af_netrom.c 33 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532
  1. /*
  2. * This program is free software; you can redistribute it and/or modify
  3. * it under the terms of the GNU General Public License as published by
  4. * the Free Software Foundation; either version 2 of the License, or
  5. * (at your option) any later version.
  6. *
  7. * Copyright Jonathan Naylor G4KLX (g4klx@g4klx.demon.co.uk)
  8. * Copyright Alan Cox GW4PTS (alan@lxorguk.ukuu.org.uk)
  9. * Copyright Darryl Miles G7LED (dlm@g7led.demon.co.uk)
  10. */
  11. #include <linux/module.h>
  12. #include <linux/moduleparam.h>
  13. #include <linux/capability.h>
  14. #include <linux/errno.h>
  15. #include <linux/types.h>
  16. #include <linux/socket.h>
  17. #include <linux/in.h>
  18. #include <linux/kernel.h>
  19. #include <linux/sched.h>
  20. #include <linux/timer.h>
  21. #include <linux/string.h>
  22. #include <linux/sockios.h>
  23. #include <linux/net.h>
  24. #include <linux/stat.h>
  25. #include <net/ax25.h>
  26. #include <linux/inet.h>
  27. #include <linux/netdevice.h>
  28. #include <linux/if_arp.h>
  29. #include <linux/skbuff.h>
  30. #include <net/net_namespace.h>
  31. #include <net/sock.h>
  32. #include <asm/uaccess.h>
  33. #include <asm/system.h>
  34. #include <linux/fcntl.h>
  35. #include <linux/termios.h> /* For TIOCINQ/OUTQ */
  36. #include <linux/mm.h>
  37. #include <linux/interrupt.h>
  38. #include <linux/notifier.h>
  39. #include <net/netrom.h>
  40. #include <linux/proc_fs.h>
  41. #include <linux/seq_file.h>
  42. #include <net/ip.h>
  43. #include <net/tcp_states.h>
  44. #include <net/arp.h>
  45. #include <linux/init.h>
  46. static int nr_ndevs = 4;
  47. int sysctl_netrom_default_path_quality = NR_DEFAULT_QUAL;
  48. int sysctl_netrom_obsolescence_count_initialiser = NR_DEFAULT_OBS;
  49. int sysctl_netrom_network_ttl_initialiser = NR_DEFAULT_TTL;
  50. int sysctl_netrom_transport_timeout = NR_DEFAULT_T1;
  51. int sysctl_netrom_transport_maximum_tries = NR_DEFAULT_N2;
  52. int sysctl_netrom_transport_acknowledge_delay = NR_DEFAULT_T2;
  53. int sysctl_netrom_transport_busy_delay = NR_DEFAULT_T4;
  54. int sysctl_netrom_transport_requested_window_size = NR_DEFAULT_WINDOW;
  55. int sysctl_netrom_transport_no_activity_timeout = NR_DEFAULT_IDLE;
  56. int sysctl_netrom_routing_control = NR_DEFAULT_ROUTING;
  57. int sysctl_netrom_link_fails_count = NR_DEFAULT_FAILS;
  58. int sysctl_netrom_reset_circuit = NR_DEFAULT_RESET;
  59. static unsigned short circuit = 0x101;
  60. static HLIST_HEAD(nr_list);
  61. static DEFINE_SPINLOCK(nr_list_lock);
  62. static const struct proto_ops nr_proto_ops;
  63. /*
  64. * NETROM network devices are virtual network devices encapsulating NETROM
  65. * frames into AX.25 which will be sent through an AX.25 device, so form a
  66. * special "super class" of normal net devices; split their locks off into a
  67. * separate class since they always nest.
  68. */
  69. static struct lock_class_key nr_netdev_xmit_lock_key;
  70. static struct lock_class_key nr_netdev_addr_lock_key;
  71. static void nr_set_lockdep_one(struct net_device *dev,
  72. struct netdev_queue *txq,
  73. void *_unused)
  74. {
  75. lockdep_set_class(&txq->_xmit_lock, &nr_netdev_xmit_lock_key);
  76. }
  77. static void nr_set_lockdep_key(struct net_device *dev)
  78. {
  79. lockdep_set_class(&dev->addr_list_lock, &nr_netdev_addr_lock_key);
  80. netdev_for_each_tx_queue(dev, nr_set_lockdep_one, NULL);
  81. }
  82. /*
  83. * Socket removal during an interrupt is now safe.
  84. */
  85. static void nr_remove_socket(struct sock *sk)
  86. {
  87. spin_lock_bh(&nr_list_lock);
  88. sk_del_node_init(sk);
  89. spin_unlock_bh(&nr_list_lock);
  90. }
  91. /*
  92. * Kill all bound sockets on a dropped device.
  93. */
  94. static void nr_kill_by_device(struct net_device *dev)
  95. {
  96. struct sock *s;
  97. struct hlist_node *node;
  98. spin_lock_bh(&nr_list_lock);
  99. sk_for_each(s, node, &nr_list)
  100. if (nr_sk(s)->device == dev)
  101. nr_disconnect(s, ENETUNREACH);
  102. spin_unlock_bh(&nr_list_lock);
  103. }
  104. /*
  105. * Handle device status changes.
  106. */
  107. static int nr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
  108. {
  109. struct net_device *dev = (struct net_device *)ptr;
  110. if (!net_eq(dev_net(dev), &init_net))
  111. return NOTIFY_DONE;
  112. if (event != NETDEV_DOWN)
  113. return NOTIFY_DONE;
  114. nr_kill_by_device(dev);
  115. nr_rt_device_down(dev);
  116. return NOTIFY_DONE;
  117. }
  118. /*
  119. * Add a socket to the bound sockets list.
  120. */
  121. static void nr_insert_socket(struct sock *sk)
  122. {
  123. spin_lock_bh(&nr_list_lock);
  124. sk_add_node(sk, &nr_list);
  125. spin_unlock_bh(&nr_list_lock);
  126. }
  127. /*
  128. * Find a socket that wants to accept the Connect Request we just
  129. * received.
  130. */
  131. static struct sock *nr_find_listener(ax25_address *addr)
  132. {
  133. struct sock *s;
  134. struct hlist_node *node;
  135. spin_lock_bh(&nr_list_lock);
  136. sk_for_each(s, node, &nr_list)
  137. if (!ax25cmp(&nr_sk(s)->source_addr, addr) &&
  138. s->sk_state == TCP_LISTEN) {
  139. bh_lock_sock(s);
  140. goto found;
  141. }
  142. s = NULL;
  143. found:
  144. spin_unlock_bh(&nr_list_lock);
  145. return s;
  146. }
  147. /*
  148. * Find a connected NET/ROM socket given my circuit IDs.
