input.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358
  1. /*
  2. * Copyright (c) 2006,2007 Daniel Mack, Tim Ruetz
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  17. */
  18. #include <linux/init.h>
  19. #include <linux/usb.h>
  20. #include <linux/usb/input.h>
  21. #include <sound/pcm.h>
  22. #include "device.h"
  23. #include "input.h"
  24. static unsigned short keycode_ak1[] = { KEY_C, KEY_B, KEY_A };
  25. static unsigned short keycode_rk2[] = { KEY_1, KEY_2, KEY_3, KEY_4,
  26. KEY_5, KEY_6, KEY_7 };
  27. static unsigned short keycode_rk3[] = { KEY_1, KEY_2, KEY_3, KEY_4,
  28. KEY_5, KEY_6, KEY_7, KEY_5, KEY_6 };
  29. static unsigned short keycode_kore[] = {
  30. KEY_FN_F1, /* "menu" */
  31. KEY_FN_F7, /* "lcd backlight */
  32. KEY_FN_F2, /* "control" */
  33. KEY_FN_F3, /* "enter" */
  34. KEY_FN_F4, /* "view" */
  35. KEY_FN_F5, /* "esc" */
  36. KEY_FN_F6, /* "sound" */
  37. KEY_FN_F8, /* array spacer, never triggered. */
  38. KEY_RIGHT,
  39. KEY_DOWN,
  40. KEY_UP,
  41. KEY_LEFT,
  42. KEY_SOUND, /* "listen" */
  43. KEY_RECORD,
  44. KEY_PLAYPAUSE,
  45. KEY_STOP,
  46. BTN_4, /* 8 softkeys */
  47. BTN_3,
  48. BTN_2,
  49. BTN_1,
  50. BTN_8,
  51. BTN_7,
  52. BTN_6,
  53. BTN_5,
  54. KEY_BRL_DOT4, /* touch sensitive knobs */
  55. KEY_BRL_DOT3,
  56. KEY_BRL_DOT2,
  57. KEY_BRL_DOT1,
  58. KEY_BRL_DOT8,
  59. KEY_BRL_DOT7,
  60. KEY_BRL_DOT6,
  61. KEY_BRL_DOT5
  62. };
  63. #define DEG90 (range / 2)
  64. #define DEG180 (range)
  65. #define DEG270 (DEG90 + DEG180)
  66. #define DEG360 (DEG180 * 2)
  67. #define HIGH_PEAK (268)
  68. #define LOW_PEAK (-7)
  69. /* some of these devices have endless rotation potentiometers
  70. * built in which use two tapers, 90 degrees phase shifted.
  71. * this algorithm decodes them to one single value, ranging
  72. * from 0 to 999 */
  73. static unsigned int decode_erp(unsigned char a, unsigned char b)
  74. {
  75. int weight_a, weight_b;
  76. int pos_a, pos_b;
  77. int ret;
  78. int range = HIGH_PEAK - LOW_PEAK;
  79. int mid_value = (HIGH_PEAK + LOW_PEAK) / 2;
  80. weight_b = abs(mid_value - a) - (range / 2 - 100) / 2;
  81. if (weight_b < 0)
  82. weight_b = 0;
  83. if (weight_b > 100)
  84. weight_b = 100;
  85. weight_a = 100 - weight_b;
  86. if (a < mid_value) {
  87. /* 0..90 and 270..360 degrees */
  88. pos_b = b - LOW_PEAK + DEG270;
  89. if (pos_b >= DEG360)
  90. pos_b -= DEG360;
  91. } else
  92. /* 90..270 degrees */
  93. pos_b = HIGH_PEAK - b + DEG90;
  94. if (b > mid_value)
  95. /* 0..180 degrees */
  96. pos_a = a - LOW_PEAK;
  97. else
  98. /* 180..360 degrees */
  99. pos_a = HIGH_PEAK - a + DEG180;
  100. /* interpolate both slider values, depending on weight factors */
  101. /* 0..99 x DEG360 */
  102. ret = pos_a * weight_a + pos_b * weight_b;
  103. /* normalize to 0..999 */
  104. ret *= 10;
  105. ret /= DEG360;
  106. if (ret < 0)
  107. ret += 1000;
