. rw = (struct reg_window *) fp;
  783. pc = rw->ins[7];
  784. if (!in_sched_functions(pc)) {
  785. ret = pc;
  786. goto out;
  787. }
  788. fp = rw->ins[6] + bias;
  789. } while (++count < 16);
  790. out:
  791. return ret;
  792. }