rxkad.c 27 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159
  1. /* Kerberos-based RxRPC security
  2. *
  3. * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
  4. * Written by David Howells (dhowells@redhat.com)
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License
  8. * as published by the Free Software Foundation; either version
  9. * 2 of the License, or (at your option) any later version.
  10. */
  11. #include <linux/module.h>
  12. #include <linux/net.h>
  13. #include <linux/skbuff.h>
  14. #include <linux/udp.h>
  15. #include <linux/crypto.h>
  16. #include <linux/scatterlist.h>
  17. #include <linux/ctype.h>
  18. #include <net/sock.h>
  19. #include <net/af_rxrpc.h>
  20. #define rxrpc_debug rxkad_debug
  21. #include "ar-internal.h"
  22. #define RXKAD_VERSION 2
  23. #define MAXKRB5TICKETLEN 1024
  24. #define RXKAD_TKT_TYPE_KERBEROS_V5 256
  25. #define ANAME_SZ 40 /* size of authentication name */
  26. #define INST_SZ 40 /* size of principal's instance */
  27. #define REALM_SZ 40 /* size of principal's auth domain */
  28. #define SNAME_SZ 40 /* size of service name */
  29. unsigned rxrpc_debug;
  30. module_param_named(debug, rxrpc_debug, uint, S_IWUSR | S_IRUGO);
  31. MODULE_PARM_DESC(debug, "rxkad debugging mask");
  32. struct rxkad_level1_hdr {
  33. __be32 data_size; /* true data size (excluding padding) */
  34. };
  35. struct rxkad_level2_hdr {
  36. __be32 data_size; /* true data size (excluding padding) */
  37. __be32 checksum; /* decrypted data checksum */
  38. };
  39. MODULE_DESCRIPTION("RxRPC network protocol type-2 security (Kerberos)");
  40. MODULE_AUTHOR("Red Hat, Inc.");
  41. MODULE_LICENSE("GPL");
  42. /*
  43. * this holds a pinned cipher so that keventd doesn't get called by the cipher
  44. * alloc routine, but since we have it to hand, we use it to decrypt RESPONSE
  45. * packets
  46. */
  47. static struct crypto_blkcipher *rxkad_ci;
  48. static DEFINE_MUTEX(rxkad_ci_mutex);
  49. /*
  50. * initialise connection security
  51. */
  52. static int rxkad_init_connection_security(struct rxrpc_connection *conn)
  53. {
  54. struct rxrpc_key_payload *payload;
  55. struct crypto_blkcipher *ci;
  56. int ret;
  57. _enter("{%d},{%x}", conn->debug_id, key_serial(conn->key));
  58. payload = conn->key->payload.data;
  59. conn->security_ix = payload->k.security_index;
  60. ci = crypto_alloc_blkcipher("pcbc(fcrypt)", 0, CRYPTO_ALG_ASYNC);
  61. if (IS_ERR(ci)) {
  62. _debug("no cipher");
  63. ret = PTR_ERR(ci);
  64. goto error;
  65. }
  66. if (crypto_blkcipher_setkey(ci, payload->k.session_key,
  67. sizeof(payload->k.session_key)) < 0)
  68. BUG();
  69. switch (conn->security_level) {
  70. case RXRPC_SECURITY_PLAIN:
  71. break;
  72. case RXRPC_SECURITY_AUTH:
  73. conn->size_align = 8;
  74. conn->security_size = sizeof(struct rxkad_level1_hdr);
  75. conn->header_size += sizeof(struct rxkad_level1_hdr);
  76. break;
  77. case RXRPC_SECURITY_ENCRYPT:
  78. conn->size_align = 8;
  79. conn->security_size = sizeof(struct rxkad_level2_hdr);
  80. conn->header_size += sizeof(struct rxkad_level2_hdr);
  81. break;
  82. default:
  83. ret = -EKEYREJECTED;
  84. goto error;
  85. }
  86. conn->cipher = ci;
  87. ret = 0;
  88. error:
  89. _leave(" = %d", ret);
  90. return ret;
  91. }
  92. /*
  93. * prime the encryption state with the invariant parts of a connection's
  94. * description
  95. */
  96. static void rxkad_prime_packet_security(struct rxrpc_connection *conn)
  97. {
  98. struct rxrpc_key_payload *payload;
  99. struct blkcipher_desc desc;
  100. struct scatterlist sg[2];
  101. struct rxrpc_crypt iv;
  102. struct {
  103. __be32 x[4];
  104. } tmpbuf __attribute__((aligned(16))); /* must all be in same page */
  105. _enter("");
  106. if (!conn->key)
  107. return;
  108. payload = conn->key->payload.data;
  109. memcpy(&iv, payload->k.session_key, sizeof(iv));
  110. desc.tfm = conn->cipher;
  111. desc.info = iv.x;
  112. desc.flags = 0;
  113. tmpbuf.x[0] = conn->epoch;
  114. tmpbuf.x[1] = conn->cid;
  115. tmpbuf.x[2] = 0;
