xfrm_algo.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784
  1. /*
  2. * xfrm algorithm interface
  3. *
  4. * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License as published by the Free
  8. * Software Foundation; either version 2 of the License, or (at your option)
  9. * any later version.
  10. */
  11. #include <linux/module.h>
  12. #include <linux/kernel.h>
  13. #include <linux/pfkeyv2.h>
  14. #include <linux/crypto.h>
  15. #include <linux/scatterlist.h>
  16. #include <net/xfrm.h>
  17. #if defined(CONFIG_INET_AH) || defined(CONFIG_INET_AH_MODULE) || defined(CONFIG_INET6_AH) || defined(CONFIG_INET6_AH_MODULE)
  18. #include <net/ah.h>
  19. #endif
  20. #if defined(CONFIG_INET_ESP) || defined(CONFIG_INET_ESP_MODULE) || defined(CONFIG_INET6_ESP) || defined(CONFIG_INET6_ESP_MODULE)
  21. #include <net/esp.h>
  22. #endif
  23. /*
  24. * Algorithms supported by IPsec. These entries contain properties which
  25. * are used in key negotiation and xfrm processing, and are used to verify
  26. * that instantiated crypto transforms have correct parameters for IPsec
  27. * purposes.
  28. */
  29. static struct xfrm_algo_desc aead_list[] = {
  30. {
  31. .name = "rfc4106(gcm(aes))",
  32. .uinfo = {
  33. .aead = {
  34. .icv_truncbits = 64,
  35. }
  36. },
  37. .desc = {
  38. .sadb_alg_id = SADB_X_EALG_AES_GCM_ICV8,
  39. .sadb_alg_ivlen = 8,
  40. .sadb_alg_minbits = 128,
  41. .sadb_alg_maxbits = 256
  42. }
  43. },
  44. {
  45. .name = "rfc4106(gcm(aes))",
  46. .uinfo = {
  47. .aead = {
  48. .icv_truncbits = 96,
  49. }
  50. },
  51. .desc = {
  52. .sadb_alg_id = SADB_X_EALG_AES_GCM_ICV12,
  53. .sadb_alg_ivlen = 8,
  54. .sadb_alg_minbits = 128,
  55. .sadb_alg_maxbits = 256
  56. }
  57. },
  58. {
  59. .name = "rfc4106(gcm(aes))",
  60. .uinfo = {
  61. .aead = {
  62. .icv_truncbits = 128,
  63. }
  64. },
  65. .desc = {
  66. .sadb_alg_id = SADB_X_EALG_AES_GCM_ICV16,
  67. .sadb_alg_ivlen = 8,
  68. .sadb_alg_minbits = 128,
  69. .sadb_alg_maxbits = 256
  70. }
  71. },
  72. {
  73. .name = "rfc4309(ccm(aes))",
  74. .uinfo = {
  75. .aead = {
  76. .icv_truncbits = 64,
  77. }
  78. },
  79. .desc = {
  80. .sadb_alg_id = SADB_X_EALG_AES_CCM_ICV8,
  81. .sadb_alg_ivlen = 8,
  82. .sadb_alg_minbits = 128,
  83. .sadb_alg_maxbits = 256
  84. }
  85. },
  86. {
  87. .name = "rfc4309(ccm(aes))",
  88. .uinfo = {
  89. .aead = {
  90. .icv_truncbits = 96,
  91. }
  92. },
  93. .desc = {
  94. .sadb_alg_id = SADB_X_EALG_AES_CCM_ICV12,
  95. .sadb_alg_ivlen = 8,
  96. .sadb_alg_minbits = 128,
  97. .sadb_alg_maxbits = 256
  98. }
  99. },
  100. {
  101. .name = "rfc4309(ccm(aes))",
  102. .uinfo = {
  103. .aead = {
  104. .icv_truncbits = 128,
  105. }
  106. },
  107. .desc = {
  108. .sadb_alg_id = SADB_X_EALG_AES_CCM_ICV16,
  109. .sadb_alg_ivlen = 8,
  110. .sadb_alg_minbits = 128,