  108. if (ret >= 1000)
  109. ret -= 1000;
  110. return ret;
  111. }
  112. #undef DEG90
  113. #undef DEG180
  114. #undef DEG270
  115. #undef DEG360
  116. #undef HIGH_PEAK
  117. #undef LOW_PEAK
  118. static void snd_caiaq_input_read_analog(struct snd_usb_caiaqdev *dev,
  119. const unsigned char *buf,
  120. unsigned int len)
  121. {
  122. struct input_dev *input_dev = dev->input_dev;
  123. switch (dev->chip.usb_id) {
  124. case USB_ID(USB_VID_NATIVEINSTRUMENTS, USB_PID_RIGKONTROL2):
  125. input_report_abs(input_dev, ABS_X, (buf[4] << 8) | buf[5]);
  126. input_report_abs(input_dev, ABS_Y, (buf[0] << 8) | buf[1]);
  127. input_report_abs(input_dev, ABS_Z, (buf[2] << 8) | buf[3]);
  128. input_sync(input_dev);
  129. break;
  130. case USB_ID(USB_VID_NATIVEINSTRUMENTS, USB_PID_RIGKONTROL3):
  131. input_report_abs(input_dev, ABS_X, (buf[0] << 8) | buf[1]);
  132. input_report_abs(input_dev, ABS_Y, (buf[2] << 8) | buf[3]);
  133. input_report_abs(input_dev, ABS_Z, (buf[4] << 8) | buf[5]);
  134. input_sync(input_dev);
  135. break;
  136. case USB_ID(USB_VID_NATIVEINSTRUMENTS, USB_PID_KORECONTROLLER):
  137. case USB_ID(USB_VID_NATIVEINSTRUMENTS, USB_PID_KORECONTROLLER2):
  138. input_report_abs(input_dev, ABS_X, (buf[0] << 8) | buf[1]);
  139. input_report_abs(input_dev, ABS_Y, (buf[2] << 8) | buf[3]);
  140. input_report_abs(input_dev, ABS_Z, (buf[4] << 8) | buf[5]);
  141. input_sync(input_dev);
  142. break;
  143. }
  144. }
  145. static void snd_caiaq_input_read_erp(struct snd_usb_caiaqdev *dev,
  146. const char *buf, unsigned int len)
  147. {
  148. struct input_dev *input_dev = dev->input_dev;
  149. int i;
  150. switch (dev->chip.usb_id) {
  151. case USB_ID(USB_VID_NATIVEINSTRUMENTS, USB_PID_AK1):
  152. i = decode_erp(buf[0], buf[1]);
  153. input_report_abs(input_dev, ABS_X, i);
  154. input_sync(input_dev);
  155. break;
  156. case USB_ID(USB_VID_NATIVEINSTRUMENTS, USB_PID_KORECONTROLLER):
  157. case USB_ID(USB_VID_NATIVEINSTRUMENTS, USB_PID_KORECONTROLLER2):
  158. i = decode_erp(buf[7], buf[5]);
  159. input_report_abs(input_dev, ABS_HAT0X, i);
  160. i = decode_erp(buf[12], buf[14]);
  161. input_report_abs(input_dev, ABS_HAT0Y, i);
  162. i = decode_erp(buf[15], buf[13]);
  163. input_report_abs(input_dev, ABS_HAT1X, i);
  164. i = decode_erp(buf[0], buf[2]);
  165. input_report_abs(input_dev, ABS_HAT1Y, i);
  166. i = decode_erp(buf[3], buf[1]);
  167. input_report_abs(input_dev, ABS_HAT2X, i);
  168. i = decode_erp(buf[8], buf[10]);
  169. input_report_abs(input_dev, ABS_HAT2Y, i);
  170. i = decode_erp(buf[11], buf[9]);
  171. input_report_abs(input_dev, ABS_HAT3X, i);
  172. i = decode_erp(buf[4], buf[6]);
  173. input_report_abs(input_dev, ABS_HAT3Y, i);
  174. input_sync(input_dev);
  175. break;
  176. }
  177. }
  178. static void snd_caiaq_input_read_io(struct snd_usb_caiaqdev *dev,
  179. char *buf, unsigned int len)