  116. tmpbuf.x[3] = htonl(conn->security_ix);
  117. sg_init_one(&sg[0], &tmpbuf, sizeof(tmpbuf));
  118. sg_init_one(&sg[1], &tmpbuf, sizeof(tmpbuf));
  119. crypto_blkcipher_encrypt_iv(&desc, &sg[0], &sg[1], sizeof(tmpbuf));
  120. memcpy(&conn->csum_iv, &tmpbuf.x[2], sizeof(conn->csum_iv));
  121. ASSERTCMP(conn->csum_iv.n[0], ==, tmpbuf.x[2]);
  122. _leave("");
  123. }
  124. /*
  125. * partially encrypt a packet (level 1 security)
  126. */
  127. static int rxkad_secure_packet_auth(const struct rxrpc_call *call,
  128. struct sk_buff *skb,
  129. u32 data_size,
  130. void *sechdr)
  131. {
  132. struct rxrpc_skb_priv *sp;
  133. struct blkcipher_desc desc;
  134. struct rxrpc_crypt iv;
  135. struct scatterlist sg[2];
  136. struct {
  137. struct rxkad_level1_hdr hdr;
  138. __be32 first; /* first four bytes of data and padding */
  139. } tmpbuf __attribute__((aligned(8))); /* must all be in same page */
  140. u16 check;
  141. sp = rxrpc_skb(skb);
  142. _enter("");
  143. check = ntohl(sp->hdr.seq ^ sp->hdr.callNumber);
  144. data_size |= (u32) check << 16;
  145. tmpbuf.hdr.data_size = htonl(data_size);
  146. memcpy(&tmpbuf.first, sechdr + 4, sizeof(tmpbuf.first));
  147. /* start the encryption afresh */
  148. memset(&iv, 0, sizeof(iv));
  149. desc.tfm = call->conn->cipher;
  150. desc.info = iv.x;
  151. desc.flags = 0;
  152. sg_init_one(&sg[0], &tmpbuf, sizeof(tmpbuf));
  153. sg_init_one(&sg[1], &tmpbuf, sizeof(tmpbuf));
  154. crypto_blkcipher_encrypt_iv(&desc, &sg[0], &sg[1], sizeof(tmpbuf));
  155. memcpy(sechdr, &tmpbuf, sizeof(tmpbuf));
  156. _leave(" = 0");
  157. return 0;
  158. }
  159. /*
  160. * wholly encrypt a packet (level 2 security)
  161. */
  162. static int rxkad_secure_packet_encrypt(const struct rxrpc_call *call,
  163. struct sk_buff *skb,
  164. u32 data_size,
  165. void *sechdr)
  166. {
  167. const struct rxrpc_key_payload *payload;
  168. struct rxkad_level2_hdr rxkhdr
  169. __attribute__((aligned(8))); /* must be all on one page */
  170. struct rxrpc_skb_priv *sp;
  171. struct blkcipher_desc desc;
  172. struct rxrpc_crypt iv;
  173. struct scatterlist sg[16];
  174. struct sk_buff *trailer;
  175. unsigned len;
  176. u16 check;
  177. int nsg;
  178. sp = rxrpc_skb(skb);
  179. _enter("");
  180. check = ntohl(sp->hdr.seq ^ sp->hdr.callNumber);
  181. rxkhdr.data_size = htonl(data_size | (u32) check << 16);
  182. rxkhdr.checksum = 0;
  183. /* encrypt from the session key */
  184. payload = call->conn->key->payload.data;
  185. memcpy(&iv, payload->k.session_key, sizeof(iv));
  186. desc.tfm = call->conn->cipher;
  187. desc.info = iv.x;
  188. desc.flags = 0;
  189. sg_init_one(&sg[0], sechdr, sizeof(rxkhdr));
  190. sg_init_one(&sg[1], &rxkhdr, sizeof(rxkhdr));
  191. crypto_blkcipher_encrypt_iv(&desc, &sg[0], &sg[1], sizeof(rxkhdr));
  192. /* we want to encrypt the skbuff in-place */
  193. nsg = skb_cow_data(skb, 0, &trailer);
  194. if (nsg < 0 || nsg > 16)
  195. return -ENOMEM;
  196. len = data_size + call->conn->size_align - 1;
  197. len &= ~(call->conn->size_align - 1);
  198. sg_init_table(sg, nsg);
  199. skb_to_sgvec(skb, sg, 0, len);
  200. crypto_blkcipher_encrypt_iv(&desc, sg, sg, len);
  201. _leave(" = 0");
  202. return 0;
  203. }
  204. /*
  205. * checksum an RxRPC packet header
  206. */
  207. static int rxkad_secure_packet(const struct rxrpc_call *call,
  208. struct sk_buff *skb,
  209. size_t data_size,
  210. void *sechdr)
  211. {
  212. struct rxrpc_skb_priv *sp;
  213. struct blkcipher_desc desc;
  214. struct rxrpc_crypt iv;
  215. struct scatterlist sg[2];
  216. struct {
  217. __be32 x[2];
  218. } tmpbuf __attribute__((aligned(8))); /* must all be in same page */
  219. __be32 x;
  220. u32 y;
  221. int ret;
  222. sp = rxrpc_skb(skb);
  223. _enter("{%d{%x}},{#%u},%zu,",
  224. call->debug_id, key_serial(call->conn->key), ntohl(sp->hdr.seq),
  225. data_size);
  226. if (!call->conn->cipher)
  227. return 0;
  228. ret = key_validate(call->conn->key);
  229. if (ret < 0)
  230. return ret;
  231. /* continue encrypting from where we left off */
