page_alloc.c 131 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/compiler.h>
  24. #include <linux/kernel.h>
  25. #include <linux/module.h>
  26. #include <linux/suspend.h>
  27. #include <linux/pagevec.h>
  28. #include <linux/blkdev.h>
  29. #include <linux/slab.h>
  30. #include <linux/oom.h>
  31. #include <linux/notifier.h>
  32. #include <linux/topology.h>
  33. #include <linux/sysctl.h>
  34. #include <linux/cpu.h>
  35. #include <linux/cpuset.h>
  36. #include <linux/memory_hotplug.h>
  37. #include <linux/nodemask.h>
  38. #include <linux/vmalloc.h>
  39. #include <linux/mempolicy.h>
  40. #include <linux/stop_machine.h>
  41. #include <linux/sort.h>
  42. #include <linux/pfn.h>
  43. #include <linux/backing-dev.h>
  44. #include <linux/fault-inject.h>
  45. #include <linux/page-isolation.h>
  46. #include <linux/page_cgroup.h>
  47. #include <linux/debugobjects.h>
  48. #include <asm/tlbflush.h>
  49. #include <asm/div64.h>
  50. #include "internal.h"
  51. /*
  52. * Array of node states.
  53. */
  54. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  55. [N_POSSIBLE] = NODE_MASK_ALL,
  56. [N_ONLINE] = { { [0] = 1UL } },
  57. #ifndef CONFIG_NUMA
  58. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  59. #ifdef CONFIG_HIGHMEM
  60. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  61. #endif
  62. [N_CPU] = { { [0] = 1UL } },
  63. #endif /* NUMA */
  64. };
  65. EXPORT_SYMBOL(node_states);
  66. unsigned long totalram_pages __read_mostly;
  67. unsigned long totalreserve_pages __read_mostly;
  68. unsigned long highest_memmap_pfn __read_mostly;
  69. int percpu_pagelist_fraction;
  70. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  71. int pageblock_order __read_mostly;
  72. #endif
  73. static void __free_pages_ok(struct page *page, unsigned int order);
  74. /*
  75. * results with 256, 32 in the lowmem_reserve sysctl:
  76. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  77. * 1G machine -> (16M dma, 784M normal, 224M high)
  78. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  79. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  80. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  81. *
  82. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  83. * don't need any ZONE_NORMAL reservation
  84. */
  85. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  86. #ifdef CONFIG_ZONE_DMA
  87. 256,
  88. #endif
  89. #ifdef CONFIG_ZONE_DMA32
  90. 256,
  91. #endif
  92. #ifdef CONFIG_HIGHMEM
  93. 32,
  94. #endif
  95. 32,
  96. };
  97. EXPORT_SYMBOL(totalram_pages);
  98. static char * const zone_names[MAX_NR_ZONES] = {
  99. #ifdef CONFIG_ZONE_DMA
  100. "DMA",
  101. #endif
  102. #ifdef CONFIG_ZONE_DMA32
  103. "DMA32",
  104. #endif
  105. "Normal",
  106. #ifdef CONFIG_HIGHMEM
  107. "HighMem",
  108. #endif
  109. "Movable",
  110. };
  111. int min_free_kbytes = 1024;
  112. unsigned long __meminitdata nr_kernel_pages;
  113. unsigned long __meminitdata nr_all_pages;
  114. static unsigned long __meminitdata dma_reserve;
  115. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  116. /*
  117. * MAX_ACTIVE_REGIONS determines the maximum number of distinct
  118. * ranges of memory (RAM) that may be registered with add_active_range().
  119. * Ranges passed to add_active_range() will be merged if possible
  120. * so the number of times add_active_range() can be called is
  121. * related to the number of nodes and the number of holes
  122. */
  123. #ifdef CONFIG_MAX_ACTIVE_REGIONS
  124. /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
  125. #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
  126. #else
  127. #if MAX_NUMNODES >= 32
  128. /* If there can be many nodes, allow up to 50 holes per node */
  129. #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
  130. #else
  131. /* By default, allow up to 256 distinct regions */
  132. #define MAX_ACTIVE_REGIONS 256
  133. #endif
  134. #endif
  135. static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
  136. static int __meminitdata nr_nodemap_entries;
  137. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  138. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  139. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  140. static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
  141. static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
  142. #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
  143. static unsigned long __initdata required_kernelcore;
  144. static unsigned long __initdata required_movablecore;
  145. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  146. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  147. int movable_zone;
  148. EXPORT_SYMBOL(movable_zone);
  149. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  150. #if MAX_NUMNODES > 1
  151. int nr_node_ids __read_mostly = MAX_NUMNODES;
  152. EXPORT_SYMBOL(nr_node_ids);
  153. #endif
  154. int page_group_by_mobility_disabled __read_mostly;
  155. static void set_pageblock_migratetype(struct page *page, int migratetype)
  156. {
  157. set_pageblock_flags_group(page, (unsigned long)migratetype,
  158. PB_migrate, PB_migrate_end);
  159. }
  160. #ifdef CONFIG_DEBUG_VM
  161. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  162. {
  163. int ret = 0;
  164. unsigned seq;
  165. unsigned long pfn = page_to_pfn(page);
  166. do {
  167. seq = zone_span_seqbegin(zone);
  168. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  169. ret = 1;
  170. else if (pfn < zone->zone_start_pfn)
  171. ret = 1;
  172. } while (zone_span_seqretry(zone, seq));
  173. return ret;
  174. }
  175. static int page_is_consistent(struct zone *zone, struct page *page)
  176. {
  177. if (!pfn_valid_within(page_to_pfn(page)))
  178. return 0;
  179. if (zone != page_zone(page))
  180. return 0;
  181. return 1;
  182. }
  183. /*
  184. * Temporary debugging check for pages not lying within a given zone.
  185. */
  186. static int bad_range(struct zone *zone, struct page *page)
  187. {
  188. if (page_outside_zone_boundaries(zone, page))
  189. return 1;
  190. if (!page_is_consistent(zone, page))
  191. return 1;
  192. return 0;
  193. }
  194. #else
  195. static inline int bad_range(struct zone *zone, struct page *page)
  196. {
  197. return 0;
  198. }
  199. #endif
  200. static void bad_page(struct page *page)
  201. {
  202. static unsigned long resume;
  203. static unsigned long nr_shown;
  204. static unsigned long nr_unshown;
  205. /*
  206. * Allow a burst of 60 reports, then keep quiet for that minute;
  207. * or allow a steady drip of one report per second.
  208. */
  209. if (nr_shown == 60) {
  210. if (time_before(jiffies, resume)) {
  211. nr_unshown++;
  212. goto out;
  213. }
  214. if (nr_unshown) {
  215. printk(KERN_ALERT
  216. "BUG: Bad page state: %lu messages suppressed\n",
  217. nr_unshown);
  218. nr_unshown = 0;
  219. }
  220. nr_shown = 0;
  221. }
  222. if (nr_shown++ == 0)
  223. resume = jiffies + 60 * HZ;
  224. printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
  225. current->comm, page_to_pfn(page));
  226. printk(KERN_ALERT
  227. "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
  228. page, (void *)page->flags, page_count(page),
  229. page_mapcount(page), page->mapping, page->index);
  230. dump_stack();
  231. out:
  232. /* Leave bad fields for debug, except PageBuddy could make trouble */
  233. __ClearPageBuddy(page);
  234. add_taint(TAINT_BAD_PAGE);
  235. }
  236. /*
  237. * Higher-order pages are called "compound pages". They are structured thusly:
  238. *
  239. * The first PAGE_SIZE page is called the "head page".
  240. *
  241. * The remaining PAGE_SIZE pages are called "tail pages".
  242. *
  243. * All pages have PG_compound set. All pages have their ->private pointing at
  244. * the head page (even the head page has this).
  245. *
  246. * The first tail page's ->lru.next holds the address of the compound page's
  247. * put_page() function. Its ->lru.prev holds the order of allocation.
  248. * This usage means that zero-order pages may not be compound.
  249. */
  250. static void free_compound_page(struct page *page)
  251. {
  252. __free_pages_ok(page, compound_order(page));
  253. }
  254. void prep_compound_page(struct page *page, unsigned long order)
  255. {
  256. int i;
  257. int nr_pages = 1 << order;
  258. set_compound_page_dtor(page, free_compound_page);
  259. set_compound_order(page, order);
  260. __SetPageHead(page);
  261. for (i = 1; i < nr_pages; i++) {
  262. struct page *p = page + i;
  263. __SetPageTail(p);
  264. p->first_page = page;
  265. }
  266. }
  267. #ifdef CONFIG_HUGETLBFS
  268. void prep_compound_gigantic_page(struct page *page, unsigned long order)
  269. {
  270. int i;
  271. int nr_pages = 1 << order;
  272. struct page *p = page + 1;
  273. set_compound_page_dtor(page, free_compound_page);
  274. set_compound_order(page, order);
  275. __SetPageHead(page);
  276. for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
  277. __SetPageTail(p);
  278. p->first_page = page;
  279. }
  280. }
  281. #endif
  282. static int destroy_compound_page(struct page *page, unsigned long order)
  283. {
  284. int i;
  285. int nr_pages = 1 << order;
  286. int bad = 0;
  287. if (unlikely(compound_order(page) != order) ||
  288. unlikely(!PageHead(page))) {
  289. bad_page(page);
  290. bad++;
  291. }
  292. __ClearPageHead(page);
  293. for (i = 1; i < nr_pages; i++) {
  294. struct page *p = page + i;
  295. if (unlikely(!PageTail(p) || (p->first_page != page))) {
  296. bad_page(page);
  297. bad++;
  298. }
  299. __ClearPageTail(p);
  300. }
  301. return bad;
  302. }
  303. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  304. {
  305. int i;
  306. /*
  307. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  308. * and __GFP_HIGHMEM from hard or soft interrupt context.
  309. */
  310. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  311. for (i = 0; i < (1 << order); i++)
  312. clear_highpage(page + i);
  313. }
  314. static inline void set_page_order(struct page *page, int order)
  315. {
  316. set_page_private(page, order);
  317. __SetPageBuddy(page);
  318. }
  319. static inline void rmv_page_order(struct page *page)
  320. {
  321. __ClearPageBuddy(page);
  322. set_page_private(page, 0);
  323. }
  324. /*
  325. * Locate the struct page for both the matching buddy in our
  326. * pair (buddy1) and the combined O(n+1) page they form (page).
  327. *
  328. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  329. * the following equation:
  330. * B2 = B1 ^ (1 << O)
  331. * For example, if the starting buddy (buddy2) is #8 its order
  332. * 1 buddy is #10:
  333. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  334. *
  335. * 2) Any buddy B will have an order O+1 parent P which
  336. * satisfies the following equation:
  337. * P = B & ~(1 << O)
  338. *
  339. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  340. */
  341. static inline struct page *
  342. __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
  343. {
  344. unsigned long buddy_idx = page_idx ^ (1 << order);
  345. return page + (buddy_idx - page_idx);
  346. }
  347. static inline unsigned long
  348. __find_combined_index(unsigned long page_idx, unsigned int order)
  349. {
  350. return (page_idx & ~(1 << order));
  351. }
  352. /*
  353. * This function checks whether a page is free && is the buddy
  354. * we can do coalesce a page and its buddy if
  355. * (a) the buddy is not in a hole &&
  356. * (b) the buddy is in the buddy system &&
  357. * (c) a page and its buddy have the same order &&
  358. * (d) a page and its buddy are in the same zone.
  359. *
  360. * For recording whether a page is in the buddy system, we use PG_buddy.
  361. * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
  362. *
  363. * For recording page's order, we use page_private(page).
  364. */
  365. static inline int page_is_buddy(struct page *page, struct page *buddy,
  366. int order)
  367. {
  368. if (!pfn_valid_within(page_to_pfn(buddy)))
  369. return 0;
  370. if (page_zone_id(page) != page_zone_id(buddy))
  371. return 0;
  372. if (PageBuddy(buddy) && page_order(buddy) == order) {
  373. BUG_ON(page_count(buddy) != 0);
  374. return 1;
  375. }
  376. return 0;
  377. }
  378. /*
  379. * Freeing function for a buddy system allocator.
  380. *
  381. * The concept of a buddy system is to maintain direct-mapped table
  382. * (containing bit values) for memory blocks of various "orders".
  383. * The bottom level table contains the map for the smallest allocatable
  384. * units of memory (here, pages), and each level above it describes
  385. * pairs of units from the levels below, hence, "buddies".
  386. * At a high level, all that happens here is marking the table entry
  387. * at the bottom level available, and propagating the changes upward
  388. * as necessary, plus some accounting needed to play nicely with other
  389. * parts of the VM system.
  390. * At each level, we keep a list of pages, which are heads of continuous
  391. * free pages of length of (1 << order) and marked with PG_buddy. Page's
  392. * order is recorded in page_private(page) field.
  393. * So when we are allocating or freeing one, we can derive the state of the
  394. * other. That is, if we allocate a small block, and both were
  395. * free, the remainder of the region must be split into blocks.
  396. * If a block is freed, and its buddy is also free, then this
  397. * triggers coalescing into a block of larger size.
  398. *
  399. * -- wli
  400. */
  401. static inline void __free_one_page(struct page *page,
  402. struct zone *zone, unsigned int order)
  403. {
  404. unsigned long page_idx;
  405. int order_size = 1 << order;
  406. int migratetype = get_pageblock_migratetype(page);
  407. if (unlikely(PageCompound(page)))
  408. if (unlikely(destroy_compound_page(page, order)))
  409. return;
  410. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  411. VM_BUG_ON(page_idx & (order_size - 1));
  412. VM_BUG_ON(bad_range(zone, page));
  413. __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
  414. while (order < MAX_ORDER-1) {
  415. unsigned long combined_idx;
  416. struct page *buddy;
  417. buddy = __page_find_buddy(page, page_idx, order);
  418. if (!page_is_buddy(page, buddy, order))
  419. break;
  420. /* Our buddy is free, merge with it and move up one order. */
  421. list_del(&buddy->lru);
  422. zone->free_area[order].nr_free--;
  423. rmv_page_order(buddy);
  424. combined_idx = __find_combined_index(page_idx, order);
  425. page = page + (combined_idx - page_idx);
  426. page_idx = combined_idx;
  427. order++;
  428. }
  429. set_page_order(page, order);
  430. list_add(&page->lru,
  431. &zone->free_area[order].free_list[migratetype]);
  432. zone->free_area[order].nr_free++;
  433. }
  434. static inline int free_pages_check(struct page *page)
  435. {
  436. free_page_mlock(page);
  437. if (unlikely(page_mapcount(page) |
  438. (page->mapping != NULL) |
  439. (page_count(page) != 0) |
  440. (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
  441. bad_page(page);
  442. return 1;
  443. }
  444. if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
  445. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  446. return 0;
  447. }
  448. /*
  449. * Frees a list of pages.
  450. * Assumes all pages on list are in same zone, and of same order.
  451. * count is the number of pages to free.
  452. *
  453. * If the zone was previously in an "all pages pinned" state then look to
  454. * see if this freeing clears that state.
  455. *
  456. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  457. * pinned" detection logic.
  458. */
  459. static void free_pages_bulk(struct zone *zone, int count,
  460. struct list_head *list, int order)
  461. {
  462. spin_lock(&zone->lock);
  463. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  464. zone->pages_scanned = 0;
  465. while (count--) {
  466. struct page *page;
  467. VM_BUG_ON(list_empty(list));
  468. page = list_entry(list->prev, struct page, lru);
  469. /* have to delete it as __free_one_page list manipulates */
  470. list_del(&page->lru);
  471. __free_one_page(page, zone, order);
  472. }
  473. spin_unlock(&zone->lock);
  474. }
  475. static void free_one_page(struct zone *zone, struct page *page, int order)
  476. {
  477. spin_lock(&zone->lock);
  478. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  479. zone->pages_scanned = 0;
  480. __free_one_page(page, zone, order);
  481. spin_unlock(&zone->lock);
  482. }
  483. static void __free_pages_ok(struct page *page, unsigned int order)
  484. {
  485. unsigned long flags;
  486. int i;
  487. int bad = 0;
  488. for (i = 0 ; i < (1 << order) ; ++i)
  489. bad += free_pages_check(page + i);
  490. if (bad)
  491. return;
  492. if (!PageHighMem(page)) {
  493. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  494. debug_check_no_obj_freed(page_address(page),
  495. PAGE_SIZE << order);
  496. }
  497. arch_free_page(page, order);
  498. kernel_map_pages(page, 1 << order, 0);
  499. local_irq_save(flags);
  500. __count_vm_events(PGFREE, 1 << order);
  501. free_one_page(page_zone(page), page, order);
  502. local_irq_restore(flags);
  503. }
  504. /*
  505. * permit the bootmem allocator to evade page validation on high-order frees
  506. */
  507. void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
  508. {
  509. if (order == 0) {
  510. __ClearPageReserved(page);
  511. set_page_count(page, 0);
  512. set_page_refcounted(page);
  513. __free_page(page);
  514. } else {
  515. int loop;
  516. prefetchw(page);
  517. for (loop = 0; loop < BITS_PER_LONG; loop++) {
  518. struct page *p = &page[loop];
  519. if (loop + 1 < BITS_PER_LONG)
  520. prefetchw(p + 1);
  521. __ClearPageReserved(p);
  522. set_page_count(p, 0);
  523. }
  524. set_page_refcounted(page);
  525. __free_pages(page, order);
  526. }
  527. }
  528. /*
  529. * The order of subdivision here is critical for the IO subsystem.
  530. * Please do not alter this order without good reasons and regression
  531. * testing. Specifically, as large blocks of memory are subdivided,
  532. * the order in which smaller blocks are delivered depends on the order
  533. * they're subdivided in this function. This is the primary factor
  534. * influencing the order in which pages are delivered to the IO
  535. * subsystem according to empirical testing, and this is also justified
  536. * by considering the behavior of a buddy system containing a single
  537. * large block of memory acted on by a series of small allocations.
  538. * This behavior is a critical factor in sglist merging's success.
  539. *
  540. * -- wli
  541. */
  542. static inline void expand(struct zone *zone, struct page *page,
  543. int low, int high, struct free_area *area,
  544. int migratetype)
  545. {
  546. unsigned long size = 1 << high;
  547. while (high > low) {
  548. area--;
  549. high--;
  550. size >>= 1;
  551. VM_BUG_ON(bad_range(zone, &page[size]));
  552. list_add(&page[size].lru, &area->free_list[migratetype]);
  553. area->nr_free++;
  554. set_page_order(&page[size], high);
  555. }
  556. }
  557. /*
  558. * This page is about to be returned from the page allocator
  559. */
  560. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  561. {
  562. if (unlikely(page_mapcount(page) |
  563. (page->mapping != NULL) |
  564. (page_count(page) != 0) |
  565. (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
  566. bad_page(page);
  567. return 1;
  568. }
  569. set_page_private(page, 0);
  570. set_page_refcounted(page);
  571. arch_alloc_page(page, order);
  572. kernel_map_pages(page, 1 << order, 1);
  573. if (gfp_flags & __GFP_ZERO)
  574. prep_zero_page(page, order, gfp_flags);
  575. if (order && (gfp_flags & __GFP_COMP))
  576. prep_compound_page(page, order);
  577. return 0;
  578. }
  579. /*
  580. * Go through the free lists for the given migratetype and remove
  581. * the smallest available page from the freelists
  582. */
  583. static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  584. int migratetype)
  585. {
  586. unsigned int current_order;
  587. struct free_area * area;
  588. struct page *page;
  589. /* Find a page of the appropriate size in the preferred list */
  590. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  591. area = &(zone->free_area[current_order]);
  592. if (list_empty(&area->free_list[migratetype]))
  593. continue;
  594. page = list_entry(area->free_list[migratetype].next,
  595. struct page, lru);
  596. list_del(&page->lru);
  597. rmv_page_order(page);
  598. area->nr_free--;
  599. __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
  600. expand(zone, page, order, current_order, area, migratetype);
  601. return page;
  602. }
  603. return NULL;
  604. }
  605. /*
  606. * This array describes the order lists are fallen back to when
  607. * the free lists for the desirable migrate type are depleted
  608. */
  609. static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
  610. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  611. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  612. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  613. [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
  614. };
  615. /*
  616. * Move the free pages in a range to the free lists of the requested type.
