swap_state.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375
  1. /*
  2. * linux/mm/swap_state.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. * Swap reorganised 29.12.95, Stephen Tweedie
  6. *
  7. * Rewritten to use page cache, (C) 1998 Stephen Tweedie
  8. */
  9. #include <linux/module.h>
  10. #include <linux/mm.h>
  11. #include <linux/kernel_stat.h>
  12. #include <linux/swap.h>
  13. #include <linux/swapops.h>
  14. #include <linux/init.h>
  15. #include <linux/pagemap.h>
  16. #include <linux/buffer_head.h>
  17. #include <linux/backing-dev.h>
  18. #include <linux/pagevec.h>
  19. #include <linux/migrate.h>
  20. #include <linux/page_cgroup.h>
  21. #include <asm/pgtable.h>
  22. /*
  23. * swapper_space is a fiction, retained to simplify the path through
  24. * vmscan's shrink_page_list, to make sync_page look nicer, and to allow
  25. * future use of radix_tree tags in the swap cache.
  26. */
  27. static const struct address_space_operations swap_aops = {
  28. .writepage = swap_writepage,
  29. .sync_page = block_sync_page,
  30. .set_page_dirty = __set_page_dirty_nobuffers,
  31. .migratepage = migrate_page,
  32. };
  33. static struct backing_dev_info swap_backing_dev_info = {
  34. .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
  35. .unplug_io_fn = swap_unplug_io_fn,
  36. };
  37. struct address_space swapper_space = {
  38. .page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
  39. .tree_lock = __SPIN_LOCK_UNLOCKED(swapper_space.tree_lock),
  40. .a_ops = &swap_aops,
  41. .i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear),
  42. .backing_dev_info = &swap_backing_dev_info,
  43. };
  44. #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
  45. static struct {
  46. unsigned long add_total;
  47. unsigned long del_total;
  48. unsigned long find_success;
  49. unsigned long find_total;
  50. } swap_cache_info;
  51. void show_swap_cache_info(void)
  52. {
  53. printk("%lu pages in swap cache\n", total_swapcache_pages);
  54. printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
  55. swap_cache_info.add_total, swap_cache_info.del_total,
  56. swap_cache_info.find_success, swap_cache_info.find_total);
  57. printk("Free swap = %ldkB\n", nr_swap_pages << (PAGE_SHIFT - 10));
  58. printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
  59. }
  60. /*
  61. * add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
  62. * but sets SwapCache flag and private instead of mapping and index.
  63. */
  64. int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
  65. {
  66. int error;
  67. VM_BUG_ON(!PageLocked(page));
  68. VM_BUG_ON(PageSwapCache(page));
  69. VM_BUG_ON(!PageSwapBacked(page));
  70. error = radix_tree_preload(gfp_mask);
  71. if (!error) {
  72. page_cache_get(page);
  73. SetPageSwapCache(page);
  74. set_page_private(page, entry.val);
  75. spin_lock_irq(&swapper_space.tree_lock);
  76. error = radix_tree_insert(&swapper_space.page_tree,
  77. entry.val, page);
  78. if (likely(!error)) {
  79. total_swapcache_pages++;
  80. __inc_zone_page_state(page, NR_FILE_PAGES);
  81. INC_CACHE_INFO(add_total);
  82. }
  83. spin_unlock_irq(&swapper_space.tree_lock);
  84. radix_tree_preload_end();
  85. if (unlikely(error)) {
  86. set_page_private(page, 0UL);
  87. ClearPageSwapCache(page);
  88. page_cache_release(page);
  89. }
  90. }
  91. return error;
  92. }
  93. /*
  94. * This must be called only on pages that have
  95. * been verified to be in the swap cache.