  111. .sadb_alg_maxbits = 256
  112. }
  113. },
  114. };
  115. static struct xfrm_algo_desc aalg_list[] = {
  116. {
  117. .name = "digest_null",
  118. .uinfo = {
  119. .auth = {
  120. .icv_truncbits = 0,
  121. .icv_fullbits = 0,
  122. }
  123. },
  124. .desc = {
  125. .sadb_alg_id = SADB_X_AALG_NULL,
  126. .sadb_alg_ivlen = 0,
  127. .sadb_alg_minbits = 0,
  128. .sadb_alg_maxbits = 0
  129. }
  130. },
  131. {
  132. .name = "hmac(md5)",
  133. .compat = "md5",
  134. .uinfo = {
  135. .auth = {
  136. .icv_truncbits = 96,
  137. .icv_fullbits = 128,
  138. }
  139. },
  140. .desc = {
  141. .sadb_alg_id = SADB_AALG_MD5HMAC,
  142. .sadb_alg_ivlen = 0,
  143. .sadb_alg_minbits = 128,
  144. .sadb_alg_maxbits = 128
  145. }
  146. },
  147. {
  148. .name = "hmac(sha1)",
  149. .compat = "sha1",
  150. .uinfo = {
  151. .auth = {
  152. .icv_truncbits = 96,
  153. .icv_fullbits = 160,
  154. }
  155. },
  156. .desc = {
  157. .sadb_alg_id = SADB_AALG_SHA1HMAC,
  158. .sadb_alg_ivlen = 0,
  159. .sadb_alg_minbits = 160,
  160. .sadb_alg_maxbits = 160
  161. }
  162. },
  163. {
  164. .name = "hmac(sha256)",
  165. .compat = "sha256",
  166. .uinfo = {
  167. .auth = {
  168. .icv_truncbits = 96,
  169. .icv_fullbits = 256,
  170. }
  171. },
  172. .desc = {
  173. .sadb_alg_id = SADB_X_AALG_SHA2_256HMAC,
  174. .sadb_alg_ivlen = 0,
  175. .sadb_alg_minbits = 256,
  176. .sadb_alg_maxbits = 256
  177. }
  178. },
  179. {
  180. .name = "hmac(rmd160)",
  181. .compat = "rmd160",
  182. .uinfo = {
  183. .auth = {
  184. .icv_truncbits = 96,
  185. .icv_fullbits = 160,
  186. }
  187. },
  188. .desc = {
  189. .sadb_alg_id = SADB_X_AALG_RIPEMD160HMAC,
  190. .sadb_alg_ivlen = 0,
  191. .sadb_alg_minbits = 160,
  192. .sadb_alg_maxbits = 160
  193. }
  194. },
  195. {
  196. .name = "xcbc(aes)",
  197. .uinfo = {
  198. .auth = {
  199. .icv_truncbits = 96,
  200. .icv_fullbits = 128,
  201. }
  202. },
  203. .desc = {
  204. .sadb_alg_id = SADB_X_AALG_AES_XCBC_MAC,
  205. .sadb_alg_ivlen = 0,
  206. .sadb_alg_minbits = 128,
  207. .sadb_alg_maxbits = 128
  208. }
  209. },
  210. };
  211. static struct xfrm_algo_desc ealg_list[] = {
  212. {
  213. .name = "ecb(cipher_null)",
  214. .compat = "cipher_null",
  215. .uinfo = {
  216. .encr = {
  217. .blockbits = 8,
  218. .defkeybits = 0,
  219. }
  220. },
  221. .desc = {
  222. .sadb_alg_id = SADB_EALG_NULL,
  223. .sadb_alg_ivlen = 0,
  224. .sadb_alg_minbits = 0,
  225. .sadb_alg_maxbits = 0
  226. }
  227. },
  228. {
  229. .name = "cbc(des)",
  230. .compat = "des",
  231. .uinfo = {
  232. .encr = {
  233. .blockbits = 64,
  234. .defkeybits = 64,
  235. }
  236. },
  237. .desc = {
  238. .sadb_alg_id = SADB_EALG_DESCBC,
  239. .sadb_alg_ivlen = 8,
  240. .sadb_alg_minbits = 64,
  241. .sadb_alg_maxbits = 64
  242. }
  243. },
  244. {
