sched_fair.c 44 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. /*
  24. * Targeted preemption latency for CPU-bound tasks:
  25. * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
  26. *
  27. * NOTE: this latency value is not the same as the concept of
  28. * 'timeslice length' - timeslices in CFS are of variable length
  29. * and have no persistent notion like in traditional, time-slice
  30. * based scheduling concepts.
  31. *
  32. * (to see the precise effective timeslice length of your workload,
  33. * run vmstat and monitor the context-switches (cs) field)
  34. */
  35. unsigned int sysctl_sched_latency = 20000000ULL;
  36. /*
  37. * Minimal preemption granularity for CPU-bound tasks:
  38. * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
  39. */
  40. unsigned int sysctl_sched_min_granularity = 4000000ULL;
  41. /*
  42. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  43. */
  44. static unsigned int sched_nr_latency = 5;
  45. /*
  46. * After fork, child runs first. (default) If set to 0 then
  47. * parent will (try to) run first.
  48. */
  49. const_debug unsigned int sysctl_sched_child_runs_first = 1;
  50. /*
  51. * sys_sched_yield() compat mode
  52. *
  53. * This option switches the agressive yield implementation of the
  54. * old scheduler back on.
  55. */
  56. unsigned int __read_mostly sysctl_sched_compat_yield;
  57. /*
  58. * SCHED_OTHER wake-up granularity.
  59. * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
  60. *
  61. * This option delays the preemption effects of decoupled workloads
  62. * and reduces their over-scheduling. Synchronous workloads will still
  63. * have immediate wakeup/sleep latencies.
  64. */
  65. unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
  66. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  67. static const struct sched_class fair_sched_class;
  68. /**************************************************************
  69. * CFS operations on generic schedulable entities:
  70. */
  71. static inline struct task_struct *task_of(struct sched_entity *se)
  72. {
  73. return container_of(se, struct task_struct, se);
  74. }
  75. #ifdef CONFIG_FAIR_GROUP_SCHED
  76. /* cpu runqueue to which this cfs_rq is attached */
  77. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  78. {
  79. return cfs_rq->rq;
  80. }
  81. /* An entity is a task if it doesn't "own" a runqueue */
  82. #define entity_is_task(se) (!se->my_q)
  83. /* Walk up scheduling entities hierarchy */
  84. #define for_each_sched_entity(se) \
  85. for (; se; se = se->parent)
  86. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  87. {
  88. return p->se.cfs_rq;
  89. }
  90. /* runqueue on which this entity is (to be) queued */
  91. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  92. {
  93. return se->cfs_rq;
  94. }
  95. /* runqueue "owned" by this group */
  96. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  97. {
  98. return grp->my_q;
  99. }
  100. /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
  101. * another cpu ('this_cpu')
  102. */
  103. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  104. {
  105. return cfs_rq->tg->cfs_rq[this_cpu];
  106. }
  107. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  108. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  109. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  110. /* Do the two (enqueued) entities belong to the same group ? */
  111. static inline int
  112. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  113. {
  114. if (se->cfs_rq == pse->cfs_rq)
  115. return 1;
  116. return 0;
  117. }
  118. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  119. {
  120. return se->parent;
  121. }
  122. /* return depth at which a sched entity is present in the hierarchy */
  123. static inline int depth_se(struct sched_entity *se)
  124. {
  125. int depth = 0;
  126. for_each_sched_entity(se)
  127. depth++;
  128. return depth;
  129. }
  130. static void
  131. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  132. {
  133. int se_depth, pse_depth;
  134. /*
  135. * preemption test can be made between sibling entities who are in the
  136. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  137. * both tasks until we find their ancestors who are siblings of common
  138. * parent.