  96. */
  97. void __delete_from_swap_cache(struct page *page)
  98. {
  99. swp_entry_t ent = {.val = page_private(page)};
  100. VM_BUG_ON(!PageLocked(page));
  101. VM_BUG_ON(!PageSwapCache(page));
  102. VM_BUG_ON(PageWriteback(page));
  103. radix_tree_delete(&swapper_space.page_tree, page_private(page));
  104. set_page_private(page, 0);
  105. ClearPageSwapCache(page);
  106. total_swapcache_pages--;
  107. __dec_zone_page_state(page, NR_FILE_PAGES);
  108. INC_CACHE_INFO(del_total);
  109. mem_cgroup_uncharge_swapcache(page, ent);
  110. }
  111. /**
  112. * add_to_swap - allocate swap space for a page
  113. * @page: page we want to move to swap
  114. * @gfp_mask: memory allocation flags
  115. *
  116. * Allocate swap space for the page and add the page to the
  117. * swap cache. Caller needs to hold the page lock.
  118. */
  119. int add_to_swap(struct page *page)
  120. {
  121. swp_entry_t entry;
  122. int err;
  123. VM_BUG_ON(!PageLocked(page));
  124. VM_BUG_ON(!PageUptodate(page));
  125. for (;;) {
  126. entry = get_swap_page();
  127. if (!entry.val)
  128. return 0;
  129. /*
  130. * Radix-tree node allocations from PF_MEMALLOC contexts could
  131. * completely exhaust the page allocator. __GFP_NOMEMALLOC
  132. * stops emergency reserves from being allocated.
  133. *
  134. * TODO: this could cause a theoretical memory reclaim
  135. * deadlock in the swap out path.
  136. */
  137. /*
  138. * Add it to the swap cache and mark it dirty
  139. */
  140. err = add_to_swap_cache(page, entry,
  141. __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
  142. switch (err) {
  143. case 0: /* Success */
  144. SetPageDirty(page);
  145. return 1;
  146. case -EEXIST:
  147. /* Raced with "speculative" read_swap_cache_async */
  148. swap_free(entry);
  149. continue;
  150. default:
  151. /* -ENOMEM radix-tree allocation failure */
  152. swap_free(entry);
  153. return 0;
  154. }
  155. }
  156. }
  157. /*
  158. * This must be called only on pages that have
  159. * been verified to be in the swap cache and locked.
  160. * It will never put the page into the free list,
  161. * the caller has a reference on the page.
  162. */
  163. void delete_from_swap_cache(struct page *page)
  164. {
  165. swp_entry_t entry;
  166. entry.val = page_private(page);
  167. spin_lock_irq(&swapper_space.tree_lock);
  168. __delete_from_swap_cache(page);
  169. spin_unlock_irq(&swapper_space.tree_lock);
  170. swap_free(entry);
  171. page_cache_release(page);
  172. }
  173. /*
  174. * If we are the only user, then try to free up the swap cache.
  175. *
  176. * Its ok to check for PageSwapCache without the page lock
  177. * here because we are going to recheck again inside
  178. * try_to_free_swap() _with_ the lock.
  179. * - Marcelo
  180. */
  181. static inline void free_swap_cache(struct page *page)
  182. {
  183. if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
  184. try_to_free_swap(page);
  185. unlock_page(page);
  186. }
  187. }
  188. /*
  189. * Perform a free_page(), also freeing any swap cache associated with
  190. * this page if it is the last user of the page.
  191. */
  192. void free_page_and_swap_cache(struct page *page)
  193. {
  194. free_swap_cache(page);
  195. page_cache_release(page);
  196. }
  197. /*
  198. * Passed an array of pages, drop them all from swapcache and then release
  199. * them. They are removed from the LRU and freed if this is their last use.
  200. */
  201. void free_pages_and_swap_cache(struct page **pages, int nr)
  202. {
  203. struct page **pagep = pages;
  204. lru_add_drain();
  205. while (nr) {
  206. int todo = min(nr, PAGEVEC_SIZE);
  207. int i;
  208. for (i = 0; i < todo; i++)
  209. free_swap_cache(pagep[i]);
  210. release_pages(pagep, todo, 0);
  211. pagep += todo;
  212. nr -= todo;
  213. }
  214. }
  215. /*
  216. * Lookup a swap entry in the swap cache. A found page will be returned
  217. * unlocked and with its refcount incremented - we rely on the kernel
  218. * lock getting page table operations atomic even if we drop the page
  219. * lock before returning.