  617. * Note that start_page and end_pages are not aligned on a pageblock
  618. * boundary. If alignment is required, use move_freepages_block()
  619. */
  620. static int move_freepages(struct zone *zone,
  621. struct page *start_page, struct page *end_page,
  622. int migratetype)
  623. {
  624. struct page *page;
  625. unsigned long order;
  626. int pages_moved = 0;
  627. #ifndef CONFIG_HOLES_IN_ZONE
  628. /*
  629. * page_zone is not safe to call in this context when
  630. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  631. * anyway as we check zone boundaries in move_freepages_block().
  632. * Remove at a later date when no bug reports exist related to
  633. * grouping pages by mobility
  634. */
  635. BUG_ON(page_zone(start_page) != page_zone(end_page));
  636. #endif
  637. for (page = start_page; page <= end_page;) {
  638. /* Make sure we are not inadvertently changing nodes */
  639. VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
  640. if (!pfn_valid_within(page_to_pfn(page))) {
  641. page++;
  642. continue;
  643. }
  644. if (!PageBuddy(page)) {
  645. page++;
  646. continue;
  647. }
  648. order = page_order(page);
  649. list_del(&page->lru);
  650. list_add(&page->lru,
  651. &zone->free_area[order].free_list[migratetype]);
  652. page += 1 << order;
  653. pages_moved += 1 << order;
  654. }
  655. return pages_moved;
  656. }
  657. static int move_freepages_block(struct zone *zone, struct page *page,
  658. int migratetype)
  659. {
  660. unsigned long start_pfn, end_pfn;
  661. struct page *start_page, *end_page;
  662. start_pfn = page_to_pfn(page);
  663. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  664. start_page = pfn_to_page(start_pfn);
  665. end_page = start_page + pageblock_nr_pages - 1;
  666. end_pfn = start_pfn + pageblock_nr_pages - 1;
  667. /* Do not cross zone boundaries */
  668. if (start_pfn < zone->zone_start_pfn)
  669. start_page = page;
  670. if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
  671. return 0;
  672. return move_freepages(zone, start_page, end_page, migratetype);
  673. }
  674. /* Remove an element from the buddy allocator from the fallback list */
  675. static struct page *__rmqueue_fallback(struct zone *zone, int order,
  676. int start_migratetype)
  677. {
  678. struct free_area * area;
  679. int current_order;
  680. struct page *page;
  681. int migratetype, i;
  682. /* Find the largest possible block of pages in the other list */
  683. for (current_order = MAX_ORDER-1; current_order >= order;
  684. --current_order) {
  685. for (i = 0; i < MIGRATE_TYPES - 1; i++) {
  686. migratetype = fallbacks[start_migratetype][i];
  687. /* MIGRATE_RESERVE handled later if necessary */
  688. if (migratetype == MIGRATE_RESERVE)
  689. continue;
  690. area = &(zone->free_area[current_order]);
  691. if (list_empty(&area->free_list[migratetype]))
  692. continue;
  693. page = list_entry(area->free_list[migratetype].next,
  694. struct page, lru);
  695. area->nr_free--;
  696. /*
  697. * If breaking a large block of pages, move all free
  698. * pages to the preferred allocation list. If falling
  699. * back for a reclaimable kernel allocation, be more
  700. * agressive about taking ownership of free pages
  701. */
  702. if (unlikely(current_order >= (pageblock_order >> 1)) ||
  703. start_migratetype == MIGRATE_RECLAIMABLE) {
  704. unsigned long pages;
  705. pages = move_freepages_block(zone, page,
  706. start_migratetype);
  707. /* Claim the whole block if over half of it is free */
  708. if (pages >= (1 << (pageblock_order-1)))
  709. set_pageblock_migratetype(page,
  710. start_migratetype);
  711. migratetype = start_migratetype;
  712. }
  713. /* Remove the page from the freelists */
  714. list_del(&page->lru);
  715. rmv_page_order(page);
  716. __mod_zone_page_state(zone, NR_FREE_PAGES,
  717. -(1UL << order));
  718. if (current_order == pageblock_order)
  719. set_pageblock_migratetype(page,
  720. start_migratetype);
  721. expand(zone, page, order, current_order, area, migratetype);
  722. return page;
  723. }
  724. }
  725. /* Use MIGRATE_RESERVE rather than fail an allocation */
  726. return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
  727. }
  728. /*
  729. * Do the hard work of removing an element from the buddy allocator.
  730. * Call me with the zone->lock already held.
  731. */
  732. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  733. int migratetype)
  734. {
  735. struct page *page;
  736. page = __rmqueue_smallest(zone, order, migratetype);
  737. if (unlikely(!page))
  738. page = __rmqueue_fallback(zone, order, migratetype);
  739. return page;
  740. }
  741. /*
  742. * Obtain a specified number of elements from the buddy allocator, all under
  743. * a single hold of the lock, for efficiency. Add them to the supplied list.
  744. * Returns the number of new pages which were placed at *list.
  745. */
  746. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  747. unsigned long count, struct list_head *list,
  748. int migratetype)
  749. {
  750. int i;
  751. spin_lock(&zone->lock);
  752. for (i = 0; i < count; ++i) {
  753. struct page *page = __rmqueue(zone, order, migratetype);
  754. if (unlikely(page == NULL))
  755. break;
  756. /*
  757. * Split buddy pages returned by expand() are received here
  758. * in physical page order. The page is added to the callers and
  759. * list and the list head then moves forward. From the callers
  760. * perspective, the linked list is ordered by page number in
  761. * some conditions. This is useful for IO devices that can
  762. * merge IO requests if the physical pages are ordered
  763. * properly.
  764. */
  765. list_add(&page->lru, list);
  766. set_page_private(page, migratetype);
  767. list = &page->lru;
  768. }
  769. spin_unlock(&zone->lock);
  770. return i;
  771. }
  772. #ifdef CONFIG_NUMA
  773. /*
  774. * Called from the vmstat counter updater to drain pagesets of this
  775. * currently executing processor on remote nodes after they have
  776. * expired.
  777. *
  778. * Note that this function must be called with the thread pinned to
  779. * a single processor.
  780. */
  781. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  782. {
  783. unsigned long flags;
  784. int to_drain;
  785. local_irq_save(flags);
  786. if (pcp->count >= pcp->batch)
  787. to_drain = pcp->batch;
  788. else
  789. to_drain = pcp->count;
  790. free_pages_bulk(zone, to_drain, &pcp->list, 0);
  791. pcp->count -= to_drain;
  792. local_irq_restore(flags);
  793. }
  794. #endif
  795. /*
  796. * Drain pages of the indicated processor.
  797. *
  798. * The processor must either be the current processor and the
  799. * thread pinned to the current processor or a processor that
  800. * is not online.
  801. */
  802. static void drain_pages(unsigned int cpu)
  803. {
  804. unsigned long flags;
  805. struct zone *zone;
  806. for_each_populated_zone(zone) {
  807. struct per_cpu_pageset *pset;
  808. struct per_cpu_pages *pcp;
  809. pset = zone_pcp(zone, cpu);
  810. pcp = &pset->pcp;
  811. local_irq_save(flags);
  812. free_pages_bulk(zone, pcp->count, &pcp->list, 0);
  813. pcp->count = 0;
  814. local_irq_restore(flags);
  815. }
  816. }
  817. /*
  818. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  819. */
  820. void drain_local_pages(void *arg)
  821. {
  822. drain_pages(smp_processor_id());
  823. }
  824. /*
  825. * Spill all the per-cpu pages from all CPUs back into the buddy allocator
  826. */
  827. void drain_all_pages(void)
  828. {
  829. on_each_cpu(drain_local_pages, NULL, 1);
  830. }
  831. #ifdef CONFIG_HIBERNATION
  832. void mark_free_pages(struct zone *zone)
  833. {
  834. unsigned long pfn, max_zone_pfn;
  835. unsigned long flags;
  836. int order, t;
  837. struct list_head *curr;
  838. if (!zone->spanned_pages)
  839. return;
  840. spin_lock_irqsave(&zone->lock, flags);
  841. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  842. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  843. if (pfn_valid(pfn)) {
  844. struct page *page = pfn_to_page(pfn);
  845. if (!swsusp_page_is_forbidden(page))
  846. swsusp_unset_page_free(page);
  847. }
  848. for_each_migratetype_order(order, t) {
  849. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  850. unsigned long i;
  851. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  852. for (i = 0; i < (1UL << order); i++)
  853. swsusp_set_page_free(pfn_to_page(pfn + i));
  854. }
  855. }
  856. spin_unlock_irqrestore(&zone->lock, flags);
  857. }
  858. #endif /* CONFIG_PM */
  859. /*
  860. * Free a 0-order page
  861. */
  862. static void free_hot_cold_page(struct page *page, int cold)
  863. {
  864. struct zone *zone = page_zone(page);
  865. struct per_cpu_pages *pcp;
  866. unsigned long flags;
  867. if (PageAnon(page))
  868. page->mapping = NULL;
  869. if (free_pages_check(page))
  870. return;
  871. if (!PageHighMem(page)) {
  872. debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
  873. debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
  874. }
  875. arch_free_page(page, 0);
  876. kernel_map_pages(page, 1, 0);
  877. pcp = &zone_pcp(zone, get_cpu())->pcp;
  878. local_irq_save(flags);
  879. __count_vm_event(PGFREE);
  880. if (cold)
  881. list_add_tail(&page->lru, &pcp->list);
  882. else
  883. list_add(&page->lru, &pcp->list);
  884. set_page_private(page, get_pageblock_migratetype(page));
  885. pcp->count++;
  886. if (pcp->count >= pcp->high) {
  887. free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
  888. pcp->count -= pcp->batch;
  889. }
  890. local_irq_restore(flags);
  891. put_cpu();
  892. }
  893. void free_hot_page(struct page *page)
  894. {
  895. free_hot_cold_page(page, 0);
  896. }
  897. void free_cold_page(struct page *page)
  898. {
  899. free_hot_cold_page(page, 1);
  900. }
  901. /*
  902. * split_page takes a non-compound higher-order page, and splits it into
  903. * n (1<<order) sub-pages: page[0..n]
  904. * Each sub-page must be freed individually.
  905. *
  906. * Note: this is probably too low level an operation for use in drivers.
  907. * Please consult with lkml before using this in your driver.
  908. */
  909. void split_page(struct page *page, unsigned int order)
  910. {
  911. int i;
  912. VM_BUG_ON(PageCompound(page));
  913. VM_BUG_ON(!page_count(page));
  914. for (i = 1; i < (1 << order); i++)
  915. set_page_refcounted(page + i);
  916. }
  917. /*
  918. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  919. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  920. * or two.
  921. */
  922. static struct page *buffered_rmqueue(struct zone *preferred_zone,
  923. struct zone *zone, int order, gfp_t gfp_flags)
  924. {
  925. unsigned long flags;
  926. struct page *page;
  927. int cold = !!(gfp_flags & __GFP_COLD);
  928. int cpu;
  929. int migratetype = allocflags_to_migratetype(gfp_flags);
  930. again:
  931. cpu = get_cpu();
  932. if (likely(order == 0)) {
  933. struct per_cpu_pages *pcp;
  934. pcp = &zone_pcp(zone, cpu)->pcp;
  935. local_irq_save(flags);
  936. if (!pcp->count) {
  937. pcp->count = rmqueue_bulk(zone, 0,
  938. pcp->batch, &pcp->list, migratetype);
  939. if (unlikely(!pcp->count))
  940. goto failed;
  941. }
  942. /* Find a page of the appropriate migrate type */
  943. if (cold) {
  944. list_for_each_entry_reverse(page, &pcp->list, lru)
  945. if (page_private(page) == migratetype)
  946. break;
  947. } else {
  948. list_for_each_entry(page, &pcp->list, lru)
  949. if (page_private(page) == migratetype)
  950. break;
  951. }
  952. /* Allocate more to the pcp list if necessary */
  953. if (unlikely(&page->lru == &pcp->list)) {
  954. pcp->count += rmqueue_bulk(zone, 0,
  955. pcp->batch, &pcp->list, migratetype);
  956. page = list_entry(pcp->list.next, struct page, lru);
  957. }
  958. list_del(&page->lru);
  959. pcp->count--;
  960. } else {
  961. spin_lock_irqsave(&zone->lock, flags);
  962. page = __rmqueue(zone, order, migratetype);
  963. spin_unlock(&zone->lock);
  964. if (!page)
  965. goto failed;
  966. }
  967. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  968. zone_statistics(preferred_zone, zone);
  969. local_irq_restore(flags);
  970. put_cpu();
  971. VM_BUG_ON(bad_range(zone, page));
  972. if (prep_new_page(page, order, gfp_flags))
  973. goto again;
  974. return page;
  975. failed:
  976. local_irq_restore(flags);
  977. put_cpu();
  978. return NULL;
  979. }
  980. #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
  981. #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
  982. #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
  983. #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
  984. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  985. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  986. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  987. #ifdef CONFIG_FAIL_PAGE_ALLOC
  988. static struct fail_page_alloc_attr {
  989. struct fault_attr attr;
  990. u32 ignore_gfp_highmem;
  991. u32 ignore_gfp_wait;
  992. u32 min_order;
  993. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  994. struct dentry *ignore_gfp_highmem_file;
  995. struct dentry *ignore_gfp_wait_file;
  996. struct dentry *min_order_file;
  997. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  998. } fail_page_alloc = {
  999. .attr = FAULT_ATTR_INITIALIZER,
  1000. .ignore_gfp_wait = 1,
  1001. .ignore_gfp_highmem = 1,
  1002. .min_order = 1,
  1003. };
  1004. static int __init setup_fail_page_alloc(char *str)
  1005. {
  1006. return setup_fault_attr(&fail_page_alloc.attr, str);
  1007. }
  1008. __setup("fail_page_alloc=", setup_fail_page_alloc);
  1009. static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1010. {
  1011. if (order < fail_page_alloc.min_order)
  1012. return 0;
  1013. if (gfp_mask & __GFP_NOFAIL)
  1014. return 0;
  1015. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  1016. return 0;
  1017. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  1018. return 0;
  1019. return should_fail(&fail_page_alloc.attr, 1 << order);
  1020. }
  1021. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1022. static int __init fail_page_alloc_debugfs(void)
  1023. {
  1024. mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1025. struct dentry *dir;
  1026. int err;
  1027. err = init_fault_attr_dentries(&fail_page_alloc.attr,
  1028. "fail_page_alloc");
  1029. if (err)
  1030. return err;
  1031. dir = fail_page_alloc.attr.dentries.dir;
  1032. fail_page_alloc.ignore_gfp_wait_file =
  1033. debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1034. &fail_page_alloc.ignore_gfp_wait);
  1035. fail_page_alloc.ignore_gfp_highmem_file =
  1036. debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1037. &fail_page_alloc.ignore_gfp_highmem);
  1038. fail_page_alloc.min_order_file =
  1039. debugfs_create_u32("min-order", mode, dir,
  1040. &fail_page_alloc.min_order);
  1041. if (!fail_page_alloc.ignore_gfp_wait_file ||
  1042. !fail_page_alloc.ignore_gfp_highmem_file ||
  1043. !fail_page_alloc.min_order_file) {
  1044. err = -ENOMEM;
  1045. debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
  1046. debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
  1047. debugfs_remove(fail_page_alloc.min_order_file);
  1048. cleanup_fault_attr_dentries(&fail_page_alloc.attr);
  1049. }
  1050. return err;
  1051. }
  1052. late_initcall(fail_page_alloc_debugfs);
  1053. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1054. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1055. static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1056. {
  1057. return 0;
  1058. }
  1059. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1060. /*
  1061. * Return 1 if free pages are above 'mark'. This takes into account the order
  1062. * of the allocation.
  1063. */
  1064. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1065. int classzone_idx, int alloc_flags)
  1066. {
  1067. /* free_pages my go negative - that's OK */
  1068. long min = mark;
  1069. long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
  1070. int o;
  1071. if (alloc_flags & ALLOC_HIGH)
  1072. min -= min / 2;
  1073. if (alloc_flags & ALLOC_HARDER)
  1074. min -= min / 4;
  1075. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  1076. return 0;
  1077. for (o = 0; o < order; o++) {
  1078. /* At the next order, this order's pages become unavailable */
  1079. free_pages -= z->free_area[o].nr_free << o;
  1080. /* Require fewer higher order pages to be free */
  1081. min >>= 1;
  1082. if (free_pages <= min)
  1083. return 0;
  1084. }
  1085. return 1;
  1086. }
  1087. #ifdef CONFIG_NUMA
  1088. /*
  1089. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1090. * skip over zones that are not allowed by the cpuset, or that have
  1091. * been recently (in last second) found to be nearly full. See further
  1092. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1093. * that have to skip over a lot of full or unallowed zones.
  1094. *
  1095. * If the zonelist cache is present in the passed in zonelist, then
  1096. * returns a pointer to the allowed node mask (either the current
  1097. * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
  1098. *
  1099. * If the zonelist cache is not available for this zonelist, does
  1100. * nothing and returns NULL.
  1101. *
  1102. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1103. * a second since last zap'd) then we zap it out (clear its bits.)
  1104. *
  1105. * We hold off even calling zlc_setup, until after we've checked the
  1106. * first zone in the zonelist, on the theory that most allocations will
  1107. * be satisfied from that first zone, so best to examine that zone as
  1108. * quickly as we can.
  1109. */
  1110. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1111. {
  1112. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1113. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1114. zlc = zonelist->zlcache_ptr;
  1115. if (!zlc)
  1116. return NULL;
  1117. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1118. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1119. zlc->last_full_zap = jiffies;
  1120. }
  1121. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1122. &cpuset_current_mems_allowed :
  1123. &node_states[N_HIGH_MEMORY];
  1124. return allowednodes;
  1125. }
  1126. /*
  1127. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1128. * if it is worth looking at further for free memory:
  1129. * 1) Check that the zone isn't thought to be full (doesn't have its
  1130. * bit set in the zonelist_cache fullzones BITMAP).