  232. memcpy(&iv, call->conn->csum_iv.x, sizeof(iv));
  233. desc.tfm = call->conn->cipher;
  234. desc.info = iv.x;
  235. desc.flags = 0;
  236. /* calculate the security checksum */
  237. x = htonl(call->channel << (32 - RXRPC_CIDSHIFT));
  238. x |= sp->hdr.seq & cpu_to_be32(0x3fffffff);
  239. tmpbuf.x[0] = sp->hdr.callNumber;
  240. tmpbuf.x[1] = x;
  241. sg_init_one(&sg[0], &tmpbuf, sizeof(tmpbuf));
  242. sg_init_one(&sg[1], &tmpbuf, sizeof(tmpbuf));
  243. crypto_blkcipher_encrypt_iv(&desc, &sg[0], &sg[1], sizeof(tmpbuf));
  244. y = ntohl(tmpbuf.x[1]);
  245. y = (y >> 16) & 0xffff;
  246. if (y == 0)
  247. y = 1; /* zero checksums are not permitted */
  248. sp->hdr.cksum = htons(y);
  249. switch (call->conn->security_level) {
  250. case RXRPC_SECURITY_PLAIN:
  251. ret = 0;
  252. break;
  253. case RXRPC_SECURITY_AUTH:
  254. ret = rxkad_secure_packet_auth(call, skb, data_size, sechdr);
  255. break;
  256. case RXRPC_SECURITY_ENCRYPT:
  257. ret = rxkad_secure_packet_encrypt(call, skb, data_size,
  258. sechdr);
  259. break;
  260. default:
  261. ret = -EPERM;
  262. break;
  263. }
  264. _leave(" = %d [set %hx]", ret, y);
  265. return ret;
  266. }
  267. /*
  268. * decrypt partial encryption on a packet (level 1 security)
  269. */
  270. static int rxkad_verify_packet_auth(const struct rxrpc_call *call,
  271. struct sk_buff *skb,
  272. u32 *_abort_code)
  273. {
  274. struct rxkad_level1_hdr sechdr;
  275. struct rxrpc_skb_priv *sp;
  276. struct blkcipher_desc desc;
  277. struct rxrpc_crypt iv;
  278. struct scatterlist sg[16];
  279. struct sk_buff *trailer;
  280. u32 data_size, buf;
  281. u16 check;
  282. int nsg;
  283. _enter("");
  284. sp = rxrpc_skb(skb);
  285. /* we want to decrypt the skbuff in-place */
  286. nsg = skb_cow_data(skb, 0, &trailer);
  287. if (nsg < 0 || nsg > 16)
  288. goto nomem;
  289. sg_init_table(sg, nsg);
  290. skb_to_sgvec(skb, sg, 0, 8);
  291. /* start the decryption afresh */
  292. memset(&iv, 0, sizeof(iv));
  293. desc.tfm = call->conn->cipher;
  294. desc.info = iv.x;
  295. desc.flags = 0;
  296. crypto_blkcipher_decrypt_iv(&desc, sg, sg, 8);
  297. /* remove the decrypted packet length */
  298. if (skb_copy_bits(skb, 0, &sechdr, sizeof(sechdr)) < 0)
  299. goto datalen_error;
  300. if (!skb_pull(skb, sizeof(sechdr)))
  301. BUG();
  302. buf = ntohl(sechdr.data_size);
  303. data_size = buf & 0xffff;
  304. check = buf >> 16;
  305. check ^= ntohl(sp->hdr.seq ^ sp->hdr.callNumber);
  306. check &= 0xffff;
  307. if (check != 0) {
  308. *_abort_code = RXKADSEALEDINCON;
  309. goto protocol_error;
  310. }
  311. /* shorten the packet to remove the padding */
  312. if (data_size > skb->len)
  313. goto datalen_error;
  314. else if (data_size < skb->len)
  315. skb->len = data_size;
  316. _leave(" = 0 [dlen=%x]", data_size);
  317. return 0;
  318. datalen_error:
  319. *_abort_code = RXKADDATALEN;
  320. protocol_error:
  321. _leave(" = -EPROTO");
  322. return -EPROTO;
  323. nomem:
  324. _leave(" = -ENOMEM");
  325. return -ENOMEM;
  326. }
  327. /*
  328. * wholly decrypt a packet (level 2 security)
  329. */
  330. static int rxkad_verify_packet_encrypt(const struct rxrpc_call *call,
  331. struct sk_buff *skb,
  332. u32 *_abort_code)
  333. {
  334. const struct rxrpc_key_payload *payload;
  335. struct rxkad_level2_hdr sechdr;
  336. struct rxrpc_skb_priv *sp;
  337. struct blkcipher_desc desc;
  338. struct rxrpc_crypt iv;
  339. struct scatterlist _sg[4], *sg;
  340. struct sk_buff *trailer;
  341. u32 data_size, buf;
  342. u16 check;
  343. int nsg;
  344. _enter(",{%d}", skb->len);
  345. sp = rxrpc_skb(skb);
  346. /* we want to decrypt the skbuff in-place */
  347. nsg = skb_cow_data(skb, 0, &trailer);
  348. if (nsg < 0)
  349. goto nomem;
  350. sg = _sg;
  351. if (unlikely(nsg > 4)) {
  352. sg = kmalloc(sizeof(*sg) * nsg, GFP_NOIO);
  353. if (!sg)
  354. goto nomem;
  355. }
  356. sg_init_table(sg, nsg);
  357. skb_to_sgvec(skb, sg, 0, skb->len);
  358. /* decrypt from the session key */
  359. payload = call->conn->key->payload.data;