  139. */
  140. /* First walk up until both entities are at same depth */
  141. se_depth = depth_se(*se);
  142. pse_depth = depth_se(*pse);
  143. while (se_depth > pse_depth) {
  144. se_depth--;
  145. *se = parent_entity(*se);
  146. }
  147. while (pse_depth > se_depth) {
  148. pse_depth--;
  149. *pse = parent_entity(*pse);
  150. }
  151. while (!is_same_group(*se, *pse)) {
  152. *se = parent_entity(*se);
  153. *pse = parent_entity(*pse);
  154. }
  155. }
  156. #else /* CONFIG_FAIR_GROUP_SCHED */
  157. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  158. {
  159. return container_of(cfs_rq, struct rq, cfs);
  160. }
  161. #define entity_is_task(se) 1
  162. #define for_each_sched_entity(se) \
  163. for (; se; se = NULL)
  164. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  165. {
  166. return &task_rq(p)->cfs;
  167. }
  168. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  169. {
  170. struct task_struct *p = task_of(se);
  171. struct rq *rq = task_rq(p);
  172. return &rq->cfs;
  173. }
  174. /* runqueue "owned" by this group */
  175. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  176. {
  177. return NULL;
  178. }
  179. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  180. {
  181. return &cpu_rq(this_cpu)->cfs;
  182. }
  183. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  184. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  185. static inline int
  186. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  187. {
  188. return 1;
  189. }
  190. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  191. {
  192. return NULL;
  193. }
  194. static inline void
  195. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  196. {
  197. }
  198. #endif /* CONFIG_FAIR_GROUP_SCHED */
  199. /**************************************************************
  200. * Scheduling class tree data structure manipulation methods:
  201. */
  202. static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
  203. {
  204. s64 delta = (s64)(vruntime - min_vruntime);
  205. if (delta > 0)
  206. min_vruntime = vruntime;
  207. return min_vruntime;
  208. }
  209. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  210. {
  211. s64 delta = (s64)(vruntime - min_vruntime);
  212. if (delta < 0)
  213. min_vruntime = vruntime;
  214. return min_vruntime;
  215. }
  216. static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
  217. {
  218. return se->vruntime - cfs_rq->min_vruntime;
  219. }
  220. static void update_min_vruntime(struct cfs_rq *cfs_rq)
  221. {
  222. u64 vruntime = cfs_rq->min_vruntime;
  223. if (cfs_rq->curr)
  224. vruntime = cfs_rq->curr->vruntime;
  225. if (cfs_rq->rb_leftmost) {
  226. struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
  227. struct sched_entity,
  228. run_node);
  229. if (!cfs_rq->curr)
  230. vruntime = se->vruntime;
  231. else
  232. vruntime = min_vruntime(vruntime, se->vruntime);
  233. }
  234. cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
  235. }
  236. /*
  237. * Enqueue an entity into the rb-tree:
  238. */
  239. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  240. {
  241. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  242. struct rb_node *parent = NULL;
  243. struct sched_entity *entry;
  244. s64 key = entity_key(cfs_rq, se);
  245. int leftmost = 1;
  246. /*
  247. * Find the right place in the rbtree:
  248. */
  249. while (*link) {
  250. parent = *link;
  251. entry = rb_entry(parent, struct sched_entity, run_node);
  252. /*
  253. * We dont care about collisions. Nodes with
  254. * the same key stay together.