  149. */
  150. static struct sock *nr_find_socket(unsigned char index, unsigned char id)
  151. {
  152. struct sock *s;
  153. struct hlist_node *node;
  154. spin_lock_bh(&nr_list_lock);
  155. sk_for_each(s, node, &nr_list) {
  156. struct nr_sock *nr = nr_sk(s);
  157. if (nr->my_index == index && nr->my_id == id) {
  158. bh_lock_sock(s);
  159. goto found;
  160. }
  161. }
  162. s = NULL;
  163. found:
  164. spin_unlock_bh(&nr_list_lock);
  165. return s;
  166. }
  167. /*
  168. * Find a connected NET/ROM socket given their circuit IDs.
  169. */
  170. static struct sock *nr_find_peer(unsigned char index, unsigned char id,
  171. ax25_address *dest)
  172. {
  173. struct sock *s;
  174. struct hlist_node *node;
  175. spin_lock_bh(&nr_list_lock);
  176. sk_for_each(s, node, &nr_list) {
  177. struct nr_sock *nr = nr_sk(s);
  178. if (nr->your_index == index && nr->your_id == id &&
  179. !ax25cmp(&nr->dest_addr, dest)) {
  180. bh_lock_sock(s);
  181. goto found;
  182. }
  183. }
  184. s = NULL;
  185. found:
  186. spin_unlock_bh(&nr_list_lock);
  187. return s;
  188. }
  189. /*
  190. * Find next free circuit ID.
  191. */
  192. static unsigned short nr_find_next_circuit(void)
  193. {
  194. unsigned short id = circuit;
  195. unsigned char i, j;
  196. struct sock *sk;
  197. for (;;) {
  198. i = id / 256;
  199. j = id % 256;
  200. if (i != 0 && j != 0) {
  201. if ((sk=nr_find_socket(i, j)) == NULL)
  202. break;
  203. bh_unlock_sock(sk);
  204. }
  205. id++;
  206. }
  207. return id;
  208. }
  209. /*
  210. * Deferred destroy.
  211. */
  212. void nr_destroy_socket(struct sock *);
  213. /*
  214. * Handler for deferred kills.
  215. */
  216. static void nr_destroy_timer(unsigned long data)
  217. {
  218. struct sock *sk=(struct sock *)data;
  219. bh_lock_sock(sk);
  220. sock_hold(sk);
  221. nr_destroy_socket(sk);
  222. bh_unlock_sock(sk);
  223. sock_put(sk);
  224. }
  225. /*
  226. * This is called from user mode and the timers. Thus it protects itself
  227. * against interrupt users but doesn't worry about being called during
  228. * work. Once it is removed from the queue no interrupt or bottom half
  229. * will touch it and we are (fairly 8-) ) safe.
  230. */
  231. void nr_destroy_socket(struct sock *sk)
  232. {
  233. struct sk_buff *skb;
  234. nr_remove_socket(sk);
  235. nr_stop_heartbeat(sk);
  236. nr_stop_t1timer(sk);
  237. nr_stop_t2timer(sk);
  238. nr_stop_t4timer(sk);
  239. nr_stop_idletimer(sk);
  240. nr_clear_queues(sk); /* Flush the queues */
  241. while ((skb = skb_dequeue(&sk->sk_receive_queue)) != NULL) {
  242. if (skb->sk != sk) { /* A pending connection */
  243. /* Queue the unaccepted socket for death */
  244. sock_set_flag(skb->sk, SOCK_DEAD);
  245. nr_start_heartbeat(skb->sk);
  246. nr_sk(skb->sk)->state = NR_STATE_0;
  247. }
  248. kfree_skb(skb);
  249. }
  250. if (atomic_read(&sk->sk_wmem_alloc) ||
  251. atomic_read(&sk->sk_rmem_alloc)) {
  252. /* Defer: outstanding buffers */
  253. sk->sk_timer.function = nr_destroy_timer;
  254. sk->sk_timer.expires = jiffies + 2 * HZ;
  255. add_timer(&sk->sk_timer);
  256. } else
  257. sock_put(sk);
  258. }
  259. /*
  260. * Handling for system calls applied via the various interfaces to a
  261. * NET/ROM socket object.
  262. */
  263. static int nr_setsockopt(struct socket *sock, int level, int optname,
  264. char __user *optval, int optlen)
  265. {
  266. struct sock *sk = sock->sk;
  267. struct nr_sock *nr = nr_sk(sk);
  268. int opt;
  269. if (level != SOL_NETROM)
  270. return -ENOPROTOOPT;
  271. if (optlen < sizeof(int))
  272. return -EINVAL;
  273. if (get_user(opt, (int __user *)optval))
  274. return -EFAULT;
  275. switch (optname) {
  276. case NETROM_T1:
  277. if (opt < 1)
  278. return -EINVAL;
  279. nr->t1 = opt * HZ;
  280. return 0;
  281. case NETROM_T2:
  282. if (opt < 1)
  283. return -EINVAL;
  284. nr->t2 = opt * HZ;
  285. return 0;
  286. case NETROM_N2:
  287. if (opt < 1 || opt > 31)
  288. return -EINVAL;
  289. nr->n2 = opt;
  290. return 0;
  291. case NETROM_T4:
  292. if (opt < 1)
  293. return -EINVAL;
  294. nr->t4 = opt * HZ;
  295. return 0;
  296. case NETROM_IDLE:
  297. if (opt < 0)
  298. return -EINVAL;
  299. nr->idle = opt * 60 * HZ;
  300. return 0;
  301. default:
  302. return -ENOPROTOOPT;
  303. }
  304. }
  305. static int nr_getsockopt(struct socket *sock, int level, int optname,
  306. char __user *optval, int __user *optlen)
  307. {
  308. struct sock *sk = sock->sk;
  309. struct nr_sock *nr = nr_sk(sk);
  310. int val = 0;
  311. int len;
  312. if (level != SOL_NETROM)
  313. return -ENOPROTOOPT;
  314. if (get_user(len, optlen))
  315. return -EFAULT;
  316. if (len < 0)
  317. return -EINVAL;
  318. switch (optname) {
  319. case NETROM_T1:
  320. val = nr->t1 / HZ;
  321. break;
  322. case NETROM_T2:
  323. val = nr->t2 / HZ;
  324. break;
  325. case NETROM_N2:
  326. val = nr->n2;
  327. break;
  328. case NETROM_T4:
  329. val = nr->t4 / HZ;
  330. break;
  331. case NETROM_IDLE:
  332. val = nr->idle / (60 * HZ);
  333. break;
  334. default:
  335. return -ENOPROTOOPT;
  336. }
