slub.c 108 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks and only
  6. * uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. */
  10. #include <linux/mm.h>
  11. #include <linux/swap.h> /* struct reclaim_state */
  12. #include <linux/module.h>
  13. #include <linux/bit_spinlock.h>
  14. #include <linux/interrupt.h>
  15. #include <linux/bitops.h>
  16. #include <linux/slab.h>
  17. #include <linux/proc_fs.h>
  18. #include <linux/seq_file.h>
  19. #include <trace/kmemtrace.h>
  20. #include <linux/cpu.h>
  21. #include <linux/cpuset.h>
  22. #include <linux/mempolicy.h>
  23. #include <linux/ctype.h>
  24. #include <linux/debugobjects.h>
  25. #include <linux/kallsyms.h>
  26. #include <linux/memory.h>
  27. #include <linux/math64.h>
  28. #include <linux/fault-inject.h>
  29. /*
  30. * Lock order:
  31. * 1. slab_lock(page)
  32. * 2. slab->list_lock
  33. *
  34. * The slab_lock protects operations on the object of a particular
  35. * slab and its metadata in the page struct. If the slab lock
  36. * has been taken then no allocations nor frees can be performed
  37. * on the objects in the slab nor can the slab be added or removed
  38. * from the partial or full lists since this would mean modifying
  39. * the page_struct of the slab.
  40. *
  41. * The list_lock protects the partial and full list on each node and
  42. * the partial slab counter. If taken then no new slabs may be added or
  43. * removed from the lists nor make the number of partial slabs be modified.
  44. * (Note that the total number of slabs is an atomic value that may be
  45. * modified without taking the list lock).
  46. *
  47. * The list_lock is a centralized lock and thus we avoid taking it as
  48. * much as possible. As long as SLUB does not have to handle partial
  49. * slabs, operations can continue without any centralized lock. F.e.
  50. * allocating a long series of objects that fill up slabs does not require
  51. * the list lock.
  52. *
  53. * The lock order is sometimes inverted when we are trying to get a slab
  54. * off a list. We take the list_lock and then look for a page on the list
  55. * to use. While we do that objects in the slabs may be freed. We can
  56. * only operate on the slab if we have also taken the slab_lock. So we use
  57. * a slab_trylock() on the slab. If trylock was successful then no frees
  58. * can occur anymore and we can use the slab for allocations etc. If the
  59. * slab_trylock() does not succeed then frees are in progress in the slab and
  60. * we must stay away from it for a while since we may cause a bouncing
  61. * cacheline if we try to acquire the lock. So go onto the next slab.
  62. * If all pages are busy then we may allocate a new slab instead of reusing
  63. * a partial slab. A new slab has noone operating on it and thus there is
  64. * no danger of cacheline contention.
  65. *
  66. * Interrupts are disabled during allocation and deallocation in order to
  67. * make the slab allocator safe to use in the context of an irq. In addition
  68. * interrupts are disabled to ensure that the processor does not change
  69. * while handling per_cpu slabs, due to kernel preemption.
  70. *
  71. * SLUB assigns one slab for allocation to each processor.
  72. * Allocations only occur from these slabs called cpu slabs.
  73. *
  74. * Slabs with free elements are kept on a partial list and during regular
  75. * operations no list for full slabs is used. If an object in a full slab is
  76. * freed then the slab will show up again on the partial lists.
  77. * We track full slabs for debugging purposes though because otherwise we
  78. * cannot scan all objects.
  79. *
  80. * Slabs are freed when they become empty. Teardown and setup is
  81. * minimal so we rely on the page allocators per cpu caches for
  82. * fast frees and allocs.
  83. *
  84. * Overloading of page flags that are otherwise used for LRU management.
  85. *
  86. * PageActive The slab is frozen and exempt from list processing.
  87. * This means that the slab is dedicated to a purpose
  88. * such as satisfying allocations for a specific
  89. * processor. Objects may be freed in the slab while
  90. * it is frozen but slab_free will then skip the usual
  91. * list operations. It is up to the processor holding
  92. * the slab to integrate the slab into the slab lists
  93. * when the slab is no longer needed.
  94. *
  95. * One use of this flag is to mark slabs that are
  96. * used for allocations. Then such a slab becomes a cpu
  97. * slab. The cpu slab may be equipped with an additional
  98. * freelist that allows lockless access to
  99. * free objects in addition to the regular freelist
  100. * that requires the slab lock.
  101. *
  102. * PageError Slab requires special handling due to debug
  103. * options set. This moves slab handling out of
  104. * the fast path and disables lockless freelists.
  105. */
  106. #ifdef CONFIG_SLUB_DEBUG
  107. #define SLABDEBUG 1
  108. #else
  109. #define SLABDEBUG 0
  110. #endif
  111. /*
  112. * Issues still to be resolved:
  113. *
  114. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  115. *
  116. * - Variable sizing of the per node arrays
  117. */
  118. /* Enable to test recovery from slab corruption on boot */
  119. #undef SLUB_RESILIENCY_TEST
  120. /*
  121. * Mininum number of partial slabs. These will be left on the partial
  122. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  123. */
  124. #define MIN_PARTIAL 5
  125. /*
  126. * Maximum number of desirable partial slabs.
  127. * The existence of more partial slabs makes kmem_cache_shrink
  128. * sort the partial list by the number of objects in the.
  129. */
  130. #define MAX_PARTIAL 10
  131. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  132. SLAB_POISON | SLAB_STORE_USER)
  133. /*
  134. * Set of flags that will prevent slab merging
  135. */
  136. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  137. SLAB_TRACE | SLAB_DESTROY_BY_RCU)
  138. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  139. SLAB_CACHE_DMA)
  140. #ifndef ARCH_KMALLOC_MINALIGN
  141. #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
  142. #endif
  143. #ifndef ARCH_SLAB_MINALIGN
  144. #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
  145. #endif
  146. #define OO_SHIFT 16
  147. #define OO_MASK ((1 << OO_SHIFT) - 1)
  148. #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
  149. /* Internal SLUB flags */
  150. #define __OBJECT_POISON 0x80000000 /* Poison object */
  151. #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
  152. static int kmem_size = sizeof(struct kmem_cache);
  153. #ifdef CONFIG_SMP
  154. static struct notifier_block slab_notifier;
  155. #endif
  156. static enum {
  157. DOWN, /* No slab functionality available */
  158. PARTIAL, /* kmem_cache_open() works but kmalloc does not */
  159. UP, /* Everything works but does not show up in sysfs */
  160. SYSFS /* Sysfs up */
  161. } slab_state = DOWN;
  162. /* A list of all slab caches on the system */
  163. static DECLARE_RWSEM(slub_lock);
  164. static LIST_HEAD(slab_caches);
  165. /*
  166. * Tracking user of a slab.
  167. */
  168. struct track {
  169. unsigned long addr; /* Called from address */
  170. int cpu; /* Was running on cpu */
  171. int pid; /* Pid context */
  172. unsigned long when; /* When did the operation occur */
  173. };
  174. enum track_item { TRACK_ALLOC, TRACK_FREE };
  175. #ifdef CONFIG_SLUB_DEBUG
  176. static int sysfs_slab_add(struct kmem_cache *);
  177. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  178. static void sysfs_slab_remove(struct kmem_cache *);
  179. #else
  180. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  181. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  182. { return 0; }
  183. static inline void sysfs_slab_remove(struct kmem_cache *s)
  184. {
  185. kfree(s);
  186. }
  187. #endif
  188. static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
  189. {
  190. #ifdef CONFIG_SLUB_STATS
  191. c->stat[si]++;
  192. #endif
  193. }
  194. /********************************************************************
  195. * Core slab cache functions
  196. *******************************************************************/
  197. int slab_is_available(void)
  198. {
  199. return slab_state >= UP;
  200. }
  201. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  202. {
  203. #ifdef CONFIG_NUMA
  204. return s->node[node];
  205. #else
  206. return &s->local_node;
  207. #endif
  208. }
  209. static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
  210. {
  211. #ifdef CONFIG_SMP
  212. return s->cpu_slab[cpu];
  213. #else
  214. return &s->cpu_slab;
  215. #endif
  216. }
  217. /* Verify that a pointer has an address that is valid within a slab page */
  218. static inline int check_valid_pointer(struct kmem_cache *s,
  219. struct page *page, const void *object)
  220. {
  221. void *base;
  222. if (!object)
  223. return 1;
  224. base = page_address(page);
  225. if (object < base || object >= base + page->objects * s->size ||
  226. (object - base) % s->size) {
  227. return 0;
  228. }
  229. return 1;
  230. }
  231. /*
  232. * Slow version of get and set free pointer.
  233. *
  234. * This version requires touching the cache lines of kmem_cache which
  235. * we avoid to do in the fast alloc free paths. There we obtain the offset
  236. * from the page struct.
  237. */
  238. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  239. {
  240. return *(void **)(object + s->offset);
  241. }
  242. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  243. {
  244. *(void **)(object + s->offset) = fp;
  245. }
  246. /* Loop over all objects in a slab */
  247. #define for_each_object(__p, __s, __addr, __objects) \
  248. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  249. __p += (__s)->size)
  250. /* Scan freelist */
  251. #define for_each_free_object(__p, __s, __free) \
  252. for (__p = (__free); __p; __p = get_freepointer((__s), __p))
  253. /* Determine object index from a given position */
  254. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  255. {
  256. return (p - addr) / s->size;
  257. }
  258. static inline struct kmem_cache_order_objects oo_make(int order,
  259. unsigned long size)
  260. {
  261. struct kmem_cache_order_objects x = {
  262. (order << OO_SHIFT) + (PAGE_SIZE << order) / size
  263. };
  264. return x;
  265. }
  266. static inline int oo_order(struct kmem_cache_order_objects x)
  267. {
  268. return x.x >> OO_SHIFT;
  269. }
  270. static inline int oo_objects(struct kmem_cache_order_objects x)
  271. {
  272. return x.x & OO_MASK;
  273. }
  274. #ifdef CONFIG_SLUB_DEBUG
  275. /*
  276. * Debug settings:
  277. */
  278. #ifdef CONFIG_SLUB_DEBUG_ON
  279. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  280. #else
  281. static int slub_debug;
  282. #endif
  283. static char *slub_debug_slabs;
  284. /*
  285. * Object debugging
  286. */
  287. static void print_section(char *text, u8 *addr, unsigned int length)
  288. {
  289. int i, offset;
  290. int newline = 1;
  291. char ascii[17];
  292. ascii[16] = 0;
  293. for (i = 0; i < length; i++) {
  294. if (newline) {
  295. printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
  296. newline = 0;
  297. }
  298. printk(KERN_CONT " %02x", addr[i]);
  299. offset = i % 16;
  300. ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
  301. if (offset == 15) {
  302. printk(KERN_CONT " %s\n", ascii);
  303. newline = 1;
  304. }
  305. }
  306. if (!newline) {
  307. i %= 16;
  308. while (i < 16) {
  309. printk(KERN_CONT " ");
  310. ascii[i] = ' ';
  311. i++;
  312. }
  313. printk(KERN_CONT " %s\n", ascii);
  314. }
  315. }
  316. static struct track *get_track(struct kmem_cache *s, void *object,
  317. enum track_item alloc)
  318. {
  319. struct track *p;
  320. if (s->offset)
  321. p = object + s->offset + sizeof(void *);
  322. else
  323. p = object + s->inuse;
  324. return p + alloc;
  325. }
  326. static void set_track(struct kmem_cache *s, void *object,
  327. enum track_item alloc, unsigned long addr)
  328. {
  329. struct track *p = get_track(s, object, alloc);
  330. if (addr) {
  331. p->addr = addr;
  332. p->cpu = smp_processor_id();
  333. p->pid = current->pid;
  334. p->when = jiffies;
  335. } else
  336. memset(p, 0, sizeof(struct track));
  337. }
  338. static void init_tracking(struct kmem_cache *s, void *object)
  339. {
  340. if (!(s->flags & SLAB_STORE_USER))
  341. return;
  342. set_track(s, object, TRACK_FREE, 0UL);
  343. set_track(s, object, TRACK_ALLOC, 0UL);
  344. }
  345. static void print_track(const char *s, struct track *t)
  346. {
  347. if (!t->addr)
  348. return;
  349. printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  350. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  351. }
  352. static void print_tracking(struct kmem_cache *s, void *object)
  353. {
  354. if (!(s->flags & SLAB_STORE_USER))
  355. return;
  356. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  357. print_track("Freed", get_track(s, object, TRACK_FREE));
  358. }
  359. static void print_page_info(struct page *page)
  360. {
  361. printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  362. page, page->objects, page->inuse, page->freelist, page->flags);
  363. }
  364. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  365. {
  366. va_list args;
  367. char buf[100];
  368. va_start(args, fmt);
  369. vsnprintf(buf, sizeof(buf), fmt, args);
  370. va_end(args);
  371. printk(KERN_ERR "========================================"
  372. "=====================================\n");
  373. printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
  374. printk(KERN_ERR "----------------------------------------"
  375. "-------------------------------------\n\n");
  376. }
  377. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  378. {
  379. va_list args;
  380. char buf[100];
  381. va_start(args, fmt);
  382. vsnprintf(buf, sizeof(buf), fmt, args);
  383. va_end(args);
  384. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  385. }
  386. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  387. {
  388. unsigned int off; /* Offset of last byte */
  389. u8 *addr = page_address(page);
  390. print_tracking(s, p);
  391. print_page_info(page);
  392. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  393. p, p - addr, get_freepointer(s, p));
  394. if (p > addr + 16)
  395. print_section("Bytes b4", p - 16, 16);
  396. print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
  397. if (s->flags & SLAB_RED_ZONE)
  398. print_section("Redzone", p + s->objsize,
  399. s->inuse - s->objsize);
  400. if (s->offset)
  401. off = s->offset + sizeof(void *);
  402. else
  403. off = s->inuse;
  404. if (s->flags & SLAB_STORE_USER)
  405. off += 2 * sizeof(struct track);
  406. if (off != s->size)
  407. /* Beginning of the filler is the free pointer */
  408. print_section("Padding", p + off, s->size - off);
  409. dump_stack();
  410. }
  411. static void object_err(struct kmem_cache *s, struct page *page,
  412. u8 *object, char *reason)
  413. {
  414. slab_bug(s, "%s", reason);
  415. print_trailer(s, page, object);
  416. }
  417. static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
  418. {
  419. va_list args;
  420. char buf[100];
  421. va_start(args, fmt);
  422. vsnprintf(buf, sizeof(buf), fmt, args);
  423. va_end(args);
  424. slab_bug(s, "%s", buf);
  425. print_page_info(page);
  426. dump_stack();
  427. }
  428. static void init_object(struct kmem_cache *s, void *object, int active)
  429. {
  430. u8 *p = object;
  431. if (s->flags & __OBJECT_POISON) {
  432. memset(p, POISON_FREE, s->objsize - 1);
  433. p[s->objsize - 1] = POISON_END;
  434. }
  435. if (s->flags & SLAB_RED_ZONE)
  436. memset(p + s->objsize,
  437. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
  438. s->inuse - s->objsize);
  439. }
  440. static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
  441. {
  442. while (bytes) {
  443. if (*start != (u8)value)
  444. return start;
  445. start++;
  446. bytes--;
  447. }
  448. return NULL;
  449. }
  450. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  451. void *from, void *to)
  452. {
  453. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  454. memset(from, data, to - from);
  455. }
  456. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  457. u8 *object, char *what,
  458. u8 *start, unsigned int value, unsigned int bytes)
  459. {
  460. u8 *fault;
  461. u8 *end;
  462. fault = check_bytes(start, value, bytes);
  463. if (!fault)
  464. return 1;
  465. end = start + bytes;
  466. while (end > fault && end[-1] == value)
  467. end--;
  468. slab_bug(s, "%s overwritten", what);
  469. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  470. fault, end - 1, fault[0], value);
  471. print_trailer(s, page, object);
  472. restore_bytes(s, what, value, fault, end);
  473. return 0;
  474. }
  475. /*
  476. * Object layout:
  477. *
  478. * object address
  479. * Bytes of the object to be managed.
  480. * If the freepointer may overlay the object then the free
  481. * pointer is the first word of the object.
  482. *
  483. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  484. * 0xa5 (POISON_END)
  485. *
  486. * object + s->objsize
  487. * Padding to reach word boundary. This is also used for Redzoning.
  488. * Padding is extended by another word if Redzoning is enabled and
  489. * objsize == inuse.
  490. *
  491. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  492. * 0xcc (RED_ACTIVE) for objects in use.
  493. *
  494. * object + s->inuse
  495. * Meta data starts here.
  496. *
  497. * A. Free pointer (if we cannot overwrite object on free)
  498. * B. Tracking data for SLAB_STORE_USER
  499. * C. Padding to reach required alignment boundary or at mininum
  500. * one word if debugging is on to be able to detect writes
  501. * before the word boundary.
  502. *
  503. * Padding is done using 0x5a (POISON_INUSE)
  504. *
  505. * object + s->size
  506. * Nothing is used beyond s->size.