  360. memcpy(&iv, payload->k.session_key, sizeof(iv));
  361. desc.tfm = call->conn->cipher;
  362. desc.info = iv.x;
  363. desc.flags = 0;
  364. crypto_blkcipher_decrypt_iv(&desc, sg, sg, skb->len);
  365. if (sg != _sg)
  366. kfree(sg);
  367. /* remove the decrypted packet length */
  368. if (skb_copy_bits(skb, 0, &sechdr, sizeof(sechdr)) < 0)
  369. goto datalen_error;
  370. if (!skb_pull(skb, sizeof(sechdr)))
  371. BUG();
  372. buf = ntohl(sechdr.data_size);
  373. data_size = buf & 0xffff;
  374. check = buf >> 16;
  375. check ^= ntohl(sp->hdr.seq ^ sp->hdr.callNumber);
  376. check &= 0xffff;
  377. if (check != 0) {
  378. *_abort_code = RXKADSEALEDINCON;
  379. goto protocol_error;
  380. }
  381. /* shorten the packet to remove the padding */
  382. if (data_size > skb->len)
  383. goto datalen_error;
  384. else if (data_size < skb->len)
  385. skb->len = data_size;
  386. _leave(" = 0 [dlen=%x]", data_size);
  387. return 0;
  388. datalen_error:
  389. *_abort_code = RXKADDATALEN;
  390. protocol_error:
  391. _leave(" = -EPROTO");
  392. return -EPROTO;
  393. nomem:
  394. _leave(" = -ENOMEM");
  395. return -ENOMEM;
  396. }
  397. /*
  398. * verify the security on a received packet
  399. */
  400. static int rxkad_verify_packet(const struct rxrpc_call *call,
  401. struct sk_buff *skb,
  402. u32 *_abort_code)
  403. {
  404. struct blkcipher_desc desc;
  405. struct rxrpc_skb_priv *sp;
  406. struct rxrpc_crypt iv;
  407. struct scatterlist sg[2];
  408. struct {
  409. __be32 x[2];
  410. } tmpbuf __attribute__((aligned(8))); /* must all be in same page */
  411. __be32 x;
  412. __be16 cksum;
  413. u32 y;
  414. int ret;
  415. sp = rxrpc_skb(skb);
  416. _enter("{%d{%x}},{#%u}",
  417. call->debug_id, key_serial(call->conn->key),
  418. ntohl(sp->hdr.seq));
  419. if (!call->conn->cipher)
  420. return 0;
  421. if (sp->hdr.securityIndex != 2) {
  422. *_abort_code = RXKADINCONSISTENCY;
  423. _leave(" = -EPROTO [not rxkad]");
  424. return -EPROTO;
  425. }
  426. /* continue encrypting from where we left off */
  427. memcpy(&iv, call->conn->csum_iv.x, sizeof(iv));
  428. desc.tfm = call->conn->cipher;
  429. desc.info = iv.x;
  430. desc.flags = 0;
  431. /* validate the security checksum */
  432. x = htonl(call->channel << (32 - RXRPC_CIDSHIFT));
  433. x |= sp->hdr.seq & cpu_to_be32(0x3fffffff);
  434. tmpbuf.x[0] = call->call_id;
  435. tmpbuf.x[1] = x;
  436. sg_init_one(&sg[0], &tmpbuf, sizeof(tmpbuf));
  437. sg_init_one(&sg[1], &tmpbuf, sizeof(tmpbuf));
  438. crypto_blkcipher_encrypt_iv(&desc, &sg[0], &sg[1], sizeof(tmpbuf));
  439. y = ntohl(tmpbuf.x[1]);
  440. y = (y >> 16) & 0xffff;
  441. if (y == 0)
  442. y = 1; /* zero checksums are not permitted */
  443. cksum = htons(y);
  444. if (sp->hdr.cksum != cksum) {
  445. *_abort_code = RXKADSEALEDINCON;
  446. _leave(" = -EPROTO [csum failed]");
  447. return -EPROTO;
  448. }
  449. switch (call->conn->security_level) {
  450. case RXRPC_SECURITY_PLAIN:
  451. ret = 0;
  452. break;
  453. case RXRPC_SECURITY_AUTH:
  454. ret = rxkad_verify_packet_auth(call, skb, _abort_code);
  455. break;
  456. case RXRPC_SECURITY_ENCRYPT:
  457. ret = rxkad_verify_packet_encrypt(call, skb, _abort_code);
  458. break;
  459. default:
  460. ret = -ENOANO;
  461. break;
  462. }
  463. _leave(" = %d", ret);
  464. return ret;
  465. }
  466. /*
  467. * issue a challenge
  468. */
  469. static int rxkad_issue_challenge(struct rxrpc_connection *conn)
  470. {
  471. struct rxkad_challenge challenge;
  472. struct rxrpc_header hdr;
  473. struct msghdr msg;
  474. struct kvec iov[2];
  475. size_t len;
  476. int ret;
  477. _enter("{%d,%x}", conn->debug_id, key_serial(conn->key));
  478. ret = key_validate(conn->key);
  479. if (ret < 0)
  480. return ret;
  481. get_random_bytes(&conn->security_nonce, sizeof(conn->security_nonce));
  482. challenge.version = htonl(2);
  483. challenge.nonce = htonl(conn->security_nonce);
  484. challenge.min_level = htonl(0);
  485. challenge.__padding = 0;
  486. msg.msg_name = &conn->trans->peer->srx.transport.sin;