  337. len = min_t(unsigned int, len, sizeof(int));
  338. if (put_user(len, optlen))
  339. return -EFAULT;
  340. return copy_to_user(optval, &val, len) ? -EFAULT : 0;
  341. }
  342. static int nr_listen(struct socket *sock, int backlog)
  343. {
  344. struct sock *sk = sock->sk;
  345. lock_sock(sk);
  346. if (sk->sk_state != TCP_LISTEN) {
  347. memset(&nr_sk(sk)->user_addr, 0, AX25_ADDR_LEN);
  348. sk->sk_max_ack_backlog = backlog;
  349. sk->sk_state = TCP_LISTEN;
  350. release_sock(sk);
  351. return 0;
  352. }
  353. release_sock(sk);
  354. return -EOPNOTSUPP;
  355. }
  356. static struct proto nr_proto = {
  357. .name = "NETROM",
  358. .owner = THIS_MODULE,
  359. .obj_size = sizeof(struct nr_sock),
  360. };
  361. static int nr_create(struct net *net, struct socket *sock, int protocol)
  362. {
  363. struct sock *sk;
  364. struct nr_sock *nr;
  365. if (net != &init_net)
  366. return -EAFNOSUPPORT;
  367. if (sock->type != SOCK_SEQPACKET || protocol != 0)
  368. return -ESOCKTNOSUPPORT;
  369. sk = sk_alloc(net, PF_NETROM, GFP_ATOMIC, &nr_proto);
  370. if (sk == NULL)
  371. return -ENOMEM;
  372. nr = nr_sk(sk);
  373. sock_init_data(sock, sk);
  374. sock->ops = &nr_proto_ops;
  375. sk->sk_protocol = protocol;
  376. skb_queue_head_init(&nr->ack_queue);
  377. skb_queue_head_init(&nr->reseq_queue);
  378. skb_queue_head_init(&nr->frag_queue);
  379. nr_init_timers(sk);
  380. nr->t1 =
  381. msecs_to_jiffies(sysctl_netrom_transport_timeout);
  382. nr->t2 =
  383. msecs_to_jiffies(sysctl_netrom_transport_acknowledge_delay);
  384. nr->n2 =
  385. msecs_to_jiffies(sysctl_netrom_transport_maximum_tries);
  386. nr->t4 =
  387. msecs_to_jiffies(sysctl_netrom_transport_busy_delay);
  388. nr->idle =
  389. msecs_to_jiffies(sysctl_netrom_transport_no_activity_timeout);
  390. nr->window = sysctl_netrom_transport_requested_window_size;
  391. nr->bpqext = 1;
  392. nr->state = NR_STATE_0;
  393. return 0;
  394. }
  395. static struct sock *nr_make_new(struct sock *osk)
  396. {
  397. struct sock *sk;
  398. struct nr_sock *nr, *onr;
  399. if (osk->sk_type != SOCK_SEQPACKET)
  400. return NULL;
  401. sk = sk_alloc(sock_net(osk), PF_NETROM, GFP_ATOMIC, osk->sk_prot);
  402. if (sk == NULL)
  403. return NULL;
  404. nr = nr_sk(sk);
  405. sock_init_data(NULL, sk);
  406. sk->sk_type = osk->sk_type;
  407. sk->sk_priority = osk->sk_priority;
  408. sk->sk_protocol = osk->sk_protocol;
  409. sk->sk_rcvbuf = osk->sk_rcvbuf;
  410. sk->sk_sndbuf = osk->sk_sndbuf;
  411. sk->sk_state = TCP_ESTABLISHED;
  412. sock_copy_flags(sk, osk);
  413. skb_queue_head_init(&nr->ack_queue);
  414. skb_queue_head_init(&nr->reseq_queue);
  415. skb_queue_head_init(&nr->frag_queue);
  416. nr_init_timers(sk);
  417. onr = nr_sk(osk);
  418. nr->t1 = onr->t1;
  419. nr->t2 = onr->t2;
  420. nr->n2 = onr->n2;
  421. nr->t4 = onr->t4;
  422. nr->idle = onr->idle;
  423. nr->window = onr->window;
  424. nr->device = onr->device;
  425. nr->bpqext = onr->bpqext;
  426. return sk;
  427. }
  428. static int nr_release(struct socket *sock)
  429. {
  430. struct sock *sk = sock->sk;
  431. struct nr_sock *nr;
  432. if (sk == NULL) return 0;
  433. sock_hold(sk);
  434. sock_orphan(sk);
  435. lock_sock(sk);
  436. nr = nr_sk(sk);
  437. switch (nr->state) {
  438. case NR_STATE_0:
  439. case NR_STATE_1:
  440. case NR_STATE_2:
  441. nr_disconnect(sk, 0);
  442. nr_destroy_socket(sk);
  443. break;
  444. case NR_STATE_3:
  445. nr_clear_queues(sk);
  446. nr->n2count = 0;
  447. nr_write_internal(sk, NR_DISCREQ);
  448. nr_start_t1timer(sk);
  449. nr_stop_t2timer(sk);
  450. nr_stop_t4timer(sk);
  451. nr_stop_idletimer(sk);
  452. nr->state = NR_STATE_2;
  453. sk->sk_state = TCP_CLOSE;
  454. sk->sk_shutdown |= SEND_SHUTDOWN;
  455. sk->sk_state_change(sk);
  456. sock_set_flag(sk, SOCK_DESTROY);
  457. break;
  458. default:
  459. break;
  460. }
  461. sock->sk = NULL;
  462. release_sock(sk);
  463. sock_put(sk);
  464. return 0;
  465. }
  466. static int nr_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
  467. {
  468. struct sock *sk = sock->sk;
  469. struct nr_sock *nr = nr_sk(sk);
  470. struct full_sockaddr_ax25 *addr = (struct full_sockaddr_ax25 *)uaddr;
  471. struct net_device *dev;
  472. ax25_uid_assoc *user;
  473. ax25_address *source;
  474. lock_sock(sk);
  475. if (!sock_flag(sk, SOCK_ZAPPED)) {
  476. release_sock(sk);
  477. return -EINVAL;
  478. }
  479. if (addr_len < sizeof(struct sockaddr_ax25) || addr_len > sizeof(struct full_sockaddr_ax25)) {
  480. release_sock(sk);
  481. return -EINVAL;
  482. }
  483. if (addr_len < (addr->fsa_ax25.sax25_ndigis * sizeof(ax25_address) + sizeof(struct sockaddr_ax25))) {
  484. release_sock(sk);
  485. return -EINVAL;
  486. }
  487. if (addr->fsa_ax25.sax25_family != AF_NETROM) {
  488. release_sock(sk);
  489. return -EINVAL;
  490. }
  491. if ((dev = nr_dev_get(&addr->fsa_ax25.sax25_call)) == NULL) {
  492. SOCK_DEBUG(sk, "NET/ROM: bind failed: invalid node callsign\n");
  493. release_sock(sk);
  494. return -EADDRNOTAVAIL;
  495. }
  496. /*
  497. * Only the super user can set an arbitrary user callsign.