  507. *
  508. * If slabcaches are merged then the objsize and inuse boundaries are mostly
  509. * ignored. And therefore no slab options that rely on these boundaries
  510. * may be used with merged slabcaches.
  511. */
  512. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  513. {
  514. unsigned long off = s->inuse; /* The end of info */
  515. if (s->offset)
  516. /* Freepointer is placed after the object. */
  517. off += sizeof(void *);
  518. if (s->flags & SLAB_STORE_USER)
  519. /* We also have user information there */
  520. off += 2 * sizeof(struct track);
  521. if (s->size == off)
  522. return 1;
  523. return check_bytes_and_report(s, page, p, "Object padding",
  524. p + off, POISON_INUSE, s->size - off);
  525. }
  526. /* Check the pad bytes at the end of a slab page */
  527. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  528. {
  529. u8 *start;
  530. u8 *fault;
  531. u8 *end;
  532. int length;
  533. int remainder;
  534. if (!(s->flags & SLAB_POISON))
  535. return 1;
  536. start = page_address(page);
  537. length = (PAGE_SIZE << compound_order(page));
  538. end = start + length;
  539. remainder = length % s->size;
  540. if (!remainder)
  541. return 1;
  542. fault = check_bytes(end - remainder, POISON_INUSE, remainder);
  543. if (!fault)
  544. return 1;
  545. while (end > fault && end[-1] == POISON_INUSE)
  546. end--;
  547. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  548. print_section("Padding", end - remainder, remainder);
  549. restore_bytes(s, "slab padding", POISON_INUSE, start, end);
  550. return 0;
  551. }
  552. static int check_object(struct kmem_cache *s, struct page *page,
  553. void *object, int active)
  554. {
  555. u8 *p = object;
  556. u8 *endobject = object + s->objsize;
  557. if (s->flags & SLAB_RED_ZONE) {
  558. unsigned int red =
  559. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
  560. if (!check_bytes_and_report(s, page, object, "Redzone",
  561. endobject, red, s->inuse - s->objsize))
  562. return 0;
  563. } else {
  564. if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
  565. check_bytes_and_report(s, page, p, "Alignment padding",
  566. endobject, POISON_INUSE, s->inuse - s->objsize);
  567. }
  568. }
  569. if (s->flags & SLAB_POISON) {
  570. if (!active && (s->flags & __OBJECT_POISON) &&
  571. (!check_bytes_and_report(s, page, p, "Poison", p,
  572. POISON_FREE, s->objsize - 1) ||
  573. !check_bytes_and_report(s, page, p, "Poison",
  574. p + s->objsize - 1, POISON_END, 1)))
  575. return 0;
  576. /*
  577. * check_pad_bytes cleans up on its own.
  578. */
  579. check_pad_bytes(s, page, p);
  580. }
  581. if (!s->offset && active)
  582. /*
  583. * Object and freepointer overlap. Cannot check
  584. * freepointer while object is allocated.
  585. */
  586. return 1;
  587. /* Check free pointer validity */
  588. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  589. object_err(s, page, p, "Freepointer corrupt");
  590. /*
  591. * No choice but to zap it and thus lose the remainder
  592. * of the free objects in this slab. May cause
  593. * another error because the object count is now wrong.
  594. */
  595. set_freepointer(s, p, NULL);
  596. return 0;
  597. }
  598. return 1;
  599. }
  600. static int check_slab(struct kmem_cache *s, struct page *page)
  601. {
  602. int maxobj;
  603. VM_BUG_ON(!irqs_disabled());
  604. if (!PageSlab(page)) {
  605. slab_err(s, page, "Not a valid slab page");
  606. return 0;
  607. }
  608. maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
  609. if (page->objects > maxobj) {
  610. slab_err(s, page, "objects %u > max %u",
  611. s->name, page->objects, maxobj);
  612. return 0;
  613. }
  614. if (page->inuse > page->objects) {
  615. slab_err(s, page, "inuse %u > max %u",
  616. s->name, page->inuse, page->objects);
  617. return 0;
  618. }
  619. /* Slab_pad_check fixes things up after itself */
  620. slab_pad_check(s, page);
  621. return 1;
  622. }
  623. /*
  624. * Determine if a certain object on a page is on the freelist. Must hold the
  625. * slab lock to guarantee that the chains are in a consistent state.
  626. */
  627. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  628. {
  629. int nr = 0;
  630. void *fp = page->freelist;
  631. void *object = NULL;
  632. unsigned long max_objects;
  633. while (fp && nr <= page->objects) {
  634. if (fp == search)
  635. return 1;
  636. if (!check_valid_pointer(s, page, fp)) {
  637. if (object) {
  638. object_err(s, page, object,
  639. "Freechain corrupt");
  640. set_freepointer(s, object, NULL);
  641. break;
  642. } else {
  643. slab_err(s, page, "Freepointer corrupt");
  644. page->freelist = NULL;
  645. page->inuse = page->objects;
  646. slab_fix(s, "Freelist cleared");
  647. return 0;
  648. }
  649. break;
  650. }
  651. object = fp;
  652. fp = get_freepointer(s, object);
  653. nr++;
  654. }
  655. max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
  656. if (max_objects > MAX_OBJS_PER_PAGE)
  657. max_objects = MAX_OBJS_PER_PAGE;
  658. if (page->objects != max_objects) {
  659. slab_err(s, page, "Wrong number of objects. Found %d but "
  660. "should be %d", page->objects, max_objects);
  661. page->objects = max_objects;
  662. slab_fix(s, "Number of objects adjusted.");
  663. }
  664. if (page->inuse != page->objects - nr) {
  665. slab_err(s, page, "Wrong object count. Counter is %d but "
  666. "counted were %d", page->inuse, page->objects - nr);
  667. page->inuse = page->objects - nr;
  668. slab_fix(s, "Object count adjusted.");
  669. }
  670. return search == NULL;
  671. }
  672. static void trace(struct kmem_cache *s, struct page *page, void *object,
  673. int alloc)
  674. {
  675. if (s->flags & SLAB_TRACE) {
  676. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  677. s->name,
  678. alloc ? "alloc" : "free",
  679. object, page->inuse,
  680. page->freelist);
  681. if (!alloc)
  682. print_section("Object", (void *)object, s->objsize);
  683. dump_stack();
  684. }
  685. }
  686. /*
  687. * Tracking of fully allocated slabs for debugging purposes.
  688. */
  689. static void add_full(struct kmem_cache_node *n, struct page *page)
  690. {
  691. spin_lock(&n->list_lock);
  692. list_add(&page->lru, &n->full);
  693. spin_unlock(&n->list_lock);
  694. }
  695. static void remove_full(struct kmem_cache *s, struct page *page)
  696. {
  697. struct kmem_cache_node *n;
  698. if (!(s->flags & SLAB_STORE_USER))
  699. return;
  700. n = get_node(s, page_to_nid(page));
  701. spin_lock(&n->list_lock);
  702. list_del(&page->lru);
  703. spin_unlock(&n->list_lock);
  704. }
  705. /* Tracking of the number of slabs for debugging purposes */
  706. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  707. {
  708. struct kmem_cache_node *n = get_node(s, node);
  709. return atomic_long_read(&n->nr_slabs);
  710. }
  711. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  712. {
  713. struct kmem_cache_node *n = get_node(s, node);
  714. /*
  715. * May be called early in order to allocate a slab for the
  716. * kmem_cache_node structure. Solve the chicken-egg
  717. * dilemma by deferring the increment of the count during
  718. * bootstrap (see early_kmem_cache_node_alloc).
  719. */
  720. if (!NUMA_BUILD || n) {
  721. atomic_long_inc(&n->nr_slabs);
  722. atomic_long_add(objects, &n->total_objects);
  723. }
  724. }
  725. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  726. {
  727. struct kmem_cache_node *n = get_node(s, node);
  728. atomic_long_dec(&n->nr_slabs);
  729. atomic_long_sub(objects, &n->total_objects);
  730. }
  731. /* Object debug checks for alloc/free paths */
  732. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  733. void *object)
  734. {
  735. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  736. return;
  737. init_object(s, object, 0);
  738. init_tracking(s, object);
  739. }
  740. static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  741. void *object, unsigned long addr)
  742. {
  743. if (!check_slab(s, page))
  744. goto bad;
  745. if (!on_freelist(s, page, object)) {
  746. object_err(s, page, object, "Object already allocated");
  747. goto bad;
  748. }
  749. if (!check_valid_pointer(s, page, object)) {
  750. object_err(s, page, object, "Freelist Pointer check fails");
  751. goto bad;
  752. }
  753. if (!check_object(s, page, object, 0))
  754. goto bad;
  755. /* Success perform special debug activities for allocs */
  756. if (s->flags & SLAB_STORE_USER)
  757. set_track(s, object, TRACK_ALLOC, addr);
  758. trace(s, page, object, 1);
  759. init_object(s, object, 1);
  760. return 1;
  761. bad:
  762. if (PageSlab(page)) {
  763. /*
  764. * If this is a slab page then lets do the best we can
  765. * to avoid issues in the future. Marking all objects
  766. * as used avoids touching the remaining objects.
  767. */
  768. slab_fix(s, "Marking all objects used");
  769. page->inuse = page->objects;
  770. page->freelist = NULL;
  771. }
  772. return 0;
  773. }
  774. static int free_debug_processing(struct kmem_cache *s, struct page *page,
  775. void *object, unsigned long addr)
  776. {
  777. if (!check_slab(s, page))
  778. goto fail;
  779. if (!check_valid_pointer(s, page, object)) {
  780. slab_err(s, page, "Invalid object pointer 0x%p", object);
  781. goto fail;
  782. }
  783. if (on_freelist(s, page, object)) {
  784. object_err(s, page, object, "Object already free");
  785. goto fail;
  786. }
  787. if (!check_object(s, page, object, 1))
  788. return 0;
  789. if (unlikely(s != page->slab)) {
  790. if (!PageSlab(page)) {
  791. slab_err(s, page, "Attempt to free object(0x%p) "
  792. "outside of slab", object);
  793. } else if (!page->slab) {
  794. printk(KERN_ERR
  795. "SLUB <none>: no slab for object 0x%p.\n",
  796. object);
  797. dump_stack();
  798. } else
  799. object_err(s, page, object,
  800. "page slab pointer corrupt.");
  801. goto fail;
  802. }
  803. /* Special debug activities for freeing objects */
  804. if (!PageSlubFrozen(page) && !page->freelist)
  805. remove_full(s, page);
  806. if (s->flags & SLAB_STORE_USER)
  807. set_track(s, object, TRACK_FREE, addr);
  808. trace(s, page, object, 0);
  809. init_object(s, object, 0);
  810. return 1;
  811. fail:
  812. slab_fix(s, "Object at 0x%p not freed", object);
  813. return 0;
  814. }
  815. static int __init setup_slub_debug(char *str)
  816. {
  817. slub_debug = DEBUG_DEFAULT_FLAGS;
  818. if (*str++ != '=' || !*str)
  819. /*
  820. * No options specified. Switch on full debugging.
  821. */
  822. goto out;
  823. if (*str == ',')
  824. /*
  825. * No options but restriction on slabs. This means full
  826. * debugging for slabs matching a pattern.
  827. */
  828. goto check_slabs;
  829. slub_debug = 0;
  830. if (*str == '-')
  831. /*
  832. * Switch off all debugging measures.
  833. */
  834. goto out;
  835. /*
  836. * Determine which debug features should be switched on
  837. */
  838. for (; *str && *str != ','; str++) {
  839. switch (tolower(*str)) {
  840. case 'f':
  841. slub_debug |= SLAB_DEBUG_FREE;
  842. break;
  843. case 'z':
  844. slub_debug |= SLAB_RED_ZONE;
  845. break;
  846. case 'p':
  847. slub_debug |= SLAB_POISON;
  848. break;
  849. case 'u':
  850. slub_debug |= SLAB_STORE_USER;
  851. break;
  852. case 't':
  853. slub_debug |= SLAB_TRACE;
  854. break;
  855. default:
  856. printk(KERN_ERR "slub_debug option '%c' "
  857. "unknown. skipped\n", *str);
  858. }
  859. }
  860. check_slabs:
  861. if (*str == ',')
  862. slub_debug_slabs = str + 1;
  863. out:
  864. return 1;
  865. }
  866. __setup("slub_debug", setup_slub_debug);
  867. static unsigned long kmem_cache_flags(unsigned long objsize,
  868. unsigned long flags, const char *name,
  869. void (*ctor)(void *))
  870. {
  871. /*
  872. * Enable debugging if selected on the kernel commandline.
  873. */
  874. if (slub_debug && (!slub_debug_slabs ||
  875. strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
  876. flags |= slub_debug;
  877. return flags;
  878. }
  879. #else
  880. static inline void setup_object_debug(struct kmem_cache *s,
  881. struct page *page, void *object) {}
  882. static inline int alloc_debug_processing(struct kmem_cache *s,
  883. struct page *page, void *object, unsigned long addr) { return 0; }
  884. static inline int free_debug_processing(struct kmem_cache *s,
  885. struct page *page, void *object, unsigned long addr) { return 0; }
  886. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  887. { return 1; }
  888. static inline int check_object(struct kmem_cache *s, struct page *page,
  889. void *object, int active) { return 1; }
  890. static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
  891. static inline unsigned long kmem_cache_flags(unsigned long objsize,
  892. unsigned long flags, const char *name,
  893. void (*ctor)(void *))
  894. {
  895. return flags;
  896. }
  897. #define slub_debug 0
  898. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  899. { return 0; }
  900. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  901. int objects) {}
  902. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  903. int objects) {}
  904. #endif
  905. /*
  906. * Slab allocation and freeing
  907. */
  908. static inline struct page *alloc_slab_page(gfp_t flags, int node,
  909. struct kmem_cache_order_objects oo)
  910. {
  911. int order = oo_order(oo);
  912. if (node == -1)
  913. return alloc_pages(flags, order);
  914. else
  915. return alloc_pages_node(node, flags, order);
  916. }
  917. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  918. {
  919. struct page *page;
  920. struct kmem_cache_order_objects oo = s->oo;
  921. flags |= s->allocflags;
  922. page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
  923. oo);
  924. if (unlikely(!page)) {
  925. oo = s->min;
  926. /*
  927. * Allocation may have failed due to fragmentation.
  928. * Try a lower order alloc if possible
  929. */
  930. page = alloc_slab_page(flags, node, oo);
  931. if (!page)
  932. return NULL;
  933. stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
  934. }
  935. page->objects = oo_objects(oo);
  936. mod_zone_page_state(page_zone(page),
  937. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  938. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  939. 1 << oo_order(oo));
  940. return page;
  941. }
  942. static void setup_object(struct kmem_cache *s, struct page *page,
  943. void *object)
  944. {
  945. setup_object_debug(s, page, object);
  946. if (unlikely(s->ctor))
  947. s->ctor(object);
  948. }
  949. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  950. {
  951. struct page *page;
  952. void *start;
  953. void *last;
  954. void *p;
  955. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  956. page = allocate_slab(s,
  957. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  958. if (!page)
  959. goto out;
  960. inc_slabs_node(s, page_to_nid(page), page->objects);
  961. page->slab = s;
  962. page->flags |= 1 << PG_slab;
  963. if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
  964. SLAB_STORE_USER | SLAB_TRACE))
  965. __SetPageSlubDebug(page);
  966. start = page_address(page);
  967. if (unlikely(s->flags & SLAB_POISON))
  968. memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
  969. last = start;
  970. for_each_object(p, s, start, page->objects) {
  971. setup_object(s, page, last);
  972. set_freepointer(s, last, p);
  973. last = p;
  974. }
  975. setup_object(s, page, last);
  976. set_freepointer(s, last, NULL);
  977. page->freelist = start;
  978. page->inuse = 0;
  979. out:
  980. return page;
  981. }
  982. static void __free_slab(struct kmem_cache *s, struct page *page)
  983. {
  984. int order = compound_order(page);
  985. int pages = 1 << order;
  986. if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
  987. void *p;
  988. slab_pad_check(s, page);
  989. for_each_object(p, s, page_address(page),
  990. page->objects)
  991. check_object(s, page, p, 0);
  992. __ClearPageSlubDebug(page);
  993. }
  994. mod_zone_page_state(page_zone(page),
  995. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  996. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  997. -pages);
  998. __ClearPageSlab(page);
  999. reset_page_mapcount(page);
  1000. if (current->reclaim_state)
  1001. current->reclaim_state->reclaimed_slab += pages;
  1002. __free_pages(page, order);
  1003. }
  1004. static void rcu_free_slab(struct rcu_head *h)
  1005. {
  1006. struct page *page;
  1007. page = container_of((struct list_head *)h, struct page, lru);
  1008. __free_slab(page->slab, page);
  1009. }
  1010. static void free_slab(struct kmem_cache *s, struct page *page)
  1011. {
  1012. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1013. /*
  1014. * RCU free overloads the RCU head over the LRU
  1015. */
  1016. struct rcu_head *head = (void *)&page->lru;
  1017. call_rcu(head, rcu_free_slab);
  1018. } else
  1019. __free_slab(s, page);
  1020. }
  1021. static void discard_slab(struct kmem_cache *s, struct page *page)
  1022. {
  1023. dec_slabs_node(s, page_to_nid(page), page->objects);
  1024. free_slab(s, page);
  1025. }
  1026. /*
  1027. * Per slab locking using the pagelock
  1028. */
  1029. static __always_inline void slab_lock(struct page *page)
  1030. {
  1031. bit_spin_lock(PG_locked, &page->flags);
  1032. }
  1033. static __always_inline void slab_unlock(struct page *page)
  1034. {
  1035. __bit_spin_unlock(PG_locked, &page->flags);
  1036. }
  1037. static __always_inline int slab_trylock(struct page *page)
  1038. {
  1039. int rc = 1;
  1040. rc = bit_spin_trylock(PG_locked, &page->flags);
  1041. return rc;
  1042. }
  1043. /*
  1044. * Management of partially allocated slabs
  1045. */
  1046. static void add_partial(struct kmem_cache_node *n,
  1047. struct page *page, int tail)
  1048. {
  1049. spin_lock(&n->list_lock);
  1050. n->nr_partial++;
  1051. if (tail)
  1052. list_add_tail(&page->lru, &n->partial);
  1053. else
  1054. list_add(&page->lru, &n->partial);
  1055. spin_unlock(&n->list_lock);
  1056. }
  1057. static void remove_partial(struct kmem_cache *s, struct page *page)
  1058. {
  1059. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1060. spin_lock(&n->list_lock);
  1061. list_del(&page->lru);
  1062. n->nr_partial--;
  1063. spin_unlock(&n->list_lock);
  1064. }
  1065. /*
  1066. * Lock slab and remove from the partial list.
