ar-peer.c 7.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316
  1. /* RxRPC remote transport endpoint management
  2. *
  3. * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
  4. * Written by David Howells (dhowells@redhat.com)
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License
  8. * as published by the Free Software Foundation; either version
  9. * 2 of the License, or (at your option) any later version.
  10. */
  11. #include <linux/module.h>
  12. #include <linux/net.h>
  13. #include <linux/skbuff.h>
  14. #include <linux/udp.h>
  15. #include <linux/in.h>
  16. #include <linux/in6.h>
  17. #include <linux/icmp.h>
  18. #include <net/sock.h>
  19. #include <net/af_rxrpc.h>
  20. #include <net/ip.h>
  21. #include <net/route.h>
  22. #include "ar-internal.h"
  23. static LIST_HEAD(rxrpc_peers);
  24. static DEFINE_RWLOCK(rxrpc_peer_lock);
  25. static DECLARE_WAIT_QUEUE_HEAD(rxrpc_peer_wq);
  26. static void rxrpc_destroy_peer(struct work_struct *work);
  27. /*
  28. * assess the MTU size for the network interface through which this peer is
  29. * reached
  30. */
  31. static void rxrpc_assess_MTU_size(struct rxrpc_peer *peer)
  32. {
  33. struct rtable *rt;
  34. struct flowi fl;
  35. int ret;
  36. peer->if_mtu = 1500;
  37. memset(&fl, 0, sizeof(fl));
  38. switch (peer->srx.transport.family) {
  39. case AF_INET:
  40. fl.oif = 0;
  41. fl.proto = IPPROTO_UDP,
  42. fl.nl_u.ip4_u.saddr = 0;
  43. fl.nl_u.ip4_u.daddr = peer->srx.transport.sin.sin_addr.s_addr;
  44. fl.nl_u.ip4_u.tos = 0;
  45. /* assume AFS.CM talking to AFS.FS */
  46. fl.uli_u.ports.sport = htons(7001);
  47. fl.uli_u.ports.dport = htons(7000);
  48. break;
  49. default:
  50. BUG();
  51. }
  52. ret = ip_route_output_key(&init_net, &rt, &fl);
  53. if (ret < 0) {
  54. _leave(" [route err %d]", ret);
  55. return;
  56. }
  57. peer->if_mtu = dst_mtu(&rt->u.dst);
  58. dst_release(&rt->u.dst);
  59. _leave(" [if_mtu %u]", peer->if_mtu);
  60. }
  61. /*
  62. * allocate a new peer
  63. */
  64. static struct rxrpc_peer *rxrpc_alloc_peer(struct sockaddr_rxrpc *srx,
  65. gfp_t gfp)
  66. {
  67. struct rxrpc_peer *peer;
  68. _enter("");
  69. peer = kzalloc(sizeof(struct rxrpc_peer), gfp);
  70. if (peer) {
  71. INIT_WORK(&peer->destroyer, &rxrpc_destroy_peer);
  72. INIT_LIST_HEAD(&peer->link);
  73. INIT_LIST_HEAD(&peer->error_targets);
  74. spin_lock_init(&peer->lock);
  75. atomic_set(&peer->usage, 1);
  76. peer->debug_id = atomic_inc_return(&rxrpc_debug_id);
  77. memcpy(&peer->srx, srx, sizeof(*srx));
  78. rxrpc_assess_MTU_size(peer);
  79. peer->mtu = peer->if_mtu;
  80. if (srx->transport.family == AF_INET) {
  81. peer->hdrsize = sizeof(struct iphdr);
  82. switch (srx->transport_type) {
  83. case SOCK_DGRAM:
  84. peer->hdrsize += sizeof(struct udphdr);
  85. break;
  86. default:
  87. BUG();
  88. break;
  89. }
  90. } else {
  91. BUG();
  92. }
  93. peer->hdrsize += sizeof(struct rxrpc_header);
  94. peer->maxdata = peer->mtu - peer->hdrsize;
  95. }
  96. _leave(" = %p", peer);
  97. return peer;
  98. }
  99. /*
  100. * obtain a remote transport endpoint for the specified address
  101. */
  102. struct rxrpc_peer *rxrpc_get_peer(struct sockaddr_rxrpc *srx, gfp_t gfp)
  103. {
  104. struct rxrpc_peer *peer, *candidate;
  105. const char *new = "old";
  106. int usage;
  107. _enter("{%d,%d,%pI4+%hu}",
  108. srx->transport_type,
  109. srx->transport_len,
  110. &srx->transport.sin.sin_addr,
  111. ntohs(srx->transport.sin.sin_port));
  112. /* search the peer list first */
  113. read_lock_bh(&rxrpc_peer_lock);
  114. list_for_each_entry(peer, &rxrpc_peers, link) {
  115. _debug("check PEER %d { u=%d t=%d l=%d }",
  116. peer->debug_id,
  117. atomic_read(&peer->usage),
  118. peer->srx.transport_type,
  119. peer->srx.transport_len);
  120. if (atomic_read(&peer->usage) > 0 &&
  121. peer->srx.transport_type == srx->transport_type &&
  122. peer->srx.transport_len == srx->transport_len &&
  123. memcmp(&peer->srx.transport,
  124. &srx->transport,
  125. srx->transport_len) == 0)
  126. goto found_extant_peer;
  127. }
  128. read_unlock_bh(&rxrpc_peer_lock);
  129. /* not yet present - create a candidate for a new record and then
  130. * redo the search */
  131. candidate = rxrpc_alloc_peer(srx, gfp);
  132. if (!candidate) {
  133. _leave(" = -ENOMEM");
  134. return ERR_PTR(-ENOMEM);