  498. */
  499. if (addr->fsa_ax25.sax25_ndigis == 1) {
  500. if (!capable(CAP_NET_BIND_SERVICE)) {
  501. dev_put(dev);
  502. release_sock(sk);
  503. return -EACCES;
  504. }
  505. nr->user_addr = addr->fsa_digipeater[0];
  506. nr->source_addr = addr->fsa_ax25.sax25_call;
  507. } else {
  508. source = &addr->fsa_ax25.sax25_call;
  509. user = ax25_findbyuid(current_euid());
  510. if (user) {
  511. nr->user_addr = user->call;
  512. ax25_uid_put(user);
  513. } else {
  514. if (ax25_uid_policy && !capable(CAP_NET_BIND_SERVICE)) {
  515. release_sock(sk);
  516. dev_put(dev);
  517. return -EPERM;
  518. }
  519. nr->user_addr = *source;
  520. }
  521. nr->source_addr = *source;
  522. }
  523. nr->device = dev;
  524. nr_insert_socket(sk);
  525. sock_reset_flag(sk, SOCK_ZAPPED);
  526. dev_put(dev);
  527. release_sock(sk);
  528. SOCK_DEBUG(sk, "NET/ROM: socket is bound\n");
  529. return 0;
  530. }
  531. static int nr_connect(struct socket *sock, struct sockaddr *uaddr,
  532. int addr_len, int flags)
  533. {
  534. struct sock *sk = sock->sk;
  535. struct nr_sock *nr = nr_sk(sk);
  536. struct sockaddr_ax25 *addr = (struct sockaddr_ax25 *)uaddr;
  537. ax25_address *source = NULL;
  538. ax25_uid_assoc *user;
  539. struct net_device *dev;
  540. int err = 0;
  541. lock_sock(sk);
  542. if (sk->sk_state == TCP_ESTABLISHED && sock->state == SS_CONNECTING) {
  543. sock->state = SS_CONNECTED;
  544. goto out_release; /* Connect completed during a ERESTARTSYS event */
  545. }
  546. if (sk->sk_state == TCP_CLOSE && sock->state == SS_CONNECTING) {
  547. sock->state = SS_UNCONNECTED;
  548. err = -ECONNREFUSED;
  549. goto out_release;
  550. }
  551. if (sk->sk_state == TCP_ESTABLISHED) {
  552. err = -EISCONN; /* No reconnect on a seqpacket socket */
  553. goto out_release;
  554. }
  555. sk->sk_state = TCP_CLOSE;
  556. sock->state = SS_UNCONNECTED;
  557. if (addr_len != sizeof(struct sockaddr_ax25) && addr_len != sizeof(struct full_sockaddr_ax25)) {
  558. err = -EINVAL;
  559. goto out_release;
  560. }
  561. if (addr->sax25_family != AF_NETROM) {
  562. err = -EINVAL;
  563. goto out_release;
  564. }
  565. if (sock_flag(sk, SOCK_ZAPPED)) { /* Must bind first - autobinding in this may or may not work */
  566. sock_reset_flag(sk, SOCK_ZAPPED);
  567. if ((dev = nr_dev_first()) == NULL) {
  568. err = -ENETUNREACH;
  569. goto out_release;
  570. }
  571. source = (ax25_address *)dev->dev_addr;
  572. user = ax25_findbyuid(current_euid());
  573. if (user) {
  574. nr->user_addr = user->call;
  575. ax25_uid_put(user);
  576. } else {
  577. if (ax25_uid_policy && !capable(CAP_NET_ADMIN)) {
  578. dev_put(dev);
  579. err = -EPERM;
  580. goto out_release;
  581. }
  582. nr->user_addr = *source;
  583. }
  584. nr->source_addr = *source;
  585. nr->device = dev;
  586. dev_put(dev);
  587. nr_insert_socket(sk); /* Finish the bind */
  588. }
  589. nr->dest_addr = addr->sax25_call;
  590. release_sock(sk);
  591. circuit = nr_find_next_circuit();
  592. lock_sock(sk);
  593. nr->my_index = circuit / 256;
  594. nr->my_id = circuit % 256;
  595. circuit++;
  596. /* Move to connecting socket, start sending Connect Requests */
  597. sock->state = SS_CONNECTING;
  598. sk->sk_state = TCP_SYN_SENT;
  599. nr_establish_data_link(sk);
  600. nr->state = NR_STATE_1;
  601. nr_start_heartbeat(sk);
  602. /* Now the loop */
  603. if (sk->sk_state != TCP_ESTABLISHED && (flags & O_NONBLOCK)) {
  604. err = -EINPROGRESS;
  605. goto out_release;
  606. }
  607. /*
  608. * A Connect Ack with Choke or timeout or failed routing will go to
  609. * closed.