  1067. *
  1068. * Must hold list_lock.
  1069. */
  1070. static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
  1071. struct page *page)
  1072. {
  1073. if (slab_trylock(page)) {
  1074. list_del(&page->lru);
  1075. n->nr_partial--;
  1076. __SetPageSlubFrozen(page);
  1077. return 1;
  1078. }
  1079. return 0;
  1080. }
  1081. /*
  1082. * Try to allocate a partial slab from a specific node.
  1083. */
  1084. static struct page *get_partial_node(struct kmem_cache_node *n)
  1085. {
  1086. struct page *page;
  1087. /*
  1088. * Racy check. If we mistakenly see no partial slabs then we
  1089. * just allocate an empty slab. If we mistakenly try to get a
  1090. * partial slab and there is none available then get_partials()
  1091. * will return NULL.
  1092. */
  1093. if (!n || !n->nr_partial)
  1094. return NULL;
  1095. spin_lock(&n->list_lock);
  1096. list_for_each_entry(page, &n->partial, lru)
  1097. if (lock_and_freeze_slab(n, page))
  1098. goto out;
  1099. page = NULL;
  1100. out:
  1101. spin_unlock(&n->list_lock);
  1102. return page;
  1103. }
  1104. /*
  1105. * Get a page from somewhere. Search in increasing NUMA distances.
  1106. */
  1107. static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
  1108. {
  1109. #ifdef CONFIG_NUMA
  1110. struct zonelist *zonelist;
  1111. struct zoneref *z;
  1112. struct zone *zone;
  1113. enum zone_type high_zoneidx = gfp_zone(flags);
  1114. struct page *page;
  1115. /*
  1116. * The defrag ratio allows a configuration of the tradeoffs between
  1117. * inter node defragmentation and node local allocations. A lower
  1118. * defrag_ratio increases the tendency to do local allocations
  1119. * instead of attempting to obtain partial slabs from other nodes.
  1120. *
  1121. * If the defrag_ratio is set to 0 then kmalloc() always
  1122. * returns node local objects. If the ratio is higher then kmalloc()
  1123. * may return off node objects because partial slabs are obtained
  1124. * from other nodes and filled up.
  1125. *
  1126. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1127. * defrag_ratio = 1000) then every (well almost) allocation will
  1128. * first attempt to defrag slab caches on other nodes. This means
  1129. * scanning over all nodes to look for partial slabs which may be
  1130. * expensive if we do it every time we are trying to find a slab
  1131. * with available objects.
  1132. */
  1133. if (!s->remote_node_defrag_ratio ||
  1134. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1135. return NULL;
  1136. zonelist = node_zonelist(slab_node(current->mempolicy), flags);
  1137. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1138. struct kmem_cache_node *n;
  1139. n = get_node(s, zone_to_nid(zone));
  1140. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1141. n->nr_partial > s->min_partial) {
  1142. page = get_partial_node(n);
  1143. if (page)
  1144. return page;
  1145. }
  1146. }
  1147. #endif
  1148. return NULL;
  1149. }
  1150. /*
  1151. * Get a partial page, lock it and return it.
  1152. */
  1153. static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
  1154. {
  1155. struct page *page;
  1156. int searchnode = (node == -1) ? numa_node_id() : node;
  1157. page = get_partial_node(get_node(s, searchnode));
  1158. if (page || (flags & __GFP_THISNODE))
  1159. return page;
  1160. return get_any_partial(s, flags);
  1161. }
  1162. /*
  1163. * Move a page back to the lists.
  1164. *
  1165. * Must be called with the slab lock held.
  1166. *
  1167. * On exit the slab lock will have been dropped.
  1168. */
  1169. static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
  1170. {
  1171. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1172. struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
  1173. __ClearPageSlubFrozen(page);
  1174. if (page->inuse) {
  1175. if (page->freelist) {
  1176. add_partial(n, page, tail);
  1177. stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
  1178. } else {
  1179. stat(c, DEACTIVATE_FULL);
  1180. if (SLABDEBUG && PageSlubDebug(page) &&
  1181. (s->flags & SLAB_STORE_USER))
  1182. add_full(n, page);
  1183. }
  1184. slab_unlock(page);
  1185. } else {
  1186. stat(c, DEACTIVATE_EMPTY);
  1187. if (n->nr_partial < s->min_partial) {
  1188. /*
  1189. * Adding an empty slab to the partial slabs in order
  1190. * to avoid page allocator overhead. This slab needs
  1191. * to come after the other slabs with objects in
  1192. * so that the others get filled first. That way the
  1193. * size of the partial list stays small.
  1194. *
  1195. * kmem_cache_shrink can reclaim any empty slabs from
  1196. * the partial list.
  1197. */
  1198. add_partial(n, page, 1);
  1199. slab_unlock(page);
  1200. } else {
  1201. slab_unlock(page);
  1202. stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
  1203. discard_slab(s, page);
  1204. }
  1205. }
  1206. }
  1207. /*
  1208. * Remove the cpu slab
  1209. */
  1210. static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1211. {
  1212. struct page *page = c->page;
  1213. int tail = 1;
  1214. if (page->freelist)
  1215. stat(c, DEACTIVATE_REMOTE_FREES);
  1216. /*
  1217. * Merge cpu freelist into slab freelist. Typically we get here
  1218. * because both freelists are empty. So this is unlikely
  1219. * to occur.
  1220. */
  1221. while (unlikely(c->freelist)) {
  1222. void **object;
  1223. tail = 0; /* Hot objects. Put the slab first */
  1224. /* Retrieve object from cpu_freelist */
  1225. object = c->freelist;
  1226. c->freelist = c->freelist[c->offset];
  1227. /* And put onto the regular freelist */
  1228. object[c->offset] = page->freelist;
  1229. page->freelist = object;
  1230. page->inuse--;
  1231. }
  1232. c->page = NULL;
  1233. unfreeze_slab(s, page, tail);
  1234. }
  1235. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1236. {
  1237. stat(c, CPUSLAB_FLUSH);
  1238. slab_lock(c->page);
  1239. deactivate_slab(s, c);
  1240. }
  1241. /*
  1242. * Flush cpu slab.
  1243. *
  1244. * Called from IPI handler with interrupts disabled.
  1245. */
  1246. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1247. {
  1248. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1249. if (likely(c && c->page))
  1250. flush_slab(s, c);
  1251. }
  1252. static void flush_cpu_slab(void *d)
  1253. {
  1254. struct kmem_cache *s = d;
  1255. __flush_cpu_slab(s, smp_processor_id());
  1256. }
  1257. static void flush_all(struct kmem_cache *s)
  1258. {
  1259. on_each_cpu(flush_cpu_slab, s, 1);
  1260. }
  1261. /*
  1262. * Check if the objects in a per cpu structure fit numa
  1263. * locality expectations.
  1264. */
  1265. static inline int node_match(struct kmem_cache_cpu *c, int node)
  1266. {
  1267. #ifdef CONFIG_NUMA
  1268. if (node != -1 && c->node != node)
  1269. return 0;
  1270. #endif
  1271. return 1;
  1272. }
  1273. /*
  1274. * Slow path. The lockless freelist is empty or we need to perform
  1275. * debugging duties.
  1276. *
  1277. * Interrupts are disabled.
  1278. *
  1279. * Processing is still very fast if new objects have been freed to the
  1280. * regular freelist. In that case we simply take over the regular freelist
  1281. * as the lockless freelist and zap the regular freelist.
  1282. *
  1283. * If that is not working then we fall back to the partial lists. We take the
  1284. * first element of the freelist as the object to allocate now and move the
  1285. * rest of the freelist to the lockless freelist.
  1286. *
  1287. * And if we were unable to get a new slab from the partial slab lists then
  1288. * we need to allocate a new slab. This is the slowest path since it involves
  1289. * a call to the page allocator and the setup of a new slab.
  1290. */
  1291. static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  1292. unsigned long addr, struct kmem_cache_cpu *c)
  1293. {
  1294. void **object;
  1295. struct page *new;
  1296. /* We handle __GFP_ZERO in the caller */
  1297. gfpflags &= ~__GFP_ZERO;
  1298. if (!c->page)
  1299. goto new_slab;
  1300. slab_lock(c->page);
  1301. if (unlikely(!node_match(c, node)))
  1302. goto another_slab;
  1303. stat(c, ALLOC_REFILL);
  1304. load_freelist:
  1305. object = c->page->freelist;
  1306. if (unlikely(!object))
  1307. goto another_slab;
  1308. if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
  1309. goto debug;
  1310. c->freelist = object[c->offset];
  1311. c->page->inuse = c->page->objects;
  1312. c->page->freelist = NULL;
  1313. c->node = page_to_nid(c->page);
  1314. unlock_out:
  1315. slab_unlock(c->page);
  1316. stat(c, ALLOC_SLOWPATH);
  1317. return object;
  1318. another_slab:
  1319. deactivate_slab(s, c);
  1320. new_slab:
  1321. new = get_partial(s, gfpflags, node);
  1322. if (new) {
  1323. c->page = new;
  1324. stat(c, ALLOC_FROM_PARTIAL);
  1325. goto load_freelist;
  1326. }
  1327. if (gfpflags & __GFP_WAIT)
  1328. local_irq_enable();
  1329. new = new_slab(s, gfpflags, node);
  1330. if (gfpflags & __GFP_WAIT)
  1331. local_irq_disable();
  1332. if (new) {
  1333. c = get_cpu_slab(s, smp_processor_id());
  1334. stat(c, ALLOC_SLAB);
  1335. if (c->page)
  1336. flush_slab(s, c);
  1337. slab_lock(new);
  1338. __SetPageSlubFrozen(new);
  1339. c->page = new;
  1340. goto load_freelist;
  1341. }
  1342. return NULL;
  1343. debug:
  1344. if (!alloc_debug_processing(s, c->page, object, addr))
  1345. goto another_slab;
  1346. c->page->inuse++;
  1347. c->page->freelist = object[c->offset];
  1348. c->node = -1;
  1349. goto unlock_out;
  1350. }
  1351. /*
  1352. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1353. * have the fastpath folded into their functions. So no function call
  1354. * overhead for requests that can be satisfied on the fastpath.
  1355. *
  1356. * The fastpath works by first checking if the lockless freelist can be used.
  1357. * If not then __slab_alloc is called for slow processing.
  1358. *
  1359. * Otherwise we can simply pick the next object from the lockless free list.
  1360. */
  1361. static __always_inline void *slab_alloc(struct kmem_cache *s,
  1362. gfp_t gfpflags, int node, unsigned long addr)
  1363. {
  1364. void **object;
  1365. struct kmem_cache_cpu *c;
  1366. unsigned long flags;
  1367. unsigned int objsize;
  1368. lockdep_trace_alloc(gfpflags);
  1369. might_sleep_if(gfpflags & __GFP_WAIT);
  1370. if (should_failslab(s->objsize, gfpflags))
  1371. return NULL;
  1372. local_irq_save(flags);
  1373. c = get_cpu_slab(s, smp_processor_id());
  1374. objsize = c->objsize;
  1375. if (unlikely(!c->freelist || !node_match(c, node)))
  1376. object = __slab_alloc(s, gfpflags, node, addr, c);
  1377. else {
  1378. object = c->freelist;
  1379. c->freelist = object[c->offset];
  1380. stat(c, ALLOC_FASTPATH);
  1381. }
  1382. local_irq_restore(flags);
  1383. if (unlikely((gfpflags & __GFP_ZERO) && object))
  1384. memset(object, 0, objsize);
  1385. return object;
  1386. }
  1387. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  1388. {
  1389. void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_);
  1390. trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
  1391. return ret;
  1392. }
  1393. EXPORT_SYMBOL(kmem_cache_alloc);
  1394. #ifdef CONFIG_KMEMTRACE
  1395. void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
  1396. {
  1397. return slab_alloc(s, gfpflags, -1, _RET_IP_);
  1398. }
  1399. EXPORT_SYMBOL(kmem_cache_alloc_notrace);
  1400. #endif
  1401. #ifdef CONFIG_NUMA
  1402. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  1403. {
  1404. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  1405. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  1406. s->objsize, s->size, gfpflags, node);
  1407. return ret;
  1408. }
  1409. EXPORT_SYMBOL(kmem_cache_alloc_node);
  1410. #endif
  1411. #ifdef CONFIG_KMEMTRACE
  1412. void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
  1413. gfp_t gfpflags,
  1414. int node)
  1415. {
  1416. return slab_alloc(s, gfpflags, node, _RET_IP_);
  1417. }
  1418. EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
  1419. #endif
  1420. /*
  1421. * Slow patch handling. This may still be called frequently since objects
  1422. * have a longer lifetime than the cpu slabs in most processing loads.
  1423. *
  1424. * So we still attempt to reduce cache line usage. Just take the slab
  1425. * lock and free the item. If there is no additional partial page
  1426. * handling required then we can return immediately.
  1427. */
  1428. static void __slab_free(struct kmem_cache *s, struct page *page,
  1429. void *x, unsigned long addr, unsigned int offset)
  1430. {
  1431. void *prior;
  1432. void **object = (void *)x;
  1433. struct kmem_cache_cpu *c;
  1434. c = get_cpu_slab(s, raw_smp_processor_id());
  1435. stat(c, FREE_SLOWPATH);
  1436. slab_lock(page);
  1437. if (unlikely(SLABDEBUG && PageSlubDebug(page)))
  1438. goto debug;
  1439. checks_ok:
  1440. prior = object[offset] = page->freelist;
  1441. page->freelist = object;
  1442. page->inuse--;
  1443. if (unlikely(PageSlubFrozen(page))) {
  1444. stat(c, FREE_FROZEN);
  1445. goto out_unlock;
  1446. }
  1447. if (unlikely(!page->inuse))
  1448. goto slab_empty;
  1449. /*
  1450. * Objects left in the slab. If it was not on the partial list before
  1451. * then add it.
  1452. */
  1453. if (unlikely(!prior)) {
  1454. add_partial(get_node(s, page_to_nid(page)), page, 1);
  1455. stat(c, FREE_ADD_PARTIAL);
  1456. }
  1457. out_unlock:
  1458. slab_unlock(page);
  1459. return;
  1460. slab_empty:
  1461. if (prior) {
  1462. /*
  1463. * Slab still on the partial list.
  1464. */
  1465. remove_partial(s, page);
  1466. stat(c, FREE_REMOVE_PARTIAL);
  1467. }
  1468. slab_unlock(page);
  1469. stat(c, FREE_SLAB);
  1470. discard_slab(s, page);
  1471. return;
  1472. debug:
  1473. if (!free_debug_processing(s, page, x, addr))
  1474. goto out_unlock;
  1475. goto checks_ok;
  1476. }
  1477. /*
  1478. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  1479. * can perform fastpath freeing without additional function calls.
  1480. *
  1481. * The fastpath is only possible if we are freeing to the current cpu slab
  1482. * of this processor. This typically the case if we have just allocated
  1483. * the item before.
  1484. *
  1485. * If fastpath is not possible then fall back to __slab_free where we deal
  1486. * with all sorts of special processing.