  255. */
  256. if (key < entity_key(cfs_rq, entry)) {
  257. link = &parent->rb_left;
  258. } else {
  259. link = &parent->rb_right;
  260. leftmost = 0;
  261. }
  262. }
  263. /*
  264. * Maintain a cache of leftmost tree entries (it is frequently
  265. * used):
  266. */
  267. if (leftmost)
  268. cfs_rq->rb_leftmost = &se->run_node;
  269. rb_link_node(&se->run_node, parent, link);
  270. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  271. }
  272. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  273. {
  274. if (cfs_rq->rb_leftmost == &se->run_node) {
  275. struct rb_node *next_node;
  276. next_node = rb_next(&se->run_node);
  277. cfs_rq->rb_leftmost = next_node;
  278. }
  279. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  280. }
  281. static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
  282. {
  283. struct rb_node *left = cfs_rq->rb_leftmost;
  284. if (!left)
  285. return NULL;
  286. return rb_entry(left, struct sched_entity, run_node);
  287. }
  288. static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  289. {
  290. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  291. if (!last)
  292. return NULL;
  293. return rb_entry(last, struct sched_entity, run_node);
  294. }
  295. /**************************************************************
  296. * Scheduling class statistics methods:
  297. */
  298. #ifdef CONFIG_SCHED_DEBUG
  299. int sched_nr_latency_handler(struct ctl_table *table, int write,
  300. struct file *filp, void __user *buffer, size_t *lenp,
  301. loff_t *ppos)
  302. {
  303. int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
  304. if (ret || !write)
  305. return ret;
  306. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  307. sysctl_sched_min_granularity);
  308. return 0;
  309. }
  310. #endif
  311. /*
  312. * delta /= w
  313. */
  314. static inline unsigned long
  315. calc_delta_fair(unsigned long delta, struct sched_entity *se)
  316. {
  317. if (unlikely(se->load.weight != NICE_0_LOAD))
  318. delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
  319. return delta;
  320. }
  321. /*
  322. * The idea is to set a period in which each task runs once.
  323. *
  324. * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
  325. * this period because otherwise the slices get too small.
  326. *
  327. * p = (nr <= nl) ? l : l*nr/nl
  328. */
  329. static u64 __sched_period(unsigned long nr_running)
  330. {
  331. u64 period = sysctl_sched_latency;
  332. unsigned long nr_latency = sched_nr_latency;
  333. if (unlikely(nr_running > nr_latency)) {
  334. period = sysctl_sched_min_granularity;
  335. period *= nr_running;
  336. }
  337. return period;
  338. }
  339. /*
  340. * We calculate the wall-time slice from the period by taking a part
  341. * proportional to the weight.
  342. *
  343. * s = p*P[w/rw]
  344. */
  345. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  346. {
  347. u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
  348. for_each_sched_entity(se) {
  349. struct load_weight *load;
  350. cfs_rq = cfs_rq_of(se);
  351. load = &cfs_rq->load;
  352. if (unlikely(!se->on_rq)) {
  353. struct load_weight lw = cfs_rq->load;
  354. update_load_add(&lw, se->load.weight);
  355. load = &lw;
  356. }
  357. slice = calc_delta_mine(slice, se->load.weight, load);
  358. }
  359. return slice;
  360. }
  361. /*
  362. * We calculate the vruntime slice of a to be inserted task
  363. *
  364. * vs = s/w
  365. */
  366. static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  367. {
  368. return calc_delta_fair(sched_slice(cfs_rq, se), se);
  369. }
  370. /*
  371. * Update the current task's runtime statistics. Skip current tasks that
  372. * are not in our scheduling class.