  1131. * 2) Check that the zones node (obtained from the zonelist_cache
  1132. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1133. * Return true (non-zero) if zone is worth looking at further, or
  1134. * else return false (zero) if it is not.
  1135. *
  1136. * This check -ignores- the distinction between various watermarks,
  1137. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1138. * found to be full for any variation of these watermarks, it will
  1139. * be considered full for up to one second by all requests, unless
  1140. * we are so low on memory on all allowed nodes that we are forced
  1141. * into the second scan of the zonelist.
  1142. *
  1143. * In the second scan we ignore this zonelist cache and exactly
  1144. * apply the watermarks to all zones, even it is slower to do so.
  1145. * We are low on memory in the second scan, and should leave no stone
  1146. * unturned looking for a free page.
  1147. */
  1148. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1149. nodemask_t *allowednodes)
  1150. {
  1151. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1152. int i; /* index of *z in zonelist zones */
  1153. int n; /* node that zone *z is on */
  1154. zlc = zonelist->zlcache_ptr;
  1155. if (!zlc)
  1156. return 1;
  1157. i = z - zonelist->_zonerefs;
  1158. n = zlc->z_to_n[i];
  1159. /* This zone is worth trying if it is allowed but not full */
  1160. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1161. }
  1162. /*
  1163. * Given 'z' scanning a zonelist, set the corresponding bit in
  1164. * zlc->fullzones, so that subsequent attempts to allocate a page
  1165. * from that zone don't waste time re-examining it.
  1166. */
  1167. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1168. {
  1169. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1170. int i; /* index of *z in zonelist zones */
  1171. zlc = zonelist->zlcache_ptr;
  1172. if (!zlc)
  1173. return;
  1174. i = z - zonelist->_zonerefs;
  1175. set_bit(i, zlc->fullzones);
  1176. }
  1177. #else /* CONFIG_NUMA */
  1178. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1179. {
  1180. return NULL;
  1181. }
  1182. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1183. nodemask_t *allowednodes)
  1184. {
  1185. return 1;
  1186. }
  1187. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1188. {
  1189. }
  1190. #endif /* CONFIG_NUMA */
  1191. /*
  1192. * get_page_from_freelist goes through the zonelist trying to allocate
  1193. * a page.
  1194. */
  1195. static struct page *
  1196. get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
  1197. struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
  1198. {
  1199. struct zoneref *z;
  1200. struct page *page = NULL;
  1201. int classzone_idx;
  1202. struct zone *zone, *preferred_zone;
  1203. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1204. int zlc_active = 0; /* set if using zonelist_cache */
  1205. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1206. (void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
  1207. &preferred_zone);
  1208. if (!preferred_zone)
  1209. return NULL;
  1210. classzone_idx = zone_idx(preferred_zone);
  1211. zonelist_scan:
  1212. /*
  1213. * Scan zonelist, looking for a zone with enough free.
  1214. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1215. */
  1216. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1217. high_zoneidx, nodemask) {
  1218. if (NUMA_BUILD && zlc_active &&
  1219. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1220. continue;
  1221. if ((alloc_flags & ALLOC_CPUSET) &&
  1222. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1223. goto try_next_zone;
  1224. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1225. unsigned long mark;
  1226. if (alloc_flags & ALLOC_WMARK_MIN)
  1227. mark = zone->pages_min;
  1228. else if (alloc_flags & ALLOC_WMARK_LOW)
  1229. mark = zone->pages_low;
  1230. else
  1231. mark = zone->pages_high;
  1232. if (!zone_watermark_ok(zone, order, mark,
  1233. classzone_idx, alloc_flags)) {
  1234. if (!zone_reclaim_mode ||
  1235. !zone_reclaim(zone, gfp_mask, order))
  1236. goto this_zone_full;
  1237. }
  1238. }
  1239. page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
  1240. if (page)
  1241. break;
  1242. this_zone_full:
  1243. if (NUMA_BUILD)
  1244. zlc_mark_zone_full(zonelist, z);
  1245. try_next_zone:
  1246. if (NUMA_BUILD && !did_zlc_setup) {
  1247. /* we do zlc_setup after the first zone is tried */
  1248. allowednodes = zlc_setup(zonelist, alloc_flags);
  1249. zlc_active = 1;
  1250. did_zlc_setup = 1;
  1251. }
  1252. }
  1253. if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
  1254. /* Disable zlc cache for second zonelist scan */
  1255. zlc_active = 0;
  1256. goto zonelist_scan;
  1257. }
  1258. return page;
  1259. }
  1260. /*
  1261. * This is the 'heart' of the zoned buddy allocator.
  1262. */
  1263. struct page *
  1264. __alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
  1265. struct zonelist *zonelist, nodemask_t *nodemask)
  1266. {
  1267. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1268. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  1269. struct zoneref *z;
  1270. struct zone *zone;
  1271. struct page *page;
  1272. struct reclaim_state reclaim_state;
  1273. struct task_struct *p = current;
  1274. int do_retry;
  1275. int alloc_flags;
  1276. unsigned long did_some_progress;
  1277. unsigned long pages_reclaimed = 0;
  1278. lockdep_trace_alloc(gfp_mask);
  1279. might_sleep_if(wait);
  1280. if (should_fail_alloc_page(gfp_mask, order))
  1281. return NULL;
  1282. restart:
  1283. z = zonelist->_zonerefs; /* the list of zones suitable for gfp_mask */
  1284. if (unlikely(!z->zone)) {
  1285. /*
  1286. * Happens if we have an empty zonelist as a result of
  1287. * GFP_THISNODE being used on a memoryless node
  1288. */
  1289. return NULL;
  1290. }
  1291. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
  1292. zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
  1293. if (page)
  1294. goto got_pg;
  1295. /*
  1296. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  1297. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  1298. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  1299. * using a larger set of nodes after it has established that the
  1300. * allowed per node queues are empty and that nodes are
  1301. * over allocated.
  1302. */
  1303. if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  1304. goto nopage;
  1305. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
  1306. wakeup_kswapd(zone, order);
  1307. /*
  1308. * OK, we're below the kswapd watermark and have kicked background
  1309. * reclaim. Now things get more complex, so set up alloc_flags according
  1310. * to how we want to proceed.
  1311. *
  1312. * The caller may dip into page reserves a bit more if the caller
  1313. * cannot run direct reclaim, or if the caller has realtime scheduling
  1314. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  1315. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  1316. */
  1317. alloc_flags = ALLOC_WMARK_MIN;
  1318. if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
  1319. alloc_flags |= ALLOC_HARDER;
  1320. if (gfp_mask & __GFP_HIGH)
  1321. alloc_flags |= ALLOC_HIGH;
  1322. if (wait)
  1323. alloc_flags |= ALLOC_CPUSET;
  1324. /*
  1325. * Go through the zonelist again. Let __GFP_HIGH and allocations
  1326. * coming from realtime tasks go deeper into reserves.
  1327. *
  1328. * This is the last chance, in general, before the goto nopage.
  1329. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  1330. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1331. */
  1332. page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
  1333. high_zoneidx, alloc_flags);
  1334. if (page)
  1335. goto got_pg;
  1336. /* This allocation should allow future memory freeing. */
  1337. rebalance:
  1338. if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
  1339. && !in_interrupt()) {
  1340. if (!(gfp_mask & __GFP_NOMEMALLOC)) {
  1341. nofail_alloc:
  1342. /* go through the zonelist yet again, ignoring mins */
  1343. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1344. zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
  1345. if (page)
  1346. goto got_pg;
  1347. if (gfp_mask & __GFP_NOFAIL) {
  1348. congestion_wait(WRITE, HZ/50);
  1349. goto nofail_alloc;
  1350. }
  1351. }
  1352. goto nopage;
  1353. }
  1354. /* Atomic allocations - we can't balance anything */
  1355. if (!wait)
  1356. goto nopage;
  1357. cond_resched();
  1358. /* We now go into synchronous reclaim */
  1359. cpuset_memory_pressure_bump();
  1360. /*
  1361. * The task's cpuset might have expanded its set of allowable nodes
  1362. */
  1363. cpuset_update_task_memory_state();
  1364. p->flags |= PF_MEMALLOC;
  1365. lockdep_set_current_reclaim_state(gfp_mask);
  1366. reclaim_state.reclaimed_slab = 0;
  1367. p->reclaim_state = &reclaim_state;
  1368. did_some_progress = try_to_free_pages(zonelist, order,
  1369. gfp_mask, nodemask);
  1370. p->reclaim_state = NULL;
  1371. lockdep_clear_current_reclaim_state();
  1372. p->flags &= ~PF_MEMALLOC;
  1373. cond_resched();
  1374. if (order != 0)
  1375. drain_all_pages();
  1376. if (likely(did_some_progress)) {
  1377. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1378. zonelist, high_zoneidx, alloc_flags);
  1379. if (page)
  1380. goto got_pg;
  1381. } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  1382. if (!try_set_zone_oom(zonelist, gfp_mask)) {
  1383. schedule_timeout_uninterruptible(1);
  1384. goto restart;
  1385. }
  1386. /*
  1387. * Go through the zonelist yet one more time, keep
  1388. * very high watermark here, this is only to catch
  1389. * a parallel oom killing, we must fail if we're still
  1390. * under heavy pressure.
  1391. */
  1392. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
  1393. order, zonelist, high_zoneidx,
  1394. ALLOC_WMARK_HIGH|ALLOC_CPUSET);
  1395. if (page) {
  1396. clear_zonelist_oom(zonelist, gfp_mask);
  1397. goto got_pg;
  1398. }
  1399. /* The OOM killer will not help higher order allocs so fail */
  1400. if (order > PAGE_ALLOC_COSTLY_ORDER) {
  1401. clear_zonelist_oom(zonelist, gfp_mask);
  1402. goto nopage;
  1403. }
  1404. out_of_memory(zonelist, gfp_mask, order);
  1405. clear_zonelist_oom(zonelist, gfp_mask);
  1406. goto restart;
  1407. }
  1408. /*
  1409. * Don't let big-order allocations loop unless the caller explicitly
  1410. * requests that. Wait for some write requests to complete then retry.
  1411. *
  1412. * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
  1413. * means __GFP_NOFAIL, but that may not be true in other
  1414. * implementations.
  1415. *
  1416. * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
  1417. * specified, then we retry until we no longer reclaim any pages
  1418. * (above), or we've reclaimed an order of pages at least as
  1419. * large as the allocation's order. In both cases, if the
  1420. * allocation still fails, we stop retrying.
  1421. */
  1422. pages_reclaimed += did_some_progress;
  1423. do_retry = 0;
  1424. if (!(gfp_mask & __GFP_NORETRY)) {
  1425. if (order <= PAGE_ALLOC_COSTLY_ORDER) {
  1426. do_retry = 1;
  1427. } else {
  1428. if (gfp_mask & __GFP_REPEAT &&
  1429. pages_reclaimed < (1 << order))
  1430. do_retry = 1;
  1431. }
  1432. if (gfp_mask & __GFP_NOFAIL)
  1433. do_retry = 1;
  1434. }
  1435. if (do_retry) {
  1436. congestion_wait(WRITE, HZ/50);
  1437. goto rebalance;
  1438. }
  1439. nopage:
  1440. if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
  1441. printk(KERN_WARNING "%s: page allocation failure."
  1442. " order:%d, mode:0x%x\n",
  1443. p->comm, order, gfp_mask);
  1444. dump_stack();
  1445. show_mem();
  1446. }
  1447. got_pg:
  1448. return page;
  1449. }
  1450. EXPORT_SYMBOL(__alloc_pages_internal);
  1451. /*
  1452. * Common helper functions.
  1453. */
  1454. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  1455. {
  1456. struct page * page;
  1457. page = alloc_pages(gfp_mask, order);
  1458. if (!page)
  1459. return 0;
  1460. return (unsigned long) page_address(page);
  1461. }
  1462. EXPORT_SYMBOL(__get_free_pages);
  1463. unsigned long get_zeroed_page(gfp_t gfp_mask)
  1464. {
  1465. struct page * page;
  1466. /*
  1467. * get_zeroed_page() returns a 32-bit address, which cannot represent
  1468. * a highmem page
  1469. */
  1470. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  1471. page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
  1472. if (page)
  1473. return (unsigned long) page_address(page);
  1474. return 0;
  1475. }
  1476. EXPORT_SYMBOL(get_zeroed_page);
  1477. void __pagevec_free(struct pagevec *pvec)
  1478. {
  1479. int i = pagevec_count(pvec);
  1480. while (--i >= 0)
  1481. free_hot_cold_page(pvec->pages[i], pvec->cold);
  1482. }
  1483. void __free_pages(struct page *page, unsigned int order)
  1484. {
  1485. if (put_page_testzero(page)) {
  1486. if (order == 0)
  1487. free_hot_page(page);
  1488. else
  1489. __free_pages_ok(page, order);
  1490. }
  1491. }
  1492. EXPORT_SYMBOL(__free_pages);
  1493. void free_pages(unsigned long addr, unsigned int order)
  1494. {
  1495. if (addr != 0) {
  1496. VM_BUG_ON(!virt_addr_valid((void *)addr));
  1497. __free_pages(virt_to_page((void *)addr), order);
  1498. }
  1499. }
  1500. EXPORT_SYMBOL(free_pages);
  1501. /**
  1502. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  1503. * @size: the number of bytes to allocate
  1504. * @gfp_mask: GFP flags for the allocation
  1505. *
  1506. * This function is similar to alloc_pages(), except that it allocates the
  1507. * minimum number of pages to satisfy the request. alloc_pages() can only
  1508. * allocate memory in power-of-two pages.
  1509. *
  1510. * This function is also limited by MAX_ORDER.
  1511. *
  1512. * Memory allocated by this function must be released by free_pages_exact().
  1513. */
  1514. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  1515. {
  1516. unsigned int order = get_order(size);
  1517. unsigned long addr;
  1518. addr = __get_free_pages(gfp_mask, order);
  1519. if (addr) {
  1520. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  1521. unsigned long used = addr + PAGE_ALIGN(size);
  1522. split_page(virt_to_page(addr), order);
  1523. while (used < alloc_end) {
  1524. free_page(used);
  1525. used += PAGE_SIZE;
  1526. }
  1527. }
  1528. return (void *)addr;
  1529. }
  1530. EXPORT_SYMBOL(alloc_pages_exact);
  1531. /**
  1532. * free_pages_exact - release memory allocated via alloc_pages_exact()
  1533. * @virt: the value returned by alloc_pages_exact.
  1534. * @size: size of allocation, same value as passed to alloc_pages_exact().
  1535. *
  1536. * Release the memory allocated by a previous call to alloc_pages_exact.
  1537. */
  1538. void free_pages_exact(void *virt, size_t size)
  1539. {
  1540. unsigned long addr = (unsigned long)virt;
  1541. unsigned long end = addr + PAGE_ALIGN(size);
  1542. while (addr < end) {
  1543. free_page(addr);
  1544. addr += PAGE_SIZE;
  1545. }
  1546. }
  1547. EXPORT_SYMBOL(free_pages_exact);
  1548. static unsigned int nr_free_zone_pages(int offset)
  1549. {
  1550. struct zoneref *z;
  1551. struct zone *zone;
  1552. /* Just pick one node, since fallback list is circular */
  1553. unsigned int sum = 0;
  1554. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  1555. for_each_zone_zonelist(zone, z, zonelist, offset) {
  1556. unsigned long size = zone->present_pages;
  1557. unsigned long high = zone->pages_high;
  1558. if (size > high)
  1559. sum += size - high;
  1560. }
  1561. return sum;
  1562. }
  1563. /*
  1564. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  1565. */
  1566. unsigned int nr_free_buffer_pages(void)
  1567. {
  1568. return nr_free_zone_pages(gfp_zone(GFP_USER));
  1569. }
  1570. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  1571. /*
  1572. * Amount of free RAM allocatable within all zones
  1573. */
  1574. unsigned int nr_free_pagecache_pages(void)
  1575. {
  1576. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  1577. }
  1578. static inline void show_node(struct zone *zone)
  1579. {
  1580. if (NUMA_BUILD)
  1581. printk("Node %d ", zone_to_nid(zone));
  1582. }
  1583. void si_meminfo(struct sysinfo *val)
  1584. {
  1585. val->totalram = totalram_pages;
  1586. val->sharedram = 0;
  1587. val->freeram = global_page_state(NR_FREE_PAGES);
  1588. val->bufferram = nr_blockdev_pages();
  1589. val->totalhigh = totalhigh_pages;
  1590. val->freehigh = nr_free_highpages();
  1591. val->mem_unit = PAGE_SIZE;
  1592. }
  1593. EXPORT_SYMBOL(si_meminfo);
  1594. #ifdef CONFIG_NUMA
  1595. void si_meminfo_node(struct sysinfo *val, int nid)
  1596. {
  1597. pg_data_t *pgdat = NODE_DATA(nid);
  1598. val->totalram = pgdat->node_present_pages;
  1599. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  1600. #ifdef CONFIG_HIGHMEM
  1601. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  1602. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  1603. NR_FREE_PAGES);
  1604. #else
  1605. val->totalhigh = 0;
  1606. val->freehigh = 0;
  1607. #endif
  1608. val->mem_unit = PAGE_SIZE;
  1609. }
  1610. #endif
  1611. #define K(x) ((x) << (PAGE_SHIFT-10))
  1612. /*
  1613. * Show free area list (used inside shift_scroll-lock stuff)
  1614. * We also calculate the percentage fragmentation. We do this by counting the
  1615. * memory on each free list with the exception of the first item on the list.