  180. {
  181. struct input_dev *input_dev = dev->input_dev;
  182. unsigned short *keycode = input_dev->keycode;
  183. int i;
  184. if (!keycode)
  185. return;
  186. if (input_dev->id.product == USB_PID_RIGKONTROL2)
  187. for (i = 0; i < len; i++)
  188. buf[i] = ~buf[i];
  189. for (i = 0; i < input_dev->keycodemax && i < len * 8; i++)
  190. input_report_key(input_dev, keycode[i],
  191. buf[i / 8] & (1 << (i % 8)));
  192. if (dev->chip.usb_id ==
  193. USB_ID(USB_VID_NATIVEINSTRUMENTS, USB_PID_KORECONTROLLER) ||
  194. dev->chip.usb_id ==
  195. USB_ID(USB_VID_NATIVEINSTRUMENTS, USB_PID_KORECONTROLLER2))
  196. input_report_abs(dev->input_dev, ABS_MISC, 255 - buf[4]);
  197. input_sync(input_dev);
  198. }
  199. void snd_usb_caiaq_input_dispatch(struct snd_usb_caiaqdev *dev,
  200. char *buf,
  201. unsigned int len)
  202. {
  203. if (!dev->input_dev || len < 1)
  204. return;
  205. switch (buf[0]) {
  206. case EP1_CMD_READ_ANALOG:
  207. snd_caiaq_input_read_analog(dev, buf + 1, len - 1);
  208. break;
  209. case EP1_CMD_READ_ERP:
  210. snd_caiaq_input_read_erp(dev, buf + 1, len - 1);
  211. break;
  212. case EP1_CMD_READ_IO:
  213. snd_caiaq_input_read_io(dev, buf + 1, len - 1);
  214. break;
  215. }
  216. }
  217. int snd_usb_caiaq_input_init(struct snd_usb_caiaqdev *dev)
  218. {
  219. struct usb_device *usb_dev = dev->chip.dev;
  220. struct input_dev *input;
  221. int i, ret;
  222. input = input_allocate_device();
  223. if (!input)
  224. return -ENOMEM;
  225. usb_make_path(usb_dev, dev->phys, sizeof(dev->phys));
  226. strlcat(dev->phys, "/input0", sizeof(dev->phys));
  227. input->name = dev->product_name;
  228. input->phys = dev->phys;
  229. usb_to_input_id(usb_dev, &input->id);
  230. input->dev.parent = &usb_dev->dev;
  231. switch (dev->chip.usb_id) {
  232. case USB_ID(USB_VID_NATIVEINSTRUMENTS, USB_PID_RIGKONTROL2):
  233. input->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS);
  234. input->absbit[0] = BIT_MASK(ABS_X) | BIT_MASK(ABS_Y) |
  235. BIT_MASK(ABS_Z);
  236. BUILD_BUG_ON(sizeof(dev->keycode) < sizeof(keycode_rk2));
  237. memcpy(dev->keycode, keycode_rk2, sizeof(keycode_rk2));
  238. input->keycodemax = ARRAY_SIZE(keycode_rk2);
  239. input_set_abs_params(input, ABS_X, 0, 4096, 0, 10);
  240. input_set_abs_params(input, ABS_Y, 0, 4096, 0, 10);
  241. input_set_abs_params(input, ABS_Z, 0, 4096, 0, 10);
  242. snd_usb_caiaq_set_auto_msg(dev, 1, 10, 0);
  243. break;
  244. case USB_ID(USB_VID_NATIVEINSTRUMENTS, USB_PID_RIGKONTROL3):
  245. input->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS);
  246. input->absbit[0] = BIT_MASK(ABS_X) | BIT_MASK(ABS_Y) |
  247. BIT_MASK(ABS_Z);
  248. BUILD_BUG_ON(sizeof(dev->keycode) < sizeof(keycode_rk3));
  249. memcpy(dev->keycode, keycode_rk3, sizeof(keycode_rk3));
  250. input->keycodemax = ARRAY_SIZE(keycode_rk3);
  251. input_set_abs_params(input, ABS_X, 0, 1024, 0, 10);