  487. msg.msg_namelen = sizeof(conn->trans->peer->srx.transport.sin);
  488. msg.msg_control = NULL;
  489. msg.msg_controllen = 0;
  490. msg.msg_flags = 0;
  491. hdr.epoch = conn->epoch;
  492. hdr.cid = conn->cid;
  493. hdr.callNumber = 0;
  494. hdr.seq = 0;
  495. hdr.type = RXRPC_PACKET_TYPE_CHALLENGE;
  496. hdr.flags = conn->out_clientflag;
  497. hdr.userStatus = 0;
  498. hdr.securityIndex = conn->security_ix;
  499. hdr._rsvd = 0;
  500. hdr.serviceId = conn->service_id;
  501. iov[0].iov_base = &hdr;
  502. iov[0].iov_len = sizeof(hdr);
  503. iov[1].iov_base = &challenge;
  504. iov[1].iov_len = sizeof(challenge);
  505. len = iov[0].iov_len + iov[1].iov_len;
  506. hdr.serial = htonl(atomic_inc_return(&conn->serial));
  507. _proto("Tx CHALLENGE %%%u", ntohl(hdr.serial));
  508. ret = kernel_sendmsg(conn->trans->local->socket, &msg, iov, 2, len);
  509. if (ret < 0) {
  510. _debug("sendmsg failed: %d", ret);
  511. return -EAGAIN;
  512. }
  513. _leave(" = 0");
  514. return 0;
  515. }
  516. /*
  517. * send a Kerberos security response
  518. */
  519. static int rxkad_send_response(struct rxrpc_connection *conn,
  520. struct rxrpc_header *hdr,
  521. struct rxkad_response *resp,
  522. const struct rxkad_key *s2)
  523. {
  524. struct msghdr msg;
  525. struct kvec iov[3];
  526. size_t len;
  527. int ret;
  528. _enter("");
  529. msg.msg_name = &conn->trans->peer->srx.transport.sin;
  530. msg.msg_namelen = sizeof(conn->trans->peer->srx.transport.sin);
  531. msg.msg_control = NULL;
  532. msg.msg_controllen = 0;
  533. msg.msg_flags = 0;
  534. hdr->epoch = conn->epoch;
  535. hdr->seq = 0;
  536. hdr->type = RXRPC_PACKET_TYPE_RESPONSE;
  537. hdr->flags = conn->out_clientflag;
  538. hdr->userStatus = 0;
  539. hdr->_rsvd = 0;
  540. iov[0].iov_base = hdr;
  541. iov[0].iov_len = sizeof(*hdr);
  542. iov[1].iov_base = resp;
  543. iov[1].iov_len = sizeof(*resp);
  544. iov[2].iov_base = (void *) s2->ticket;
  545. iov[2].iov_len = s2->ticket_len;
  546. len = iov[0].iov_len + iov[1].iov_len + iov[2].iov_len;
  547. hdr->serial = htonl(atomic_inc_return(&conn->serial));
  548. _proto("Tx RESPONSE %%%u", ntohl(hdr->serial));
  549. ret = kernel_sendmsg(conn->trans->local->socket, &msg, iov, 3, len);
  550. if (ret < 0) {
  551. _debug("sendmsg failed: %d", ret);
  552. return -EAGAIN;
  553. }
  554. _leave(" = 0");
  555. return 0;
  556. }
  557. /*
  558. * calculate the response checksum
  559. */
  560. static void rxkad_calc_response_checksum(struct rxkad_response *response)
  561. {
  562. u32 csum = 1000003;
  563. int loop;
  564. u8 *p = (u8 *) response;
  565. for (loop = sizeof(*response); loop > 0; loop--)
  566. csum = csum * 0x10204081 + *p++;
  567. response->encrypted.checksum = htonl(csum);
  568. }
  569. /*
  570. * load a scatterlist with a potentially split-page buffer
  571. */
  572. static void rxkad_sg_set_buf2(struct scatterlist sg[2],
  573. void *buf, size_t buflen)
  574. {
  575. int nsg = 1;
  576. sg_init_table(sg, 2);
  577. sg_set_buf(&sg[0], buf, buflen);
  578. if (sg[0].offset + buflen > PAGE_SIZE) {
  579. /* the buffer was split over two pages */
  580. sg[0].length = PAGE_SIZE - sg[0].offset;
  581. sg_set_buf(&sg[1], buf + sg[0].length, buflen - sg[0].length);
  582. nsg++;
  583. }
  584. sg_mark_end(&sg[nsg - 1]);
  585. ASSERTCMP(sg[0].length + sg[1].length, ==, buflen);
  586. }
  587. /*
  588. * encrypt the response packet
  589. */
  590. static void rxkad_encrypt_response(struct rxrpc_connection *conn,
  591. struct rxkad_response *resp,
  592. const struct rxkad_key *s2)
  593. {
  594. struct blkcipher_desc desc;
  595. struct rxrpc_crypt iv;
  596. struct scatterlist sg[2];
  597. /* continue encrypting from where we left off */
  598. memcpy(&iv, s2->session_key, sizeof(iv));
  599. desc.tfm = conn->cipher;
  600. desc.info = iv.x;
  601. desc.flags = 0;
  602. rxkad_sg_set_buf2(sg, &resp->encrypted, sizeof(resp->encrypted));
  603. crypto_blkcipher_encrypt_iv(&desc, sg, sg, sizeof(resp->encrypted));
  604. }
  605. /*
  606. * respond to a challenge packet
  607. */