  1616. */
  1617. void show_free_areas(void)
  1618. {
  1619. int cpu;
  1620. struct zone *zone;
  1621. for_each_populated_zone(zone) {
  1622. show_node(zone);
  1623. printk("%s per-cpu:\n", zone->name);
  1624. for_each_online_cpu(cpu) {
  1625. struct per_cpu_pageset *pageset;
  1626. pageset = zone_pcp(zone, cpu);
  1627. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  1628. cpu, pageset->pcp.high,
  1629. pageset->pcp.batch, pageset->pcp.count);
  1630. }
  1631. }
  1632. printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
  1633. " inactive_file:%lu"
  1634. //TODO: check/adjust line lengths
  1635. #ifdef CONFIG_UNEVICTABLE_LRU
  1636. " unevictable:%lu"
  1637. #endif
  1638. " dirty:%lu writeback:%lu unstable:%lu\n"
  1639. " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
  1640. global_page_state(NR_ACTIVE_ANON),
  1641. global_page_state(NR_ACTIVE_FILE),
  1642. global_page_state(NR_INACTIVE_ANON),
  1643. global_page_state(NR_INACTIVE_FILE),
  1644. #ifdef CONFIG_UNEVICTABLE_LRU
  1645. global_page_state(NR_UNEVICTABLE),
  1646. #endif
  1647. global_page_state(NR_FILE_DIRTY),
  1648. global_page_state(NR_WRITEBACK),
  1649. global_page_state(NR_UNSTABLE_NFS),
  1650. global_page_state(NR_FREE_PAGES),
  1651. global_page_state(NR_SLAB_RECLAIMABLE) +
  1652. global_page_state(NR_SLAB_UNRECLAIMABLE),
  1653. global_page_state(NR_FILE_MAPPED),
  1654. global_page_state(NR_PAGETABLE),
  1655. global_page_state(NR_BOUNCE));
  1656. for_each_populated_zone(zone) {
  1657. int i;
  1658. show_node(zone);
  1659. printk("%s"
  1660. " free:%lukB"
  1661. " min:%lukB"
  1662. " low:%lukB"
  1663. " high:%lukB"
  1664. " active_anon:%lukB"
  1665. " inactive_anon:%lukB"
  1666. " active_file:%lukB"
  1667. " inactive_file:%lukB"
  1668. #ifdef CONFIG_UNEVICTABLE_LRU
  1669. " unevictable:%lukB"
  1670. #endif
  1671. " present:%lukB"
  1672. " pages_scanned:%lu"
  1673. " all_unreclaimable? %s"
  1674. "\n",
  1675. zone->name,
  1676. K(zone_page_state(zone, NR_FREE_PAGES)),
  1677. K(zone->pages_min),
  1678. K(zone->pages_low),
  1679. K(zone->pages_high),
  1680. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  1681. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  1682. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  1683. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  1684. #ifdef CONFIG_UNEVICTABLE_LRU
  1685. K(zone_page_state(zone, NR_UNEVICTABLE)),
  1686. #endif
  1687. K(zone->present_pages),
  1688. zone->pages_scanned,
  1689. (zone_is_all_unreclaimable(zone) ? "yes" : "no")
  1690. );
  1691. printk("lowmem_reserve[]:");
  1692. for (i = 0; i < MAX_NR_ZONES; i++)
  1693. printk(" %lu", zone->lowmem_reserve[i]);
  1694. printk("\n");
  1695. }
  1696. for_each_populated_zone(zone) {
  1697. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  1698. show_node(zone);
  1699. printk("%s: ", zone->name);
  1700. spin_lock_irqsave(&zone->lock, flags);
  1701. for (order = 0; order < MAX_ORDER; order++) {
  1702. nr[order] = zone->free_area[order].nr_free;
  1703. total += nr[order] << order;
  1704. }
  1705. spin_unlock_irqrestore(&zone->lock, flags);
  1706. for (order = 0; order < MAX_ORDER; order++)
  1707. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  1708. printk("= %lukB\n", K(total));
  1709. }
  1710. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  1711. show_swap_cache_info();
  1712. }
  1713. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  1714. {
  1715. zoneref->zone = zone;
  1716. zoneref->zone_idx = zone_idx(zone);
  1717. }
  1718. /*
  1719. * Builds allocation fallback zone lists.
  1720. *
  1721. * Add all populated zones of a node to the zonelist.
  1722. */
  1723. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  1724. int nr_zones, enum zone_type zone_type)
  1725. {
  1726. struct zone *zone;
  1727. BUG_ON(zone_type >= MAX_NR_ZONES);
  1728. zone_type++;
  1729. do {
  1730. zone_type--;
  1731. zone = pgdat->node_zones + zone_type;
  1732. if (populated_zone(zone)) {
  1733. zoneref_set_zone(zone,
  1734. &zonelist->_zonerefs[nr_zones++]);
  1735. check_highest_zone(zone_type);
  1736. }
  1737. } while (zone_type);
  1738. return nr_zones;
  1739. }
  1740. /*
  1741. * zonelist_order:
  1742. * 0 = automatic detection of better ordering.
  1743. * 1 = order by ([node] distance, -zonetype)
  1744. * 2 = order by (-zonetype, [node] distance)
  1745. *
  1746. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  1747. * the same zonelist. So only NUMA can configure this param.
  1748. */
  1749. #define ZONELIST_ORDER_DEFAULT 0
  1750. #define ZONELIST_ORDER_NODE 1
  1751. #define ZONELIST_ORDER_ZONE 2
  1752. /* zonelist order in the kernel.
  1753. * set_zonelist_order() will set this to NODE or ZONE.
  1754. */
  1755. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1756. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  1757. #ifdef CONFIG_NUMA
  1758. /* The value user specified ....changed by config */
  1759. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1760. /* string for sysctl */
  1761. #define NUMA_ZONELIST_ORDER_LEN 16
  1762. char numa_zonelist_order[16] = "default";
  1763. /*
  1764. * interface for configure zonelist ordering.
  1765. * command line option "numa_zonelist_order"
  1766. * = "[dD]efault - default, automatic configuration.
  1767. * = "[nN]ode - order by node locality, then by zone within node
  1768. * = "[zZ]one - order by zone, then by locality within zone
  1769. */
  1770. static int __parse_numa_zonelist_order(char *s)
  1771. {
  1772. if (*s == 'd' || *s == 'D') {
  1773. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1774. } else if (*s == 'n' || *s == 'N') {
  1775. user_zonelist_order = ZONELIST_ORDER_NODE;
  1776. } else if (*s == 'z' || *s == 'Z') {
  1777. user_zonelist_order = ZONELIST_ORDER_ZONE;
  1778. } else {
  1779. printk(KERN_WARNING
  1780. "Ignoring invalid numa_zonelist_order value: "
  1781. "%s\n", s);
  1782. return -EINVAL;
  1783. }
  1784. return 0;
  1785. }
  1786. static __init int setup_numa_zonelist_order(char *s)
  1787. {
  1788. if (s)
  1789. return __parse_numa_zonelist_order(s);
  1790. return 0;
  1791. }
  1792. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  1793. /*
  1794. * sysctl handler for numa_zonelist_order
  1795. */
  1796. int numa_zonelist_order_handler(ctl_table *table, int write,
  1797. struct file *file, void __user *buffer, size_t *length,
  1798. loff_t *ppos)
  1799. {
  1800. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  1801. int ret;
  1802. if (write)
  1803. strncpy(saved_string, (char*)table->data,
  1804. NUMA_ZONELIST_ORDER_LEN);
  1805. ret = proc_dostring(table, write, file, buffer, length, ppos);
  1806. if (ret)
  1807. return ret;
  1808. if (write) {
  1809. int oldval = user_zonelist_order;
  1810. if (__parse_numa_zonelist_order((char*)table->data)) {
  1811. /*
  1812. * bogus value. restore saved string
  1813. */
  1814. strncpy((char*)table->data, saved_string,
  1815. NUMA_ZONELIST_ORDER_LEN);
  1816. user_zonelist_order = oldval;
  1817. } else if (oldval != user_zonelist_order)
  1818. build_all_zonelists();
  1819. }
  1820. return 0;
  1821. }
  1822. #define MAX_NODE_LOAD (num_online_nodes())
  1823. static int node_load[MAX_NUMNODES];
  1824. /**
  1825. * find_next_best_node - find the next node that should appear in a given node's fallback list
  1826. * @node: node whose fallback list we're appending
  1827. * @used_node_mask: nodemask_t of already used nodes
  1828. *
  1829. * We use a number of factors to determine which is the next node that should
  1830. * appear on a given node's fallback list. The node should not have appeared
  1831. * already in @node's fallback list, and it should be the next closest node
  1832. * according to the distance array (which contains arbitrary distance values
  1833. * from each node to each node in the system), and should also prefer nodes
  1834. * with no CPUs, since presumably they'll have very little allocation pressure
  1835. * on them otherwise.
  1836. * It returns -1 if no node is found.
  1837. */
  1838. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  1839. {
  1840. int n, val;
  1841. int min_val = INT_MAX;
  1842. int best_node = -1;
  1843. const struct cpumask *tmp = cpumask_of_node(0);
  1844. /* Use the local node if we haven't already */
  1845. if (!node_isset(node, *used_node_mask)) {
  1846. node_set(node, *used_node_mask);
  1847. return node;
  1848. }
  1849. for_each_node_state(n, N_HIGH_MEMORY) {
  1850. /* Don't want a node to appear more than once */
  1851. if (node_isset(n, *used_node_mask))
  1852. continue;
  1853. /* Use the distance array to find the distance */
  1854. val = node_distance(node, n);
  1855. /* Penalize nodes under us ("prefer the next node") */
  1856. val += (n < node);
  1857. /* Give preference to headless and unused nodes */
  1858. tmp = cpumask_of_node(n);
  1859. if (!cpumask_empty(tmp))
  1860. val += PENALTY_FOR_NODE_WITH_CPUS;
  1861. /* Slight preference for less loaded node */
  1862. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  1863. val += node_load[n];
  1864. if (val < min_val) {
  1865. min_val = val;
  1866. best_node = n;
  1867. }
  1868. }
  1869. if (best_node >= 0)
  1870. node_set(best_node, *used_node_mask);
  1871. return best_node;
  1872. }
  1873. /*
  1874. * Build zonelists ordered by node and zones within node.
  1875. * This results in maximum locality--normal zone overflows into local
  1876. * DMA zone, if any--but risks exhausting DMA zone.
  1877. */
  1878. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  1879. {
  1880. int j;
  1881. struct zonelist *zonelist;
  1882. zonelist = &pgdat->node_zonelists[0];
  1883. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  1884. ;
  1885. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  1886. MAX_NR_ZONES - 1);
  1887. zonelist->_zonerefs[j].zone = NULL;
  1888. zonelist->_zonerefs[j].zone_idx = 0;
  1889. }
  1890. /*
  1891. * Build gfp_thisnode zonelists
  1892. */
  1893. static void build_thisnode_zonelists(pg_data_t *pgdat)
  1894. {
  1895. int j;
  1896. struct zonelist *zonelist;
  1897. zonelist = &pgdat->node_zonelists[1];
  1898. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  1899. zonelist->_zonerefs[j].zone = NULL;
  1900. zonelist->_zonerefs[j].zone_idx = 0;
  1901. }
  1902. /*
  1903. * Build zonelists ordered by zone and nodes within zones.
  1904. * This results in conserving DMA zone[s] until all Normal memory is
  1905. * exhausted, but results in overflowing to remote node while memory
  1906. * may still exist in local DMA zone.
  1907. */
  1908. static int node_order[MAX_NUMNODES];
  1909. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  1910. {
  1911. int pos, j, node;
  1912. int zone_type; /* needs to be signed */
  1913. struct zone *z;
  1914. struct zonelist *zonelist;
  1915. zonelist = &pgdat->node_zonelists[0];
  1916. pos = 0;
  1917. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  1918. for (j = 0; j < nr_nodes; j++) {
  1919. node = node_order[j];
  1920. z = &NODE_DATA(node)->node_zones[zone_type];
  1921. if (populated_zone(z)) {
  1922. zoneref_set_zone(z,
  1923. &zonelist->_zonerefs[pos++]);
  1924. check_highest_zone(zone_type);
  1925. }
  1926. }
  1927. }
  1928. zonelist->_zonerefs[pos].zone = NULL;
  1929. zonelist->_zonerefs[pos].zone_idx = 0;
  1930. }
  1931. static int default_zonelist_order(void)
  1932. {
  1933. int nid, zone_type;
  1934. unsigned long low_kmem_size,total_size;
  1935. struct zone *z;
  1936. int average_size;
  1937. /*
  1938. * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
  1939. * If they are really small and used heavily, the system can fall
  1940. * into OOM very easily.
  1941. * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
  1942. */
  1943. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  1944. low_kmem_size = 0;
  1945. total_size = 0;
  1946. for_each_online_node(nid) {
  1947. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  1948. z = &NODE_DATA(nid)->node_zones[zone_type];
  1949. if (populated_zone(z)) {
  1950. if (zone_type < ZONE_NORMAL)
  1951. low_kmem_size += z->present_pages;
  1952. total_size += z->present_pages;
  1953. }
  1954. }
  1955. }
  1956. if (!low_kmem_size || /* there are no DMA area. */
  1957. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  1958. return ZONELIST_ORDER_NODE;
  1959. /*
  1960. * look into each node's config.
  1961. * If there is a node whose DMA/DMA32 memory is very big area on
  1962. * local memory, NODE_ORDER may be suitable.
  1963. */
  1964. average_size = total_size /
  1965. (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
  1966. for_each_online_node(nid) {
  1967. low_kmem_size = 0;
  1968. total_size = 0;
  1969. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  1970. z = &NODE_DATA(nid)->node_zones[zone_type];
  1971. if (populated_zone(z)) {
  1972. if (zone_type < ZONE_NORMAL)
  1973. low_kmem_size += z->present_pages;
  1974. total_size += z->present_pages;
  1975. }
  1976. }
  1977. if (low_kmem_size &&
  1978. total_size > average_size && /* ignore small node */
  1979. low_kmem_size > total_size * 70/100)
  1980. return ZONELIST_ORDER_NODE;
  1981. }
  1982. return ZONELIST_ORDER_ZONE;
  1983. }
  1984. static void set_zonelist_order(void)
  1985. {
  1986. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  1987. current_zonelist_order = default_zonelist_order();
  1988. else
  1989. current_zonelist_order = user_zonelist_order;
  1990. }
  1991. static void build_zonelists(pg_data_t *pgdat)
  1992. {
  1993. int j, node, load;
  1994. enum zone_type i;
  1995. nodemask_t used_mask;
  1996. int local_node, prev_node;
  1997. struct zonelist *zonelist;
  1998. int order = current_zonelist_order;
  1999. /* initialize zonelists */
  2000. for (i = 0; i < MAX_ZONELISTS; i++) {
  2001. zonelist = pgdat->node_zonelists + i;
  2002. zonelist->_zonerefs[0].zone = NULL;
  2003. zonelist->_zonerefs[0].zone_idx = 0;
  2004. }
  2005. /* NUMA-aware ordering of nodes */
  2006. local_node = pgdat->node_id;
  2007. load = num_online_nodes();
  2008. prev_node = local_node;
  2009. nodes_clear(used_mask);
  2010. memset(node_load, 0, sizeof(node_load));
  2011. memset(node_order, 0, sizeof(node_order));
  2012. j = 0;
  2013. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  2014. int distance = node_distance(local_node, node);
  2015. /*
  2016. * If another node is sufficiently far away then it is better
  2017. * to reclaim pages in a zone before going off node.
  2018. */
  2019. if (distance > RECLAIM_DISTANCE)
  2020. zone_reclaim_mode = 1;
  2021. /*
  2022. * We don't want to pressure a particular node.
  2023. * So adding penalty to the first node in same
  2024. * distance group to make it round-robin.
  2025. */
  2026. if (distance != node_distance(local_node, prev_node))
  2027. node_load[node] = load;
  2028. prev_node = node;
  2029. load--;
  2030. if (order == ZONELIST_ORDER_NODE)
  2031. build_zonelists_in_node_order(pgdat, node);
  2032. else
  2033. node_order[j++] = node; /* remember order */
  2034. }
  2035. if (order == ZONELIST_ORDER_ZONE) {
  2036. /* calculate node order -- i.e., DMA last! */
  2037. build_zonelists_in_zone_order(pgdat, j);
  2038. }
  2039. build_thisnode_zonelists(pgdat);
  2040. }
  2041. /* Construct the zonelist performance cache - see further mmzone.h */
  2042. static void build_zonelist_cache(pg_data_t *pgdat)
  2043. {
  2044. struct zonelist *zonelist;
  2045. struct zonelist_cache *zlc;
  2046. struct zoneref *z;
  2047. zonelist = &pgdat->node_zonelists[0];
  2048. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  2049. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  2050. for (z = zonelist->_zonerefs; z->zone; z++)
  2051. zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
  2052. }
  2053. #else /* CONFIG_NUMA */
  2054. static void set_zonelist_order(void)
  2055. {
  2056. current_zonelist_order = ZONELIST_ORDER_ZONE;
  2057. }
  2058. static void build_zonelists(pg_data_t *pgdat)
  2059. {
  2060. int node, local_node;
  2061. enum zone_type j;
  2062. struct zonelist *zonelist;
  2063. local_node = pgdat->node_id;
  2064. zonelist = &pgdat->node_zonelists[0];
  2065. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2066. /*
  2067. * Now we build the zonelist so that it contains the zones
  2068. * of all the other nodes.
  2069. * We don't want to pressure a particular node, so when
  2070. * building the zones for node N, we make sure that the
  2071. * zones coming right after the local ones are those from
  2072. * node N+1 (modulo N)
  2073. */
  2074. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  2075. if (!node_online(node))
  2076. continue;
  2077. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2078. MAX_NR_ZONES - 1);
  2079. }
  2080. for (node = 0; node < local_node; node++) {
  2081. if (!node_online(node))
  2082. continue;
  2083. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2084. MAX_NR_ZONES - 1);
  2085. }
  2086. zonelist->_zonerefs[j].zone = NULL;
  2087. zonelist->_zonerefs[j].zone_idx = 0;
  2088. }
  2089. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  2090. static void build_zonelist_cache(pg_data_t *pgdat)
  2091. {
  2092. pgdat->node_zonelists[0].zlcache_ptr = NULL;
  2093. }
  2094. #endif /* CONFIG_NUMA */
  2095. /* return values int ....just for stop_machine() */
  2096. static int __build_all_zonelists(void *dummy)
  2097. {
  2098. int nid;
  2099. for_each_online_node(nid) {
  2100. pg_data_t *pgdat = NODE_DATA(nid);
  2101. build_zonelists(pgdat);
  2102. build_zonelist_cache(pgdat);
  2103. }
  2104. return 0;
  2105. }
  2106. void build_all_zonelists(void)
  2107. {
  2108. set_zonelist_order();
  2109. if (system_state == SYSTEM_BOOTING) {
  2110. __build_all_zonelists(NULL);
  2111. mminit_verify_zonelist();
  2112. cpuset_init_current_mems_allowed();
  2113. } else {
  2114. /* we have to stop all cpus to guarantee there is no user
  2115. of zonelist */
  2116. stop_machine(__build_all_zonelists, NULL, NULL);
  2117. /* cpuset refresh routine should be here */
  2118. }
  2119. vm_total_pages = nr_free_pagecache_pages();
  2120. /*
  2121. * Disable grouping by mobility if the number of pages in the
  2122. * system is too low to allow the mechanism to work. It would be
  2123. * more accurate, but expensive to check per-zone. This check is
  2124. * made on memory-hotadd so a system can start with mobility
  2125. * disabled and enable it later
  2126. */
  2127. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  2128. page_group_by_mobility_disabled = 1;
  2129. else
  2130. page_group_by_mobility_disabled = 0;
  2131. printk("Built %i zonelists in %s order, mobility grouping %s. "
  2132. "Total pages: %ld\n",
  2133. num_online_nodes(),
  2134. zonelist_order_name[current_zonelist_order],
  2135. page_group_by_mobility_disabled ? "off" : "on",
  2136. vm_total_pages);
  2137. #ifdef CONFIG_NUMA
  2138. printk("Policy zone: %s\n", zone_names[policy_zone]);
  2139. #endif
  2140. }
  2141. /*
  2142. * Helper functions to size the waitqueue hash table.
  2143. * Essentially these want to choose hash table sizes sufficiently
  2144. * large so that collisions trying to wait on pages are rare.
  2145. * But in fact, the number of active page waitqueues on typical
  2146. * systems is ridiculously low, less than 200. So this is even
  2147. * conservative, even though it seems large.
  2148. *
  2149. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  2150. * waitqueues, i.e. the size of the waitq table given the number of pages.