  252. input_set_abs_params(input, ABS_Y, 0, 1024, 0, 10);
  253. input_set_abs_params(input, ABS_Z, 0, 1024, 0, 10);
  254. snd_usb_caiaq_set_auto_msg(dev, 1, 10, 0);
  255. break;
  256. case USB_ID(USB_VID_NATIVEINSTRUMENTS, USB_PID_AK1):
  257. input->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS);
  258. input->absbit[0] = BIT_MASK(ABS_X);
  259. BUILD_BUG_ON(sizeof(dev->keycode) < sizeof(keycode_ak1));
  260. memcpy(dev->keycode, keycode_ak1, sizeof(keycode_ak1));
  261. input->keycodemax = ARRAY_SIZE(keycode_ak1);
  262. input_set_abs_params(input, ABS_X, 0, 999, 0, 10);
  263. snd_usb_caiaq_set_auto_msg(dev, 1, 0, 5);
  264. break;
  265. case USB_ID(USB_VID_NATIVEINSTRUMENTS, USB_PID_KORECONTROLLER):
  266. case USB_ID(USB_VID_NATIVEINSTRUMENTS, USB_PID_KORECONTROLLER2):
  267. input->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS);
  268. input->absbit[0] = BIT_MASK(ABS_HAT0X) | BIT_MASK(ABS_HAT0Y) |
  269. BIT_MASK(ABS_HAT1X) | BIT_MASK(ABS_HAT1Y) |
  270. BIT_MASK(ABS_HAT2X) | BIT_MASK(ABS_HAT2Y) |
  271. BIT_MASK(ABS_HAT3X) | BIT_MASK(ABS_HAT3Y) |
  272. BIT_MASK(ABS_X) | BIT_MASK(ABS_Y) |
  273. BIT_MASK(ABS_Z);
  274. input->absbit[BIT_WORD(ABS_MISC)] |= BIT_MASK(ABS_MISC);
  275. BUILD_BUG_ON(sizeof(dev->keycode) < sizeof(keycode_kore));
  276. memcpy(dev->keycode, keycode_kore, sizeof(keycode_kore));
  277. input->keycodemax = ARRAY_SIZE(keycode_kore);
  278. input_set_abs_params(input, ABS_HAT0X, 0, 999, 0, 10);
  279. input_set_abs_params(input, ABS_HAT0Y, 0, 999, 0, 10);
  280. input_set_abs_params(input, ABS_HAT1X, 0, 999, 0, 10);
  281. input_set_abs_params(input, ABS_HAT1Y, 0, 999, 0, 10);
  282. input_set_abs_params(input, ABS_HAT2X, 0, 999, 0, 10);
  283. input_set_abs_params(input, ABS_HAT2Y, 0, 999, 0, 10);
  284. input_set_abs_params(input, ABS_HAT3X, 0, 999, 0, 10);
  285. input_set_abs_params(input, ABS_HAT3Y, 0, 999, 0, 10);
  286. input_set_abs_params(input, ABS_X, 0, 4096, 0, 10);
  287. input_set_abs_params(input, ABS_Y, 0, 4096, 0, 10);
  288. input_set_abs_params(input, ABS_Z, 0, 4096, 0, 10);
  289. input_set_abs_params(input, ABS_MISC, 0, 255, 0, 1);
  290. snd_usb_caiaq_set_auto_msg(dev, 1, 10, 5);
  291. break;
  292. default:
  293. /* no input methods supported on this device */
  294. input_free_device(input);
  295. return 0;
  296. }
  297. input->keycode = dev->keycode;
  298. input->keycodesize = sizeof(unsigned short);
  299. for (i = 0; i < input->keycodemax; i++)
  300. __set_bit(dev->keycode[i], input->keybit);
  301. ret = input_register_device(input);
  302. if (ret < 0) {
  303. input_free_device(input);
  304. return ret;
  305. }
  306. dev->input_dev = input;
  307. return 0;
  308. }
  309. void snd_usb_caiaq_input_free(struct snd_usb_caiaqdev *dev)
  310. {
  311. if (!dev || !dev->input_dev)
  312. return;
  313. input_unregister_device(dev->input_dev);
  314. dev->input_dev = NULL;
  315. }