  1487. */
  1488. static __always_inline void slab_free(struct kmem_cache *s,
  1489. struct page *page, void *x, unsigned long addr)
  1490. {
  1491. void **object = (void *)x;
  1492. struct kmem_cache_cpu *c;
  1493. unsigned long flags;
  1494. local_irq_save(flags);
  1495. c = get_cpu_slab(s, smp_processor_id());
  1496. debug_check_no_locks_freed(object, c->objsize);
  1497. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  1498. debug_check_no_obj_freed(object, c->objsize);
  1499. if (likely(page == c->page && c->node >= 0)) {
  1500. object[c->offset] = c->freelist;
  1501. c->freelist = object;
  1502. stat(c, FREE_FASTPATH);
  1503. } else
  1504. __slab_free(s, page, x, addr, c->offset);
  1505. local_irq_restore(flags);
  1506. }
  1507. void kmem_cache_free(struct kmem_cache *s, void *x)
  1508. {
  1509. struct page *page;
  1510. page = virt_to_head_page(x);
  1511. slab_free(s, page, x, _RET_IP_);
  1512. trace_kmem_cache_free(_RET_IP_, x);
  1513. }
  1514. EXPORT_SYMBOL(kmem_cache_free);
  1515. /* Figure out on which slab page the object resides */
  1516. static struct page *get_object_page(const void *x)
  1517. {
  1518. struct page *page = virt_to_head_page(x);
  1519. if (!PageSlab(page))
  1520. return NULL;
  1521. return page;
  1522. }
  1523. /*
  1524. * Object placement in a slab is made very easy because we always start at
  1525. * offset 0. If we tune the size of the object to the alignment then we can
  1526. * get the required alignment by putting one properly sized object after
  1527. * another.
  1528. *
  1529. * Notice that the allocation order determines the sizes of the per cpu
  1530. * caches. Each processor has always one slab available for allocations.
  1531. * Increasing the allocation order reduces the number of times that slabs
  1532. * must be moved on and off the partial lists and is therefore a factor in
  1533. * locking overhead.
  1534. */
  1535. /*
  1536. * Mininum / Maximum order of slab pages. This influences locking overhead
  1537. * and slab fragmentation. A higher order reduces the number of partial slabs
  1538. * and increases the number of allocations possible without having to
  1539. * take the list_lock.
  1540. */
  1541. static int slub_min_order;
  1542. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  1543. static int slub_min_objects;
  1544. /*
  1545. * Merge control. If this is set then no merging of slab caches will occur.
  1546. * (Could be removed. This was introduced to pacify the merge skeptics.)
  1547. */
  1548. static int slub_nomerge;
  1549. /*
  1550. * Calculate the order of allocation given an slab object size.
  1551. *
  1552. * The order of allocation has significant impact on performance and other
  1553. * system components. Generally order 0 allocations should be preferred since
  1554. * order 0 does not cause fragmentation in the page allocator. Larger objects
  1555. * be problematic to put into order 0 slabs because there may be too much
  1556. * unused space left. We go to a higher order if more than 1/16th of the slab
  1557. * would be wasted.
  1558. *
  1559. * In order to reach satisfactory performance we must ensure that a minimum
  1560. * number of objects is in one slab. Otherwise we may generate too much
  1561. * activity on the partial lists which requires taking the list_lock. This is
  1562. * less a concern for large slabs though which are rarely used.
  1563. *
  1564. * slub_max_order specifies the order where we begin to stop considering the
  1565. * number of objects in a slab as critical. If we reach slub_max_order then
  1566. * we try to keep the page order as low as possible. So we accept more waste
  1567. * of space in favor of a small page order.
  1568. *
  1569. * Higher order allocations also allow the placement of more objects in a
  1570. * slab and thereby reduce object handling overhead. If the user has
  1571. * requested a higher mininum order then we start with that one instead of
  1572. * the smallest order which will fit the object.
  1573. */
  1574. static inline int slab_order(int size, int min_objects,
  1575. int max_order, int fract_leftover)
  1576. {
  1577. int order;
  1578. int rem;
  1579. int min_order = slub_min_order;
  1580. if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
  1581. return get_order(size * MAX_OBJS_PER_PAGE) - 1;
  1582. for (order = max(min_order,
  1583. fls(min_objects * size - 1) - PAGE_SHIFT);
  1584. order <= max_order; order++) {
  1585. unsigned long slab_size = PAGE_SIZE << order;
  1586. if (slab_size < min_objects * size)
  1587. continue;
  1588. rem = slab_size % size;
  1589. if (rem <= slab_size / fract_leftover)
  1590. break;
  1591. }
  1592. return order;
  1593. }
  1594. static inline int calculate_order(int size)
  1595. {
  1596. int order;
  1597. int min_objects;
  1598. int fraction;
  1599. int max_objects;
  1600. /*
  1601. * Attempt to find best configuration for a slab. This
  1602. * works by first attempting to generate a layout with
  1603. * the best configuration and backing off gradually.
  1604. *
  1605. * First we reduce the acceptable waste in a slab. Then
  1606. * we reduce the minimum objects required in a slab.
  1607. */
  1608. min_objects = slub_min_objects;
  1609. if (!min_objects)
  1610. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  1611. max_objects = (PAGE_SIZE << slub_max_order)/size;
  1612. min_objects = min(min_objects, max_objects);
  1613. while (min_objects > 1) {
  1614. fraction = 16;
  1615. while (fraction >= 4) {
  1616. order = slab_order(size, min_objects,
  1617. slub_max_order, fraction);
  1618. if (order <= slub_max_order)
  1619. return order;
  1620. fraction /= 2;
  1621. }
  1622. min_objects --;
  1623. }
  1624. /*
  1625. * We were unable to place multiple objects in a slab. Now
  1626. * lets see if we can place a single object there.
  1627. */
  1628. order = slab_order(size, 1, slub_max_order, 1);
  1629. if (order <= slub_max_order)
  1630. return order;
  1631. /*
  1632. * Doh this slab cannot be placed using slub_max_order.
  1633. */
  1634. order = slab_order(size, 1, MAX_ORDER, 1);
  1635. if (order < MAX_ORDER)
  1636. return order;
  1637. return -ENOSYS;
  1638. }
  1639. /*
  1640. * Figure out what the alignment of the objects will be.
  1641. */
  1642. static unsigned long calculate_alignment(unsigned long flags,
  1643. unsigned long align, unsigned long size)
  1644. {
  1645. /*
  1646. * If the user wants hardware cache aligned objects then follow that
  1647. * suggestion if the object is sufficiently large.
  1648. *
  1649. * The hardware cache alignment cannot override the specified
  1650. * alignment though. If that is greater then use it.
  1651. */
  1652. if (flags & SLAB_HWCACHE_ALIGN) {
  1653. unsigned long ralign = cache_line_size();
  1654. while (size <= ralign / 2)
  1655. ralign /= 2;
  1656. align = max(align, ralign);
  1657. }
  1658. if (align < ARCH_SLAB_MINALIGN)
  1659. align = ARCH_SLAB_MINALIGN;
  1660. return ALIGN(align, sizeof(void *));
  1661. }
  1662. static void init_kmem_cache_cpu(struct kmem_cache *s,
  1663. struct kmem_cache_cpu *c)
  1664. {
  1665. c->page = NULL;
  1666. c->freelist = NULL;
  1667. c->node = 0;
  1668. c->offset = s->offset / sizeof(void *);
  1669. c->objsize = s->objsize;
  1670. #ifdef CONFIG_SLUB_STATS
  1671. memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
  1672. #endif
  1673. }
  1674. static void
  1675. init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
  1676. {
  1677. n->nr_partial = 0;
  1678. spin_lock_init(&n->list_lock);
  1679. INIT_LIST_HEAD(&n->partial);
  1680. #ifdef CONFIG_SLUB_DEBUG
  1681. atomic_long_set(&n->nr_slabs, 0);
  1682. atomic_long_set(&n->total_objects, 0);
  1683. INIT_LIST_HEAD(&n->full);
  1684. #endif
  1685. }
  1686. #ifdef CONFIG_SMP
  1687. /*
  1688. * Per cpu array for per cpu structures.
  1689. *
  1690. * The per cpu array places all kmem_cache_cpu structures from one processor
  1691. * close together meaning that it becomes possible that multiple per cpu
  1692. * structures are contained in one cacheline. This may be particularly
  1693. * beneficial for the kmalloc caches.
  1694. *
  1695. * A desktop system typically has around 60-80 slabs. With 100 here we are
  1696. * likely able to get per cpu structures for all caches from the array defined
  1697. * here. We must be able to cover all kmalloc caches during bootstrap.
  1698. *
  1699. * If the per cpu array is exhausted then fall back to kmalloc
  1700. * of individual cachelines. No sharing is possible then.
  1701. */
  1702. #define NR_KMEM_CACHE_CPU 100
  1703. static DEFINE_PER_CPU(struct kmem_cache_cpu,
  1704. kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
  1705. static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
  1706. static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS);
  1707. static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
  1708. int cpu, gfp_t flags)
  1709. {
  1710. struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
  1711. if (c)
  1712. per_cpu(kmem_cache_cpu_free, cpu) =
  1713. (void *)c->freelist;
  1714. else {
  1715. /* Table overflow: So allocate ourselves */
  1716. c = kmalloc_node(
  1717. ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
  1718. flags, cpu_to_node(cpu));
  1719. if (!c)
  1720. return NULL;
  1721. }
  1722. init_kmem_cache_cpu(s, c);
  1723. return c;
  1724. }
  1725. static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
  1726. {
  1727. if (c < per_cpu(kmem_cache_cpu, cpu) ||
  1728. c >= per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
  1729. kfree(c);
  1730. return;
  1731. }
  1732. c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
  1733. per_cpu(kmem_cache_cpu_free, cpu) = c;
  1734. }
  1735. static void free_kmem_cache_cpus(struct kmem_cache *s)
  1736. {
  1737. int cpu;
  1738. for_each_online_cpu(cpu) {
  1739. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1740. if (c) {
  1741. s->cpu_slab[cpu] = NULL;
  1742. free_kmem_cache_cpu(c, cpu);
  1743. }
  1744. }
  1745. }
  1746. static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
  1747. {
  1748. int cpu;
  1749. for_each_online_cpu(cpu) {
  1750. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1751. if (c)
  1752. continue;
  1753. c = alloc_kmem_cache_cpu(s, cpu, flags);
  1754. if (!c) {
  1755. free_kmem_cache_cpus(s);
  1756. return 0;
  1757. }
  1758. s->cpu_slab[cpu] = c;
  1759. }
  1760. return 1;
  1761. }
  1762. /*
  1763. * Initialize the per cpu array.
  1764. */
  1765. static void init_alloc_cpu_cpu(int cpu)
  1766. {
  1767. int i;
  1768. if (cpumask_test_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once)))
  1769. return;
  1770. for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
  1771. free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
  1772. cpumask_set_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once));
  1773. }
  1774. static void __init init_alloc_cpu(void)
  1775. {
  1776. int cpu;
  1777. for_each_online_cpu(cpu)
  1778. init_alloc_cpu_cpu(cpu);
  1779. }
  1780. #else
  1781. static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
  1782. static inline void init_alloc_cpu(void) {}
  1783. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
  1784. {
  1785. init_kmem_cache_cpu(s, &s->cpu_slab);
  1786. return 1;
  1787. }
  1788. #endif
  1789. #ifdef CONFIG_NUMA
  1790. /*
  1791. * No kmalloc_node yet so do it by hand. We know that this is the first
  1792. * slab on the node for this slabcache. There are no concurrent accesses
  1793. * possible.
  1794. *
  1795. * Note that this function only works on the kmalloc_node_cache
  1796. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  1797. * memory on a fresh node that has no slab structures yet.
  1798. */
  1799. static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
  1800. {
  1801. struct page *page;
  1802. struct kmem_cache_node *n;
  1803. unsigned long flags;
  1804. BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
  1805. page = new_slab(kmalloc_caches, gfpflags, node);
  1806. BUG_ON(!page);
  1807. if (page_to_nid(page) != node) {
  1808. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  1809. "node %d\n", node);
  1810. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  1811. "in order to be able to continue\n");
  1812. }
  1813. n = page->freelist;
  1814. BUG_ON(!n);
  1815. page->freelist = get_freepointer(kmalloc_caches, n);
  1816. page->inuse++;
  1817. kmalloc_caches->node[node] = n;
  1818. #ifdef CONFIG_SLUB_DEBUG
  1819. init_object(kmalloc_caches, n, 1);
  1820. init_tracking(kmalloc_caches, n);
  1821. #endif
  1822. init_kmem_cache_node(n, kmalloc_caches);
  1823. inc_slabs_node(kmalloc_caches, node, page->objects);
  1824. /*
  1825. * lockdep requires consistent irq usage for each lock
  1826. * so even though there cannot be a race this early in
  1827. * the boot sequence, we still disable irqs.
  1828. */
  1829. local_irq_save(flags);
  1830. add_partial(n, page, 0);
  1831. local_irq_restore(flags);
  1832. }
  1833. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1834. {
  1835. int node;
  1836. for_each_node_state(node, N_NORMAL_MEMORY) {
  1837. struct kmem_cache_node *n = s->node[node];
  1838. if (n && n != &s->local_node)
  1839. kmem_cache_free(kmalloc_caches, n);
  1840. s->node[node] = NULL;
  1841. }
  1842. }
  1843. static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
  1844. {
  1845. int node;
  1846. int local_node;
  1847. if (slab_state >= UP)
  1848. local_node = page_to_nid(virt_to_page(s));
  1849. else
  1850. local_node = 0;
  1851. for_each_node_state(node, N_NORMAL_MEMORY) {
  1852. struct kmem_cache_node *n;
  1853. if (local_node == node)
  1854. n = &s->local_node;
  1855. else {
  1856. if (slab_state == DOWN) {
  1857. early_kmem_cache_node_alloc(gfpflags, node);
  1858. continue;
  1859. }
  1860. n = kmem_cache_alloc_node(kmalloc_caches,
  1861. gfpflags, node);
  1862. if (!n) {
  1863. free_kmem_cache_nodes(s);
  1864. return 0;
  1865. }
  1866. }
  1867. s->node[node] = n;
  1868. init_kmem_cache_node(n, s);
  1869. }
  1870. return 1;
  1871. }
  1872. #else
  1873. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1874. {
  1875. }
  1876. static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
  1877. {
  1878. init_kmem_cache_node(&s->local_node, s);
  1879. return 1;
  1880. }
  1881. #endif
  1882. static void set_min_partial(struct kmem_cache *s, unsigned long min)
  1883. {
  1884. if (min < MIN_PARTIAL)
  1885. min = MIN_PARTIAL;
  1886. else if (min > MAX_PARTIAL)
  1887. min = MAX_PARTIAL;
  1888. s->min_partial = min;
  1889. }
  1890. /*
  1891. * calculate_sizes() determines the order and the distribution of data within
  1892. * a slab object.
  1893. */
  1894. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  1895. {
  1896. unsigned long flags = s->flags;
  1897. unsigned long size = s->objsize;
  1898. unsigned long align = s->align;
  1899. int order;
  1900. /*
  1901. * Round up object size to the next word boundary. We can only
  1902. * place the free pointer at word boundaries and this determines
  1903. * the possible location of the free pointer.
  1904. */
  1905. size = ALIGN(size, sizeof(void *));
  1906. #ifdef CONFIG_SLUB_DEBUG
  1907. /*
  1908. * Determine if we can poison the object itself. If the user of
  1909. * the slab may touch the object after free or before allocation
  1910. * then we should never poison the object itself.
  1911. */
  1912. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  1913. !s->ctor)
  1914. s->flags |= __OBJECT_POISON;
  1915. else
  1916. s->flags &= ~__OBJECT_POISON;
  1917. /*
  1918. * If we are Redzoning then check if there is some space between the
  1919. * end of the object and the free pointer. If not then add an
  1920. * additional word to have some bytes to store Redzone information.
  1921. */
  1922. if ((flags & SLAB_RED_ZONE) && size == s->objsize)
  1923. size += sizeof(void *);
  1924. #endif
  1925. /*
  1926. * With that we have determined the number of bytes in actual use
  1927. * by the object. This is the potential offset to the free pointer.
  1928. */
  1929. s->inuse = size;
  1930. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  1931. s->ctor)) {
  1932. /*
  1933. * Relocate free pointer after the object if it is not
  1934. * permitted to overwrite the first word of the object on
  1935. * kmem_cache_free.
  1936. *
  1937. * This is the case if we do RCU, have a constructor or
  1938. * destructor or are poisoning the objects.
  1939. */
  1940. s->offset = size;
  1941. size += sizeof(void *);
  1942. }
  1943. #ifdef CONFIG_SLUB_DEBUG
  1944. if (flags & SLAB_STORE_USER)
  1945. /*
  1946. * Need to store information about allocs and frees after
  1947. * the object.
  1948. */
  1949. size += 2 * sizeof(struct track);
  1950. if (flags & SLAB_RED_ZONE)
  1951. /*
  1952. * Add some empty padding so that we can catch
  1953. * overwrites from earlier objects rather than let
  1954. * tracking information or the free pointer be
  1955. * corrupted if a user writes before the start
  1956. * of the object.
  1957. */
  1958. size += sizeof(void *);
  1959. #endif
  1960. /*
  1961. * Determine the alignment based on various parameters that the
  1962. * user specified and the dynamic determination of cache line size
  1963. * on bootup.