  245. .name = "cbc(des3_ede)",
  246. .compat = "des3_ede",
  247. .uinfo = {
  248. .encr = {
  249. .blockbits = 64,
  250. .defkeybits = 192,
  251. }
  252. },
  253. .desc = {
  254. .sadb_alg_id = SADB_EALG_3DESCBC,
  255. .sadb_alg_ivlen = 8,
  256. .sadb_alg_minbits = 192,
  257. .sadb_alg_maxbits = 192
  258. }
  259. },
  260. {
  261. .name = "cbc(cast128)",
  262. .compat = "cast128",
  263. .uinfo = {
  264. .encr = {
  265. .blockbits = 64,
  266. .defkeybits = 128,
  267. }
  268. },
  269. .desc = {
  270. .sadb_alg_id = SADB_X_EALG_CASTCBC,
  271. .sadb_alg_ivlen = 8,
  272. .sadb_alg_minbits = 40,
  273. .sadb_alg_maxbits = 128
  274. }
  275. },
  276. {
  277. .name = "cbc(blowfish)",
  278. .compat = "blowfish",
  279. .uinfo = {
  280. .encr = {
  281. .blockbits = 64,
  282. .defkeybits = 128,
  283. }
  284. },
  285. .desc = {
  286. .sadb_alg_id = SADB_X_EALG_BLOWFISHCBC,
  287. .sadb_alg_ivlen = 8,
  288. .sadb_alg_minbits = 40,
  289. .sadb_alg_maxbits = 448
  290. }
  291. },
  292. {
  293. .name = "cbc(aes)",
  294. .compat = "aes",
  295. .uinfo = {
  296. .encr = {
  297. .blockbits = 128,
  298. .defkeybits = 128,
  299. }
  300. },
  301. .desc = {
  302. .sadb_alg_id = SADB_X_EALG_AESCBC,
  303. .sadb_alg_ivlen = 8,
  304. .sadb_alg_minbits = 128,
  305. .sadb_alg_maxbits = 256
  306. }
  307. },
  308. {
  309. .name = "cbc(serpent)",
  310. .compat = "serpent",
  311. .uinfo = {
  312. .encr = {
  313. .blockbits = 128,
  314. .defkeybits = 128,
  315. }
  316. },
  317. .desc = {
  318. .sadb_alg_id = SADB_X_EALG_SERPENTCBC,
  319. .sadb_alg_ivlen = 8,
  320. .sadb_alg_minbits = 128,
  321. .sadb_alg_maxbits = 256,
  322. }
  323. },
  324. {
  325. .name = "cbc(camellia)",
  326. .uinfo = {
  327. .encr = {
  328. .blockbits = 128,
  329. .defkeybits = 128,
  330. }
  331. },
  332. .desc = {
  333. .sadb_alg_id = SADB_X_EALG_CAMELLIACBC,
  334. .sadb_alg_ivlen = 8,
  335. .sadb_alg_minbits = 128,
  336. .sadb_alg_maxbits = 256
  337. }
  338. },
  339. {
  340. .name = "cbc(twofish)",
  341. .compat = "twofish",
  342. .uinfo = {
  343. .encr = {
  344. .blockbits = 128,
  345. .defkeybits = 128,
  346. }
  347. },
  348. .desc = {
  349. .sadb_alg_id = SADB_X_EALG_TWOFISHCBC,
  350. .sadb_alg_ivlen = 8,
  351. .sadb_alg_minbits = 128,
  352. .sadb_alg_maxbits = 256
  353. }
  354. },
  355. {
  356. .name = "rfc3686(ctr(aes))",
  357. .uinfo = {
  358. .encr = {
  359. .blockbits = 128,
  360. .defkeybits = 160, /* 128-bit key + 32-bit nonce */
  361. }
  362. },
  363. .desc = {
  364. .sadb_alg_id = SADB_X_EALG_AESCTR,
  365. .sadb_alg_ivlen = 8,
  366. .sadb_alg_minbits = 128,
  367. .sadb_alg_maxbits = 256
  368. }
  369. },
  370. };
  371. static struct xfrm_algo_desc calg_list[] = {
  372. {
  373. .name = "deflate",
  374. .uinfo = {
  375. .comp = {
  376. .threshold = 90,