  608. static int rxkad_respond_to_challenge(struct rxrpc_connection *conn,
  609. struct sk_buff *skb,
  610. u32 *_abort_code)
  611. {
  612. const struct rxrpc_key_payload *payload;
  613. struct rxkad_challenge challenge;
  614. struct rxkad_response resp
  615. __attribute__((aligned(8))); /* must be aligned for crypto */
  616. struct rxrpc_skb_priv *sp;
  617. u32 version, nonce, min_level, abort_code;
  618. int ret;
  619. _enter("{%d,%x}", conn->debug_id, key_serial(conn->key));
  620. if (!conn->key) {
  621. _leave(" = -EPROTO [no key]");
  622. return -EPROTO;
  623. }
  624. ret = key_validate(conn->key);
  625. if (ret < 0) {
  626. *_abort_code = RXKADEXPIRED;
  627. return ret;
  628. }
  629. abort_code = RXKADPACKETSHORT;
  630. sp = rxrpc_skb(skb);
  631. if (skb_copy_bits(skb, 0, &challenge, sizeof(challenge)) < 0)
  632. goto protocol_error;
  633. version = ntohl(challenge.version);
  634. nonce = ntohl(challenge.nonce);
  635. min_level = ntohl(challenge.min_level);
  636. _proto("Rx CHALLENGE %%%u { v=%u n=%u ml=%u }",
  637. ntohl(sp->hdr.serial), version, nonce, min_level);
  638. abort_code = RXKADINCONSISTENCY;
  639. if (version != RXKAD_VERSION)
  640. goto protocol_error;
  641. abort_code = RXKADLEVELFAIL;
  642. if (conn->security_level < min_level)
  643. goto protocol_error;
  644. payload = conn->key->payload.data;
  645. /* build the response packet */
  646. memset(&resp, 0, sizeof(resp));
  647. resp.version = RXKAD_VERSION;
  648. resp.encrypted.epoch = conn->epoch;
  649. resp.encrypted.cid = conn->cid;
  650. resp.encrypted.securityIndex = htonl(conn->security_ix);
  651. resp.encrypted.call_id[0] =
  652. (conn->channels[0] ? conn->channels[0]->call_id : 0);
  653. resp.encrypted.call_id[1] =
  654. (conn->channels[1] ? conn->channels[1]->call_id : 0);
  655. resp.encrypted.call_id[2] =
  656. (conn->channels[2] ? conn->channels[2]->call_id : 0);
  657. resp.encrypted.call_id[3] =
  658. (conn->channels[3] ? conn->channels[3]->call_id : 0);
  659. resp.encrypted.inc_nonce = htonl(nonce + 1);
  660. resp.encrypted.level = htonl(conn->security_level);
  661. resp.kvno = htonl(payload->k.kvno);
  662. resp.ticket_len = htonl(payload->k.ticket_len);
  663. /* calculate the response checksum and then do the encryption */
  664. rxkad_calc_response_checksum(&resp);
  665. rxkad_encrypt_response(conn, &resp, &payload->k);
  666. return rxkad_send_response(conn, &sp->hdr, &resp, &payload->k);
  667. protocol_error:
  668. *_abort_code = abort_code;
  669. _leave(" = -EPROTO [%d]", abort_code);
  670. return -EPROTO;
  671. }
  672. /*
  673. * decrypt the kerberos IV ticket in the response
  674. */
  675. static int rxkad_decrypt_ticket(struct rxrpc_connection *conn,
  676. void *ticket, size_t ticket_len,
  677. struct rxrpc_crypt *_session_key,
  678. time_t *_expiry,
  679. u32 *_abort_code)
  680. {
  681. struct blkcipher_desc desc;
  682. struct rxrpc_crypt iv, key;
  683. struct scatterlist sg[1];
  684. struct in_addr addr;
  685. unsigned life;
  686. time_t issue, now;
  687. bool little_endian;
  688. int ret;
  689. u8 *p, *q, *name, *end;
  690. _enter("{%d},{%x}", conn->debug_id, key_serial(conn->server_key));
  691. *_expiry = 0;
  692. ret = key_validate(conn->server_key);
  693. if (ret < 0) {
  694. switch (ret) {
  695. case -EKEYEXPIRED:
  696. *_abort_code = RXKADEXPIRED;
  697. goto error;
  698. default:
  699. *_abort_code = RXKADNOAUTH;
  700. goto error;
  701. }
  702. }
  703. ASSERT(conn->server_key->payload.data != NULL);
  704. ASSERTCMP((unsigned long) ticket & 7UL, ==, 0);
  705. memcpy(&iv, &conn->server_key->type_data, sizeof(iv));
  706. desc.tfm = conn->server_key->payload.data;
  707. desc.info = iv.x;
  708. desc.flags = 0;
  709. sg_init_one(&sg[0], ticket, ticket_len);
  710. crypto_blkcipher_decrypt_iv(&desc, sg, sg, ticket_len);
  711. p = ticket;
  712. end = p + ticket_len;
  713. #define Z(size) \
  714. ({ \
  715. u8 *__str = p; \
  716. q = memchr(p, 0, end - p); \
  717. if (!q || q - p > (size)) \
  718. goto bad_ticket; \
  719. for (; p < q; p++) \
  720. if (!isprint(*p)) \