  610. */
  611. if (sk->sk_state == TCP_SYN_SENT) {
  612. DEFINE_WAIT(wait);
  613. for (;;) {
  614. prepare_to_wait(sk->sk_sleep, &wait,
  615. TASK_INTERRUPTIBLE);
  616. if (sk->sk_state != TCP_SYN_SENT)
  617. break;
  618. if (!signal_pending(current)) {
  619. release_sock(sk);
  620. schedule();
  621. lock_sock(sk);
  622. continue;
  623. }
  624. err = -ERESTARTSYS;
  625. break;
  626. }
  627. finish_wait(sk->sk_sleep, &wait);
  628. if (err)
  629. goto out_release;
  630. }
  631. if (sk->sk_state != TCP_ESTABLISHED) {
  632. sock->state = SS_UNCONNECTED;
  633. err = sock_error(sk); /* Always set at this point */
  634. goto out_release;
  635. }
  636. sock->state = SS_CONNECTED;
  637. out_release:
  638. release_sock(sk);
  639. return err;
  640. }
  641. static int nr_accept(struct socket *sock, struct socket *newsock, int flags)
  642. {
  643. struct sk_buff *skb;
  644. struct sock *newsk;
  645. DEFINE_WAIT(wait);
  646. struct sock *sk;
  647. int err = 0;
  648. if ((sk = sock->sk) == NULL)
  649. return -EINVAL;
  650. lock_sock(sk);
  651. if (sk->sk_type != SOCK_SEQPACKET) {
  652. err = -EOPNOTSUPP;
  653. goto out_release;
  654. }
  655. if (sk->sk_state != TCP_LISTEN) {
  656. err = -EINVAL;
  657. goto out_release;
  658. }
  659. /*
  660. * The write queue this time is holding sockets ready to use
  661. * hooked into the SABM we saved
  662. */
  663. for (;;) {
  664. prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
  665. skb = skb_dequeue(&sk->sk_receive_queue);
  666. if (skb)
  667. break;
  668. if (flags & O_NONBLOCK) {
  669. err = -EWOULDBLOCK;
  670. break;
  671. }
  672. if (!signal_pending(current)) {
  673. release_sock(sk);
  674. schedule();
  675. lock_sock(sk);
  676. continue;
  677. }
  678. err = -ERESTARTSYS;
  679. break;
  680. }
  681. finish_wait(sk->sk_sleep, &wait);
  682. if (err)
  683. goto out_release;
  684. newsk = skb->sk;
  685. sock_graft(newsk, newsock);
  686. /* Now attach up the new socket */
  687. kfree_skb(skb);
  688. sk_acceptq_removed(sk);
  689. out_release:
  690. release_sock(sk);
  691. return err;
  692. }
  693. static int nr_getname(struct socket *sock, struct sockaddr *uaddr,
  694. int *uaddr_len, int peer)
  695. {
  696. struct full_sockaddr_ax25 *sax = (struct full_sockaddr_ax25 *)uaddr;
  697. struct sock *sk = sock->sk;
  698. struct nr_sock *nr = nr_sk(sk);
  699. lock_sock(sk);
  700. if (peer != 0) {
  701. if (sk->sk_state != TCP_ESTABLISHED) {
  702. release_sock(sk);
  703. return -ENOTCONN;
  704. }
  705. sax->fsa_ax25.sax25_family = AF_NETROM;
  706. sax->fsa_ax25.sax25_ndigis = 1;
  707. sax->fsa_ax25.sax25_call = nr->user_addr;
  708. sax->fsa_digipeater[0] = nr->dest_addr;
  709. *uaddr_len = sizeof(struct full_sockaddr_ax25);
  710. } else {
  711. sax->fsa_ax25.sax25_family = AF_NETROM;
  712. sax->fsa_ax25.sax25_ndigis = 0;
  713. sax->fsa_ax25.sax25_call = nr->source_addr;
  714. *uaddr_len = sizeof(struct sockaddr_ax25);
  715. }
  716. release_sock(sk);
  717. return 0;
  718. }
  719. int nr_rx_frame(struct sk_buff *skb, struct net_device *dev)
  720. {
  721. struct sock *sk;
  722. struct sock *make;
  723. struct nr_sock *nr_make;
  724. ax25_address *src, *dest, *user;
  725. unsigned short circuit_index, circuit_id;
  726. unsigned short peer_circuit_index, peer_circuit_id;
  727. unsigned short frametype, flags, window, timeout;
  728. int ret;
  729. skb->sk = NULL; /* Initially we don't know who it's for */
  730. /*
  731. * skb->data points to the netrom frame start
  732. */
  733. src = (ax25_address *)(skb->data + 0);
  734. dest = (ax25_address *)(skb->data + 7);
  735. circuit_index = skb->data[15];
  736. circuit_id = skb->data[16];
  737. peer_circuit_index = skb->data[17];
  738. peer_circuit_id = skb->data[18];
  739. frametype = skb->data[19] & 0x0F;
  740. flags = skb->data[19] & 0xF0;
  741. /*
  742. * Check for an incoming IP over NET/ROM frame.
  743. */
  744. if (frametype == NR_PROTOEXT &&
  745. circuit_index == NR_PROTO_IP && circuit_id == NR_PROTO_IP) {
  746. skb_pull(skb, NR_NETWORK_LEN + NR_TRANSPORT_LEN);
  747. skb_reset_transport_header(skb);
  748. return nr_rx_ip(skb, dev);
  749. }
  750. /*
  751. * Find an existing socket connection, based on circuit ID, if it's
  752. * a Connect Request base it on their circuit ID.
  753. *
  754. * Circuit ID 0/0 is not valid but it could still be a "reset" for a
  755. * circuit that no longer exists at the other end ...
  756. */
  757. sk = NULL;
  758. if (circuit_index == 0 && circuit_id == 0) {
  759. if (frametype == NR_CONNACK && flags == NR_CHOKE_FLAG)
  760. sk = nr_find_peer(peer_circuit_index, peer_circuit_id, src);
  761. } else {
  762. if (frametype == NR_CONNREQ)
  763. sk = nr_find_peer(circuit_index, circuit_id, src);
  764. else
  765. sk = nr_find_socket(circuit_index, circuit_id);
  766. }
  767. if (sk != NULL) {
  768. skb_reset_transport_header(skb);
  769. if (frametype == NR_CONNACK && skb->len == 22)
  770. nr_sk(sk)->bpqext = 1;
  771. else
  772. nr_sk(sk)->bpqext = 0;
  773. ret = nr_process_rx_frame(sk, skb);
  774. bh_unlock_sock(sk);
  775. return ret;
  776. }
  777. /*
  778. * Now it should be a CONNREQ.
  779. */
  780. if (frametype != NR_CONNREQ) {
  781. /*
  782. * Here it would be nice to be able to send a reset but
  783. * NET/ROM doesn't have one. We've tried to extend the protocol
  784. * by sending NR_CONNACK | NR_CHOKE_FLAGS replies but that
  785. * apparently kills BPQ boxes... :-(
  786. * So now we try to follow the established behaviour of
  787. * G8PZT's Xrouter which is sending packets with command type 7
  788. * as an extension of the protocol.