  2151. */
  2152. #define PAGES_PER_WAITQUEUE 256
  2153. #ifndef CONFIG_MEMORY_HOTPLUG
  2154. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2155. {
  2156. unsigned long size = 1;
  2157. pages /= PAGES_PER_WAITQUEUE;
  2158. while (size < pages)
  2159. size <<= 1;
  2160. /*
  2161. * Once we have dozens or even hundreds of threads sleeping
  2162. * on IO we've got bigger problems than wait queue collision.
  2163. * Limit the size of the wait table to a reasonable size.
  2164. */
  2165. size = min(size, 4096UL);
  2166. return max(size, 4UL);
  2167. }
  2168. #else
  2169. /*
  2170. * A zone's size might be changed by hot-add, so it is not possible to determine
  2171. * a suitable size for its wait_table. So we use the maximum size now.
  2172. *
  2173. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  2174. *
  2175. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  2176. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  2177. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  2178. *
  2179. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  2180. * or more by the traditional way. (See above). It equals:
  2181. *
  2182. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  2183. * ia64(16K page size) : = ( 8G + 4M)byte.
  2184. * powerpc (64K page size) : = (32G +16M)byte.
  2185. */
  2186. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2187. {
  2188. return 4096UL;
  2189. }
  2190. #endif
  2191. /*
  2192. * This is an integer logarithm so that shifts can be used later
  2193. * to extract the more random high bits from the multiplicative
  2194. * hash function before the remainder is taken.
  2195. */
  2196. static inline unsigned long wait_table_bits(unsigned long size)
  2197. {
  2198. return ffz(~size);
  2199. }
  2200. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  2201. /*
  2202. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  2203. * of blocks reserved is based on zone->pages_min. The memory within the
  2204. * reserve will tend to store contiguous free pages. Setting min_free_kbytes
  2205. * higher will lead to a bigger reserve which will get freed as contiguous
  2206. * blocks as reclaim kicks in
  2207. */
  2208. static void setup_zone_migrate_reserve(struct zone *zone)
  2209. {
  2210. unsigned long start_pfn, pfn, end_pfn;
  2211. struct page *page;
  2212. unsigned long reserve, block_migratetype;
  2213. /* Get the start pfn, end pfn and the number of blocks to reserve */
  2214. start_pfn = zone->zone_start_pfn;
  2215. end_pfn = start_pfn + zone->spanned_pages;
  2216. reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
  2217. pageblock_order;
  2218. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  2219. if (!pfn_valid(pfn))
  2220. continue;
  2221. page = pfn_to_page(pfn);
  2222. /* Watch out for overlapping nodes */
  2223. if (page_to_nid(page) != zone_to_nid(zone))
  2224. continue;
  2225. /* Blocks with reserved pages will never free, skip them. */
  2226. if (PageReserved(page))
  2227. continue;
  2228. block_migratetype = get_pageblock_migratetype(page);
  2229. /* If this block is reserved, account for it */
  2230. if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
  2231. reserve--;
  2232. continue;
  2233. }
  2234. /* Suitable for reserving if this block is movable */
  2235. if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
  2236. set_pageblock_migratetype(page, MIGRATE_RESERVE);
  2237. move_freepages_block(zone, page, MIGRATE_RESERVE);
  2238. reserve--;
  2239. continue;
  2240. }
  2241. /*
  2242. * If the reserve is met and this is a previous reserved block,
  2243. * take it back
  2244. */
  2245. if (block_migratetype == MIGRATE_RESERVE) {
  2246. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2247. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  2248. }
  2249. }
  2250. }
  2251. /*
  2252. * Initially all pages are reserved - free ones are freed
  2253. * up by free_all_bootmem() once the early boot process is
  2254. * done. Non-atomic initialization, single-pass.
  2255. */
  2256. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  2257. unsigned long start_pfn, enum memmap_context context)
  2258. {
  2259. struct page *page;
  2260. unsigned long end_pfn = start_pfn + size;
  2261. unsigned long pfn;
  2262. struct zone *z;
  2263. if (highest_memmap_pfn < end_pfn - 1)
  2264. highest_memmap_pfn = end_pfn - 1;
  2265. z = &NODE_DATA(nid)->node_zones[zone];
  2266. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  2267. /*
  2268. * There can be holes in boot-time mem_map[]s
  2269. * handed to this function. They do not
  2270. * exist on hotplugged memory.
  2271. */
  2272. if (context == MEMMAP_EARLY) {
  2273. if (!early_pfn_valid(pfn))
  2274. continue;
  2275. if (!early_pfn_in_nid(pfn, nid))
  2276. continue;
  2277. }
  2278. page = pfn_to_page(pfn);
  2279. set_page_links(page, zone, nid, pfn);
  2280. mminit_verify_page_links(page, zone, nid, pfn);
  2281. init_page_count(page);
  2282. reset_page_mapcount(page);
  2283. SetPageReserved(page);
  2284. /*
  2285. * Mark the block movable so that blocks are reserved for
  2286. * movable at startup. This will force kernel allocations
  2287. * to reserve their blocks rather than leaking throughout
  2288. * the address space during boot when many long-lived
  2289. * kernel allocations are made. Later some blocks near
  2290. * the start are marked MIGRATE_RESERVE by
  2291. * setup_zone_migrate_reserve()
  2292. *
  2293. * bitmap is created for zone's valid pfn range. but memmap
  2294. * can be created for invalid pages (for alignment)
  2295. * check here not to call set_pageblock_migratetype() against
  2296. * pfn out of zone.
  2297. */
  2298. if ((z->zone_start_pfn <= pfn)
  2299. && (pfn < z->zone_start_pfn + z->spanned_pages)
  2300. && !(pfn & (pageblock_nr_pages - 1)))
  2301. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2302. INIT_LIST_HEAD(&page->lru);
  2303. #ifdef WANT_PAGE_VIRTUAL
  2304. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  2305. if (!is_highmem_idx(zone))
  2306. set_page_address(page, __va(pfn << PAGE_SHIFT));
  2307. #endif
  2308. }
  2309. }
  2310. static void __meminit zone_init_free_lists(struct zone *zone)
  2311. {
  2312. int order, t;
  2313. for_each_migratetype_order(order, t) {
  2314. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  2315. zone->free_area[order].nr_free = 0;
  2316. }
  2317. }
  2318. #ifndef __HAVE_ARCH_MEMMAP_INIT
  2319. #define memmap_init(size, nid, zone, start_pfn) \
  2320. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  2321. #endif
  2322. static int zone_batchsize(struct zone *zone)
  2323. {
  2324. #ifdef CONFIG_MMU
  2325. int batch;
  2326. /*
  2327. * The per-cpu-pages pools are set to around 1000th of the
  2328. * size of the zone. But no more than 1/2 of a meg.
  2329. *
  2330. * OK, so we don't know how big the cache is. So guess.
  2331. */
  2332. batch = zone->present_pages / 1024;
  2333. if (batch * PAGE_SIZE > 512 * 1024)
  2334. batch = (512 * 1024) / PAGE_SIZE;
  2335. batch /= 4; /* We effectively *= 4 below */
  2336. if (batch < 1)
  2337. batch = 1;
  2338. /*
  2339. * Clamp the batch to a 2^n - 1 value. Having a power
  2340. * of 2 value was found to be more likely to have
  2341. * suboptimal cache aliasing properties in some cases.
  2342. *
  2343. * For example if 2 tasks are alternately allocating
  2344. * batches of pages, one task can end up with a lot
  2345. * of pages of one half of the possible page colors
  2346. * and the other with pages of the other colors.
  2347. */
  2348. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  2349. return batch;
  2350. #else
  2351. /* The deferral and batching of frees should be suppressed under NOMMU
  2352. * conditions.
  2353. *
  2354. * The problem is that NOMMU needs to be able to allocate large chunks
  2355. * of contiguous memory as there's no hardware page translation to
  2356. * assemble apparent contiguous memory from discontiguous pages.
  2357. *
  2358. * Queueing large contiguous runs of pages for batching, however,
  2359. * causes the pages to actually be freed in smaller chunks. As there
  2360. * can be a significant delay between the individual batches being
  2361. * recycled, this leads to the once large chunks of space being
  2362. * fragmented and becoming unavailable for high-order allocations.
  2363. */
  2364. return 0;
  2365. #endif
  2366. }
  2367. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  2368. {
  2369. struct per_cpu_pages *pcp;
  2370. memset(p, 0, sizeof(*p));
  2371. pcp = &p->pcp;
  2372. pcp->count = 0;
  2373. pcp->high = 6 * batch;
  2374. pcp->batch = max(1UL, 1 * batch);
  2375. INIT_LIST_HEAD(&pcp->list);
  2376. }
  2377. /*
  2378. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  2379. * to the value high for the pageset p.
  2380. */
  2381. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  2382. unsigned long high)
  2383. {
  2384. struct per_cpu_pages *pcp;
  2385. pcp = &p->pcp;
  2386. pcp->high = high;
  2387. pcp->batch = max(1UL, high/4);
  2388. if ((high/4) > (PAGE_SHIFT * 8))
  2389. pcp->batch = PAGE_SHIFT * 8;
  2390. }
  2391. #ifdef CONFIG_NUMA
  2392. /*
  2393. * Boot pageset table. One per cpu which is going to be used for all
  2394. * zones and all nodes. The parameters will be set in such a way
  2395. * that an item put on a list will immediately be handed over to
  2396. * the buddy list. This is safe since pageset manipulation is done
  2397. * with interrupts disabled.
  2398. *
  2399. * Some NUMA counter updates may also be caught by the boot pagesets.
  2400. *
  2401. * The boot_pagesets must be kept even after bootup is complete for
  2402. * unused processors and/or zones. They do play a role for bootstrapping
  2403. * hotplugged processors.
  2404. *
  2405. * zoneinfo_show() and maybe other functions do
  2406. * not check if the processor is online before following the pageset pointer.
  2407. * Other parts of the kernel may not check if the zone is available.
  2408. */
  2409. static struct per_cpu_pageset boot_pageset[NR_CPUS];
  2410. /*
  2411. * Dynamically allocate memory for the
  2412. * per cpu pageset array in struct zone.
  2413. */
  2414. static int __cpuinit process_zones(int cpu)
  2415. {
  2416. struct zone *zone, *dzone;
  2417. int node = cpu_to_node(cpu);
  2418. node_set_state(node, N_CPU); /* this node has a cpu */
  2419. for_each_populated_zone(zone) {
  2420. zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
  2421. GFP_KERNEL, node);
  2422. if (!zone_pcp(zone, cpu))
  2423. goto bad;
  2424. setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
  2425. if (percpu_pagelist_fraction)
  2426. setup_pagelist_highmark(zone_pcp(zone, cpu),
  2427. (zone->present_pages / percpu_pagelist_fraction));
  2428. }
  2429. return 0;
  2430. bad:
  2431. for_each_zone(dzone) {
  2432. if (!populated_zone(dzone))
  2433. continue;
  2434. if (dzone == zone)
  2435. break;
  2436. kfree(zone_pcp(dzone, cpu));
  2437. zone_pcp(dzone, cpu) = NULL;
  2438. }
  2439. return -ENOMEM;
  2440. }
  2441. static inline void free_zone_pagesets(int cpu)
  2442. {
  2443. struct zone *zone;
  2444. for_each_zone(zone) {
  2445. struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
  2446. /* Free per_cpu_pageset if it is slab allocated */
  2447. if (pset != &boot_pageset[cpu])
  2448. kfree(pset);
  2449. zone_pcp(zone, cpu) = NULL;
  2450. }
  2451. }
  2452. static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
  2453. unsigned long action,
  2454. void *hcpu)
  2455. {
  2456. int cpu = (long)hcpu;
  2457. int ret = NOTIFY_OK;
  2458. switch (action) {
  2459. case CPU_UP_PREPARE:
  2460. case CPU_UP_PREPARE_FROZEN:
  2461. if (process_zones(cpu))
  2462. ret = NOTIFY_BAD;
  2463. break;
  2464. case CPU_UP_CANCELED:
  2465. case CPU_UP_CANCELED_FROZEN:
  2466. case CPU_DEAD:
  2467. case CPU_DEAD_FROZEN:
  2468. free_zone_pagesets(cpu);
  2469. break;
  2470. default:
  2471. break;
  2472. }
  2473. return ret;
  2474. }
  2475. static struct notifier_block __cpuinitdata pageset_notifier =
  2476. { &pageset_cpuup_callback, NULL, 0 };
  2477. void __init setup_per_cpu_pageset(void)
  2478. {
  2479. int err;
  2480. /* Initialize per_cpu_pageset for cpu 0.
  2481. * A cpuup callback will do this for every cpu
  2482. * as it comes online
  2483. */
  2484. err = process_zones(smp_processor_id());
  2485. BUG_ON(err);
  2486. register_cpu_notifier(&pageset_notifier);
  2487. }
  2488. #endif
  2489. static noinline __init_refok
  2490. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  2491. {
  2492. int i;
  2493. struct pglist_data *pgdat = zone->zone_pgdat;
  2494. size_t alloc_size;
  2495. /*
  2496. * The per-page waitqueue mechanism uses hashed waitqueues
  2497. * per zone.
  2498. */
  2499. zone->wait_table_hash_nr_entries =
  2500. wait_table_hash_nr_entries(zone_size_pages);
  2501. zone->wait_table_bits =
  2502. wait_table_bits(zone->wait_table_hash_nr_entries);
  2503. alloc_size = zone->wait_table_hash_nr_entries
  2504. * sizeof(wait_queue_head_t);
  2505. if (!slab_is_available()) {
  2506. zone->wait_table = (wait_queue_head_t *)
  2507. alloc_bootmem_node(pgdat, alloc_size);
  2508. } else {
  2509. /*
  2510. * This case means that a zone whose size was 0 gets new memory
  2511. * via memory hot-add.
  2512. * But it may be the case that a new node was hot-added. In
  2513. * this case vmalloc() will not be able to use this new node's
  2514. * memory - this wait_table must be initialized to use this new
  2515. * node itself as well.
  2516. * To use this new node's memory, further consideration will be
  2517. * necessary.
  2518. */
  2519. zone->wait_table = vmalloc(alloc_size);
  2520. }
  2521. if (!zone->wait_table)
  2522. return -ENOMEM;
  2523. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  2524. init_waitqueue_head(zone->wait_table + i);
  2525. return 0;
  2526. }
  2527. static __meminit void zone_pcp_init(struct zone *zone)
  2528. {
  2529. int cpu;
  2530. unsigned long batch = zone_batchsize(zone);
  2531. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  2532. #ifdef CONFIG_NUMA
  2533. /* Early boot. Slab allocator not functional yet */
  2534. zone_pcp(zone, cpu) = &boot_pageset[cpu];
  2535. setup_pageset(&boot_pageset[cpu],0);
  2536. #else
  2537. setup_pageset(zone_pcp(zone,cpu), batch);
  2538. #endif
  2539. }
  2540. if (zone->present_pages)
  2541. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
  2542. zone->name, zone->present_pages, batch);
  2543. }
  2544. __meminit int init_currently_empty_zone(struct zone *zone,
  2545. unsigned long zone_start_pfn,
  2546. unsigned long size,
  2547. enum memmap_context context)
  2548. {
  2549. struct pglist_data *pgdat = zone->zone_pgdat;
  2550. int ret;
  2551. ret = zone_wait_table_init(zone, size);
  2552. if (ret)
  2553. return ret;
  2554. pgdat->nr_zones = zone_idx(zone) + 1;
  2555. zone->zone_start_pfn = zone_start_pfn;
  2556. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  2557. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  2558. pgdat->node_id,
  2559. (unsigned long)zone_idx(zone),
  2560. zone_start_pfn, (zone_start_pfn + size));
  2561. zone_init_free_lists(zone);
  2562. return 0;
  2563. }
  2564. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2565. /*
  2566. * Basic iterator support. Return the first range of PFNs for a node
  2567. * Note: nid == MAX_NUMNODES returns first region regardless of node
  2568. */
  2569. static int __meminit first_active_region_index_in_nid(int nid)
  2570. {
  2571. int i;
  2572. for (i = 0; i < nr_nodemap_entries; i++)
  2573. if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
  2574. return i;
  2575. return -1;
  2576. }
  2577. /*
  2578. * Basic iterator support. Return the next active range of PFNs for a node
  2579. * Note: nid == MAX_NUMNODES returns next region regardless of node
  2580. */
  2581. static int __meminit next_active_region_index_in_nid(int index, int nid)
  2582. {
  2583. for (index = index + 1; index < nr_nodemap_entries; index++)
  2584. if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
  2585. return index;
  2586. return -1;
  2587. }
  2588. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  2589. /*
  2590. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  2591. * Architectures may implement their own version but if add_active_range()
  2592. * was used and there are no special requirements, this is a convenient
  2593. * alternative
  2594. */
  2595. int __meminit __early_pfn_to_nid(unsigned long pfn)
  2596. {
  2597. int i;
  2598. for (i = 0; i < nr_nodemap_entries; i++) {
  2599. unsigned long start_pfn = early_node_map[i].start_pfn;
  2600. unsigned long end_pfn = early_node_map[i].end_pfn;
  2601. if (start_pfn <= pfn && pfn < end_pfn)
  2602. return early_node_map[i].nid;
  2603. }
  2604. /* This is a memory hole */
  2605. return -1;
  2606. }
  2607. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  2608. int __meminit early_pfn_to_nid(unsigned long pfn)
  2609. {
  2610. int nid;
  2611. nid = __early_pfn_to_nid(pfn);
  2612. if (nid >= 0)
  2613. return nid;
  2614. /* just returns 0 */
  2615. return 0;
  2616. }
  2617. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  2618. bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  2619. {
  2620. int nid;
  2621. nid = __early_pfn_to_nid(pfn);
  2622. if (nid >= 0 && nid != node)
  2623. return false;
  2624. return true;
  2625. }
  2626. #endif
  2627. /* Basic iterator support to walk early_node_map[] */
  2628. #define for_each_active_range_index_in_nid(i, nid) \
  2629. for (i = first_active_region_index_in_nid(nid); i != -1; \
  2630. i = next_active_region_index_in_nid(i, nid))
  2631. /**
  2632. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  2633. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  2634. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  2635. *
  2636. * If an architecture guarantees that all ranges registered with
  2637. * add_active_ranges() contain no holes and may be freed, this
  2638. * this function may be used instead of calling free_bootmem() manually.
  2639. */
  2640. void __init free_bootmem_with_active_regions(int nid,
  2641. unsigned long max_low_pfn)
  2642. {
  2643. int i;
  2644. for_each_active_range_index_in_nid(i, nid) {
  2645. unsigned long size_pages = 0;
  2646. unsigned long end_pfn = early_node_map[i].end_pfn;
  2647. if (early_node_map[i].start_pfn >= max_low_pfn)
  2648. continue;
  2649. if (end_pfn > max_low_pfn)
  2650. end_pfn = max_low_pfn;
  2651. size_pages = end_pfn - early_node_map[i].start_pfn;
  2652. free_bootmem_node(NODE_DATA(early_node_map[i].nid),
  2653. PFN_PHYS(early_node_map[i].start_pfn),
  2654. size_pages << PAGE_SHIFT);
  2655. }
  2656. }
  2657. void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
  2658. {
  2659. int i;
  2660. int ret;
  2661. for_each_active_range_index_in_nid(i, nid) {
  2662. ret = work_fn(early_node_map[i].start_pfn,
  2663. early_node_map[i].end_pfn, data);
  2664. if (ret)
  2665. break;
  2666. }
  2667. }
  2668. /**
  2669. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  2670. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  2671. *
  2672. * If an architecture guarantees that all ranges registered with
  2673. * add_active_ranges() contain no holes and may be freed, this
  2674. * function may be used instead of calling memory_present() manually.