  721. goto bad_ticket; \
  722. p++; \
  723. __str; \
  724. })
  725. /* extract the ticket flags */
  726. _debug("KIV FLAGS: %x", *p);
  727. little_endian = *p & 1;
  728. p++;
  729. /* extract the authentication name */
  730. name = Z(ANAME_SZ);
  731. _debug("KIV ANAME: %s", name);
  732. /* extract the principal's instance */
  733. name = Z(INST_SZ);
  734. _debug("KIV INST : %s", name);
  735. /* extract the principal's authentication domain */
  736. name = Z(REALM_SZ);
  737. _debug("KIV REALM: %s", name);
  738. if (end - p < 4 + 8 + 4 + 2)
  739. goto bad_ticket;
  740. /* get the IPv4 address of the entity that requested the ticket */
  741. memcpy(&addr, p, sizeof(addr));
  742. p += 4;
  743. _debug("KIV ADDR : %pI4", &addr);
  744. /* get the session key from the ticket */
  745. memcpy(&key, p, sizeof(key));
  746. p += 8;
  747. _debug("KIV KEY : %08x %08x", ntohl(key.n[0]), ntohl(key.n[1]));
  748. memcpy(_session_key, &key, sizeof(key));
  749. /* get the ticket's lifetime */
  750. life = *p++ * 5 * 60;
  751. _debug("KIV LIFE : %u", life);
  752. /* get the issue time of the ticket */
  753. if (little_endian) {
  754. __le32 stamp;
  755. memcpy(&stamp, p, 4);
  756. issue = le32_to_cpu(stamp);
  757. } else {
  758. __be32 stamp;
  759. memcpy(&stamp, p, 4);
  760. issue = be32_to_cpu(stamp);
  761. }
  762. p += 4;
  763. now = get_seconds();
  764. _debug("KIV ISSUE: %lx [%lx]", issue, now);
  765. /* check the ticket is in date */
  766. if (issue > now) {
  767. *_abort_code = RXKADNOAUTH;
  768. ret = -EKEYREJECTED;
  769. goto error;
  770. }
  771. if (issue < now - life) {
  772. *_abort_code = RXKADEXPIRED;
  773. ret = -EKEYEXPIRED;
  774. goto error;
  775. }
  776. *_expiry = issue + life;
  777. /* get the service name */
  778. name = Z(SNAME_SZ);
  779. _debug("KIV SNAME: %s", name);
  780. /* get the service instance name */
  781. name = Z(INST_SZ);
  782. _debug("KIV SINST: %s", name);
  783. ret = 0;
  784. error:
  785. _leave(" = %d", ret);
  786. return ret;
  787. bad_ticket:
  788. *_abort_code = RXKADBADTICKET;
  789. ret = -EBADMSG;
  790. goto error;
  791. }
  792. /*
  793. * decrypt the response packet
  794. */
  795. static void rxkad_decrypt_response(struct rxrpc_connection *conn,
  796. struct rxkad_response *resp,
  797. const struct rxrpc_crypt *session_key)
  798. {
  799. struct blkcipher_desc desc;
  800. struct scatterlist sg[2];
  801. struct rxrpc_crypt iv;
  802. _enter(",,%08x%08x",
  803. ntohl(session_key->n[0]), ntohl(session_key->n[1]));
  804. ASSERT(rxkad_ci != NULL);
  805. mutex_lock(&rxkad_ci_mutex);
  806. if (crypto_blkcipher_setkey(rxkad_ci, session_key->x,
  807. sizeof(*session_key)) < 0)
  808. BUG();
  809. memcpy(&iv, session_key, sizeof(iv));
  810. desc.tfm = rxkad_ci;
  811. desc.info = iv.x;
  812. desc.flags = 0;
  813. rxkad_sg_set_buf2(sg, &resp->encrypted, sizeof(resp->encrypted));
  814. crypto_blkcipher_decrypt_iv(&desc, sg, sg, sizeof(resp->encrypted));
  815. mutex_unlock(&rxkad_ci_mutex);
  816. _leave("");
  817. }
  818. /*
  819. * verify a response
  820. */
  821. static int rxkad_verify_response(struct rxrpc_connection *conn,
  822. struct sk_buff *skb,
  823. u32 *_abort_code)
  824. {
  825. struct rxkad_response response
  826. __attribute__((aligned(8))); /* must be aligned for crypto */
  827. struct rxrpc_skb_priv *sp;
  828. struct rxrpc_crypt session_key;
  829. time_t expiry;
  830. void *ticket;
  831. u32 abort_code, version, kvno, ticket_len, level;
  832. __be32 csum;
  833. int ret;
  834. _enter("{%d,%x}", conn->debug_id, key_serial(conn->server_key));
  835. abort_code = RXKADPACKETSHORT;
  836. if (skb_copy_bits(skb, 0, &response, sizeof(response)) < 0)
  837. goto protocol_error;
  838. if (!pskb_pull(skb, sizeof(response)))
  839. BUG();
  840. version = ntohl(response.version);
  841. ticket_len = ntohl(response.ticket_len);
  842. kvno = ntohl(response.kvno);
  843. sp = rxrpc_skb(skb);
  844. _proto("Rx RESPONSE %%%u { v=%u kv=%u tl=%u }",
  845. ntohl(sp->hdr.serial), version, kvno, ticket_len);
  846. abort_code = RXKADINCONSISTENCY;