  373. */
  374. static inline void
  375. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  376. unsigned long delta_exec)
  377. {
  378. unsigned long delta_exec_weighted;
  379. schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
  380. curr->sum_exec_runtime += delta_exec;
  381. schedstat_add(cfs_rq, exec_clock, delta_exec);
  382. delta_exec_weighted = calc_delta_fair(delta_exec, curr);
  383. curr->vruntime += delta_exec_weighted;
  384. update_min_vruntime(cfs_rq);
  385. }
  386. static void update_curr(struct cfs_rq *cfs_rq)
  387. {
  388. struct sched_entity *curr = cfs_rq->curr;
  389. u64 now = rq_of(cfs_rq)->clock;
  390. unsigned long delta_exec;
  391. if (unlikely(!curr))
  392. return;
  393. /*
  394. * Get the amount of time the current task was running
  395. * since the last time we changed load (this cannot
  396. * overflow on 32 bits):
  397. */
  398. delta_exec = (unsigned long)(now - curr->exec_start);
  399. if (!delta_exec)
  400. return;
  401. __update_curr(cfs_rq, curr, delta_exec);
  402. curr->exec_start = now;
  403. if (entity_is_task(curr)) {
  404. struct task_struct *curtask = task_of(curr);
  405. cpuacct_charge(curtask, delta_exec);
  406. account_group_exec_runtime(curtask, delta_exec);
  407. }
  408. }
  409. static inline void
  410. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  411. {
  412. schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
  413. }
  414. /*
  415. * Task is being enqueued - update stats:
  416. */
  417. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  418. {
  419. /*
  420. * Are we enqueueing a waiting task? (for current tasks
  421. * a dequeue/enqueue event is a NOP)
  422. */
  423. if (se != cfs_rq->curr)
  424. update_stats_wait_start(cfs_rq, se);
  425. }
  426. static void
  427. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  428. {
  429. schedstat_set(se->wait_max, max(se->wait_max,
  430. rq_of(cfs_rq)->clock - se->wait_start));
  431. schedstat_set(se->wait_count, se->wait_count + 1);
  432. schedstat_set(se->wait_sum, se->wait_sum +
  433. rq_of(cfs_rq)->clock - se->wait_start);
  434. schedstat_set(se->wait_start, 0);
  435. }
  436. static inline void
  437. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  438. {
  439. /*
  440. * Mark the end of the wait period if dequeueing a
  441. * waiting task:
  442. */
  443. if (se != cfs_rq->curr)
  444. update_stats_wait_end(cfs_rq, se);
  445. }
  446. /*
  447. * We are picking a new current task - update its stats:
  448. */
  449. static inline void
  450. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  451. {
  452. /*
  453. * We are starting a new run period:
  454. */
  455. se->exec_start = rq_of(cfs_rq)->clock;
  456. }
  457. /**************************************************
  458. * Scheduling class queueing methods:
  459. */
  460. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  461. static void
  462. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  463. {
  464. cfs_rq->task_weight += weight;
  465. }
  466. #else
  467. static inline void
  468. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  469. {
  470. }
  471. #endif
  472. static void
  473. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  474. {
  475. update_load_add(&cfs_rq->load, se->load.weight);
  476. if (!parent_entity(se))
  477. inc_cpu_load(rq_of(cfs_rq), se->load.weight);
  478. if (entity_is_task(se)) {
  479. add_cfs_task_weight(cfs_rq, se->load.weight);
  480. list_add(&se->group_node, &cfs_rq->tasks);
  481. }
  482. cfs_rq->nr_running++;
  483. se->on_rq = 1;
  484. }
  485. static void
  486. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  487. {
  488. update_load_sub(&cfs_rq->load, se->load.weight);
  489. if (!parent_entity(se))
  490. dec_cpu_load(rq_of(cfs_rq), se->load.weight);
  491. if (entity_is_task(se)) {
  492. add_cfs_task_weight(cfs_rq, -se->load.weight);
  493. list_del_init(&se->group_node);
  494. }
  495. cfs_rq->nr_running--;
  496. se->on_rq = 0;
  497. }
  498. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  499. {
  500. #ifdef CONFIG_SCHEDSTATS
  501. if (se->sleep_start) {
  502. u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
  503. struct task_struct *tsk = task_of(se);
  504. if ((s64)delta < 0)
  505. delta = 0;
  506. if (unlikely(delta > se->sleep_max))
  507. se->sleep_max = delta;
  508. se->sleep_start = 0;
  509. se->sum_sleep_runtime += delta;
  510. account_scheduler_latency(tsk, delta >> 10, 1);
  511. }
  512. if (se->block_start) {
  513. u64 delta = rq_of(cfs_rq)->clock - se->block_start;
  514. struct task_struct *tsk = task_of(se);
  515. if ((s64)delta < 0)
  516. delta = 0;
  517. if (unlikely(delta > se->block_max))
  518. se->block_max = delta;
  519. se->block_start = 0;
  520. se->sum_sleep_runtime += delta;
  521. /*
  522. * Blocking time is in units of nanosecs, so shift by 20 to
  523. * get a milliseconds-range estimation of the amount of
  524. * time that the task spent sleeping:
  525. */
  526. if (unlikely(prof_on == SLEEP_PROFILING)) {
  527. profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
  528. delta >> 20);
  529. }
  530. account_scheduler_latency(tsk, delta >> 10, 0);
  531. }
  532. #endif
  533. }
  534. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  535. {
  536. #ifdef CONFIG_SCHED_DEBUG
  537. s64 d = se->vruntime - cfs_rq->min_vruntime;
  538. if (d < 0)
  539. d = -d;
  540. if (d > 3*sysctl_sched_latency)
  541. schedstat_inc(cfs_rq, nr_spread_over);
  542. #endif
  543. }
  544. static void
  545. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  546. {
  547. u64 vruntime = cfs_rq->min_vruntime;
  548. /*
  549. * The 'current' period is already promised to the current tasks,
  550. * however the extra weight of the new task will slow them down a
  551. * little, place the new task so that it fits in the slot that
  552. * stays open at the end.