  789. */
  790. if (sysctl_netrom_reset_circuit &&
  791. (frametype != NR_RESET || flags != 0))
  792. nr_transmit_reset(skb, 1);
  793. return 0;
  794. }
  795. sk = nr_find_listener(dest);
  796. user = (ax25_address *)(skb->data + 21);
  797. if (sk == NULL || sk_acceptq_is_full(sk) ||
  798. (make = nr_make_new(sk)) == NULL) {
  799. nr_transmit_refusal(skb, 0);
  800. if (sk)
  801. bh_unlock_sock(sk);
  802. return 0;
  803. }
  804. window = skb->data[20];
  805. skb->sk = make;
  806. make->sk_state = TCP_ESTABLISHED;
  807. /* Fill in his circuit details */
  808. nr_make = nr_sk(make);
  809. nr_make->source_addr = *dest;
  810. nr_make->dest_addr = *src;
  811. nr_make->user_addr = *user;
  812. nr_make->your_index = circuit_index;
  813. nr_make->your_id = circuit_id;
  814. bh_unlock_sock(sk);
  815. circuit = nr_find_next_circuit();
  816. bh_lock_sock(sk);
  817. nr_make->my_index = circuit / 256;
  818. nr_make->my_id = circuit % 256;
  819. circuit++;
  820. /* Window negotiation */
  821. if (window < nr_make->window)
  822. nr_make->window = window;
  823. /* L4 timeout negotiation */
  824. if (skb->len == 37) {
  825. timeout = skb->data[36] * 256 + skb->data[35];
  826. if (timeout * HZ < nr_make->t1)
  827. nr_make->t1 = timeout * HZ;
  828. nr_make->bpqext = 1;
  829. } else {
  830. nr_make->bpqext = 0;
  831. }
  832. nr_write_internal(make, NR_CONNACK);
  833. nr_make->condition = 0x00;
  834. nr_make->vs = 0;
  835. nr_make->va = 0;
  836. nr_make->vr = 0;
  837. nr_make->vl = 0;
  838. nr_make->state = NR_STATE_3;
  839. sk_acceptq_added(sk);
  840. skb_queue_head(&sk->sk_receive_queue, skb);
  841. if (!sock_flag(sk, SOCK_DEAD))
  842. sk->sk_data_ready(sk, skb->len);
  843. bh_unlock_sock(sk);
  844. nr_insert_socket(make);
  845. nr_start_heartbeat(make);
  846. nr_start_idletimer(make);
  847. return 1;
  848. }
  849. static int nr_sendmsg(struct kiocb *iocb, struct socket *sock,
  850. struct msghdr *msg, size_t len)
  851. {
  852. struct sock *sk = sock->sk;
  853. struct nr_sock *nr = nr_sk(sk);
  854. struct sockaddr_ax25 *usax = (struct sockaddr_ax25 *)msg->msg_name;
  855. int err;
  856. struct sockaddr_ax25 sax;
  857. struct sk_buff *skb;
  858. unsigned char *asmptr;
  859. int size;
  860. if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_EOR|MSG_CMSG_COMPAT))
  861. return -EINVAL;
  862. lock_sock(sk);
  863. if (sock_flag(sk, SOCK_ZAPPED)) {
  864. err = -EADDRNOTAVAIL;
  865. goto out;
  866. }
  867. if (sk->sk_shutdown & SEND_SHUTDOWN) {
  868. send_sig(SIGPIPE, current, 0);
  869. err = -EPIPE;
  870. goto out;
  871. }
  872. if (nr->device == NULL) {
  873. err = -ENETUNREACH;
  874. goto out;
  875. }
  876. if (usax) {
  877. if (msg->msg_namelen < sizeof(sax)) {
  878. err = -EINVAL;
  879. goto out;
  880. }
  881. sax = *usax;
  882. if (ax25cmp(&nr->dest_addr, &sax.sax25_call) != 0) {
  883. err = -EISCONN;
  884. goto out;
  885. }
  886. if (sax.sax25_family != AF_NETROM) {
  887. err = -EINVAL;
  888. goto out;
  889. }
  890. } else {
  891. if (sk->sk_state != TCP_ESTABLISHED) {
  892. err = -ENOTCONN;
  893. goto out;
  894. }
  895. sax.sax25_family = AF_NETROM;
  896. sax.sax25_call = nr->dest_addr;
  897. }
  898. SOCK_DEBUG(sk, "NET/ROM: sendto: Addresses built.\n");
  899. /* Build a packet - the conventional user limit is 236 bytes. We can
  900. do ludicrously large NetROM frames but must not overflow */
  901. if (len > 65536) {
  902. err = -EMSGSIZE;
  903. goto out;
  904. }
  905. SOCK_DEBUG(sk, "NET/ROM: sendto: building packet.\n");
  906. size = len + NR_NETWORK_LEN + NR_TRANSPORT_LEN;
  907. if ((skb = sock_alloc_send_skb(sk, size, msg->msg_flags & MSG_DONTWAIT, &err)) == NULL)
  908. goto out;
  909. skb_reserve(skb, size - len);
  910. skb_reset_transport_header(skb);
  911. /*
  912. * Push down the NET/ROM header
  913. */
  914. asmptr = skb_push(skb, NR_TRANSPORT_LEN);
  915. SOCK_DEBUG(sk, "Building NET/ROM Header.\n");
  916. /* Build a NET/ROM Transport header */
  917. *asmptr++ = nr->your_index;
  918. *asmptr++ = nr->your_id;
  919. *asmptr++ = 0; /* To be filled in later */
  920. *asmptr++ = 0; /* Ditto */
  921. *asmptr++ = NR_INFO;
  922. SOCK_DEBUG(sk, "Built header.\n");
  923. /*
  924. * Put the data on the end
  925. */
  926. skb_put(skb, len);
  927. SOCK_DEBUG(sk, "NET/ROM: Appending user data\n");
  928. /* User data follows immediately after the NET/ROM transport header */
  929. if (memcpy_fromiovec(skb_transport_header(skb), msg->msg_iov, len)) {
  930. kfree_skb(skb);
  931. err = -EFAULT;
  932. goto out;
  933. }
  934. SOCK_DEBUG(sk, "NET/ROM: Transmitting buffer\n");
  935. if (sk->sk_state != TCP_ESTABLISHED) {
  936. kfree_skb(skb);
  937. err = -ENOTCONN;
  938. goto out;
  939. }
  940. nr_output(sk, skb); /* Shove it onto the queue */
  941. err = len;
  942. out:
  943. release_sock(sk);
  944. return err;
  945. }
  946. static int nr_recvmsg(struct kiocb *iocb, struct socket *sock,
  947. struct msghdr *msg, size_t size, int flags)
  948. {