  847. if (version != RXKAD_VERSION)
  848. goto protocol_error;
  849. abort_code = RXKADTICKETLEN;
  850. if (ticket_len < 4 || ticket_len > MAXKRB5TICKETLEN)
  851. goto protocol_error;
  852. abort_code = RXKADUNKNOWNKEY;
  853. if (kvno >= RXKAD_TKT_TYPE_KERBEROS_V5)
  854. goto protocol_error;
  855. /* extract the kerberos ticket and decrypt and decode it */
  856. ticket = kmalloc(ticket_len, GFP_NOFS);
  857. if (!ticket)
  858. return -ENOMEM;
  859. abort_code = RXKADPACKETSHORT;
  860. if (skb_copy_bits(skb, 0, ticket, ticket_len) < 0)
  861. goto protocol_error_free;
  862. ret = rxkad_decrypt_ticket(conn, ticket, ticket_len, &session_key,
  863. &expiry, &abort_code);
  864. if (ret < 0) {
  865. *_abort_code = abort_code;
  866. kfree(ticket);
  867. return ret;
  868. }
  869. /* use the session key from inside the ticket to decrypt the
  870. * response */
  871. rxkad_decrypt_response(conn, &response, &session_key);
  872. abort_code = RXKADSEALEDINCON;
  873. if (response.encrypted.epoch != conn->epoch)
  874. goto protocol_error_free;
  875. if (response.encrypted.cid != conn->cid)
  876. goto protocol_error_free;
  877. if (ntohl(response.encrypted.securityIndex) != conn->security_ix)
  878. goto protocol_error_free;
  879. csum = response.encrypted.checksum;
  880. response.encrypted.checksum = 0;
  881. rxkad_calc_response_checksum(&response);
  882. if (response.encrypted.checksum != csum)
  883. goto protocol_error_free;
  884. if (ntohl(response.encrypted.call_id[0]) > INT_MAX ||
  885. ntohl(response.encrypted.call_id[1]) > INT_MAX ||
  886. ntohl(response.encrypted.call_id[2]) > INT_MAX ||
  887. ntohl(response.encrypted.call_id[3]) > INT_MAX)
  888. goto protocol_error_free;
  889. abort_code = RXKADOUTOFSEQUENCE;
  890. if (response.encrypted.inc_nonce != htonl(conn->security_nonce + 1))
  891. goto protocol_error_free;
  892. abort_code = RXKADLEVELFAIL;
  893. level = ntohl(response.encrypted.level);
  894. if (level > RXRPC_SECURITY_ENCRYPT)
  895. goto protocol_error_free;
  896. conn->security_level = level;
  897. /* create a key to hold the security data and expiration time - after
  898. * this the connection security can be handled in exactly the same way
  899. * as for a client connection */
  900. ret = rxrpc_get_server_data_key(conn, &session_key, expiry, kvno);
  901. if (ret < 0) {
  902. kfree(ticket);
  903. return ret;
  904. }
  905. kfree(ticket);
  906. _leave(" = 0");
  907. return 0;
  908. protocol_error_free:
  909. kfree(ticket);
  910. protocol_error:
  911. *_abort_code = abort_code;
  912. _leave(" = -EPROTO [%d]", abort_code);
  913. return -EPROTO;
  914. }
  915. /*
  916. * clear the connection security
  917. */
  918. static void rxkad_clear(struct rxrpc_connection *conn)
  919. {
  920. _enter("");
  921. if (conn->cipher)
  922. crypto_free_blkcipher(conn->cipher);
  923. }
  924. /*
  925. * RxRPC Kerberos-based security
  926. */
  927. static struct rxrpc_security rxkad = {
  928. .owner = THIS_MODULE,
  929. .name = "rxkad",
  930. .security_index = RXKAD_VERSION,
  931. .init_connection_security = rxkad_init_connection_security,
  932. .prime_packet_security = rxkad_prime_packet_security,
  933. .secure_packet = rxkad_secure_packet,
  934. .verify_packet = rxkad_verify_packet,
  935. .issue_challenge = rxkad_issue_challenge,
  936. .respond_to_challenge = rxkad_respond_to_challenge,
  937. .verify_response = rxkad_verify_response,
  938. .clear = rxkad_clear,
  939. };
  940. static __init int rxkad_init(void)
  941. {
  942. _enter("");
  943. /* pin the cipher we need so that the crypto layer doesn't invoke
  944. * keventd to go get it */
  945. rxkad_ci = crypto_alloc_blkcipher("pcbc(fcrypt)", 0, CRYPTO_ALG_ASYNC);
  946. if (IS_ERR(rxkad_ci))
  947. return PTR_ERR(rxkad_ci);
  948. return rxrpc_register_security(&rxkad);
  949. }
  950. module_init(rxkad_init);
  951. static __exit void rxkad_exit(void)
  952. {
  953. _enter("");
  954. rxrpc_unregister_security(&rxkad);
  955. crypto_free_blkcipher(rxkad_ci);
  956. }
  957. module_exit(rxkad_exit);