  553. */
  554. if (initial && sched_feat(START_DEBIT))
  555. vruntime += sched_vslice(cfs_rq, se);
  556. if (!initial) {
  557. /* sleeps upto a single latency don't count. */
  558. if (sched_feat(NEW_FAIR_SLEEPERS)) {
  559. unsigned long thresh = sysctl_sched_latency;
  560. /*
  561. * Convert the sleeper threshold into virtual time.
  562. * SCHED_IDLE is a special sub-class. We care about
  563. * fairness only relative to other SCHED_IDLE tasks,
  564. * all of which have the same weight.
  565. */
  566. if (sched_feat(NORMALIZED_SLEEPER) &&
  567. task_of(se)->policy != SCHED_IDLE)
  568. thresh = calc_delta_fair(thresh, se);
  569. vruntime -= thresh;
  570. }
  571. /* ensure we never gain time by being placed backwards. */
  572. vruntime = max_vruntime(se->vruntime, vruntime);
  573. }
  574. se->vruntime = vruntime;
  575. }
  576. static void
  577. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
  578. {
  579. /*
  580. * Update run-time statistics of the 'current'.
  581. */
  582. update_curr(cfs_rq);
  583. account_entity_enqueue(cfs_rq, se);
  584. if (wakeup) {
  585. place_entity(cfs_rq, se, 0);
  586. enqueue_sleeper(cfs_rq, se);
  587. }
  588. update_stats_enqueue(cfs_rq, se);
  589. check_spread(cfs_rq, se);
  590. if (se != cfs_rq->curr)
  591. __enqueue_entity(cfs_rq, se);
  592. }
  593. static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  594. {
  595. if (cfs_rq->last == se)
  596. cfs_rq->last = NULL;
  597. if (cfs_rq->next == se)
  598. cfs_rq->next = NULL;
  599. }
  600. static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  601. {
  602. for_each_sched_entity(se)
  603. __clear_buddies(cfs_rq_of(se), se);
  604. }
  605. static void
  606. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
  607. {
  608. /*
  609. * Update run-time statistics of the 'current'.
  610. */
  611. update_curr(cfs_rq);
  612. update_stats_dequeue(cfs_rq, se);
  613. if (sleep) {
  614. #ifdef CONFIG_SCHEDSTATS
  615. if (entity_is_task(se)) {
  616. struct task_struct *tsk = task_of(se);
  617. if (tsk->state & TASK_INTERRUPTIBLE)
  618. se->sleep_start = rq_of(cfs_rq)->clock;
  619. if (tsk->state & TASK_UNINTERRUPTIBLE)
  620. se->block_start = rq_of(cfs_rq)->clock;
  621. }
  622. #endif
  623. }
  624. clear_buddies(cfs_rq, se);
  625. if (se != cfs_rq->curr)
  626. __dequeue_entity(cfs_rq, se);
  627. account_entity_dequeue(cfs_rq, se);
  628. update_min_vruntime(cfs_rq);
  629. }
  630. /*
  631. * Preempt the current task with a newly woken task if needed:
  632. */
  633. static void
  634. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  635. {
  636. unsigned long ideal_runtime, delta_exec;
  637. ideal_runtime = sched_slice(cfs_rq, curr);
  638. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  639. if (delta_exec > ideal_runtime) {
  640. resched_task(rq_of(cfs_rq)->curr);
  641. /*
  642. * The current task ran long enough, ensure it doesn't get
  643. * re-elected due to buddy favours.