  949. struct sock *sk = sock->sk;
  950. struct sockaddr_ax25 *sax = (struct sockaddr_ax25 *)msg->msg_name;
  951. size_t copied;
  952. struct sk_buff *skb;
  953. int er;
  954. /*
  955. * This works for seqpacket too. The receiver has ordered the queue for
  956. * us! We do one quick check first though
  957. */
  958. lock_sock(sk);
  959. if (sk->sk_state != TCP_ESTABLISHED) {
  960. release_sock(sk);
  961. return -ENOTCONN;
  962. }
  963. /* Now we can treat all alike */
  964. if ((skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT, flags & MSG_DONTWAIT, &er)) == NULL) {
  965. release_sock(sk);
  966. return er;
  967. }
  968. skb_reset_transport_header(skb);
  969. copied = skb->len;
  970. if (copied > size) {
  971. copied = size;
  972. msg->msg_flags |= MSG_TRUNC;
  973. }
  974. skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
  975. if (sax != NULL) {
  976. sax->sax25_family = AF_NETROM;
  977. skb_copy_from_linear_data_offset(skb, 7, sax->sax25_call.ax25_call,
  978. AX25_ADDR_LEN);
  979. }
  980. msg->msg_namelen = sizeof(*sax);
  981. skb_free_datagram(sk, skb);
  982. release_sock(sk);
  983. return copied;
  984. }
  985. static int nr_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
  986. {
  987. struct sock *sk = sock->sk;
  988. void __user *argp = (void __user *)arg;
  989. int ret;
  990. switch (cmd) {
  991. case TIOCOUTQ: {
  992. long amount;
  993. lock_sock(sk);
  994. amount = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
  995. if (amount < 0)
  996. amount = 0;
  997. release_sock(sk);
  998. return put_user(amount, (int __user *)argp);
  999. }
  1000. case TIOCINQ: {
  1001. struct sk_buff *skb;
  1002. long amount = 0L;
  1003. lock_sock(sk);
  1004. /* These two are safe on a single CPU system as only user tasks fiddle here */
  1005. if ((skb = skb_peek(&sk->sk_receive_queue)) != NULL)
  1006. amount = skb->len;
  1007. release_sock(sk);
  1008. return put_user(amount, (int __user *)argp);
  1009. }
  1010. case SIOCGSTAMP:
  1011. lock_sock(sk);
  1012. ret = sock_get_timestamp(sk, argp);
  1013. release_sock(sk);
  1014. return ret;
  1015. case SIOCGSTAMPNS:
  1016. lock_sock(sk);
  1017. ret = sock_get_timestampns(sk, argp);
  1018. release_sock(sk);
  1019. return ret;
  1020. case SIOCGIFADDR:
  1021. case SIOCSIFADDR:
  1022. case SIOCGIFDSTADDR:
  1023. case SIOCSIFDSTADDR:
  1024. case SIOCGIFBRDADDR:
  1025. case SIOCSIFBRDADDR:
  1026. case SIOCGIFNETMASK:
  1027. case SIOCSIFNETMASK:
  1028. case SIOCGIFMETRIC:
  1029. case SIOCSIFMETRIC:
  1030. return -EINVAL;
  1031. case SIOCADDRT:
  1032. case SIOCDELRT:
  1033. case SIOCNRDECOBS:
  1034. if (!capable(CAP_NET_ADMIN)) return -EPERM;
  1035. return nr_rt_ioctl(cmd, argp);
  1036. default:
  1037. return -ENOIOCTLCMD;
  1038. }
  1039. return 0;
  1040. }
  1041. #ifdef CONFIG_PROC_FS
  1042. static void *nr_info_start(struct seq_file *seq, loff_t *pos)
  1043. {
  1044. struct sock *s;
  1045. struct hlist_node *node;
  1046. int i = 1;
  1047. spin_lock_bh(&nr_list_lock);
  1048. if (*pos == 0)
  1049. return SEQ_START_TOKEN;
  1050. sk_for_each(s, node, &nr_list) {
  1051. if (i == *pos)
  1052. return s;
  1053. ++i;
  1054. }
  1055. return NULL;
  1056. }
  1057. static void *nr_info_next(struct seq_file *seq, void *v, loff_t *pos)
  1058. {
  1059. ++*pos;
  1060. return (v == SEQ_START_TOKEN) ? sk_head(&nr_list)
  1061. : sk_next((struct sock *)v);
  1062. }
  1063. static void nr_info_stop(struct seq_file *seq, void *v)
  1064. {
  1065. spin_unlock_bh(&nr_list_lock);
  1066. }
  1067. static int nr_info_show(struct seq_file *seq, void *v)
  1068. {
  1069. struct sock *s = v;
  1070. struct net_device *dev;
  1071. struct nr_sock *nr;
  1072. const char *devname;
  1073. char buf[11];
  1074. if (v == SEQ_START_TOKEN)
  1075. seq_puts(seq,
  1076. "user_addr dest_node src_node dev my your st vs vr va t1 t2 t4 idle n2 wnd Snd-Q Rcv-Q inode\n");
  1077. else {
  1078. bh_lock_sock(s);
  1079. nr = nr_sk(s);
  1080. if ((dev = nr->device) == NULL)
  1081. devname = "???";
  1082. else
  1083. devname = dev->name;
  1084. seq_printf(seq, "%-9s ", ax2asc(buf, &nr->user_addr));
  1085. seq_printf(seq, "%-9s ", ax2asc(buf, &nr->dest_addr));
  1086. seq_printf(seq,
  1087. "%-9s %-3s %02X/%02X %02X/%02X %2d %3d %3d %3d %3lu/%03lu %2lu/%02lu %3lu/%03lu %3lu/%03lu %2d/%02d %3d %5d %5d %ld\n",
  1088. ax2asc(buf, &nr->source_addr),
  1089. devname,
  1090. nr->my_index,
  1091. nr->my_id,
  1092. nr->your_index,
  1093. nr->your_id,
  1094. nr->state,
  1095. nr->vs,
  1096. nr->vr,
  1097. nr->va,
  1098. ax25_display_timer(&nr->t1timer) / HZ,
  1099. nr->t1 / HZ,
  1100. ax25_display_timer(&nr->t2timer) / HZ,
  1101. nr->t2 / HZ,
  1102. ax25_display_timer(&nr->t4timer) / HZ,
  1103. nr->t4 / HZ,
  1104. ax25_display_timer(&nr->idletimer) / (60 * HZ),
  1105. nr->idle / (60 * HZ),
  1106. nr->n2count,
  1107. nr->n2,
  1108. nr->window,
  1109. atomic_read(&s->sk_wmem_alloc),
  1110. atomic_read(&s->sk_rmem_alloc),
  1111. s->sk_socket ? SOCK_INODE(s->sk_socket)->i_ino : 0L);