  2675. */
  2676. void __init sparse_memory_present_with_active_regions(int nid)
  2677. {
  2678. int i;
  2679. for_each_active_range_index_in_nid(i, nid)
  2680. memory_present(early_node_map[i].nid,
  2681. early_node_map[i].start_pfn,
  2682. early_node_map[i].end_pfn);
  2683. }
  2684. /**
  2685. * push_node_boundaries - Push node boundaries to at least the requested boundary
  2686. * @nid: The nid of the node to push the boundary for
  2687. * @start_pfn: The start pfn of the node
  2688. * @end_pfn: The end pfn of the node
  2689. *
  2690. * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
  2691. * time. Specifically, on x86_64, SRAT will report ranges that can potentially
  2692. * be hotplugged even though no physical memory exists. This function allows
  2693. * an arch to push out the node boundaries so mem_map is allocated that can
  2694. * be used later.
  2695. */
  2696. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  2697. void __init push_node_boundaries(unsigned int nid,
  2698. unsigned long start_pfn, unsigned long end_pfn)
  2699. {
  2700. mminit_dprintk(MMINIT_TRACE, "zoneboundary",
  2701. "Entering push_node_boundaries(%u, %lu, %lu)\n",
  2702. nid, start_pfn, end_pfn);
  2703. /* Initialise the boundary for this node if necessary */
  2704. if (node_boundary_end_pfn[nid] == 0)
  2705. node_boundary_start_pfn[nid] = -1UL;
  2706. /* Update the boundaries */
  2707. if (node_boundary_start_pfn[nid] > start_pfn)
  2708. node_boundary_start_pfn[nid] = start_pfn;
  2709. if (node_boundary_end_pfn[nid] < end_pfn)
  2710. node_boundary_end_pfn[nid] = end_pfn;
  2711. }
  2712. /* If necessary, push the node boundary out for reserve hotadd */
  2713. static void __meminit account_node_boundary(unsigned int nid,
  2714. unsigned long *start_pfn, unsigned long *end_pfn)
  2715. {
  2716. mminit_dprintk(MMINIT_TRACE, "zoneboundary",
  2717. "Entering account_node_boundary(%u, %lu, %lu)\n",
  2718. nid, *start_pfn, *end_pfn);
  2719. /* Return if boundary information has not been provided */
  2720. if (node_boundary_end_pfn[nid] == 0)
  2721. return;
  2722. /* Check the boundaries and update if necessary */
  2723. if (node_boundary_start_pfn[nid] < *start_pfn)
  2724. *start_pfn = node_boundary_start_pfn[nid];
  2725. if (node_boundary_end_pfn[nid] > *end_pfn)
  2726. *end_pfn = node_boundary_end_pfn[nid];
  2727. }
  2728. #else
  2729. void __init push_node_boundaries(unsigned int nid,
  2730. unsigned long start_pfn, unsigned long end_pfn) {}
  2731. static void __meminit account_node_boundary(unsigned int nid,
  2732. unsigned long *start_pfn, unsigned long *end_pfn) {}
  2733. #endif
  2734. /**
  2735. * get_pfn_range_for_nid - Return the start and end page frames for a node
  2736. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  2737. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  2738. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  2739. *
  2740. * It returns the start and end page frame of a node based on information
  2741. * provided by an arch calling add_active_range(). If called for a node
  2742. * with no available memory, a warning is printed and the start and end
  2743. * PFNs will be 0.
  2744. */
  2745. void __meminit get_pfn_range_for_nid(unsigned int nid,
  2746. unsigned long *start_pfn, unsigned long *end_pfn)
  2747. {
  2748. int i;
  2749. *start_pfn = -1UL;
  2750. *end_pfn = 0;
  2751. for_each_active_range_index_in_nid(i, nid) {
  2752. *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
  2753. *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
  2754. }
  2755. if (*start_pfn == -1UL)
  2756. *start_pfn = 0;
  2757. /* Push the node boundaries out if requested */
  2758. account_node_boundary(nid, start_pfn, end_pfn);
  2759. }
  2760. /*
  2761. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  2762. * assumption is made that zones within a node are ordered in monotonic
  2763. * increasing memory addresses so that the "highest" populated zone is used
  2764. */
  2765. static void __init find_usable_zone_for_movable(void)
  2766. {
  2767. int zone_index;
  2768. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  2769. if (zone_index == ZONE_MOVABLE)
  2770. continue;
  2771. if (arch_zone_highest_possible_pfn[zone_index] >
  2772. arch_zone_lowest_possible_pfn[zone_index])
  2773. break;
  2774. }
  2775. VM_BUG_ON(zone_index == -1);
  2776. movable_zone = zone_index;
  2777. }
  2778. /*
  2779. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  2780. * because it is sized independant of architecture. Unlike the other zones,
  2781. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  2782. * in each node depending on the size of each node and how evenly kernelcore
  2783. * is distributed. This helper function adjusts the zone ranges
  2784. * provided by the architecture for a given node by using the end of the
  2785. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  2786. * zones within a node are in order of monotonic increases memory addresses
  2787. */
  2788. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  2789. unsigned long zone_type,
  2790. unsigned long node_start_pfn,
  2791. unsigned long node_end_pfn,
  2792. unsigned long *zone_start_pfn,
  2793. unsigned long *zone_end_pfn)
  2794. {
  2795. /* Only adjust if ZONE_MOVABLE is on this node */
  2796. if (zone_movable_pfn[nid]) {
  2797. /* Size ZONE_MOVABLE */
  2798. if (zone_type == ZONE_MOVABLE) {
  2799. *zone_start_pfn = zone_movable_pfn[nid];
  2800. *zone_end_pfn = min(node_end_pfn,
  2801. arch_zone_highest_possible_pfn[movable_zone]);
  2802. /* Adjust for ZONE_MOVABLE starting within this range */
  2803. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  2804. *zone_end_pfn > zone_movable_pfn[nid]) {
  2805. *zone_end_pfn = zone_movable_pfn[nid];
  2806. /* Check if this whole range is within ZONE_MOVABLE */
  2807. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  2808. *zone_start_pfn = *zone_end_pfn;
  2809. }
  2810. }
  2811. /*
  2812. * Return the number of pages a zone spans in a node, including holes
  2813. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  2814. */
  2815. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2816. unsigned long zone_type,
  2817. unsigned long *ignored)
  2818. {
  2819. unsigned long node_start_pfn, node_end_pfn;
  2820. unsigned long zone_start_pfn, zone_end_pfn;
  2821. /* Get the start and end of the node and zone */
  2822. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2823. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  2824. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  2825. adjust_zone_range_for_zone_movable(nid, zone_type,
  2826. node_start_pfn, node_end_pfn,
  2827. &zone_start_pfn, &zone_end_pfn);
  2828. /* Check that this node has pages within the zone's required range */
  2829. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  2830. return 0;
  2831. /* Move the zone boundaries inside the node if necessary */
  2832. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  2833. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  2834. /* Return the spanned pages */
  2835. return zone_end_pfn - zone_start_pfn;
  2836. }
  2837. /*
  2838. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  2839. * then all holes in the requested range will be accounted for.
  2840. */
  2841. static unsigned long __meminit __absent_pages_in_range(int nid,
  2842. unsigned long range_start_pfn,
  2843. unsigned long range_end_pfn)
  2844. {
  2845. int i = 0;
  2846. unsigned long prev_end_pfn = 0, hole_pages = 0;
  2847. unsigned long start_pfn;
  2848. /* Find the end_pfn of the first active range of pfns in the node */
  2849. i = first_active_region_index_in_nid(nid);
  2850. if (i == -1)
  2851. return 0;
  2852. prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2853. /* Account for ranges before physical memory on this node */
  2854. if (early_node_map[i].start_pfn > range_start_pfn)
  2855. hole_pages = prev_end_pfn - range_start_pfn;
  2856. /* Find all holes for the zone within the node */
  2857. for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
  2858. /* No need to continue if prev_end_pfn is outside the zone */
  2859. if (prev_end_pfn >= range_end_pfn)
  2860. break;
  2861. /* Make sure the end of the zone is not within the hole */
  2862. start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2863. prev_end_pfn = max(prev_end_pfn, range_start_pfn);
  2864. /* Update the hole size cound and move on */
  2865. if (start_pfn > range_start_pfn) {
  2866. BUG_ON(prev_end_pfn > start_pfn);
  2867. hole_pages += start_pfn - prev_end_pfn;
  2868. }
  2869. prev_end_pfn = early_node_map[i].end_pfn;
  2870. }
  2871. /* Account for ranges past physical memory on this node */
  2872. if (range_end_pfn > prev_end_pfn)
  2873. hole_pages += range_end_pfn -
  2874. max(range_start_pfn, prev_end_pfn);
  2875. return hole_pages;
  2876. }
  2877. /**
  2878. * absent_pages_in_range - Return number of page frames in holes within a range
  2879. * @start_pfn: The start PFN to start searching for holes
  2880. * @end_pfn: The end PFN to stop searching for holes
  2881. *
  2882. * It returns the number of pages frames in memory holes within a range.
  2883. */
  2884. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  2885. unsigned long end_pfn)
  2886. {
  2887. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  2888. }
  2889. /* Return the number of page frames in holes in a zone on a node */
  2890. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  2891. unsigned long zone_type,
  2892. unsigned long *ignored)
  2893. {
  2894. unsigned long node_start_pfn, node_end_pfn;
  2895. unsigned long zone_start_pfn, zone_end_pfn;
  2896. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2897. zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
  2898. node_start_pfn);
  2899. zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
  2900. node_end_pfn);
  2901. adjust_zone_range_for_zone_movable(nid, zone_type,
  2902. node_start_pfn, node_end_pfn,
  2903. &zone_start_pfn, &zone_end_pfn);
  2904. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  2905. }
  2906. #else
  2907. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2908. unsigned long zone_type,
  2909. unsigned long *zones_size)
  2910. {
  2911. return zones_size[zone_type];
  2912. }
  2913. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  2914. unsigned long zone_type,
  2915. unsigned long *zholes_size)
  2916. {
  2917. if (!zholes_size)
  2918. return 0;
  2919. return zholes_size[zone_type];
  2920. }
  2921. #endif
  2922. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  2923. unsigned long *zones_size, unsigned long *zholes_size)
  2924. {
  2925. unsigned long realtotalpages, totalpages = 0;
  2926. enum zone_type i;
  2927. for (i = 0; i < MAX_NR_ZONES; i++)
  2928. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  2929. zones_size);
  2930. pgdat->node_spanned_pages = totalpages;
  2931. realtotalpages = totalpages;
  2932. for (i = 0; i < MAX_NR_ZONES; i++)
  2933. realtotalpages -=
  2934. zone_absent_pages_in_node(pgdat->node_id, i,
  2935. zholes_size);
  2936. pgdat->node_present_pages = realtotalpages;
  2937. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  2938. realtotalpages);
  2939. }
  2940. #ifndef CONFIG_SPARSEMEM
  2941. /*
  2942. * Calculate the size of the zone->blockflags rounded to an unsigned long
  2943. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  2944. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  2945. * round what is now in bits to nearest long in bits, then return it in
  2946. * bytes.
  2947. */
  2948. static unsigned long __init usemap_size(unsigned long zonesize)
  2949. {
  2950. unsigned long usemapsize;
  2951. usemapsize = roundup(zonesize, pageblock_nr_pages);
  2952. usemapsize = usemapsize >> pageblock_order;
  2953. usemapsize *= NR_PAGEBLOCK_BITS;
  2954. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  2955. return usemapsize / 8;
  2956. }
  2957. static void __init setup_usemap(struct pglist_data *pgdat,
  2958. struct zone *zone, unsigned long zonesize)
  2959. {
  2960. unsigned long usemapsize = usemap_size(zonesize);
  2961. zone->pageblock_flags = NULL;
  2962. if (usemapsize)
  2963. zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
  2964. }
  2965. #else
  2966. static void inline setup_usemap(struct pglist_data *pgdat,
  2967. struct zone *zone, unsigned long zonesize) {}
  2968. #endif /* CONFIG_SPARSEMEM */
  2969. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  2970. /* Return a sensible default order for the pageblock size. */
  2971. static inline int pageblock_default_order(void)
  2972. {
  2973. if (HPAGE_SHIFT > PAGE_SHIFT)
  2974. return HUGETLB_PAGE_ORDER;
  2975. return MAX_ORDER-1;
  2976. }
  2977. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  2978. static inline void __init set_pageblock_order(unsigned int order)
  2979. {
  2980. /* Check that pageblock_nr_pages has not already been setup */
  2981. if (pageblock_order)
  2982. return;
  2983. /*
  2984. * Assume the largest contiguous order of interest is a huge page.
  2985. * This value may be variable depending on boot parameters on IA64
  2986. */
  2987. pageblock_order = order;
  2988. }
  2989. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  2990. /*
  2991. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  2992. * and pageblock_default_order() are unused as pageblock_order is set
  2993. * at compile-time. See include/linux/pageblock-flags.h for the values of
  2994. * pageblock_order based on the kernel config
  2995. */
  2996. static inline int pageblock_default_order(unsigned int order)
  2997. {
  2998. return MAX_ORDER-1;
  2999. }
  3000. #define set_pageblock_order(x) do {} while (0)
  3001. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3002. /*
  3003. * Set up the zone data structures:
  3004. * - mark all pages reserved
  3005. * - mark all memory queues empty
  3006. * - clear the memory bitmaps
  3007. */
  3008. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  3009. unsigned long *zones_size, unsigned long *zholes_size)
  3010. {
  3011. enum zone_type j;
  3012. int nid = pgdat->node_id;
  3013. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  3014. int ret;
  3015. pgdat_resize_init(pgdat);
  3016. pgdat->nr_zones = 0;
  3017. init_waitqueue_head(&pgdat->kswapd_wait);
  3018. pgdat->kswapd_max_order = 0;
  3019. pgdat_page_cgroup_init(pgdat);
  3020. for (j = 0; j < MAX_NR_ZONES; j++) {
  3021. struct zone *zone = pgdat->node_zones + j;
  3022. unsigned long size, realsize, memmap_pages;
  3023. enum lru_list l;
  3024. size = zone_spanned_pages_in_node(nid, j, zones_size);
  3025. realsize = size - zone_absent_pages_in_node(nid, j,
  3026. zholes_size);
  3027. /*
  3028. * Adjust realsize so that it accounts for how much memory
  3029. * is used by this zone for memmap. This affects the watermark
  3030. * and per-cpu initialisations
  3031. */
  3032. memmap_pages =
  3033. PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
  3034. if (realsize >= memmap_pages) {
  3035. realsize -= memmap_pages;
  3036. if (memmap_pages)
  3037. printk(KERN_DEBUG
  3038. " %s zone: %lu pages used for memmap\n",
  3039. zone_names[j], memmap_pages);
  3040. } else
  3041. printk(KERN_WARNING
  3042. " %s zone: %lu pages exceeds realsize %lu\n",
  3043. zone_names[j], memmap_pages, realsize);
  3044. /* Account for reserved pages */
  3045. if (j == 0 && realsize > dma_reserve) {
  3046. realsize -= dma_reserve;
  3047. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  3048. zone_names[0], dma_reserve);
  3049. }
  3050. if (!is_highmem_idx(j))
  3051. nr_kernel_pages += realsize;
  3052. nr_all_pages += realsize;
  3053. zone->spanned_pages = size;
  3054. zone->present_pages = realsize;
  3055. #ifdef CONFIG_NUMA
  3056. zone->node = nid;
  3057. zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
  3058. / 100;
  3059. zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
  3060. #endif
  3061. zone->name = zone_names[j];
  3062. spin_lock_init(&zone->lock);
  3063. spin_lock_init(&zone->lru_lock);
  3064. zone_seqlock_init(zone);
  3065. zone->zone_pgdat = pgdat;
  3066. zone->prev_priority = DEF_PRIORITY;
  3067. zone_pcp_init(zone);
  3068. for_each_lru(l) {
  3069. INIT_LIST_HEAD(&zone->lru[l].list);
  3070. zone->lru[l].nr_scan = 0;
  3071. }
  3072. zone->reclaim_stat.recent_rotated[0] = 0;
  3073. zone->reclaim_stat.recent_rotated[1] = 0;
  3074. zone->reclaim_stat.recent_scanned[0] = 0;
  3075. zone->reclaim_stat.recent_scanned[1] = 0;
  3076. zap_zone_vm_stats(zone);
  3077. zone->flags = 0;
  3078. if (!size)
  3079. continue;
  3080. set_pageblock_order(pageblock_default_order());
  3081. setup_usemap(pgdat, zone, size);
  3082. ret = init_currently_empty_zone(zone, zone_start_pfn,
  3083. size, MEMMAP_EARLY);
  3084. BUG_ON(ret);
  3085. memmap_init(size, nid, j, zone_start_pfn);
  3086. zone_start_pfn += size;
  3087. }
  3088. }
  3089. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  3090. {
  3091. /* Skip empty nodes */
  3092. if (!pgdat->node_spanned_pages)
  3093. return;
  3094. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3095. /* ia64 gets its own node_mem_map, before this, without bootmem */
  3096. if (!pgdat->node_mem_map) {
  3097. unsigned long size, start, end;
  3098. struct page *map;
  3099. /*
  3100. * The zone's endpoints aren't required to be MAX_ORDER
  3101. * aligned but the node_mem_map endpoints must be in order
  3102. * for the buddy allocator to function correctly.
  3103. */
  3104. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  3105. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  3106. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  3107. size = (end - start) * sizeof(struct page);
  3108. map = alloc_remap(pgdat->node_id, size);
  3109. if (!map)
  3110. map = alloc_bootmem_node(pgdat, size);
  3111. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  3112. }
  3113. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3114. /*
  3115. * With no DISCONTIG, the global mem_map is just set as node 0's
  3116. */
  3117. if (pgdat == NODE_DATA(0)) {
  3118. mem_map = NODE_DATA(0)->node_mem_map;
  3119. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3120. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  3121. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  3122. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3123. }
  3124. #endif
  3125. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  3126. }
  3127. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  3128. unsigned long node_start_pfn, unsigned long *zholes_size)
  3129. {
  3130. pg_data_t *pgdat = NODE_DATA(nid);
  3131. pgdat->node_id = nid;
  3132. pgdat->node_start_pfn = node_start_pfn;
  3133. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  3134. alloc_node_mem_map(pgdat);
  3135. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3136. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  3137. nid, (unsigned long)pgdat,
  3138. (unsigned long)pgdat->node_mem_map);
  3139. #endif
  3140. free_area_init_core(pgdat, zones_size, zholes_size);
  3141. }
  3142. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3143. #if MAX_NUMNODES > 1
  3144. /*
  3145. * Figure out the number of possible node ids.