  377. }
  378. },
  379. .desc = { .sadb_alg_id = SADB_X_CALG_DEFLATE }
  380. },
  381. {
  382. .name = "lzs",
  383. .uinfo = {
  384. .comp = {
  385. .threshold = 90,
  386. }
  387. },
  388. .desc = { .sadb_alg_id = SADB_X_CALG_LZS }
  389. },
  390. {
  391. .name = "lzjh",
  392. .uinfo = {
  393. .comp = {
  394. .threshold = 50,
  395. }
  396. },
  397. .desc = { .sadb_alg_id = SADB_X_CALG_LZJH }
  398. },
  399. };
  400. static inline int aead_entries(void)
  401. {
  402. return ARRAY_SIZE(aead_list);
  403. }
  404. static inline int aalg_entries(void)
  405. {
  406. return ARRAY_SIZE(aalg_list);
  407. }
  408. static inline int ealg_entries(void)
  409. {
  410. return ARRAY_SIZE(ealg_list);
  411. }
  412. static inline int calg_entries(void)
  413. {
  414. return ARRAY_SIZE(calg_list);
  415. }
  416. struct xfrm_algo_list {
  417. struct xfrm_algo_desc *algs;
  418. int entries;
  419. u32 type;
  420. u32 mask;
  421. };
  422. static const struct xfrm_algo_list xfrm_aead_list = {
  423. .algs = aead_list,
  424. .entries = ARRAY_SIZE(aead_list),
  425. .type = CRYPTO_ALG_TYPE_AEAD,
  426. .mask = CRYPTO_ALG_TYPE_MASK,
  427. };
  428. static const struct xfrm_algo_list xfrm_aalg_list = {
  429. .algs = aalg_list,
  430. .entries = ARRAY_SIZE(aalg_list),
  431. .type = CRYPTO_ALG_TYPE_HASH,
  432. .mask = CRYPTO_ALG_TYPE_HASH_MASK,
  433. };
  434. static const struct xfrm_algo_list xfrm_ealg_list = {
  435. .algs = ealg_list,
  436. .entries = ARRAY_SIZE(ealg_list),
  437. .type = CRYPTO_ALG_TYPE_BLKCIPHER,
  438. .mask = CRYPTO_ALG_TYPE_BLKCIPHER_MASK,
  439. };
  440. static const struct xfrm_algo_list xfrm_calg_list = {
  441. .algs = calg_list,
  442. .entries = ARRAY_SIZE(calg_list),
  443. .type = CRYPTO_ALG_TYPE_COMPRESS,
  444. .mask = CRYPTO_ALG_TYPE_MASK,
  445. };
  446. static struct xfrm_algo_desc *xfrm_find_algo(
  447. const struct xfrm_algo_list *algo_list,
  448. int match(const struct xfrm_algo_desc *entry, const void *data),
  449. const void *data, int probe)
  450. {
  451. struct xfrm_algo_desc *list = algo_list->algs;
  452. int i, status;
  453. for (i = 0; i < algo_list->entries; i++) {
  454. if (!match(list + i, data))
  455. continue;
  456. if (list[i].available)
  457. return &list[i];
  458. if (!probe)
  459. break;
  460. status = crypto_has_alg(list[i].name, algo_list->type,
  461. algo_list->mask);
  462. if (!status)
  463. break;
  464. list[i].available = status;
  465. return &list[i];
  466. }
  467. return NULL;
  468. }
  469. static int xfrm_alg_id_match(const struct xfrm_algo_desc *entry,
  470. const void *data)
  471. {
  472. return entry->desc.sadb_alg_id == (unsigned long)data;
  473. }
  474. struct xfrm_algo_desc *xfrm_aalg_get_byid(int alg_id)
  475. {
  476. return xfrm_find_algo(&xfrm_aalg_list, xfrm_alg_id_match,
  477. (void *)(unsigned long)alg_id, 1);