  1964. */
  1965. align = calculate_alignment(flags, align, s->objsize);
  1966. /*
  1967. * SLUB stores one object immediately after another beginning from
  1968. * offset 0. In order to align the objects we have to simply size
  1969. * each object to conform to the alignment.
  1970. */
  1971. size = ALIGN(size, align);
  1972. s->size = size;
  1973. if (forced_order >= 0)
  1974. order = forced_order;
  1975. else
  1976. order = calculate_order(size);
  1977. if (order < 0)
  1978. return 0;
  1979. s->allocflags = 0;
  1980. if (order)
  1981. s->allocflags |= __GFP_COMP;
  1982. if (s->flags & SLAB_CACHE_DMA)
  1983. s->allocflags |= SLUB_DMA;
  1984. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  1985. s->allocflags |= __GFP_RECLAIMABLE;
  1986. /*
  1987. * Determine the number of objects per slab
  1988. */
  1989. s->oo = oo_make(order, size);
  1990. s->min = oo_make(get_order(size), size);
  1991. if (oo_objects(s->oo) > oo_objects(s->max))
  1992. s->max = s->oo;
  1993. return !!oo_objects(s->oo);
  1994. }
  1995. static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
  1996. const char *name, size_t size,
  1997. size_t align, unsigned long flags,
  1998. void (*ctor)(void *))
  1999. {
  2000. memset(s, 0, kmem_size);
  2001. s->name = name;
  2002. s->ctor = ctor;
  2003. s->objsize = size;
  2004. s->align = align;
  2005. s->flags = kmem_cache_flags(size, flags, name, ctor);
  2006. if (!calculate_sizes(s, -1))
  2007. goto error;
  2008. /*
  2009. * The larger the object size is, the more pages we want on the partial
  2010. * list to avoid pounding the page allocator excessively.
  2011. */
  2012. set_min_partial(s, ilog2(s->size));
  2013. s->refcount = 1;
  2014. #ifdef CONFIG_NUMA
  2015. s->remote_node_defrag_ratio = 1000;
  2016. #endif
  2017. if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
  2018. goto error;
  2019. if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
  2020. return 1;
  2021. free_kmem_cache_nodes(s);
  2022. error:
  2023. if (flags & SLAB_PANIC)
  2024. panic("Cannot create slab %s size=%lu realsize=%u "
  2025. "order=%u offset=%u flags=%lx\n",
  2026. s->name, (unsigned long)size, s->size, oo_order(s->oo),
  2027. s->offset, flags);
  2028. return 0;
  2029. }
  2030. /*
  2031. * Check if a given pointer is valid
  2032. */
  2033. int kmem_ptr_validate(struct kmem_cache *s, const void *object)
  2034. {
  2035. struct page *page;
  2036. page = get_object_page(object);
  2037. if (!page || s != page->slab)
  2038. /* No slab or wrong slab */
  2039. return 0;
  2040. if (!check_valid_pointer(s, page, object))
  2041. return 0;
  2042. /*
  2043. * We could also check if the object is on the slabs freelist.
  2044. * But this would be too expensive and it seems that the main
  2045. * purpose of kmem_ptr_valid() is to check if the object belongs
  2046. * to a certain slab.
  2047. */
  2048. return 1;
  2049. }
  2050. EXPORT_SYMBOL(kmem_ptr_validate);
  2051. /*
  2052. * Determine the size of a slab object
  2053. */
  2054. unsigned int kmem_cache_size(struct kmem_cache *s)
  2055. {
  2056. return s->objsize;
  2057. }
  2058. EXPORT_SYMBOL(kmem_cache_size);
  2059. const char *kmem_cache_name(struct kmem_cache *s)
  2060. {
  2061. return s->name;
  2062. }
  2063. EXPORT_SYMBOL(kmem_cache_name);
  2064. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2065. const char *text)
  2066. {
  2067. #ifdef CONFIG_SLUB_DEBUG
  2068. void *addr = page_address(page);
  2069. void *p;
  2070. DECLARE_BITMAP(map, page->objects);
  2071. bitmap_zero(map, page->objects);
  2072. slab_err(s, page, "%s", text);
  2073. slab_lock(page);
  2074. for_each_free_object(p, s, page->freelist)
  2075. set_bit(slab_index(p, s, addr), map);
  2076. for_each_object(p, s, addr, page->objects) {
  2077. if (!test_bit(slab_index(p, s, addr), map)) {
  2078. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
  2079. p, p - addr);
  2080. print_tracking(s, p);
  2081. }
  2082. }
  2083. slab_unlock(page);
  2084. #endif
  2085. }
  2086. /*
  2087. * Attempt to free all partial slabs on a node.
  2088. */
  2089. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2090. {
  2091. unsigned long flags;
  2092. struct page *page, *h;
  2093. spin_lock_irqsave(&n->list_lock, flags);
  2094. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2095. if (!page->inuse) {
  2096. list_del(&page->lru);
  2097. discard_slab(s, page);
  2098. n->nr_partial--;
  2099. } else {
  2100. list_slab_objects(s, page,
  2101. "Objects remaining on kmem_cache_close()");
  2102. }
  2103. }
  2104. spin_unlock_irqrestore(&n->list_lock, flags);
  2105. }
  2106. /*
  2107. * Release all resources used by a slab cache.
  2108. */
  2109. static inline int kmem_cache_close(struct kmem_cache *s)
  2110. {
  2111. int node;
  2112. flush_all(s);
  2113. /* Attempt to free all objects */
  2114. free_kmem_cache_cpus(s);
  2115. for_each_node_state(node, N_NORMAL_MEMORY) {
  2116. struct kmem_cache_node *n = get_node(s, node);
  2117. free_partial(s, n);
  2118. if (n->nr_partial || slabs_node(s, node))
  2119. return 1;
  2120. }
  2121. free_kmem_cache_nodes(s);
  2122. return 0;
  2123. }
  2124. /*
  2125. * Close a cache and release the kmem_cache structure
  2126. * (must be used for caches created using kmem_cache_create)
  2127. */
  2128. void kmem_cache_destroy(struct kmem_cache *s)
  2129. {
  2130. down_write(&slub_lock);
  2131. s->refcount--;
  2132. if (!s->refcount) {
  2133. list_del(&s->list);
  2134. up_write(&slub_lock);
  2135. if (kmem_cache_close(s)) {
  2136. printk(KERN_ERR "SLUB %s: %s called for cache that "
  2137. "still has objects.\n", s->name, __func__);
  2138. dump_stack();
  2139. }
  2140. sysfs_slab_remove(s);
  2141. } else
  2142. up_write(&slub_lock);
  2143. }
  2144. EXPORT_SYMBOL(kmem_cache_destroy);
  2145. /********************************************************************
  2146. * Kmalloc subsystem
  2147. *******************************************************************/
  2148. struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT] __cacheline_aligned;
  2149. EXPORT_SYMBOL(kmalloc_caches);
  2150. static int __init setup_slub_min_order(char *str)
  2151. {
  2152. get_option(&str, &slub_min_order);
  2153. return 1;
  2154. }
  2155. __setup("slub_min_order=", setup_slub_min_order);
  2156. static int __init setup_slub_max_order(char *str)
  2157. {
  2158. get_option(&str, &slub_max_order);
  2159. slub_max_order = min(slub_max_order, MAX_ORDER - 1);
  2160. return 1;
  2161. }
  2162. __setup("slub_max_order=", setup_slub_max_order);
  2163. static int __init setup_slub_min_objects(char *str)
  2164. {
  2165. get_option(&str, &slub_min_objects);
  2166. return 1;
  2167. }
  2168. __setup("slub_min_objects=", setup_slub_min_objects);
  2169. static int __init setup_slub_nomerge(char *str)
  2170. {
  2171. slub_nomerge = 1;
  2172. return 1;
  2173. }
  2174. __setup("slub_nomerge", setup_slub_nomerge);
  2175. static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
  2176. const char *name, int size, gfp_t gfp_flags)
  2177. {
  2178. unsigned int flags = 0;
  2179. if (gfp_flags & SLUB_DMA)
  2180. flags = SLAB_CACHE_DMA;
  2181. down_write(&slub_lock);
  2182. if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
  2183. flags, NULL))
  2184. goto panic;
  2185. list_add(&s->list, &slab_caches);
  2186. up_write(&slub_lock);
  2187. if (sysfs_slab_add(s))
  2188. goto panic;
  2189. return s;
  2190. panic:
  2191. panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
  2192. }
  2193. #ifdef CONFIG_ZONE_DMA
  2194. static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
  2195. static void sysfs_add_func(struct work_struct *w)
  2196. {
  2197. struct kmem_cache *s;
  2198. down_write(&slub_lock);
  2199. list_for_each_entry(s, &slab_caches, list) {
  2200. if (s->flags & __SYSFS_ADD_DEFERRED) {
  2201. s->flags &= ~__SYSFS_ADD_DEFERRED;
  2202. sysfs_slab_add(s);
  2203. }
  2204. }
  2205. up_write(&slub_lock);
  2206. }
  2207. static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
  2208. static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
  2209. {
  2210. struct kmem_cache *s;
  2211. char *text;
  2212. size_t realsize;
  2213. s = kmalloc_caches_dma[index];
  2214. if (s)
  2215. return s;
  2216. /* Dynamically create dma cache */
  2217. if (flags & __GFP_WAIT)
  2218. down_write(&slub_lock);
  2219. else {
  2220. if (!down_write_trylock(&slub_lock))
  2221. goto out;
  2222. }
  2223. if (kmalloc_caches_dma[index])
  2224. goto unlock_out;
  2225. realsize = kmalloc_caches[index].objsize;
  2226. text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
  2227. (unsigned int)realsize);
  2228. s = kmalloc(kmem_size, flags & ~SLUB_DMA);
  2229. if (!s || !text || !kmem_cache_open(s, flags, text,
  2230. realsize, ARCH_KMALLOC_MINALIGN,
  2231. SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
  2232. kfree(s);
  2233. kfree(text);
  2234. goto unlock_out;
  2235. }
  2236. list_add(&s->list, &slab_caches);
  2237. kmalloc_caches_dma[index] = s;
  2238. schedule_work(&sysfs_add_work);
  2239. unlock_out:
  2240. up_write(&slub_lock);
  2241. out:
  2242. return kmalloc_caches_dma[index];
  2243. }
  2244. #endif
  2245. /*
  2246. * Conversion table for small slabs sizes / 8 to the index in the
  2247. * kmalloc array. This is necessary for slabs < 192 since we have non power
  2248. * of two cache sizes there. The size of larger slabs can be determined using
  2249. * fls.
  2250. */
  2251. static s8 size_index[24] = {
  2252. 3, /* 8 */
  2253. 4, /* 16 */
  2254. 5, /* 24 */
  2255. 5, /* 32 */
  2256. 6, /* 40 */
  2257. 6, /* 48 */
  2258. 6, /* 56 */
  2259. 6, /* 64 */
  2260. 1, /* 72 */
  2261. 1, /* 80 */
  2262. 1, /* 88 */
  2263. 1, /* 96 */
  2264. 7, /* 104 */
  2265. 7, /* 112 */
  2266. 7, /* 120 */
  2267. 7, /* 128 */
  2268. 2, /* 136 */
  2269. 2, /* 144 */
  2270. 2, /* 152 */
  2271. 2, /* 160 */
  2272. 2, /* 168 */
  2273. 2, /* 176 */
  2274. 2, /* 184 */
  2275. 2 /* 192 */
  2276. };
  2277. static struct kmem_cache *get_slab(size_t size, gfp_t flags)
  2278. {
  2279. int index;
  2280. if (size <= 192) {
  2281. if (!size)
  2282. return ZERO_SIZE_PTR;
  2283. index = size_index[(size - 1) / 8];
  2284. } else
  2285. index = fls(size - 1);
  2286. #ifdef CONFIG_ZONE_DMA
  2287. if (unlikely((flags & SLUB_DMA)))
  2288. return dma_kmalloc_cache(index, flags);
  2289. #endif
  2290. return &kmalloc_caches[index];
  2291. }
  2292. void *__kmalloc(size_t size, gfp_t flags)
  2293. {
  2294. struct kmem_cache *s;
  2295. void *ret;
  2296. if (unlikely(size > SLUB_MAX_SIZE))
  2297. return kmalloc_large(size, flags);
  2298. s = get_slab(size, flags);
  2299. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2300. return s;
  2301. ret = slab_alloc(s, flags, -1, _RET_IP_);
  2302. trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
  2303. return ret;
  2304. }
  2305. EXPORT_SYMBOL(__kmalloc);
  2306. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2307. {
  2308. struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
  2309. get_order(size));
  2310. if (page)
  2311. return page_address(page);
  2312. else
  2313. return NULL;
  2314. }
  2315. #ifdef CONFIG_NUMA
  2316. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2317. {
  2318. struct kmem_cache *s;
  2319. void *ret;
  2320. if (unlikely(size > SLUB_MAX_SIZE)) {
  2321. ret = kmalloc_large_node(size, flags, node);
  2322. trace_kmalloc_node(_RET_IP_, ret,
  2323. size, PAGE_SIZE << get_order(size),
  2324. flags, node);
  2325. return ret;
  2326. }
  2327. s = get_slab(size, flags);
  2328. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2329. return s;
  2330. ret = slab_alloc(s, flags, node, _RET_IP_);
  2331. trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
  2332. return ret;
  2333. }
  2334. EXPORT_SYMBOL(__kmalloc_node);
  2335. #endif
  2336. size_t ksize(const void *object)
  2337. {
  2338. struct page *page;
  2339. struct kmem_cache *s;
  2340. if (unlikely(object == ZERO_SIZE_PTR))
  2341. return 0;
  2342. page = virt_to_head_page(object);
  2343. if (unlikely(!PageSlab(page))) {
  2344. WARN_ON(!PageCompound(page));
  2345. return PAGE_SIZE << compound_order(page);
  2346. }
  2347. s = page->slab;
  2348. #ifdef CONFIG_SLUB_DEBUG
  2349. /*
  2350. * Debugging requires use of the padding between object
  2351. * and whatever may come after it.
  2352. */
  2353. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  2354. return s->objsize;
  2355. #endif
  2356. /*
  2357. * If we have the need to store the freelist pointer
  2358. * back there or track user information then we can
  2359. * only use the space before that information.
  2360. */
  2361. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  2362. return s->inuse;
  2363. /*
  2364. * Else we can use all the padding etc for the allocation
  2365. */
  2366. return s->size;
  2367. }
  2368. EXPORT_SYMBOL(ksize);
  2369. void kfree(const void *x)
  2370. {
  2371. struct page *page;
  2372. void *object = (void *)x;
  2373. trace_kfree(_RET_IP_, x);
  2374. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2375. return;
  2376. page = virt_to_head_page(x);
  2377. if (unlikely(!PageSlab(page))) {
  2378. BUG_ON(!PageCompound(page));
  2379. put_page(page);
  2380. return;
  2381. }
  2382. slab_free(page->slab, page, object, _RET_IP_);
  2383. }
  2384. EXPORT_SYMBOL(kfree);
  2385. /*
  2386. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2387. * the remaining slabs by the number of items in use. The slabs with the
  2388. * most items in use come first. New allocations will then fill those up
  2389. * and thus they can be removed from the partial lists.
  2390. *
  2391. * The slabs with the least items are placed last. This results in them
  2392. * being allocated from last increasing the chance that the last objects
  2393. * are freed in them.
  2394. */
  2395. int kmem_cache_shrink(struct kmem_cache *s)
  2396. {
  2397. int node;
  2398. int i;
  2399. struct kmem_cache_node *n;
  2400. struct page *page;
  2401. struct page *t;
  2402. int objects = oo_objects(s->max);
  2403. struct list_head *slabs_by_inuse =
  2404. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2405. unsigned long flags;
  2406. if (!slabs_by_inuse)
  2407. return -ENOMEM;
  2408. flush_all(s);
  2409. for_each_node_state(node, N_NORMAL_MEMORY) {
  2410. n = get_node(s, node);
  2411. if (!n->nr_partial)
  2412. continue;
  2413. for (i = 0; i < objects; i++)
  2414. INIT_LIST_HEAD(slabs_by_inuse + i);
  2415. spin_lock_irqsave(&n->list_lock, flags);
  2416. /*
  2417. * Build lists indexed by the items in use in each slab.
  2418. *
  2419. * Note that concurrent frees may occur while we hold the
  2420. * list_lock. page->inuse here is the upper limit.
  2421. */
  2422. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2423. if (!page->inuse && slab_trylock(page)) {
  2424. /*
  2425. * Must hold slab lock here because slab_free
  2426. * may have freed the last object and be
  2427. * waiting to release the slab.
  2428. */
  2429. list_del(&page->lru);
  2430. n->nr_partial--;
  2431. slab_unlock(page);
  2432. discard_slab(s, page);
  2433. } else {
  2434. list_move(&page->lru,
  2435. slabs_by_inuse + page->inuse);
  2436. }
  2437. }
  2438. /*
  2439. * Rebuild the partial list with the slabs filled up most
  2440. * first and the least used slabs at the end.