  3146. */
  3147. static void __init setup_nr_node_ids(void)
  3148. {
  3149. unsigned int node;
  3150. unsigned int highest = 0;
  3151. for_each_node_mask(node, node_possible_map)
  3152. highest = node;
  3153. nr_node_ids = highest + 1;
  3154. }
  3155. #else
  3156. static inline void setup_nr_node_ids(void)
  3157. {
  3158. }
  3159. #endif
  3160. /**
  3161. * add_active_range - Register a range of PFNs backed by physical memory
  3162. * @nid: The node ID the range resides on
  3163. * @start_pfn: The start PFN of the available physical memory
  3164. * @end_pfn: The end PFN of the available physical memory
  3165. *
  3166. * These ranges are stored in an early_node_map[] and later used by
  3167. * free_area_init_nodes() to calculate zone sizes and holes. If the
  3168. * range spans a memory hole, it is up to the architecture to ensure
  3169. * the memory is not freed by the bootmem allocator. If possible
  3170. * the range being registered will be merged with existing ranges.
  3171. */
  3172. void __init add_active_range(unsigned int nid, unsigned long start_pfn,
  3173. unsigned long end_pfn)
  3174. {
  3175. int i;
  3176. mminit_dprintk(MMINIT_TRACE, "memory_register",
  3177. "Entering add_active_range(%d, %#lx, %#lx) "
  3178. "%d entries of %d used\n",
  3179. nid, start_pfn, end_pfn,
  3180. nr_nodemap_entries, MAX_ACTIVE_REGIONS);
  3181. mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
  3182. /* Merge with existing active regions if possible */
  3183. for (i = 0; i < nr_nodemap_entries; i++) {
  3184. if (early_node_map[i].nid != nid)
  3185. continue;
  3186. /* Skip if an existing region covers this new one */
  3187. if (start_pfn >= early_node_map[i].start_pfn &&
  3188. end_pfn <= early_node_map[i].end_pfn)
  3189. return;
  3190. /* Merge forward if suitable */
  3191. if (start_pfn <= early_node_map[i].end_pfn &&
  3192. end_pfn > early_node_map[i].end_pfn) {
  3193. early_node_map[i].end_pfn = end_pfn;
  3194. return;
  3195. }
  3196. /* Merge backward if suitable */
  3197. if (start_pfn < early_node_map[i].end_pfn &&
  3198. end_pfn >= early_node_map[i].start_pfn) {
  3199. early_node_map[i].start_pfn = start_pfn;
  3200. return;
  3201. }
  3202. }
  3203. /* Check that early_node_map is large enough */
  3204. if (i >= MAX_ACTIVE_REGIONS) {
  3205. printk(KERN_CRIT "More than %d memory regions, truncating\n",
  3206. MAX_ACTIVE_REGIONS);
  3207. return;
  3208. }
  3209. early_node_map[i].nid = nid;
  3210. early_node_map[i].start_pfn = start_pfn;
  3211. early_node_map[i].end_pfn = end_pfn;
  3212. nr_nodemap_entries = i + 1;
  3213. }
  3214. /**
  3215. * remove_active_range - Shrink an existing registered range of PFNs
  3216. * @nid: The node id the range is on that should be shrunk
  3217. * @start_pfn: The new PFN of the range
  3218. * @end_pfn: The new PFN of the range
  3219. *
  3220. * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
  3221. * The map is kept near the end physical page range that has already been
  3222. * registered. This function allows an arch to shrink an existing registered
  3223. * range.
  3224. */
  3225. void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
  3226. unsigned long end_pfn)
  3227. {
  3228. int i, j;
  3229. int removed = 0;
  3230. printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
  3231. nid, start_pfn, end_pfn);
  3232. /* Find the old active region end and shrink */
  3233. for_each_active_range_index_in_nid(i, nid) {
  3234. if (early_node_map[i].start_pfn >= start_pfn &&
  3235. early_node_map[i].end_pfn <= end_pfn) {
  3236. /* clear it */
  3237. early_node_map[i].start_pfn = 0;
  3238. early_node_map[i].end_pfn = 0;
  3239. removed = 1;
  3240. continue;
  3241. }
  3242. if (early_node_map[i].start_pfn < start_pfn &&
  3243. early_node_map[i].end_pfn > start_pfn) {
  3244. unsigned long temp_end_pfn = early_node_map[i].end_pfn;
  3245. early_node_map[i].end_pfn = start_pfn;
  3246. if (temp_end_pfn > end_pfn)
  3247. add_active_range(nid, end_pfn, temp_end_pfn);
  3248. continue;
  3249. }
  3250. if (early_node_map[i].start_pfn >= start_pfn &&
  3251. early_node_map[i].end_pfn > end_pfn &&
  3252. early_node_map[i].start_pfn < end_pfn) {
  3253. early_node_map[i].start_pfn = end_pfn;
  3254. continue;
  3255. }
  3256. }
  3257. if (!removed)
  3258. return;
  3259. /* remove the blank ones */
  3260. for (i = nr_nodemap_entries - 1; i > 0; i--) {
  3261. if (early_node_map[i].nid != nid)
  3262. continue;
  3263. if (early_node_map[i].end_pfn)
  3264. continue;
  3265. /* we found it, get rid of it */
  3266. for (j = i; j < nr_nodemap_entries - 1; j++)
  3267. memcpy(&early_node_map[j], &early_node_map[j+1],
  3268. sizeof(early_node_map[j]));
  3269. j = nr_nodemap_entries - 1;
  3270. memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
  3271. nr_nodemap_entries--;
  3272. }
  3273. }
  3274. /**
  3275. * remove_all_active_ranges - Remove all currently registered regions
  3276. *
  3277. * During discovery, it may be found that a table like SRAT is invalid
  3278. * and an alternative discovery method must be used. This function removes
  3279. * all currently registered regions.
  3280. */
  3281. void __init remove_all_active_ranges(void)
  3282. {
  3283. memset(early_node_map, 0, sizeof(early_node_map));
  3284. nr_nodemap_entries = 0;
  3285. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  3286. memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
  3287. memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
  3288. #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
  3289. }
  3290. /* Compare two active node_active_regions */
  3291. static int __init cmp_node_active_region(const void *a, const void *b)
  3292. {
  3293. struct node_active_region *arange = (struct node_active_region *)a;
  3294. struct node_active_region *brange = (struct node_active_region *)b;
  3295. /* Done this way to avoid overflows */
  3296. if (arange->start_pfn > brange->start_pfn)
  3297. return 1;
  3298. if (arange->start_pfn < brange->start_pfn)
  3299. return -1;
  3300. return 0;
  3301. }
  3302. /* sort the node_map by start_pfn */
  3303. static void __init sort_node_map(void)
  3304. {
  3305. sort(early_node_map, (size_t)nr_nodemap_entries,
  3306. sizeof(struct node_active_region),
  3307. cmp_node_active_region, NULL);
  3308. }
  3309. /* Find the lowest pfn for a node */
  3310. static unsigned long __init find_min_pfn_for_node(int nid)
  3311. {
  3312. int i;
  3313. unsigned long min_pfn = ULONG_MAX;
  3314. /* Assuming a sorted map, the first range found has the starting pfn */
  3315. for_each_active_range_index_in_nid(i, nid)
  3316. min_pfn = min(min_pfn, early_node_map[i].start_pfn);
  3317. if (min_pfn == ULONG_MAX) {
  3318. printk(KERN_WARNING
  3319. "Could not find start_pfn for node %d\n", nid);
  3320. return 0;
  3321. }
  3322. return min_pfn;
  3323. }
  3324. /**
  3325. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  3326. *
  3327. * It returns the minimum PFN based on information provided via
  3328. * add_active_range().
  3329. */
  3330. unsigned long __init find_min_pfn_with_active_regions(void)
  3331. {
  3332. return find_min_pfn_for_node(MAX_NUMNODES);
  3333. }
  3334. /*
  3335. * early_calculate_totalpages()
  3336. * Sum pages in active regions for movable zone.
  3337. * Populate N_HIGH_MEMORY for calculating usable_nodes.
  3338. */
  3339. static unsigned long __init early_calculate_totalpages(void)
  3340. {
  3341. int i;
  3342. unsigned long totalpages = 0;
  3343. for (i = 0; i < nr_nodemap_entries; i++) {
  3344. unsigned long pages = early_node_map[i].end_pfn -
  3345. early_node_map[i].start_pfn;
  3346. totalpages += pages;
  3347. if (pages)
  3348. node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
  3349. }
  3350. return totalpages;
  3351. }
  3352. /*
  3353. * Find the PFN the Movable zone begins in each node. Kernel memory
  3354. * is spread evenly between nodes as long as the nodes have enough
  3355. * memory. When they don't, some nodes will have more kernelcore than
  3356. * others
  3357. */
  3358. static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
  3359. {
  3360. int i, nid;
  3361. unsigned long usable_startpfn;
  3362. unsigned long kernelcore_node, kernelcore_remaining;
  3363. unsigned long totalpages = early_calculate_totalpages();
  3364. int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
  3365. /*
  3366. * If movablecore was specified, calculate what size of
  3367. * kernelcore that corresponds so that memory usable for
  3368. * any allocation type is evenly spread. If both kernelcore
  3369. * and movablecore are specified, then the value of kernelcore
  3370. * will be used for required_kernelcore if it's greater than
  3371. * what movablecore would have allowed.
  3372. */
  3373. if (required_movablecore) {
  3374. unsigned long corepages;
  3375. /*
  3376. * Round-up so that ZONE_MOVABLE is at least as large as what
  3377. * was requested by the user
  3378. */
  3379. required_movablecore =
  3380. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  3381. corepages = totalpages - required_movablecore;
  3382. required_kernelcore = max(required_kernelcore, corepages);
  3383. }
  3384. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  3385. if (!required_kernelcore)
  3386. return;
  3387. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  3388. find_usable_zone_for_movable();
  3389. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  3390. restart:
  3391. /* Spread kernelcore memory as evenly as possible throughout nodes */
  3392. kernelcore_node = required_kernelcore / usable_nodes;
  3393. for_each_node_state(nid, N_HIGH_MEMORY) {
  3394. /*
  3395. * Recalculate kernelcore_node if the division per node
  3396. * now exceeds what is necessary to satisfy the requested
  3397. * amount of memory for the kernel
  3398. */
  3399. if (required_kernelcore < kernelcore_node)
  3400. kernelcore_node = required_kernelcore / usable_nodes;
  3401. /*
  3402. * As the map is walked, we track how much memory is usable
  3403. * by the kernel using kernelcore_remaining. When it is
  3404. * 0, the rest of the node is usable by ZONE_MOVABLE
  3405. */
  3406. kernelcore_remaining = kernelcore_node;
  3407. /* Go through each range of PFNs within this node */
  3408. for_each_active_range_index_in_nid(i, nid) {
  3409. unsigned long start_pfn, end_pfn;
  3410. unsigned long size_pages;
  3411. start_pfn = max(early_node_map[i].start_pfn,
  3412. zone_movable_pfn[nid]);
  3413. end_pfn = early_node_map[i].end_pfn;
  3414. if (start_pfn >= end_pfn)
  3415. continue;
  3416. /* Account for what is only usable for kernelcore */
  3417. if (start_pfn < usable_startpfn) {
  3418. unsigned long kernel_pages;
  3419. kernel_pages = min(end_pfn, usable_startpfn)
  3420. - start_pfn;
  3421. kernelcore_remaining -= min(kernel_pages,
  3422. kernelcore_remaining);
  3423. required_kernelcore -= min(kernel_pages,
  3424. required_kernelcore);
  3425. /* Continue if range is now fully accounted */
  3426. if (end_pfn <= usable_startpfn) {
  3427. /*
  3428. * Push zone_movable_pfn to the end so
  3429. * that if we have to rebalance
  3430. * kernelcore across nodes, we will
  3431. * not double account here
  3432. */
  3433. zone_movable_pfn[nid] = end_pfn;
  3434. continue;
  3435. }
  3436. start_pfn = usable_startpfn;
  3437. }
  3438. /*
  3439. * The usable PFN range for ZONE_MOVABLE is from
  3440. * start_pfn->end_pfn. Calculate size_pages as the
  3441. * number of pages used as kernelcore
  3442. */
  3443. size_pages = end_pfn - start_pfn;
  3444. if (size_pages > kernelcore_remaining)
  3445. size_pages = kernelcore_remaining;
  3446. zone_movable_pfn[nid] = start_pfn + size_pages;
  3447. /*
  3448. * Some kernelcore has been met, update counts and
  3449. * break if the kernelcore for this node has been
  3450. * satisified
  3451. */
  3452. required_kernelcore -= min(required_kernelcore,
  3453. size_pages);
  3454. kernelcore_remaining -= size_pages;
  3455. if (!kernelcore_remaining)
  3456. break;
  3457. }
  3458. }
  3459. /*
  3460. * If there is still required_kernelcore, we do another pass with one
  3461. * less node in the count. This will push zone_movable_pfn[nid] further
  3462. * along on the nodes that still have memory until kernelcore is
  3463. * satisified
  3464. */
  3465. usable_nodes--;
  3466. if (usable_nodes && required_kernelcore > usable_nodes)
  3467. goto restart;
  3468. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  3469. for (nid = 0; nid < MAX_NUMNODES; nid++)
  3470. zone_movable_pfn[nid] =
  3471. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  3472. }
  3473. /* Any regular memory on that node ? */
  3474. static void check_for_regular_memory(pg_data_t *pgdat)
  3475. {
  3476. #ifdef CONFIG_HIGHMEM
  3477. enum zone_type zone_type;
  3478. for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
  3479. struct zone *zone = &pgdat->node_zones[zone_type];
  3480. if (zone->present_pages)
  3481. node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
  3482. }
  3483. #endif
  3484. }
  3485. /**
  3486. * free_area_init_nodes - Initialise all pg_data_t and zone data
  3487. * @max_zone_pfn: an array of max PFNs for each zone
  3488. *
  3489. * This will call free_area_init_node() for each active node in the system.
  3490. * Using the page ranges provided by add_active_range(), the size of each
  3491. * zone in each node and their holes is calculated. If the maximum PFN
  3492. * between two adjacent zones match, it is assumed that the zone is empty.
  3493. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  3494. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  3495. * starts where the previous one ended. For example, ZONE_DMA32 starts
  3496. * at arch_max_dma_pfn.
  3497. */
  3498. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  3499. {
  3500. unsigned long nid;
  3501. int i;
  3502. /* Sort early_node_map as initialisation assumes it is sorted */
  3503. sort_node_map();
  3504. /* Record where the zone boundaries are */
  3505. memset(arch_zone_lowest_possible_pfn, 0,
  3506. sizeof(arch_zone_lowest_possible_pfn));
  3507. memset(arch_zone_highest_possible_pfn, 0,
  3508. sizeof(arch_zone_highest_possible_pfn));
  3509. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  3510. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  3511. for (i = 1; i < MAX_NR_ZONES; i++) {
  3512. if (i == ZONE_MOVABLE)
  3513. continue;
  3514. arch_zone_lowest_possible_pfn[i] =
  3515. arch_zone_highest_possible_pfn[i-1];
  3516. arch_zone_highest_possible_pfn[i] =
  3517. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  3518. }
  3519. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  3520. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  3521. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  3522. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  3523. find_zone_movable_pfns_for_nodes(zone_movable_pfn);
  3524. /* Print out the zone ranges */
  3525. printk("Zone PFN ranges:\n");
  3526. for (i = 0; i < MAX_NR_ZONES; i++) {
  3527. if (i == ZONE_MOVABLE)
  3528. continue;
  3529. printk(" %-8s %0#10lx -> %0#10lx\n",
  3530. zone_names[i],
  3531. arch_zone_lowest_possible_pfn[i],
  3532. arch_zone_highest_possible_pfn[i]);
  3533. }
  3534. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  3535. printk("Movable zone start PFN for each node\n");
  3536. for (i = 0; i < MAX_NUMNODES; i++) {
  3537. if (zone_movable_pfn[i])
  3538. printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
  3539. }
  3540. /* Print out the early_node_map[] */
  3541. printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
  3542. for (i = 0; i < nr_nodemap_entries; i++)
  3543. printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
  3544. early_node_map[i].start_pfn,
  3545. early_node_map[i].end_pfn);
  3546. /* Initialise every node */
  3547. mminit_verify_pageflags_layout();
  3548. setup_nr_node_ids();
  3549. for_each_online_node(nid) {
  3550. pg_data_t *pgdat = NODE_DATA(nid);
  3551. free_area_init_node(nid, NULL,
  3552. find_min_pfn_for_node(nid), NULL);
  3553. /* Any memory on that node */
  3554. if (pgdat->node_present_pages)
  3555. node_set_state(nid, N_HIGH_MEMORY);
  3556. check_for_regular_memory(pgdat);
  3557. }
  3558. }
  3559. static int __init cmdline_parse_core(char *p, unsigned long *core)
  3560. {
  3561. unsigned long long coremem;
  3562. if (!p)
  3563. return -EINVAL;
  3564. coremem = memparse(p, &p);
  3565. *core = coremem >> PAGE_SHIFT;
  3566. /* Paranoid check that UL is enough for the coremem value */
  3567. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  3568. return 0;
  3569. }
  3570. /*
  3571. * kernelcore=size sets the amount of memory for use for allocations that
  3572. * cannot be reclaimed or migrated.
  3573. */
  3574. static int __init cmdline_parse_kernelcore(char *p)
  3575. {
  3576. return cmdline_parse_core(p, &required_kernelcore);
  3577. }
  3578. /*
  3579. * movablecore=size sets the amount of memory for use for allocations that
  3580. * can be reclaimed or migrated.
  3581. */
  3582. static int __init cmdline_parse_movablecore(char *p)
  3583. {
  3584. return cmdline_parse_core(p, &required_movablecore);
  3585. }
  3586. early_param("kernelcore", cmdline_parse_kernelcore);
  3587. early_param("movablecore", cmdline_parse_movablecore);
  3588. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3589. /**
  3590. * set_dma_reserve - set the specified number of pages reserved in the first zone
  3591. * @new_dma_reserve: The number of pages to mark reserved
  3592. *
  3593. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  3594. * In the DMA zone, a significant percentage may be consumed by kernel image
  3595. * and other unfreeable allocations which can skew the watermarks badly. This
  3596. * function may optionally be used to account for unfreeable pages in the
  3597. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  3598. * smaller per-cpu batchsize.
  3599. */
  3600. void __init set_dma_reserve(unsigned long new_dma_reserve)
  3601. {
  3602. dma_reserve = new_dma_reserve;
  3603. }
  3604. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3605. struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
  3606. EXPORT_SYMBOL(contig_page_data);
  3607. #endif
  3608. void __init free_area_init(unsigned long *zones_size)
  3609. {
  3610. free_area_init_node(0, zones_size,
  3611. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  3612. }
  3613. static int page_alloc_cpu_notify(struct notifier_block *self,
  3614. unsigned long action, void *hcpu)
  3615. {
  3616. int cpu = (unsigned long)hcpu;
  3617. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  3618. drain_pages(cpu);
  3619. /*
  3620. * Spill the event counters of the dead processor
  3621. * into the current processors event counters.
  3622. * This artificially elevates the count of the current
  3623. * processor.