  478. }
  479. EXPORT_SYMBOL_GPL(xfrm_aalg_get_byid);
  480. struct xfrm_algo_desc *xfrm_ealg_get_byid(int alg_id)
  481. {
  482. return xfrm_find_algo(&xfrm_ealg_list, xfrm_alg_id_match,
  483. (void *)(unsigned long)alg_id, 1);
  484. }
  485. EXPORT_SYMBOL_GPL(xfrm_ealg_get_byid);
  486. struct xfrm_algo_desc *xfrm_calg_get_byid(int alg_id)
  487. {
  488. return xfrm_find_algo(&xfrm_calg_list, xfrm_alg_id_match,
  489. (void *)(unsigned long)alg_id, 1);
  490. }
  491. EXPORT_SYMBOL_GPL(xfrm_calg_get_byid);
  492. static int xfrm_alg_name_match(const struct xfrm_algo_desc *entry,
  493. const void *data)
  494. {
  495. const char *name = data;
  496. return name && (!strcmp(name, entry->name) ||
  497. (entry->compat && !strcmp(name, entry->compat)));
  498. }
  499. struct xfrm_algo_desc *xfrm_aalg_get_byname(char *name, int probe)
  500. {
  501. return xfrm_find_algo(&xfrm_aalg_list, xfrm_alg_name_match, name,
  502. probe);
  503. }
  504. EXPORT_SYMBOL_GPL(xfrm_aalg_get_byname);
  505. struct xfrm_algo_desc *xfrm_ealg_get_byname(char *name, int probe)
  506. {
  507. return xfrm_find_algo(&xfrm_ealg_list, xfrm_alg_name_match, name,
  508. probe);
  509. }
  510. EXPORT_SYMBOL_GPL(xfrm_ealg_get_byname);
  511. struct xfrm_algo_desc *xfrm_calg_get_byname(char *name, int probe)
  512. {
  513. return xfrm_find_algo(&xfrm_calg_list, xfrm_alg_name_match, name,
  514. probe);
  515. }
  516. EXPORT_SYMBOL_GPL(xfrm_calg_get_byname);
  517. struct xfrm_aead_name {
  518. const char *name;
  519. int icvbits;
  520. };
  521. static int xfrm_aead_name_match(const struct xfrm_algo_desc *entry,
  522. const void *data)
  523. {
  524. const struct xfrm_aead_name *aead = data;
  525. const char *name = aead->name;
  526. return aead->icvbits == entry->uinfo.aead.icv_truncbits && name &&
  527. !strcmp(name, entry->name);
  528. }
  529. struct xfrm_algo_desc *xfrm_aead_get_byname(char *name, int icv_len, int probe)
  530. {
  531. struct xfrm_aead_name data = {
  532. .name = name,
  533. .icvbits = icv_len,
  534. };
  535. return xfrm_find_algo(&xfrm_aead_list, xfrm_aead_name_match, &data,
  536. probe);
  537. }
  538. EXPORT_SYMBOL_GPL(xfrm_aead_get_byname);
  539. struct xfrm_algo_desc *xfrm_aalg_get_byidx(unsigned int idx)
  540. {
  541. if (idx >= aalg_entries())
  542. return NULL;
  543. return &aalg_list[idx];
  544. }
  545. EXPORT_SYMBOL_GPL(xfrm_aalg_get_byidx);
  546. struct xfrm_algo_desc *xfrm_ealg_get_byidx(unsigned int idx)
  547. {
  548. if (idx >= ealg_entries())
  549. return NULL;
  550. return &ealg_list[idx];
  551. }
  552. EXPORT_SYMBOL_GPL(xfrm_ealg_get_byidx);
  553. /*
  554. * Probe for the availability of crypto algorithms, and set the available
  555. * flag for any algorithms found on the system. This is typically called by
  556. * pfkey during userspace SA add, update or register.