  2441. */
  2442. for (i = objects - 1; i >= 0; i--)
  2443. list_splice(slabs_by_inuse + i, n->partial.prev);
  2444. spin_unlock_irqrestore(&n->list_lock, flags);
  2445. }
  2446. kfree(slabs_by_inuse);
  2447. return 0;
  2448. }
  2449. EXPORT_SYMBOL(kmem_cache_shrink);
  2450. #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
  2451. static int slab_mem_going_offline_callback(void *arg)
  2452. {
  2453. struct kmem_cache *s;
  2454. down_read(&slub_lock);
  2455. list_for_each_entry(s, &slab_caches, list)
  2456. kmem_cache_shrink(s);
  2457. up_read(&slub_lock);
  2458. return 0;
  2459. }
  2460. static void slab_mem_offline_callback(void *arg)
  2461. {
  2462. struct kmem_cache_node *n;
  2463. struct kmem_cache *s;
  2464. struct memory_notify *marg = arg;
  2465. int offline_node;
  2466. offline_node = marg->status_change_nid;
  2467. /*
  2468. * If the node still has available memory. we need kmem_cache_node
  2469. * for it yet.
  2470. */
  2471. if (offline_node < 0)
  2472. return;
  2473. down_read(&slub_lock);
  2474. list_for_each_entry(s, &slab_caches, list) {
  2475. n = get_node(s, offline_node);
  2476. if (n) {
  2477. /*
  2478. * if n->nr_slabs > 0, slabs still exist on the node
  2479. * that is going down. We were unable to free them,
  2480. * and offline_pages() function shoudn't call this
  2481. * callback. So, we must fail.
  2482. */
  2483. BUG_ON(slabs_node(s, offline_node));
  2484. s->node[offline_node] = NULL;
  2485. kmem_cache_free(kmalloc_caches, n);
  2486. }
  2487. }
  2488. up_read(&slub_lock);
  2489. }
  2490. static int slab_mem_going_online_callback(void *arg)
  2491. {
  2492. struct kmem_cache_node *n;
  2493. struct kmem_cache *s;
  2494. struct memory_notify *marg = arg;
  2495. int nid = marg->status_change_nid;
  2496. int ret = 0;
  2497. /*
  2498. * If the node's memory is already available, then kmem_cache_node is
  2499. * already created. Nothing to do.
  2500. */
  2501. if (nid < 0)
  2502. return 0;
  2503. /*
  2504. * We are bringing a node online. No memory is available yet. We must
  2505. * allocate a kmem_cache_node structure in order to bring the node
  2506. * online.
  2507. */
  2508. down_read(&slub_lock);
  2509. list_for_each_entry(s, &slab_caches, list) {
  2510. /*
  2511. * XXX: kmem_cache_alloc_node will fallback to other nodes
  2512. * since memory is not yet available from the node that
  2513. * is brought up.
  2514. */
  2515. n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
  2516. if (!n) {
  2517. ret = -ENOMEM;
  2518. goto out;
  2519. }
  2520. init_kmem_cache_node(n, s);
  2521. s->node[nid] = n;
  2522. }
  2523. out:
  2524. up_read(&slub_lock);
  2525. return ret;
  2526. }
  2527. static int slab_memory_callback(struct notifier_block *self,
  2528. unsigned long action, void *arg)
  2529. {
  2530. int ret = 0;
  2531. switch (action) {
  2532. case MEM_GOING_ONLINE:
  2533. ret = slab_mem_going_online_callback(arg);
  2534. break;
  2535. case MEM_GOING_OFFLINE:
  2536. ret = slab_mem_going_offline_callback(arg);
  2537. break;
  2538. case MEM_OFFLINE:
  2539. case MEM_CANCEL_ONLINE:
  2540. slab_mem_offline_callback(arg);
  2541. break;
  2542. case MEM_ONLINE:
  2543. case MEM_CANCEL_OFFLINE:
  2544. break;
  2545. }
  2546. if (ret)
  2547. ret = notifier_from_errno(ret);
  2548. else
  2549. ret = NOTIFY_OK;
  2550. return ret;
  2551. }
  2552. #endif /* CONFIG_MEMORY_HOTPLUG */
  2553. /********************************************************************
  2554. * Basic setup of slabs
  2555. *******************************************************************/
  2556. void __init kmem_cache_init(void)
  2557. {
  2558. int i;
  2559. int caches = 0;
  2560. init_alloc_cpu();
  2561. #ifdef CONFIG_NUMA
  2562. /*
  2563. * Must first have the slab cache available for the allocations of the
  2564. * struct kmem_cache_node's. There is special bootstrap code in
  2565. * kmem_cache_open for slab_state == DOWN.
  2566. */
  2567. create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
  2568. sizeof(struct kmem_cache_node), GFP_KERNEL);
  2569. kmalloc_caches[0].refcount = -1;
  2570. caches++;
  2571. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  2572. #endif
  2573. /* Able to allocate the per node structures */
  2574. slab_state = PARTIAL;
  2575. /* Caches that are not of the two-to-the-power-of size */
  2576. if (KMALLOC_MIN_SIZE <= 64) {
  2577. create_kmalloc_cache(&kmalloc_caches[1],
  2578. "kmalloc-96", 96, GFP_KERNEL);
  2579. caches++;
  2580. create_kmalloc_cache(&kmalloc_caches[2],
  2581. "kmalloc-192", 192, GFP_KERNEL);
  2582. caches++;
  2583. }
  2584. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  2585. create_kmalloc_cache(&kmalloc_caches[i],
  2586. "kmalloc", 1 << i, GFP_KERNEL);
  2587. caches++;
  2588. }
  2589. /*
  2590. * Patch up the size_index table if we have strange large alignment
  2591. * requirements for the kmalloc array. This is only the case for
  2592. * MIPS it seems. The standard arches will not generate any code here.
  2593. *
  2594. * Largest permitted alignment is 256 bytes due to the way we
  2595. * handle the index determination for the smaller caches.
  2596. *
  2597. * Make sure that nothing crazy happens if someone starts tinkering
  2598. * around with ARCH_KMALLOC_MINALIGN
  2599. */
  2600. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
  2601. (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
  2602. for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
  2603. size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
  2604. if (KMALLOC_MIN_SIZE == 128) {
  2605. /*
  2606. * The 192 byte sized cache is not used if the alignment
  2607. * is 128 byte. Redirect kmalloc to use the 256 byte cache
  2608. * instead.
  2609. */
  2610. for (i = 128 + 8; i <= 192; i += 8)
  2611. size_index[(i - 1) / 8] = 8;
  2612. }
  2613. slab_state = UP;
  2614. /* Provide the correct kmalloc names now that the caches are up */
  2615. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
  2616. kmalloc_caches[i]. name =
  2617. kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
  2618. #ifdef CONFIG_SMP
  2619. register_cpu_notifier(&slab_notifier);
  2620. kmem_size = offsetof(struct kmem_cache, cpu_slab) +
  2621. nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
  2622. #else
  2623. kmem_size = sizeof(struct kmem_cache);
  2624. #endif
  2625. printk(KERN_INFO
  2626. "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
  2627. " CPUs=%d, Nodes=%d\n",
  2628. caches, cache_line_size(),
  2629. slub_min_order, slub_max_order, slub_min_objects,
  2630. nr_cpu_ids, nr_node_ids);
  2631. }
  2632. /*
  2633. * Find a mergeable slab cache
  2634. */
  2635. static int slab_unmergeable(struct kmem_cache *s)
  2636. {
  2637. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  2638. return 1;
  2639. if (s->ctor)
  2640. return 1;
  2641. /*
  2642. * We may have set a slab to be unmergeable during bootstrap.
  2643. */
  2644. if (s->refcount < 0)
  2645. return 1;
  2646. return 0;
  2647. }
  2648. static struct kmem_cache *find_mergeable(size_t size,
  2649. size_t align, unsigned long flags, const char *name,
  2650. void (*ctor)(void *))
  2651. {
  2652. struct kmem_cache *s;
  2653. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  2654. return NULL;
  2655. if (ctor)
  2656. return NULL;
  2657. size = ALIGN(size, sizeof(void *));
  2658. align = calculate_alignment(flags, align, size);
  2659. size = ALIGN(size, align);
  2660. flags = kmem_cache_flags(size, flags, name, NULL);
  2661. list_for_each_entry(s, &slab_caches, list) {
  2662. if (slab_unmergeable(s))
  2663. continue;
  2664. if (size > s->size)
  2665. continue;
  2666. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  2667. continue;
  2668. /*
  2669. * Check if alignment is compatible.
  2670. * Courtesy of Adrian Drzewiecki
  2671. */
  2672. if ((s->size & ~(align - 1)) != s->size)
  2673. continue;
  2674. if (s->size - size >= sizeof(void *))
  2675. continue;
  2676. return s;
  2677. }
  2678. return NULL;
  2679. }
  2680. struct kmem_cache *kmem_cache_create(const char *name, size_t size,
  2681. size_t align, unsigned long flags, void (*ctor)(void *))
  2682. {
  2683. struct kmem_cache *s;
  2684. down_write(&slub_lock);
  2685. s = find_mergeable(size, align, flags, name, ctor);
  2686. if (s) {
  2687. int cpu;
  2688. s->refcount++;
  2689. /*
  2690. * Adjust the object sizes so that we clear
  2691. * the complete object on kzalloc.
  2692. */
  2693. s->objsize = max(s->objsize, (int)size);
  2694. /*
  2695. * And then we need to update the object size in the
  2696. * per cpu structures
  2697. */
  2698. for_each_online_cpu(cpu)
  2699. get_cpu_slab(s, cpu)->objsize = s->objsize;
  2700. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  2701. up_write(&slub_lock);
  2702. if (sysfs_slab_alias(s, name)) {
  2703. down_write(&slub_lock);
  2704. s->refcount--;
  2705. up_write(&slub_lock);
  2706. goto err;
  2707. }
  2708. return s;
  2709. }
  2710. s = kmalloc(kmem_size, GFP_KERNEL);
  2711. if (s) {
  2712. if (kmem_cache_open(s, GFP_KERNEL, name,
  2713. size, align, flags, ctor)) {
  2714. list_add(&s->list, &slab_caches);
  2715. up_write(&slub_lock);
  2716. if (sysfs_slab_add(s)) {
  2717. down_write(&slub_lock);
  2718. list_del(&s->list);
  2719. up_write(&slub_lock);
  2720. kfree(s);
  2721. goto err;
  2722. }
  2723. return s;
  2724. }
  2725. kfree(s);
  2726. }
  2727. up_write(&slub_lock);
  2728. err:
  2729. if (flags & SLAB_PANIC)
  2730. panic("Cannot create slabcache %s\n", name);
  2731. else
  2732. s = NULL;
  2733. return s;
  2734. }
  2735. EXPORT_SYMBOL(kmem_cache_create);
  2736. #ifdef CONFIG_SMP
  2737. /*
  2738. * Use the cpu notifier to insure that the cpu slabs are flushed when
  2739. * necessary.
  2740. */
  2741. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  2742. unsigned long action, void *hcpu)
  2743. {
  2744. long cpu = (long)hcpu;
  2745. struct kmem_cache *s;
  2746. unsigned long flags;
  2747. switch (action) {
  2748. case CPU_UP_PREPARE:
  2749. case CPU_UP_PREPARE_FROZEN:
  2750. init_alloc_cpu_cpu(cpu);
  2751. down_read(&slub_lock);
  2752. list_for_each_entry(s, &slab_caches, list)
  2753. s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
  2754. GFP_KERNEL);
  2755. up_read(&slub_lock);
  2756. break;
  2757. case CPU_UP_CANCELED:
  2758. case CPU_UP_CANCELED_FROZEN:
  2759. case CPU_DEAD:
  2760. case CPU_DEAD_FROZEN:
  2761. down_read(&slub_lock);
  2762. list_for_each_entry(s, &slab_caches, list) {
  2763. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  2764. local_irq_save(flags);
  2765. __flush_cpu_slab(s, cpu);
  2766. local_irq_restore(flags);
  2767. free_kmem_cache_cpu(c, cpu);
  2768. s->cpu_slab[cpu] = NULL;
  2769. }
  2770. up_read(&slub_lock);
  2771. break;
  2772. default:
  2773. break;
  2774. }
  2775. return NOTIFY_OK;
  2776. }
  2777. static struct notifier_block __cpuinitdata slab_notifier = {
  2778. .notifier_call = slab_cpuup_callback
  2779. };
  2780. #endif
  2781. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
  2782. {
  2783. struct kmem_cache *s;
  2784. void *ret;
  2785. if (unlikely(size > SLUB_MAX_SIZE))
  2786. return kmalloc_large(size, gfpflags);
  2787. s = get_slab(size, gfpflags);
  2788. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2789. return s;
  2790. ret = slab_alloc(s, gfpflags, -1, caller);
  2791. /* Honor the call site pointer we recieved. */
  2792. trace_kmalloc(caller, ret, size, s->size, gfpflags);
  2793. return ret;
  2794. }
  2795. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  2796. int node, unsigned long caller)
  2797. {
  2798. struct kmem_cache *s;
  2799. void *ret;
  2800. if (unlikely(size > SLUB_MAX_SIZE))
  2801. return kmalloc_large_node(size, gfpflags, node);
  2802. s = get_slab(size, gfpflags);
  2803. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2804. return s;
  2805. ret = slab_alloc(s, gfpflags, node, caller);
  2806. /* Honor the call site pointer we recieved. */
  2807. trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
  2808. return ret;
  2809. }
  2810. #ifdef CONFIG_SLUB_DEBUG
  2811. static unsigned long count_partial(struct kmem_cache_node *n,
  2812. int (*get_count)(struct page *))
  2813. {
  2814. unsigned long flags;
  2815. unsigned long x = 0;
  2816. struct page *page;
  2817. spin_lock_irqsave(&n->list_lock, flags);
  2818. list_for_each_entry(page, &n->partial, lru)
  2819. x += get_count(page);
  2820. spin_unlock_irqrestore(&n->list_lock, flags);
  2821. return x;
  2822. }
  2823. static int count_inuse(struct page *page)
  2824. {
  2825. return page->inuse;
  2826. }
  2827. static int count_total(struct page *page)
  2828. {
  2829. return page->objects;
  2830. }
  2831. static int count_free(struct page *page)
  2832. {
  2833. return page->objects - page->inuse;
  2834. }
  2835. static int validate_slab(struct kmem_cache *s, struct page *page,
  2836. unsigned long *map)
  2837. {
  2838. void *p;
  2839. void *addr = page_address(page);
  2840. if (!check_slab(s, page) ||
  2841. !on_freelist(s, page, NULL))
  2842. return 0;
  2843. /* Now we know that a valid freelist exists */
  2844. bitmap_zero(map, page->objects);
  2845. for_each_free_object(p, s, page->freelist) {
  2846. set_bit(slab_index(p, s, addr), map);
  2847. if (!check_object(s, page, p, 0))
  2848. return 0;
  2849. }
  2850. for_each_object(p, s, addr, page->objects)
  2851. if (!test_bit(slab_index(p, s, addr), map))
  2852. if (!check_object(s, page, p, 1))
  2853. return 0;
  2854. return 1;
  2855. }
  2856. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  2857. unsigned long *map)
  2858. {
  2859. if (slab_trylock(page)) {
  2860. validate_slab(s, page, map);
  2861. slab_unlock(page);
  2862. } else
  2863. printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
  2864. s->name, page);
  2865. if (s->flags & DEBUG_DEFAULT_FLAGS) {
  2866. if (!PageSlubDebug(page))
  2867. printk(KERN_ERR "SLUB %s: SlubDebug not set "
  2868. "on slab 0x%p\n", s->name, page);
  2869. } else {
  2870. if (PageSlubDebug(page))
  2871. printk(KERN_ERR "SLUB %s: SlubDebug set on "
  2872. "slab 0x%p\n", s->name, page);
  2873. }
  2874. }
  2875. static int validate_slab_node(struct kmem_cache *s,
  2876. struct kmem_cache_node *n, unsigned long *map)
  2877. {
  2878. unsigned long count = 0;
  2879. struct page *page;
  2880. unsigned long flags;
  2881. spin_lock_irqsave(&n->list_lock, flags);
  2882. list_for_each_entry(page, &n->partial, lru) {
  2883. validate_slab_slab(s, page, map);
  2884. count++;
  2885. }
  2886. if (count != n->nr_partial)
  2887. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  2888. "counter=%ld\n", s->name, count, n->nr_partial);
  2889. if (!(s->flags & SLAB_STORE_USER))
  2890. goto out;
  2891. list_for_each_entry(page, &n->full, lru) {
  2892. validate_slab_slab(s, page, map);
  2893. count++;
  2894. }
  2895. if (count != atomic_long_read(&n->nr_slabs))
  2896. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  2897. "counter=%ld\n", s->name, count,
  2898. atomic_long_read(&n->nr_slabs));
  2899. out:
  2900. spin_unlock_irqrestore(&n->list_lock, flags);
  2901. return count;
  2902. }
  2903. static long validate_slab_cache(struct kmem_cache *s)
  2904. {
  2905. int node;
  2906. unsigned long count = 0;
  2907. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  2908. sizeof(unsigned long), GFP_KERNEL);
  2909. if (!map)
  2910. return -ENOMEM;
  2911. flush_all(s);
  2912. for_each_node_state(node, N_NORMAL_MEMORY) {
  2913. struct kmem_cache_node *n = get_node(s, node);
  2914. count += validate_slab_node(s, n, map);
  2915. }
  2916. kfree(map);
  2917. return count;
  2918. }
  2919. #ifdef SLUB_RESILIENCY_TEST
  2920. static void resiliency_test(void)
  2921. {
  2922. u8 *p;
  2923. printk(KERN_ERR "SLUB resiliency testing\n");
  2924. printk(KERN_ERR "-----------------------\n");
  2925. printk(KERN_ERR "A. Corruption after allocation\n");
  2926. p = kzalloc(16, GFP_KERNEL);
  2927. p[16] = 0x12;
  2928. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  2929. " 0x12->0x%p\n\n", p + 16);
  2930. validate_slab_cache(kmalloc_caches + 4);
  2931. /* Hmmm... The next two are dangerous */
  2932. p = kzalloc(32, GFP_KERNEL);
  2933. p[32 + sizeof(void *)] = 0x34;
  2934. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  2935. " 0x34 -> -0x%p\n", p);
  2936. printk(KERN_ERR
  2937. "If allocated object is overwritten then not detectable\n\n");
  2938. validate_slab_cache(kmalloc_caches + 5);
  2939. p = kzalloc(64, GFP_KERNEL);
  2940. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  2941. *p = 0x56;
  2942. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  2943. p);
  2944. printk(KERN_ERR
  2945. "If allocated object is overwritten then not detectable\n\n");
  2946. validate_slab_cache(kmalloc_caches + 6);
  2947. printk(KERN_ERR "\nB. Corruption after free\n");
  2948. p = kzalloc(128, GFP_KERNEL);
  2949. kfree(p);
  2950. *p = 0x78;
  2951. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  2952. validate_slab_cache(kmalloc_caches + 7);
  2953. p = kzalloc(256, GFP_KERNEL);
  2954. kfree(p);
  2955. p[50] = 0x9a;
  2956. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  2957. p);
  2958. validate_slab_cache(kmalloc_caches + 8);
  2959. p = kzalloc(512, GFP_KERNEL);
  2960. kfree(p);
  2961. p[512] = 0xab;
  2962. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  2963. validate_slab_cache(kmalloc_caches + 9);
  2964. }
  2965. #else
  2966. static void resiliency_test(void) {};
  2967. #endif
  2968. /*
  2969. * Generate lists of code addresses where slabcache objects are allocated
  2970. * and freed.