  3624. */
  3625. vm_events_fold_cpu(cpu);
  3626. /*
  3627. * Zero the differential counters of the dead processor
  3628. * so that the vm statistics are consistent.
  3629. *
  3630. * This is only okay since the processor is dead and cannot
  3631. * race with what we are doing.
  3632. */
  3633. refresh_cpu_vm_stats(cpu);
  3634. }
  3635. return NOTIFY_OK;
  3636. }
  3637. void __init page_alloc_init(void)
  3638. {
  3639. hotcpu_notifier(page_alloc_cpu_notify, 0);
  3640. }
  3641. /*
  3642. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  3643. * or min_free_kbytes changes.
  3644. */
  3645. static void calculate_totalreserve_pages(void)
  3646. {
  3647. struct pglist_data *pgdat;
  3648. unsigned long reserve_pages = 0;
  3649. enum zone_type i, j;
  3650. for_each_online_pgdat(pgdat) {
  3651. for (i = 0; i < MAX_NR_ZONES; i++) {
  3652. struct zone *zone = pgdat->node_zones + i;
  3653. unsigned long max = 0;
  3654. /* Find valid and maximum lowmem_reserve in the zone */
  3655. for (j = i; j < MAX_NR_ZONES; j++) {
  3656. if (zone->lowmem_reserve[j] > max)
  3657. max = zone->lowmem_reserve[j];
  3658. }
  3659. /* we treat pages_high as reserved pages. */
  3660. max += zone->pages_high;
  3661. if (max > zone->present_pages)
  3662. max = zone->present_pages;
  3663. reserve_pages += max;
  3664. }
  3665. }
  3666. totalreserve_pages = reserve_pages;
  3667. }
  3668. /*
  3669. * setup_per_zone_lowmem_reserve - called whenever
  3670. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  3671. * has a correct pages reserved value, so an adequate number of
  3672. * pages are left in the zone after a successful __alloc_pages().
  3673. */
  3674. static void setup_per_zone_lowmem_reserve(void)
  3675. {
  3676. struct pglist_data *pgdat;
  3677. enum zone_type j, idx;
  3678. for_each_online_pgdat(pgdat) {
  3679. for (j = 0; j < MAX_NR_ZONES; j++) {
  3680. struct zone *zone = pgdat->node_zones + j;
  3681. unsigned long present_pages = zone->present_pages;
  3682. zone->lowmem_reserve[j] = 0;
  3683. idx = j;
  3684. while (idx) {
  3685. struct zone *lower_zone;
  3686. idx--;
  3687. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  3688. sysctl_lowmem_reserve_ratio[idx] = 1;
  3689. lower_zone = pgdat->node_zones + idx;
  3690. lower_zone->lowmem_reserve[j] = present_pages /
  3691. sysctl_lowmem_reserve_ratio[idx];
  3692. present_pages += lower_zone->present_pages;
  3693. }
  3694. }
  3695. }
  3696. /* update totalreserve_pages */
  3697. calculate_totalreserve_pages();
  3698. }
  3699. /**
  3700. * setup_per_zone_pages_min - called when min_free_kbytes changes.
  3701. *
  3702. * Ensures that the pages_{min,low,high} values for each zone are set correctly
  3703. * with respect to min_free_kbytes.
  3704. */
  3705. void setup_per_zone_pages_min(void)
  3706. {
  3707. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  3708. unsigned long lowmem_pages = 0;
  3709. struct zone *zone;
  3710. unsigned long flags;
  3711. /* Calculate total number of !ZONE_HIGHMEM pages */
  3712. for_each_zone(zone) {
  3713. if (!is_highmem(zone))
  3714. lowmem_pages += zone->present_pages;
  3715. }
  3716. for_each_zone(zone) {
  3717. u64 tmp;
  3718. spin_lock_irqsave(&zone->lock, flags);
  3719. tmp = (u64)pages_min * zone->present_pages;
  3720. do_div(tmp, lowmem_pages);
  3721. if (is_highmem(zone)) {
  3722. /*
  3723. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  3724. * need highmem pages, so cap pages_min to a small
  3725. * value here.
  3726. *
  3727. * The (pages_high-pages_low) and (pages_low-pages_min)
  3728. * deltas controls asynch page reclaim, and so should
  3729. * not be capped for highmem.
  3730. */
  3731. int min_pages;
  3732. min_pages = zone->present_pages / 1024;
  3733. if (min_pages < SWAP_CLUSTER_MAX)
  3734. min_pages = SWAP_CLUSTER_MAX;
  3735. if (min_pages > 128)
  3736. min_pages = 128;
  3737. zone->pages_min = min_pages;
  3738. } else {
  3739. /*
  3740. * If it's a lowmem zone, reserve a number of pages
  3741. * proportionate to the zone's size.
  3742. */
  3743. zone->pages_min = tmp;
  3744. }
  3745. zone->pages_low = zone->pages_min + (tmp >> 2);
  3746. zone->pages_high = zone->pages_min + (tmp >> 1);
  3747. setup_zone_migrate_reserve(zone);
  3748. spin_unlock_irqrestore(&zone->lock, flags);
  3749. }
  3750. /* update totalreserve_pages */
  3751. calculate_totalreserve_pages();
  3752. }
  3753. /**
  3754. * setup_per_zone_inactive_ratio - called when min_free_kbytes changes.
  3755. *
  3756. * The inactive anon list should be small enough that the VM never has to
  3757. * do too much work, but large enough that each inactive page has a chance
  3758. * to be referenced again before it is swapped out.
  3759. *
  3760. * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
  3761. * INACTIVE_ANON pages on this zone's LRU, maintained by the
  3762. * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
  3763. * the anonymous pages are kept on the inactive list.
  3764. *
  3765. * total target max
  3766. * memory ratio inactive anon
  3767. * -------------------------------------
  3768. * 10MB 1 5MB
  3769. * 100MB 1 50MB
  3770. * 1GB 3 250MB
  3771. * 10GB 10 0.9GB
  3772. * 100GB 31 3GB
  3773. * 1TB 101 10GB
  3774. * 10TB 320 32GB
  3775. */
  3776. static void setup_per_zone_inactive_ratio(void)
  3777. {
  3778. struct zone *zone;
  3779. for_each_zone(zone) {
  3780. unsigned int gb, ratio;
  3781. /* Zone size in gigabytes */
  3782. gb = zone->present_pages >> (30 - PAGE_SHIFT);
  3783. ratio = int_sqrt(10 * gb);
  3784. if (!ratio)
  3785. ratio = 1;
  3786. zone->inactive_ratio = ratio;
  3787. }
  3788. }
  3789. /*
  3790. * Initialise min_free_kbytes.
  3791. *
  3792. * For small machines we want it small (128k min). For large machines
  3793. * we want it large (64MB max). But it is not linear, because network
  3794. * bandwidth does not increase linearly with machine size. We use
  3795. *
  3796. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  3797. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  3798. *
  3799. * which yields
  3800. *
  3801. * 16MB: 512k
  3802. * 32MB: 724k
  3803. * 64MB: 1024k
  3804. * 128MB: 1448k
  3805. * 256MB: 2048k
  3806. * 512MB: 2896k
  3807. * 1024MB: 4096k
  3808. * 2048MB: 5792k
  3809. * 4096MB: 8192k
  3810. * 8192MB: 11584k
  3811. * 16384MB: 16384k
  3812. */
  3813. static int __init init_per_zone_pages_min(void)
  3814. {
  3815. unsigned long lowmem_kbytes;
  3816. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  3817. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  3818. if (min_free_kbytes < 128)
  3819. min_free_kbytes = 128;
  3820. if (min_free_kbytes > 65536)
  3821. min_free_kbytes = 65536;
  3822. setup_per_zone_pages_min();
  3823. setup_per_zone_lowmem_reserve();
  3824. setup_per_zone_inactive_ratio();
  3825. return 0;
  3826. }
  3827. module_init(init_per_zone_pages_min)
  3828. /*
  3829. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  3830. * that we can call two helper functions whenever min_free_kbytes
  3831. * changes.
  3832. */
  3833. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  3834. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3835. {
  3836. proc_dointvec(table, write, file, buffer, length, ppos);
  3837. if (write)
  3838. setup_per_zone_pages_min();
  3839. return 0;
  3840. }
  3841. #ifdef CONFIG_NUMA
  3842. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  3843. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3844. {
  3845. struct zone *zone;
  3846. int rc;
  3847. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3848. if (rc)
  3849. return rc;
  3850. for_each_zone(zone)
  3851. zone->min_unmapped_pages = (zone->present_pages *
  3852. sysctl_min_unmapped_ratio) / 100;
  3853. return 0;
  3854. }
  3855. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  3856. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3857. {
  3858. struct zone *zone;
  3859. int rc;
  3860. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3861. if (rc)
  3862. return rc;
  3863. for_each_zone(zone)
  3864. zone->min_slab_pages = (zone->present_pages *
  3865. sysctl_min_slab_ratio) / 100;
  3866. return 0;
  3867. }
  3868. #endif
  3869. /*
  3870. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  3871. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  3872. * whenever sysctl_lowmem_reserve_ratio changes.
  3873. *
  3874. * The reserve ratio obviously has absolutely no relation with the
  3875. * pages_min watermarks. The lowmem reserve ratio can only make sense
  3876. * if in function of the boot time zone sizes.
  3877. */
  3878. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  3879. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3880. {
  3881. proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3882. setup_per_zone_lowmem_reserve();
  3883. return 0;
  3884. }
  3885. /*
  3886. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  3887. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  3888. * can have before it gets flushed back to buddy allocator.
  3889. */
  3890. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  3891. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3892. {
  3893. struct zone *zone;
  3894. unsigned int cpu;
  3895. int ret;
  3896. ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3897. if (!write || (ret == -EINVAL))
  3898. return ret;
  3899. for_each_zone(zone) {
  3900. for_each_online_cpu(cpu) {
  3901. unsigned long high;
  3902. high = zone->present_pages / percpu_pagelist_fraction;
  3903. setup_pagelist_highmark(zone_pcp(zone, cpu), high);
  3904. }
  3905. }
  3906. return 0;
  3907. }
  3908. int hashdist = HASHDIST_DEFAULT;
  3909. #ifdef CONFIG_NUMA
  3910. static int __init set_hashdist(char *str)
  3911. {
  3912. if (!str)
  3913. return 0;
  3914. hashdist = simple_strtoul(str, &str, 0);
  3915. return 1;
  3916. }
  3917. __setup("hashdist=", set_hashdist);
  3918. #endif
  3919. /*
  3920. * allocate a large system hash table from bootmem
  3921. * - it is assumed that the hash table must contain an exact power-of-2
  3922. * quantity of entries
  3923. * - limit is the number of hash buckets, not the total allocation size
  3924. */
  3925. void *__init alloc_large_system_hash(const char *tablename,
  3926. unsigned long bucketsize,
  3927. unsigned long numentries,
  3928. int scale,
  3929. int flags,
  3930. unsigned int *_hash_shift,
  3931. unsigned int *_hash_mask,
  3932. unsigned long limit)
  3933. {
  3934. unsigned long long max = limit;
  3935. unsigned long log2qty, size;
  3936. void *table = NULL;
  3937. /* allow the kernel cmdline to have a say */
  3938. if (!numentries) {
  3939. /* round applicable memory size up to nearest megabyte */
  3940. numentries = nr_kernel_pages;
  3941. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  3942. numentries >>= 20 - PAGE_SHIFT;
  3943. numentries <<= 20 - PAGE_SHIFT;
  3944. /* limit to 1 bucket per 2^scale bytes of low memory */
  3945. if (scale > PAGE_SHIFT)
  3946. numentries >>= (scale - PAGE_SHIFT);
  3947. else
  3948. numentries <<= (PAGE_SHIFT - scale);
  3949. /* Make sure we've got at least a 0-order allocation.. */
  3950. if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  3951. numentries = PAGE_SIZE / bucketsize;
  3952. }
  3953. numentries = roundup_pow_of_two(numentries);
  3954. /* limit allocation size to 1/16 total memory by default */
  3955. if (max == 0) {
  3956. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  3957. do_div(max, bucketsize);
  3958. }
  3959. if (numentries > max)
  3960. numentries = max;
  3961. log2qty = ilog2(numentries);
  3962. do {
  3963. size = bucketsize << log2qty;
  3964. if (flags & HASH_EARLY)
  3965. table = alloc_bootmem_nopanic(size);
  3966. else if (hashdist)
  3967. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  3968. else {
  3969. unsigned long order = get_order(size);
  3970. table = (void*) __get_free_pages(GFP_ATOMIC, order);
  3971. /*
  3972. * If bucketsize is not a power-of-two, we may free
  3973. * some pages at the end of hash table.
  3974. */
  3975. if (table) {
  3976. unsigned long alloc_end = (unsigned long)table +
  3977. (PAGE_SIZE << order);
  3978. unsigned long used = (unsigned long)table +
  3979. PAGE_ALIGN(size);
  3980. split_page(virt_to_page(table), order);
  3981. while (used < alloc_end) {
  3982. free_page(used);
  3983. used += PAGE_SIZE;
  3984. }
  3985. }
  3986. }
  3987. } while (!table && size > PAGE_SIZE && --log2qty);
  3988. if (!table)
  3989. panic("Failed to allocate %s hash table\n", tablename);
  3990. printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
  3991. tablename,
  3992. (1U << log2qty),
  3993. ilog2(size) - PAGE_SHIFT,
  3994. size);
  3995. if (_hash_shift)
  3996. *_hash_shift = log2qty;
  3997. if (_hash_mask)
  3998. *_hash_mask = (1 << log2qty) - 1;
  3999. return table;
  4000. }
  4001. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  4002. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  4003. unsigned long pfn)
  4004. {
  4005. #ifdef CONFIG_SPARSEMEM
  4006. return __pfn_to_section(pfn)->pageblock_flags;
  4007. #else
  4008. return zone->pageblock_flags;
  4009. #endif /* CONFIG_SPARSEMEM */
  4010. }
  4011. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  4012. {
  4013. #ifdef CONFIG_SPARSEMEM
  4014. pfn &= (PAGES_PER_SECTION-1);
  4015. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4016. #else
  4017. pfn = pfn - zone->zone_start_pfn;
  4018. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4019. #endif /* CONFIG_SPARSEMEM */
  4020. }
  4021. /**
  4022. * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
  4023. * @page: The page within the block of interest
  4024. * @start_bitidx: The first bit of interest to retrieve
  4025. * @end_bitidx: The last bit of interest
  4026. * returns pageblock_bits flags
  4027. */
  4028. unsigned long get_pageblock_flags_group(struct page *page,
  4029. int start_bitidx, int end_bitidx)
  4030. {
  4031. struct zone *zone;
  4032. unsigned long *bitmap;
  4033. unsigned long pfn, bitidx;
  4034. unsigned long flags = 0;
  4035. unsigned long value = 1;
  4036. zone = page_zone(page);
  4037. pfn = page_to_pfn(page);
  4038. bitmap = get_pageblock_bitmap(zone, pfn);
  4039. bitidx = pfn_to_bitidx(zone, pfn);
  4040. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4041. if (test_bit(bitidx + start_bitidx, bitmap))
  4042. flags |= value;
  4043. return flags;
  4044. }
  4045. /**
  4046. * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
  4047. * @page: The page within the block of interest
  4048. * @start_bitidx: The first bit of interest
  4049. * @end_bitidx: The last bit of interest
  4050. * @flags: The flags to set
  4051. */
  4052. void set_pageblock_flags_group(struct page *page, unsigned long flags,
  4053. int start_bitidx, int end_bitidx)
  4054. {
  4055. struct zone *zone;
  4056. unsigned long *bitmap;
  4057. unsigned long pfn, bitidx;
  4058. unsigned long value = 1;
  4059. zone = page_zone(page);
  4060. pfn = page_to_pfn(page);
  4061. bitmap = get_pageblock_bitmap(zone, pfn);
  4062. bitidx = pfn_to_bitidx(zone, pfn);
  4063. VM_BUG_ON(pfn < zone->zone_start_pfn);
  4064. VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
  4065. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4066. if (flags & value)
  4067. __set_bit(bitidx + start_bitidx, bitmap);
  4068. else
  4069. __clear_bit(bitidx + start_bitidx, bitmap);
  4070. }
  4071. /*
  4072. * This is designed as sub function...plz see page_isolation.c also.
  4073. * set/clear page block's type to be ISOLATE.
  4074. * page allocater never alloc memory from ISOLATE block.
  4075. */
  4076. int set_migratetype_isolate(struct page *page)
  4077. {
  4078. struct zone *zone;
  4079. unsigned long flags;
  4080. int ret = -EBUSY;
  4081. zone = page_zone(page);
  4082. spin_lock_irqsave(&zone->lock, flags);
  4083. /*
  4084. * In future, more migrate types will be able to be isolation target.
  4085. */
  4086. if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
  4087. goto out;
  4088. set_pageblock_migratetype(page, MIGRATE_ISOLATE);
  4089. move_freepages_block(zone, page, MIGRATE_ISOLATE);
  4090. ret = 0;
  4091. out:
  4092. spin_unlock_irqrestore(&zone->lock, flags);
  4093. if (!ret)
  4094. drain_all_pages();
  4095. return ret;
  4096. }
  4097. void unset_migratetype_isolate(struct page *page)
  4098. {
  4099. struct zone *zone;
  4100. unsigned long flags;
  4101. zone = page_zone(page);
  4102. spin_lock_irqsave(&zone->lock, flags);
  4103. if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
  4104. goto out;
  4105. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  4106. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  4107. out:
  4108. spin_unlock_irqrestore(&zone->lock, flags);
  4109. }
  4110. #ifdef CONFIG_MEMORY_HOTREMOVE
  4111. /*
  4112. * All pages in the range must be isolated before calling this.
  4113. */
  4114. void
  4115. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  4116. {
  4117. struct page *page;
  4118. struct zone *zone;
  4119. int order, i;
  4120. unsigned long pfn;
  4121. unsigned long flags;
  4122. /* find the first valid pfn */
  4123. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  4124. if (pfn_valid(pfn))
  4125. break;
  4126. if (pfn == end_pfn)
  4127. return;
  4128. zone = page_zone(pfn_to_page(pfn));
  4129. spin_lock_irqsave(&zone->lock, flags);
  4130. pfn = start_pfn;
  4131. while (pfn < end_pfn) {
  4132. if (!pfn_valid(pfn)) {
  4133. pfn++;
  4134. continue;
  4135. }
  4136. page = pfn_to_page(pfn);
  4137. BUG_ON(page_count(page));
  4138. BUG_ON(!PageBuddy(page));
  4139. order = page_order(page);
  4140. #ifdef CONFIG_DEBUG_VM
  4141. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  4142. pfn, 1 << order, end_pfn);
  4143. #endif
  4144. list_del(&page->lru);
  4145. rmv_page_order(page);
  4146. zone->free_area[order].nr_free--;
  4147. __mod_zone_page_state(zone, NR_FREE_PAGES,
  4148. - (1UL << order));
  4149. for (i = 0; i < (1 << order); i++)
  4150. SetPageReserved((page+i));
  4151. pfn += (1 << order);
  4152. }
  4153. spin_unlock_irqrestore(&zone->lock, flags);
  4154. }
  4155. #endif