  557. */
  558. void xfrm_probe_algs(void)
  559. {
  560. int i, status;
  561. BUG_ON(in_softirq());
  562. for (i = 0; i < aalg_entries(); i++) {
  563. status = crypto_has_hash(aalg_list[i].name, 0,
  564. CRYPTO_ALG_ASYNC);
  565. if (aalg_list[i].available != status)
  566. aalg_list[i].available = status;
  567. }
  568. for (i = 0; i < ealg_entries(); i++) {
  569. status = crypto_has_blkcipher(ealg_list[i].name, 0,
  570. CRYPTO_ALG_ASYNC);
  571. if (ealg_list[i].available != status)
  572. ealg_list[i].available = status;
  573. }
  574. for (i = 0; i < calg_entries(); i++) {
  575. status = crypto_has_comp(calg_list[i].name, 0,
  576. CRYPTO_ALG_ASYNC);
  577. if (calg_list[i].available != status)
  578. calg_list[i].available = status;
  579. }
  580. }
  581. EXPORT_SYMBOL_GPL(xfrm_probe_algs);
  582. int xfrm_count_auth_supported(void)
  583. {
  584. int i, n;
  585. for (i = 0, n = 0; i < aalg_entries(); i++)
  586. if (aalg_list[i].available)
  587. n++;
  588. return n;
  589. }
  590. EXPORT_SYMBOL_GPL(xfrm_count_auth_supported);
  591. int xfrm_count_enc_supported(void)
  592. {
  593. int i, n;
  594. for (i = 0, n = 0; i < ealg_entries(); i++)
  595. if (ealg_list[i].available)
  596. n++;
  597. return n;
  598. }
  599. EXPORT_SYMBOL_GPL(xfrm_count_enc_supported);
  600. /* Move to common area: it is shared with AH. */
  601. int skb_icv_walk(const struct sk_buff *skb, struct hash_desc *desc,
  602. int offset, int len, icv_update_fn_t icv_update)
  603. {
  604. int start = skb_headlen(skb);
  605. int i, copy = start - offset;
  606. int err;
  607. struct scatterlist sg;
  608. /* Checksum header. */
  609. if (copy > 0) {
  610. if (copy > len)
  611. copy = len;
  612. sg_init_one(&sg, skb->data + offset, copy);
  613. err = icv_update(desc, &sg, copy);
  614. if (unlikely(err))
  615. return err;
  616. if ((len -= copy) == 0)
  617. return 0;
  618. offset += copy;
  619. }
  620. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  621. int end;
  622. WARN_ON(start > offset + len);
  623. end = start + skb_shinfo(skb)->frags[i].size;
  624. if ((copy = end - offset) > 0) {
  625. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  626. if (copy > len)
  627. copy = len;
  628. sg_init_table(&sg, 1);
  629. sg_set_page(&sg, frag->page, copy,
  630. frag->page_offset + offset-start);
  631. err = icv_update(desc, &sg, copy);
  632. if (unlikely(err))
  633. return err;
  634. if (!(len -= copy))
  635. return 0;
  636. offset += copy;
  637. }
  638. start = end;
  639. }
  640. if (skb_shinfo(skb)->frag_list) {
  641. struct sk_buff *list = skb_shinfo(skb)->frag_list;
  642. for (; list; list = list->next) {
  643. int end;
  644. WARN_ON(start > offset + len);
  645. end = start + list->len;
  646. if ((copy = end - offset) > 0) {
  647. if (copy > len)
  648. copy = len;
  649. err = skb_icv_walk(list, desc, offset-start,
  650. copy, icv_update);
  651. if (unlikely(err))
  652. return err;
  653. if ((len -= copy) == 0)
  654. return 0;
  655. offset += copy;
  656. }
  657. start = end;
  658. }
  659. }
  660. BUG_ON(len);
  661. return 0;
  662. }
  663. EXPORT_SYMBOL_GPL(skb_icv_walk);
  664. #if defined(CONFIG_INET_ESP) || defined(CONFIG_INET_ESP_MODULE) || defined(CONFIG_INET6_ESP) || defined(CONFIG_INET6_ESP_MODULE)
  665. void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
  666. {
  667. if (tail != skb) {
  668. skb->data_len += len;
  669. skb->len += len;
  670. }
  671. return skb_put(tail, len);
  672. }
  673. EXPORT_SYMBOL_GPL(pskb_put);
  674. #endif