  2971. */
  2972. struct location {
  2973. unsigned long count;
  2974. unsigned long addr;
  2975. long long sum_time;
  2976. long min_time;
  2977. long max_time;
  2978. long min_pid;
  2979. long max_pid;
  2980. DECLARE_BITMAP(cpus, NR_CPUS);
  2981. nodemask_t nodes;
  2982. };
  2983. struct loc_track {
  2984. unsigned long max;
  2985. unsigned long count;
  2986. struct location *loc;
  2987. };
  2988. static void free_loc_track(struct loc_track *t)
  2989. {
  2990. if (t->max)
  2991. free_pages((unsigned long)t->loc,
  2992. get_order(sizeof(struct location) * t->max));
  2993. }
  2994. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  2995. {
  2996. struct location *l;
  2997. int order;
  2998. order = get_order(sizeof(struct location) * max);
  2999. l = (void *)__get_free_pages(flags, order);
  3000. if (!l)
  3001. return 0;
  3002. if (t->count) {
  3003. memcpy(l, t->loc, sizeof(struct location) * t->count);
  3004. free_loc_track(t);
  3005. }
  3006. t->max = max;
  3007. t->loc = l;
  3008. return 1;
  3009. }
  3010. static int add_location(struct loc_track *t, struct kmem_cache *s,
  3011. const struct track *track)
  3012. {
  3013. long start, end, pos;
  3014. struct location *l;
  3015. unsigned long caddr;
  3016. unsigned long age = jiffies - track->when;
  3017. start = -1;
  3018. end = t->count;
  3019. for ( ; ; ) {
  3020. pos = start + (end - start + 1) / 2;
  3021. /*
  3022. * There is nothing at "end". If we end up there
  3023. * we need to add something to before end.
  3024. */
  3025. if (pos == end)
  3026. break;
  3027. caddr = t->loc[pos].addr;
  3028. if (track->addr == caddr) {
  3029. l = &t->loc[pos];
  3030. l->count++;
  3031. if (track->when) {
  3032. l->sum_time += age;
  3033. if (age < l->min_time)
  3034. l->min_time = age;
  3035. if (age > l->max_time)
  3036. l->max_time = age;
  3037. if (track->pid < l->min_pid)
  3038. l->min_pid = track->pid;
  3039. if (track->pid > l->max_pid)
  3040. l->max_pid = track->pid;
  3041. cpumask_set_cpu(track->cpu,
  3042. to_cpumask(l->cpus));
  3043. }
  3044. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3045. return 1;
  3046. }
  3047. if (track->addr < caddr)
  3048. end = pos;
  3049. else
  3050. start = pos;
  3051. }
  3052. /*
  3053. * Not found. Insert new tracking element.
  3054. */
  3055. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  3056. return 0;
  3057. l = t->loc + pos;
  3058. if (pos < t->count)
  3059. memmove(l + 1, l,
  3060. (t->count - pos) * sizeof(struct location));
  3061. t->count++;
  3062. l->count = 1;
  3063. l->addr = track->addr;
  3064. l->sum_time = age;
  3065. l->min_time = age;
  3066. l->max_time = age;
  3067. l->min_pid = track->pid;
  3068. l->max_pid = track->pid;
  3069. cpumask_clear(to_cpumask(l->cpus));
  3070. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  3071. nodes_clear(l->nodes);
  3072. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3073. return 1;
  3074. }
  3075. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3076. struct page *page, enum track_item alloc)
  3077. {
  3078. void *addr = page_address(page);
  3079. DECLARE_BITMAP(map, page->objects);
  3080. void *p;
  3081. bitmap_zero(map, page->objects);
  3082. for_each_free_object(p, s, page->freelist)
  3083. set_bit(slab_index(p, s, addr), map);
  3084. for_each_object(p, s, addr, page->objects)
  3085. if (!test_bit(slab_index(p, s, addr), map))
  3086. add_location(t, s, get_track(s, p, alloc));
  3087. }
  3088. static int list_locations(struct kmem_cache *s, char *buf,
  3089. enum track_item alloc)
  3090. {
  3091. int len = 0;
  3092. unsigned long i;
  3093. struct loc_track t = { 0, 0, NULL };
  3094. int node;
  3095. if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3096. GFP_TEMPORARY))
  3097. return sprintf(buf, "Out of memory\n");
  3098. /* Push back cpu slabs */
  3099. flush_all(s);
  3100. for_each_node_state(node, N_NORMAL_MEMORY) {
  3101. struct kmem_cache_node *n = get_node(s, node);
  3102. unsigned long flags;
  3103. struct page *page;
  3104. if (!atomic_long_read(&n->nr_slabs))
  3105. continue;
  3106. spin_lock_irqsave(&n->list_lock, flags);
  3107. list_for_each_entry(page, &n->partial, lru)
  3108. process_slab(&t, s, page, alloc);
  3109. list_for_each_entry(page, &n->full, lru)
  3110. process_slab(&t, s, page, alloc);
  3111. spin_unlock_irqrestore(&n->list_lock, flags);
  3112. }
  3113. for (i = 0; i < t.count; i++) {
  3114. struct location *l = &t.loc[i];
  3115. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3116. break;
  3117. len += sprintf(buf + len, "%7ld ", l->count);
  3118. if (l->addr)
  3119. len += sprint_symbol(buf + len, (unsigned long)l->addr);
  3120. else
  3121. len += sprintf(buf + len, "<not-available>");
  3122. if (l->sum_time != l->min_time) {
  3123. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3124. l->min_time,
  3125. (long)div_u64(l->sum_time, l->count),
  3126. l->max_time);
  3127. } else
  3128. len += sprintf(buf + len, " age=%ld",
  3129. l->min_time);
  3130. if (l->min_pid != l->max_pid)
  3131. len += sprintf(buf + len, " pid=%ld-%ld",
  3132. l->min_pid, l->max_pid);
  3133. else
  3134. len += sprintf(buf + len, " pid=%ld",
  3135. l->min_pid);
  3136. if (num_online_cpus() > 1 &&
  3137. !cpumask_empty(to_cpumask(l->cpus)) &&
  3138. len < PAGE_SIZE - 60) {
  3139. len += sprintf(buf + len, " cpus=");
  3140. len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3141. to_cpumask(l->cpus));
  3142. }
  3143. if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
  3144. len < PAGE_SIZE - 60) {
  3145. len += sprintf(buf + len, " nodes=");
  3146. len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3147. l->nodes);
  3148. }
  3149. len += sprintf(buf + len, "\n");
  3150. }
  3151. free_loc_track(&t);
  3152. if (!t.count)
  3153. len += sprintf(buf, "No data\n");
  3154. return len;
  3155. }
  3156. enum slab_stat_type {
  3157. SL_ALL, /* All slabs */
  3158. SL_PARTIAL, /* Only partially allocated slabs */
  3159. SL_CPU, /* Only slabs used for cpu caches */
  3160. SL_OBJECTS, /* Determine allocated objects not slabs */
  3161. SL_TOTAL /* Determine object capacity not slabs */
  3162. };
  3163. #define SO_ALL (1 << SL_ALL)
  3164. #define SO_PARTIAL (1 << SL_PARTIAL)
  3165. #define SO_CPU (1 << SL_CPU)
  3166. #define SO_OBJECTS (1 << SL_OBJECTS)
  3167. #define SO_TOTAL (1 << SL_TOTAL)
  3168. static ssize_t show_slab_objects(struct kmem_cache *s,
  3169. char *buf, unsigned long flags)
  3170. {
  3171. unsigned long total = 0;
  3172. int node;
  3173. int x;
  3174. unsigned long *nodes;
  3175. unsigned long *per_cpu;
  3176. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3177. if (!nodes)
  3178. return -ENOMEM;
  3179. per_cpu = nodes + nr_node_ids;
  3180. if (flags & SO_CPU) {
  3181. int cpu;
  3182. for_each_possible_cpu(cpu) {
  3183. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  3184. if (!c || c->node < 0)
  3185. continue;
  3186. if (c->page) {
  3187. if (flags & SO_TOTAL)
  3188. x = c->page->objects;
  3189. else if (flags & SO_OBJECTS)
  3190. x = c->page->inuse;
  3191. else
  3192. x = 1;
  3193. total += x;
  3194. nodes[c->node] += x;
  3195. }
  3196. per_cpu[c->node]++;
  3197. }
  3198. }
  3199. if (flags & SO_ALL) {
  3200. for_each_node_state(node, N_NORMAL_MEMORY) {
  3201. struct kmem_cache_node *n = get_node(s, node);
  3202. if (flags & SO_TOTAL)
  3203. x = atomic_long_read(&n->total_objects);
  3204. else if (flags & SO_OBJECTS)
  3205. x = atomic_long_read(&n->total_objects) -
  3206. count_partial(n, count_free);
  3207. else
  3208. x = atomic_long_read(&n->nr_slabs);
  3209. total += x;
  3210. nodes[node] += x;
  3211. }
  3212. } else if (flags & SO_PARTIAL) {
  3213. for_each_node_state(node, N_NORMAL_MEMORY) {
  3214. struct kmem_cache_node *n = get_node(s, node);
  3215. if (flags & SO_TOTAL)
  3216. x = count_partial(n, count_total);
  3217. else if (flags & SO_OBJECTS)
  3218. x = count_partial(n, count_inuse);
  3219. else
  3220. x = n->nr_partial;
  3221. total += x;
  3222. nodes[node] += x;
  3223. }
  3224. }
  3225. x = sprintf(buf, "%lu", total);
  3226. #ifdef CONFIG_NUMA
  3227. for_each_node_state(node, N_NORMAL_MEMORY)
  3228. if (nodes[node])
  3229. x += sprintf(buf + x, " N%d=%lu",
  3230. node, nodes[node]);
  3231. #endif
  3232. kfree(nodes);
  3233. return x + sprintf(buf + x, "\n");
  3234. }
  3235. static int any_slab_objects(struct kmem_cache *s)
  3236. {
  3237. int node;
  3238. for_each_online_node(node) {
  3239. struct kmem_cache_node *n = get_node(s, node);
  3240. if (!n)
  3241. continue;
  3242. if (atomic_long_read(&n->total_objects))
  3243. return 1;
  3244. }
  3245. return 0;
  3246. }
  3247. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3248. #define to_slab(n) container_of(n, struct kmem_cache, kobj);
  3249. struct slab_attribute {
  3250. struct attribute attr;
  3251. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3252. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3253. };
  3254. #define SLAB_ATTR_RO(_name) \
  3255. static struct slab_attribute _name##_attr = __ATTR_RO(_name)
  3256. #define SLAB_ATTR(_name) \
  3257. static struct slab_attribute _name##_attr = \
  3258. __ATTR(_name, 0644, _name##_show, _name##_store)
  3259. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3260. {
  3261. return sprintf(buf, "%d\n", s->size);
  3262. }
  3263. SLAB_ATTR_RO(slab_size);
  3264. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3265. {
  3266. return sprintf(buf, "%d\n", s->align);
  3267. }
  3268. SLAB_ATTR_RO(align);
  3269. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3270. {
  3271. return sprintf(buf, "%d\n", s->objsize);
  3272. }
  3273. SLAB_ATTR_RO(object_size);
  3274. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3275. {
  3276. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3277. }
  3278. SLAB_ATTR_RO(objs_per_slab);
  3279. static ssize_t order_store(struct kmem_cache *s,
  3280. const char *buf, size_t length)
  3281. {
  3282. unsigned long order;
  3283. int err;
  3284. err = strict_strtoul(buf, 10, &order);
  3285. if (err)
  3286. return err;
  3287. if (order > slub_max_order || order < slub_min_order)
  3288. return -EINVAL;
  3289. calculate_sizes(s, order);
  3290. return length;
  3291. }
  3292. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3293. {
  3294. return sprintf(buf, "%d\n", oo_order(s->oo));
  3295. }
  3296. SLAB_ATTR(order);
  3297. static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
  3298. {
  3299. return sprintf(buf, "%lu\n", s->min_partial);
  3300. }
  3301. static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
  3302. size_t length)
  3303. {
  3304. unsigned long min;
  3305. int err;
  3306. err = strict_strtoul(buf, 10, &min);
  3307. if (err)
  3308. return err;
  3309. set_min_partial(s, min);
  3310. return length;
  3311. }
  3312. SLAB_ATTR(min_partial);
  3313. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3314. {
  3315. if (s->ctor) {
  3316. int n = sprint_symbol(buf, (unsigned long)s->ctor);
  3317. return n + sprintf(buf + n, "\n");
  3318. }
  3319. return 0;
  3320. }
  3321. SLAB_ATTR_RO(ctor);
  3322. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3323. {
  3324. return sprintf(buf, "%d\n", s->refcount - 1);
  3325. }
  3326. SLAB_ATTR_RO(aliases);
  3327. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  3328. {
  3329. return show_slab_objects(s, buf, SO_ALL);
  3330. }
  3331. SLAB_ATTR_RO(slabs);
  3332. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3333. {
  3334. return show_slab_objects(s, buf, SO_PARTIAL);
  3335. }
  3336. SLAB_ATTR_RO(partial);
  3337. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3338. {
  3339. return show_slab_objects(s, buf, SO_CPU);
  3340. }
  3341. SLAB_ATTR_RO(cpu_slabs);
  3342. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3343. {
  3344. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3345. }
  3346. SLAB_ATTR_RO(objects);
  3347. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3348. {
  3349. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3350. }
  3351. SLAB_ATTR_RO(objects_partial);
  3352. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  3353. {
  3354. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  3355. }
  3356. SLAB_ATTR_RO(total_objects);
  3357. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  3358. {
  3359. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  3360. }
  3361. static ssize_t sanity_checks_store(struct kmem_cache *s,
  3362. const char *buf, size_t length)
  3363. {
  3364. s->flags &= ~SLAB_DEBUG_FREE;
  3365. if (buf[0] == '1')
  3366. s->flags |= SLAB_DEBUG_FREE;
  3367. return length;
  3368. }
  3369. SLAB_ATTR(sanity_checks);
  3370. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  3371. {
  3372. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  3373. }
  3374. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  3375. size_t length)
  3376. {
  3377. s->flags &= ~SLAB_TRACE;
  3378. if (buf[0] == '1')
  3379. s->flags |= SLAB_TRACE;
  3380. return length;
  3381. }
  3382. SLAB_ATTR(trace);
  3383. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3384. {
  3385. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3386. }
  3387. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3388. const char *buf, size_t length)
  3389. {
  3390. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3391. if (buf[0] == '1')
  3392. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3393. return length;
  3394. }
  3395. SLAB_ATTR(reclaim_account);
  3396. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3397. {
  3398. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3399. }
  3400. SLAB_ATTR_RO(hwcache_align);
  3401. #ifdef CONFIG_ZONE_DMA
  3402. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  3403. {
  3404. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  3405. }
  3406. SLAB_ATTR_RO(cache_dma);
  3407. #endif
  3408. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  3409. {
  3410. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  3411. }
  3412. SLAB_ATTR_RO(destroy_by_rcu);
  3413. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  3414. {
  3415. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  3416. }
  3417. static ssize_t red_zone_store(struct kmem_cache *s,
  3418. const char *buf, size_t length)
  3419. {
  3420. if (any_slab_objects(s))
  3421. return -EBUSY;
  3422. s->flags &= ~SLAB_RED_ZONE;
  3423. if (buf[0] == '1')
  3424. s->flags |= SLAB_RED_ZONE;
  3425. calculate_sizes(s, -1);
  3426. return length;
  3427. }
  3428. SLAB_ATTR(red_zone);
  3429. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  3430. {
  3431. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  3432. }
  3433. static ssize_t poison_store(struct kmem_cache *s,