  220. */
  221. struct page * lookup_swap_cache(swp_entry_t entry)
  222. {
  223. struct page *page;
  224. page = find_get_page(&swapper_space, entry.val);
  225. if (page)
  226. INC_CACHE_INFO(find_success);
  227. INC_CACHE_INFO(find_total);
  228. return page;
  229. }
  230. /*
  231. * Locate a page of swap in physical memory, reserving swap cache space
  232. * and reading the disk if it is not already cached.
  233. * A failure return means that either the page allocation failed or that
  234. * the swap entry is no longer in use.
  235. */
  236. struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
  237. struct vm_area_struct *vma, unsigned long addr)
  238. {
  239. struct page *found_page, *new_page = NULL;
  240. int err;
  241. do {
  242. /*
  243. * First check the swap cache. Since this is normally
  244. * called after lookup_swap_cache() failed, re-calling
  245. * that would confuse statistics.
  246. */
  247. found_page = find_get_page(&swapper_space, entry.val);
  248. if (found_page)
  249. break;
  250. /*
  251. * Get a new page to read into from swap.
  252. */
  253. if (!new_page) {
  254. new_page = alloc_page_vma(gfp_mask, vma, addr);
  255. if (!new_page)
  256. break; /* Out of memory */
  257. }
  258. /*
  259. * Swap entry may have been freed since our caller observed it.
  260. */
  261. if (!swap_duplicate(entry))
  262. break;
  263. /*
  264. * Associate the page with swap entry in the swap cache.
  265. * May fail (-EEXIST) if there is already a page associated
  266. * with this entry in the swap cache: added by a racing
  267. * read_swap_cache_async, or add_to_swap or shmem_writepage
  268. * re-using the just freed swap entry for an existing page.
  269. * May fail (-ENOMEM) if radix-tree node allocation failed.
  270. */
  271. __set_page_locked(new_page);
  272. SetPageSwapBacked(new_page);
  273. err = add_to_swap_cache(new_page, entry, gfp_mask & GFP_KERNEL);
  274. if (likely(!err)) {
  275. /*
  276. * Initiate read into locked page and return.
  277. */
  278. lru_cache_add_anon(new_page);
  279. swap_readpage(NULL, new_page);
  280. return new_page;
  281. }
  282. ClearPageSwapBacked(new_page);
  283. __clear_page_locked(new_page);
  284. swap_free(entry);
  285. } while (err != -ENOMEM);
  286. if (new_page)
  287. page_cache_release(new_page);
  288. return found_page;
  289. }
  290. /**
  291. * swapin_readahead - swap in pages in hope we need them soon
  292. * @entry: swap entry of this memory
  293. * @gfp_mask: memory allocation flags
  294. * @vma: user vma this address belongs to
  295. * @addr: target address for mempolicy
  296. *
  297. * Returns the struct page for entry and addr, after queueing swapin.
  298. *
  299. * Primitive swap readahead code. We simply read an aligned block of
  300. * (1 << page_cluster) entries in the swap area. This method is chosen
  301. * because it doesn't cost us any seek time. We also make sure to queue
  302. * the 'original' request together with the readahead ones...
  303. *
  304. * This has been extended to use the NUMA policies from the mm triggering
  305. * the readahead.
  306. *
  307. * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
  308. */
  309. struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
  310. struct vm_area_struct *vma, unsigned long addr)
  311. {
  312. int nr_pages;
  313. struct page *page;
  314. unsigned long offset;
  315. unsigned long end_offset;
  316. /*
  317. * Get starting offset for readaround, and number of pages to read.
  318. * Adjust starting address by readbehind (for NUMA interleave case)?
  319. * No, it's very unlikely that swap layout would follow vma layout,
  320. * more likely that neighbouring swap pages came from the same node:
  321. * so use the same "addr" to choose the same node for each swap read.
  322. */
  323. nr_pages = valid_swaphandles(entry, &offset);
  324. for (end_offset = offset + nr_pages; offset < end_offset; offset++) {
  325. /* Ok, do the async read-ahead now */
  326. page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
  327. gfp_mask, vma, addr);
  328. if (!page)
  329. break;
  330. page_cache_release(page);
  331. }
  332. lru_add_drain(); /* Push any new pages onto the LRU now */
  333. return read_swap_cache_async(entry, gfp_mask, vma, addr);
  334. }