  1112. bh_unlock_sock(s);
  1113. }
  1114. return 0;
  1115. }
  1116. static const struct seq_operations nr_info_seqops = {
  1117. .start = nr_info_start,
  1118. .next = nr_info_next,
  1119. .stop = nr_info_stop,
  1120. .show = nr_info_show,
  1121. };
  1122. static int nr_info_open(struct inode *inode, struct file *file)
  1123. {
  1124. return seq_open(file, &nr_info_seqops);
  1125. }
  1126. static const struct file_operations nr_info_fops = {
  1127. .owner = THIS_MODULE,
  1128. .open = nr_info_open,
  1129. .read = seq_read,
  1130. .llseek = seq_lseek,
  1131. .release = seq_release,
  1132. };
  1133. #endif /* CONFIG_PROC_FS */
  1134. static struct net_proto_family nr_family_ops = {
  1135. .family = PF_NETROM,
  1136. .create = nr_create,
  1137. .owner = THIS_MODULE,
  1138. };
  1139. static const struct proto_ops nr_proto_ops = {
  1140. .family = PF_NETROM,
  1141. .owner = THIS_MODULE,
  1142. .release = nr_release,
  1143. .bind = nr_bind,
  1144. .connect = nr_connect,
  1145. .socketpair = sock_no_socketpair,
  1146. .accept = nr_accept,
  1147. .getname = nr_getname,
  1148. .poll = datagram_poll,
  1149. .ioctl = nr_ioctl,
  1150. .listen = nr_listen,
  1151. .shutdown = sock_no_shutdown,
  1152. .setsockopt = nr_setsockopt,
  1153. .getsockopt = nr_getsockopt,
  1154. .sendmsg = nr_sendmsg,
  1155. .recvmsg = nr_recvmsg,
  1156. .mmap = sock_no_mmap,
  1157. .sendpage = sock_no_sendpage,
  1158. };
  1159. static struct notifier_block nr_dev_notifier = {
  1160. .notifier_call = nr_device_event,
  1161. };
  1162. static struct net_device **dev_nr;
  1163. static struct ax25_protocol nr_pid = {
  1164. .pid = AX25_P_NETROM,
  1165. .func = nr_route_frame
  1166. };
  1167. static struct ax25_linkfail nr_linkfail_notifier = {
  1168. .func = nr_link_failed,
  1169. };
  1170. static int __init nr_proto_init(void)
  1171. {
  1172. int i;
  1173. int rc = proto_register(&nr_proto, 0);
  1174. if (rc != 0)
  1175. goto out;
  1176. if (nr_ndevs > 0x7fffffff/sizeof(struct net_device *)) {
  1177. printk(KERN_ERR "NET/ROM: nr_proto_init - nr_ndevs parameter to large\n");
  1178. return -1;
  1179. }
  1180. dev_nr = kzalloc(nr_ndevs * sizeof(struct net_device *), GFP_KERNEL);
  1181. if (dev_nr == NULL) {
  1182. printk(KERN_ERR "NET/ROM: nr_proto_init - unable to allocate device array\n");
  1183. return -1;
  1184. }
  1185. for (i = 0; i < nr_ndevs; i++) {
  1186. char name[IFNAMSIZ];
  1187. struct net_device *dev;
  1188. sprintf(name, "nr%d", i);
  1189. dev = alloc_netdev(0, name, nr_setup);
  1190. if (!dev) {
  1191. printk(KERN_ERR "NET/ROM: nr_proto_init - unable to allocate device structure\n");
  1192. goto fail;
  1193. }
  1194. dev->base_addr = i;
  1195. if (register_netdev(dev)) {
  1196. printk(KERN_ERR "NET/ROM: nr_proto_init - unable to register network device\n");
  1197. free_netdev(dev);
  1198. goto fail;
  1199. }
  1200. nr_set_lockdep_key(dev);
  1201. dev_nr[i] = dev;
  1202. }
  1203. if (sock_register(&nr_family_ops)) {
  1204. printk(KERN_ERR "NET/ROM: nr_proto_init - unable to register socket family\n");
  1205. goto fail;
  1206. }
  1207. register_netdevice_notifier(&nr_dev_notifier);
  1208. ax25_register_pid(&nr_pid);
  1209. ax25_linkfail_register(&nr_linkfail_notifier);
  1210. #ifdef CONFIG_SYSCTL
  1211. nr_register_sysctl();
  1212. #endif
  1213. nr_loopback_init();
  1214. proc_net_fops_create(&init_net, "nr", S_IRUGO, &nr_info_fops);
  1215. proc_net_fops_create(&init_net, "nr_neigh", S_IRUGO, &nr_neigh_fops);
  1216. proc_net_fops_create(&init_net, "nr_nodes", S_IRUGO, &nr_nodes_fops);
  1217. out:
  1218. return rc;
  1219. fail:
  1220. while (--i >= 0) {
  1221. unregister_netdev(dev_nr[i]);
  1222. free_netdev(dev_nr[i]);
  1223. }
  1224. kfree(dev_nr);
  1225. proto_unregister(&nr_proto);
  1226. rc = -1;
  1227. goto out;
  1228. }
  1229. module_init(nr_proto_init);
  1230. module_param(nr_ndevs, int, 0);
  1231. MODULE_PARM_DESC(nr_ndevs, "number of NET/ROM devices");
  1232. MODULE_AUTHOR("Jonathan Naylor G4KLX <g4klx@g4klx.demon.co.uk>");
  1233. MODULE_DESCRIPTION("The amateur radio NET/ROM network and transport layer protocol");
  1234. MODULE_LICENSE("GPL");
  1235. MODULE_ALIAS_NETPROTO(PF_NETROM);
  1236. static void __exit nr_exit(void)
  1237. {
  1238. int i;
  1239. proc_net_remove(&init_net, "nr");
  1240. proc_net_remove(&init_net, "nr_neigh");
  1241. proc_net_remove(&init_net, "nr_nodes");
  1242. nr_loopback_clear();
  1243. nr_rt_free();
  1244. #ifdef CONFIG_SYSCTL
  1245. nr_unregister_sysctl();
  1246. #endif
  1247. ax25_linkfail_release(&nr_linkfail_notifier);
  1248. ax25_protocol_release(AX25_P_NETROM);
  1249. unregister_netdevice_notifier(&nr_dev_notifier);
  1250. sock_unregister(PF_NETROM);
  1251. for (i = 0; i < nr_ndevs; i++) {
  1252. struct net_device *dev = dev_nr[i];
  1253. if (dev) {
  1254. unregister_netdev(dev);
  1255. free_netdev(dev);
  1256. }
  1257. }
  1258. kfree(dev_nr);
  1259. proto_unregister(&nr_proto);
  1260. }
  1261. module_exit(nr_exit);