  135. }
  136. write_lock_bh(&rxrpc_peer_lock);
  137. list_for_each_entry(peer, &rxrpc_peers, link) {
  138. if (atomic_read(&peer->usage) > 0 &&
  139. peer->srx.transport_type == srx->transport_type &&
  140. peer->srx.transport_len == srx->transport_len &&
  141. memcmp(&peer->srx.transport,
  142. &srx->transport,
  143. srx->transport_len) == 0)
  144. goto found_extant_second;
  145. }
  146. /* we can now add the new candidate to the list */
  147. peer = candidate;
  148. candidate = NULL;
  149. list_add_tail(&peer->link, &rxrpc_peers);
  150. write_unlock_bh(&rxrpc_peer_lock);
  151. new = "new";
  152. success:
  153. _net("PEER %s %d {%d,%u,%pI4+%hu}",
  154. new,
  155. peer->debug_id,
  156. peer->srx.transport_type,
  157. peer->srx.transport.family,
  158. &peer->srx.transport.sin.sin_addr,
  159. ntohs(peer->srx.transport.sin.sin_port));
  160. _leave(" = %p {u=%d}", peer, atomic_read(&peer->usage));
  161. return peer;
  162. /* we found the peer in the list immediately */
  163. found_extant_peer:
  164. usage = atomic_inc_return(&peer->usage);
  165. read_unlock_bh(&rxrpc_peer_lock);
  166. goto success;
  167. /* we found the peer on the second time through the list */
  168. found_extant_second:
  169. usage = atomic_inc_return(&peer->usage);
  170. write_unlock_bh(&rxrpc_peer_lock);
  171. kfree(candidate);
  172. goto success;
  173. }
  174. /*
  175. * find the peer associated with a packet
  176. */
  177. struct rxrpc_peer *rxrpc_find_peer(struct rxrpc_local *local,
  178. __be32 addr, __be16 port)
  179. {
  180. struct rxrpc_peer *peer;
  181. _enter("");
  182. /* search the peer list */
  183. read_lock_bh(&rxrpc_peer_lock);
  184. if (local->srx.transport.family == AF_INET &&
  185. local->srx.transport_type == SOCK_DGRAM
  186. ) {
  187. list_for_each_entry(peer, &rxrpc_peers, link) {
  188. if (atomic_read(&peer->usage) > 0 &&
  189. peer->srx.transport_type == SOCK_DGRAM &&
  190. peer->srx.transport.family == AF_INET &&
  191. peer->srx.transport.sin.sin_port == port &&
  192. peer->srx.transport.sin.sin_addr.s_addr == addr)
  193. goto found_UDP_peer;
  194. }
  195. goto new_UDP_peer;
  196. }
  197. read_unlock_bh(&rxrpc_peer_lock);
  198. _leave(" = -EAFNOSUPPORT");
  199. return ERR_PTR(-EAFNOSUPPORT);
  200. found_UDP_peer:
  201. _net("Rx UDP DGRAM from peer %d", peer->debug_id);
  202. atomic_inc(&peer->usage);
  203. read_unlock_bh(&rxrpc_peer_lock);
  204. _leave(" = %p", peer);
  205. return peer;
  206. new_UDP_peer:
  207. _net("Rx UDP DGRAM from NEW peer %d", peer->debug_id);
  208. read_unlock_bh(&rxrpc_peer_lock);
  209. _leave(" = -EBUSY [new]");
  210. return ERR_PTR(-EBUSY);
  211. }
  212. /*
  213. * release a remote transport endpoint
  214. */
  215. void rxrpc_put_peer(struct rxrpc_peer *peer)
  216. {
  217. _enter("%p{u=%d}", peer, atomic_read(&peer->usage));
  218. ASSERTCMP(atomic_read(&peer->usage), >, 0);
  219. if (likely(!atomic_dec_and_test(&peer->usage))) {
  220. _leave(" [in use]");
  221. return;
  222. }
  223. rxrpc_queue_work(&peer->destroyer);
  224. _leave("");
  225. }
  226. /*
  227. * destroy a remote transport endpoint
  228. */
  229. static void rxrpc_destroy_peer(struct work_struct *work)
  230. {
  231. struct rxrpc_peer *peer =
  232. container_of(work, struct rxrpc_peer, destroyer);
  233. _enter("%p{%d}", peer, atomic_read(&peer->usage));
  234. write_lock_bh(&rxrpc_peer_lock);
  235. list_del(&peer->link);
  236. write_unlock_bh(&rxrpc_peer_lock);
  237. _net("DESTROY PEER %d", peer->debug_id);
  238. kfree(peer);
  239. if (list_empty(&rxrpc_peers))
  240. wake_up_all(&rxrpc_peer_wq);
  241. _leave("");
  242. }
  243. /*
  244. * preemptively destroy all the peer records from a transport endpoint rather
  245. * than waiting for them to time out
  246. */
  247. void __exit rxrpc_destroy_all_peers(void)
  248. {
  249. DECLARE_WAITQUEUE(myself,current);
  250. _enter("");
  251. /* we simply have to wait for them to go away */
  252. if (!list_empty(&rxrpc_peers)) {
  253. set_current_state(TASK_UNINTERRUPTIBLE);
  254. add_wait_queue(&rxrpc_peer_wq, &myself);
  255. while (!list_empty(&rxrpc_peers)) {
  256. schedule();
  257. set_current_state(TASK_UNINTERRUPTIBLE);
  258. }
  259. remove_wait_queue(&rxrpc_peer_wq, &myself);
  260. set_current_state(TASK_RUNNING);
  261. }
  262. _leave("");
  263. }