  3434. const char *buf, size_t length)
  3435. {
  3436. if (any_slab_objects(s))
  3437. return -EBUSY;
  3438. s->flags &= ~SLAB_POISON;
  3439. if (buf[0] == '1')
  3440. s->flags |= SLAB_POISON;
  3441. calculate_sizes(s, -1);
  3442. return length;
  3443. }
  3444. SLAB_ATTR(poison);
  3445. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  3446. {
  3447. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  3448. }
  3449. static ssize_t store_user_store(struct kmem_cache *s,
  3450. const char *buf, size_t length)
  3451. {
  3452. if (any_slab_objects(s))
  3453. return -EBUSY;
  3454. s->flags &= ~SLAB_STORE_USER;
  3455. if (buf[0] == '1')
  3456. s->flags |= SLAB_STORE_USER;
  3457. calculate_sizes(s, -1);
  3458. return length;
  3459. }
  3460. SLAB_ATTR(store_user);
  3461. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  3462. {
  3463. return 0;
  3464. }
  3465. static ssize_t validate_store(struct kmem_cache *s,
  3466. const char *buf, size_t length)
  3467. {
  3468. int ret = -EINVAL;
  3469. if (buf[0] == '1') {
  3470. ret = validate_slab_cache(s);
  3471. if (ret >= 0)
  3472. ret = length;
  3473. }
  3474. return ret;
  3475. }
  3476. SLAB_ATTR(validate);
  3477. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  3478. {
  3479. return 0;
  3480. }
  3481. static ssize_t shrink_store(struct kmem_cache *s,
  3482. const char *buf, size_t length)
  3483. {
  3484. if (buf[0] == '1') {
  3485. int rc = kmem_cache_shrink(s);
  3486. if (rc)
  3487. return rc;
  3488. } else
  3489. return -EINVAL;
  3490. return length;
  3491. }
  3492. SLAB_ATTR(shrink);
  3493. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  3494. {
  3495. if (!(s->flags & SLAB_STORE_USER))
  3496. return -ENOSYS;
  3497. return list_locations(s, buf, TRACK_ALLOC);
  3498. }
  3499. SLAB_ATTR_RO(alloc_calls);
  3500. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  3501. {
  3502. if (!(s->flags & SLAB_STORE_USER))
  3503. return -ENOSYS;
  3504. return list_locations(s, buf, TRACK_FREE);
  3505. }
  3506. SLAB_ATTR_RO(free_calls);
  3507. #ifdef CONFIG_NUMA
  3508. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  3509. {
  3510. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  3511. }
  3512. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  3513. const char *buf, size_t length)
  3514. {
  3515. unsigned long ratio;
  3516. int err;
  3517. err = strict_strtoul(buf, 10, &ratio);
  3518. if (err)
  3519. return err;
  3520. if (ratio <= 100)
  3521. s->remote_node_defrag_ratio = ratio * 10;
  3522. return length;
  3523. }
  3524. SLAB_ATTR(remote_node_defrag_ratio);
  3525. #endif
  3526. #ifdef CONFIG_SLUB_STATS
  3527. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  3528. {
  3529. unsigned long sum = 0;
  3530. int cpu;
  3531. int len;
  3532. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  3533. if (!data)
  3534. return -ENOMEM;
  3535. for_each_online_cpu(cpu) {
  3536. unsigned x = get_cpu_slab(s, cpu)->stat[si];
  3537. data[cpu] = x;
  3538. sum += x;
  3539. }
  3540. len = sprintf(buf, "%lu", sum);
  3541. #ifdef CONFIG_SMP
  3542. for_each_online_cpu(cpu) {
  3543. if (data[cpu] && len < PAGE_SIZE - 20)
  3544. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  3545. }
  3546. #endif
  3547. kfree(data);
  3548. return len + sprintf(buf + len, "\n");
  3549. }
  3550. #define STAT_ATTR(si, text) \
  3551. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  3552. { \
  3553. return show_stat(s, buf, si); \
  3554. } \
  3555. SLAB_ATTR_RO(text); \
  3556. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  3557. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  3558. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  3559. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  3560. STAT_ATTR(FREE_FROZEN, free_frozen);
  3561. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  3562. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  3563. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  3564. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  3565. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  3566. STAT_ATTR(FREE_SLAB, free_slab);
  3567. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  3568. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  3569. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  3570. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  3571. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  3572. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  3573. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  3574. #endif
  3575. static struct attribute *slab_attrs[] = {
  3576. &slab_size_attr.attr,
  3577. &object_size_attr.attr,
  3578. &objs_per_slab_attr.attr,
  3579. &order_attr.attr,
  3580. &min_partial_attr.attr,
  3581. &objects_attr.attr,
  3582. &objects_partial_attr.attr,
  3583. &total_objects_attr.attr,
  3584. &slabs_attr.attr,
  3585. &partial_attr.attr,
  3586. &cpu_slabs_attr.attr,
  3587. &ctor_attr.attr,
  3588. &aliases_attr.attr,
  3589. &align_attr.attr,
  3590. &sanity_checks_attr.attr,
  3591. &trace_attr.attr,
  3592. &hwcache_align_attr.attr,
  3593. &reclaim_account_attr.attr,
  3594. &destroy_by_rcu_attr.attr,
  3595. &red_zone_attr.attr,
  3596. &poison_attr.attr,
  3597. &store_user_attr.attr,
  3598. &validate_attr.attr,
  3599. &shrink_attr.attr,
  3600. &alloc_calls_attr.attr,
  3601. &free_calls_attr.attr,
  3602. #ifdef CONFIG_ZONE_DMA
  3603. &cache_dma_attr.attr,
  3604. #endif
  3605. #ifdef CONFIG_NUMA
  3606. &remote_node_defrag_ratio_attr.attr,
  3607. #endif
  3608. #ifdef CONFIG_SLUB_STATS
  3609. &alloc_fastpath_attr.attr,
  3610. &alloc_slowpath_attr.attr,
  3611. &free_fastpath_attr.attr,
  3612. &free_slowpath_attr.attr,
  3613. &free_frozen_attr.attr,
  3614. &free_add_partial_attr.attr,
  3615. &free_remove_partial_attr.attr,
  3616. &alloc_from_partial_attr.attr,
  3617. &alloc_slab_attr.attr,
  3618. &alloc_refill_attr.attr,
  3619. &free_slab_attr.attr,
  3620. &cpuslab_flush_attr.attr,
  3621. &deactivate_full_attr.attr,
  3622. &deactivate_empty_attr.attr,
  3623. &deactivate_to_head_attr.attr,
  3624. &deactivate_to_tail_attr.attr,
  3625. &deactivate_remote_frees_attr.attr,
  3626. &order_fallback_attr.attr,
  3627. #endif
  3628. NULL
  3629. };
  3630. static struct attribute_group slab_attr_group = {
  3631. .attrs = slab_attrs,
  3632. };
  3633. static ssize_t slab_attr_show(struct kobject *kobj,
  3634. struct attribute *attr,
  3635. char *buf)
  3636. {
  3637. struct slab_attribute *attribute;
  3638. struct kmem_cache *s;
  3639. int err;
  3640. attribute = to_slab_attr(attr);
  3641. s = to_slab(kobj);
  3642. if (!attribute->show)
  3643. return -EIO;
  3644. err = attribute->show(s, buf);
  3645. return err;
  3646. }
  3647. static ssize_t slab_attr_store(struct kobject *kobj,
  3648. struct attribute *attr,
  3649. const char *buf, size_t len)
  3650. {
  3651. struct slab_attribute *attribute;
  3652. struct kmem_cache *s;
  3653. int err;
  3654. attribute = to_slab_attr(attr);
  3655. s = to_slab(kobj);
  3656. if (!attribute->store)
  3657. return -EIO;
  3658. err = attribute->store(s, buf, len);
  3659. return err;
  3660. }
  3661. static void kmem_cache_release(struct kobject *kobj)
  3662. {
  3663. struct kmem_cache *s = to_slab(kobj);
  3664. kfree(s);
  3665. }
  3666. static struct sysfs_ops slab_sysfs_ops = {
  3667. .show = slab_attr_show,
  3668. .store = slab_attr_store,
  3669. };
  3670. static struct kobj_type slab_ktype = {
  3671. .sysfs_ops = &slab_sysfs_ops,
  3672. .release = kmem_cache_release
  3673. };
  3674. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  3675. {
  3676. struct kobj_type *ktype = get_ktype(kobj);
  3677. if (ktype == &slab_ktype)
  3678. return 1;
  3679. return 0;
  3680. }
  3681. static struct kset_uevent_ops slab_uevent_ops = {
  3682. .filter = uevent_filter,
  3683. };
  3684. static struct kset *slab_kset;
  3685. #define ID_STR_LENGTH 64
  3686. /* Create a unique string id for a slab cache:
  3687. *
  3688. * Format :[flags-]size
  3689. */
  3690. static char *create_unique_id(struct kmem_cache *s)
  3691. {
  3692. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  3693. char *p = name;
  3694. BUG_ON(!name);
  3695. *p++ = ':';
  3696. /*
  3697. * First flags affecting slabcache operations. We will only
  3698. * get here for aliasable slabs so we do not need to support
  3699. * too many flags. The flags here must cover all flags that
  3700. * are matched during merging to guarantee that the id is
  3701. * unique.
  3702. */
  3703. if (s->flags & SLAB_CACHE_DMA)
  3704. *p++ = 'd';
  3705. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  3706. *p++ = 'a';
  3707. if (s->flags & SLAB_DEBUG_FREE)
  3708. *p++ = 'F';
  3709. if (p != name + 1)
  3710. *p++ = '-';
  3711. p += sprintf(p, "%07d", s->size);
  3712. BUG_ON(p > name + ID_STR_LENGTH - 1);
  3713. return name;
  3714. }
  3715. static int sysfs_slab_add(struct kmem_cache *s)
  3716. {
  3717. int err;
  3718. const char *name;
  3719. int unmergeable;
  3720. if (slab_state < SYSFS)
  3721. /* Defer until later */
  3722. return 0;
  3723. unmergeable = slab_unmergeable(s);
  3724. if (unmergeable) {
  3725. /*
  3726. * Slabcache can never be merged so we can use the name proper.
  3727. * This is typically the case for debug situations. In that
  3728. * case we can catch duplicate names easily.
  3729. */
  3730. sysfs_remove_link(&slab_kset->kobj, s->name);
  3731. name = s->name;
  3732. } else {
  3733. /*
  3734. * Create a unique name for the slab as a target
  3735. * for the symlinks.
  3736. */
  3737. name = create_unique_id(s);
  3738. }
  3739. s->kobj.kset = slab_kset;
  3740. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  3741. if (err) {
  3742. kobject_put(&s->kobj);
  3743. return err;
  3744. }
  3745. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  3746. if (err)
  3747. return err;
  3748. kobject_uevent(&s->kobj, KOBJ_ADD);
  3749. if (!unmergeable) {
  3750. /* Setup first alias */
  3751. sysfs_slab_alias(s, s->name);
  3752. kfree(name);
  3753. }
  3754. return 0;
  3755. }
  3756. static void sysfs_slab_remove(struct kmem_cache *s)
  3757. {
  3758. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  3759. kobject_del(&s->kobj);
  3760. kobject_put(&s->kobj);
  3761. }
  3762. /*
  3763. * Need to buffer aliases during bootup until sysfs becomes
  3764. * available lest we lose that information.
  3765. */
  3766. struct saved_alias {
  3767. struct kmem_cache *s;
  3768. const char *name;
  3769. struct saved_alias *next;
  3770. };
  3771. static struct saved_alias *alias_list;
  3772. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  3773. {
  3774. struct saved_alias *al;
  3775. if (slab_state == SYSFS) {
  3776. /*
  3777. * If we have a leftover link then remove it.
  3778. */
  3779. sysfs_remove_link(&slab_kset->kobj, name);
  3780. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  3781. }
  3782. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  3783. if (!al)
  3784. return -ENOMEM;
  3785. al->s = s;
  3786. al->name = name;
  3787. al->next = alias_list;
  3788. alias_list = al;
  3789. return 0;
  3790. }
  3791. static int __init slab_sysfs_init(void)
  3792. {
  3793. struct kmem_cache *s;
  3794. int err;
  3795. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  3796. if (!slab_kset) {
  3797. printk(KERN_ERR "Cannot register slab subsystem.\n");
  3798. return -ENOSYS;
  3799. }
  3800. slab_state = SYSFS;
  3801. list_for_each_entry(s, &slab_caches, list) {
  3802. err = sysfs_slab_add(s);
  3803. if (err)
  3804. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  3805. " to sysfs\n", s->name);
  3806. }
  3807. while (alias_list) {
  3808. struct saved_alias *al = alias_list;
  3809. alias_list = alias_list->next;
  3810. err = sysfs_slab_alias(al->s, al->name);
  3811. if (err)
  3812. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  3813. " %s to sysfs\n", s->name);
  3814. kfree(al);
  3815. }
  3816. resiliency_test();
  3817. return 0;
  3818. }
  3819. __initcall(slab_sysfs_init);
  3820. #endif
  3821. /*
  3822. * The /proc/slabinfo ABI
  3823. */
  3824. #ifdef CONFIG_SLABINFO
  3825. static void print_slabinfo_header(struct seq_file *m)
  3826. {
  3827. seq_puts(m, "slabinfo - version: 2.1\n");
  3828. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3829. "<objperslab> <pagesperslab>");
  3830. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3831. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3832. seq_putc(m, '\n');
  3833. }
  3834. static void *s_start(struct seq_file *m, loff_t *pos)
  3835. {
  3836. loff_t n = *pos;
  3837. down_read(&slub_lock);
  3838. if (!n)
  3839. print_slabinfo_header(m);
  3840. return seq_list_start(&slab_caches, *pos);
  3841. }
  3842. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3843. {
  3844. return seq_list_next(p, &slab_caches, pos);
  3845. }
  3846. static void s_stop(struct seq_file *m, void *p)
  3847. {
  3848. up_read(&slub_lock);
  3849. }
  3850. static int s_show(struct seq_file *m, void *p)
  3851. {
  3852. unsigned long nr_partials = 0;
  3853. unsigned long nr_slabs = 0;
  3854. unsigned long nr_inuse = 0;
  3855. unsigned long nr_objs = 0;
  3856. unsigned long nr_free = 0;
  3857. struct kmem_cache *s;
  3858. int node;
  3859. s = list_entry(p, struct kmem_cache, list);
  3860. for_each_online_node(node) {
  3861. struct kmem_cache_node *n = get_node(s, node);
  3862. if (!n)
  3863. continue;
  3864. nr_partials += n->nr_partial;
  3865. nr_slabs += atomic_long_read(&n->nr_slabs);
  3866. nr_objs += atomic_long_read(&n->total_objects);
  3867. nr_free += count_partial(n, count_free);
  3868. }
  3869. nr_inuse = nr_objs - nr_free;
  3870. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
  3871. nr_objs, s->size, oo_objects(s->oo),
  3872. (1 << oo_order(s->oo)));
  3873. seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
  3874. seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
  3875. 0UL);
  3876. seq_putc(m, '\n');
  3877. return 0;
  3878. }
  3879. static const struct seq_operations slabinfo_op = {
  3880. .start = s_start,
  3881. .next = s_next,
  3882. .stop = s_stop,
  3883. .show = s_show,
  3884. };
  3885. static int slabinfo_open(struct inode *inode, struct file *file)
  3886. {
  3887. return seq_open(file, &slabinfo_op);
  3888. }
  3889. static const struct file_operations proc_slabinfo_operations = {
  3890. .open = slabinfo_open,
  3891. .read = seq_read,
  3892. .llseek = seq_lseek,
  3893. .release = seq_release,
  3894. };
  3895. static int __init slab_proc_init(void)
  3896. {
  3897. proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
  3898. return 0;
  3899. }
  3900. module_init(slab_proc_init);
  3901. #endif /* CONFIG_SLABINFO */