  644. */
  645. clear_buddies(cfs_rq, curr);
  646. }
  647. }
  648. static void
  649. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  650. {
  651. /* 'current' is not kept within the tree. */
  652. if (se->on_rq) {
  653. /*
  654. * Any task has to be enqueued before it get to execute on
  655. * a CPU. So account for the time it spent waiting on the
  656. * runqueue.
  657. */
  658. update_stats_wait_end(cfs_rq, se);
  659. __dequeue_entity(cfs_rq, se);
  660. }
  661. update_stats_curr_start(cfs_rq, se);
  662. cfs_rq->curr = se;
  663. #ifdef CONFIG_SCHEDSTATS
  664. /*
  665. * Track our maximum slice length, if the CPU's load is at
  666. * least twice that of our own weight (i.e. dont track it
  667. * when there are only lesser-weight tasks around):
  668. */
  669. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  670. se->slice_max = max(se->slice_max,
  671. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  672. }
  673. #endif
  674. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  675. }
  676. static int
  677. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  678. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  679. {
  680. struct sched_entity *se = __pick_next_entity(cfs_rq);
  681. if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, se) < 1)
  682. return cfs_rq->next;
  683. if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, se) < 1)
  684. return cfs_rq->last;
  685. return se;
  686. }
  687. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  688. {
  689. /*
  690. * If still on the runqueue then deactivate_task()
  691. * was not called and update_curr() has to be done:
  692. */
  693. if (prev->on_rq)
  694. update_curr(cfs_rq);
  695. check_spread(cfs_rq, prev);
  696. if (prev->on_rq) {
  697. update_stats_wait_start(cfs_rq, prev);
  698. /* Put 'current' back into the tree. */
  699. __enqueue_entity(cfs_rq, prev);
  700. }
  701. cfs_rq->curr = NULL;
  702. }
  703. static void
  704. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  705. {
  706. /*
  707. * Update run-time statistics of the 'current'.
  708. */
  709. update_curr(cfs_rq);
  710. #ifdef CONFIG_SCHED_HRTICK
  711. /*
  712. * queued ticks are scheduled to match the slice, so don't bother
  713. * validating it and just reschedule.
  714. */
  715. if (queued) {
  716. resched_task(rq_of(cfs_rq)->curr);
  717. return;
  718. }
  719. /*
  720. * don't let the period tick interfere with the hrtick preemption
  721. */
  722. if (!sched_feat(DOUBLE_TICK) &&
  723. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  724. return;
  725. #endif
  726. if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
  727. check_preempt_tick(cfs_rq, curr);
  728. }
  729. /**************************************************
  730. * CFS operations on tasks:
  731. */
  732. #ifdef CONFIG_SCHED_HRTICK
  733. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  734. {
  735. struct sched_entity *se = &p->se;
  736. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  737. WARN_ON(task_rq(p) != rq);
  738. if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
  739. u64 slice = sched_slice(cfs_rq, se);
  740. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  741. s64 delta = slice - ran;
  742. if (delta < 0) {
  743. if (rq->curr == p)
  744. resched_task(p);
  745. return;
  746. }
  747. /*
  748. * Don't schedule slices shorter than 10000ns, that just
  749. * doesn't make sense. Rely on vruntime for fairness.
  750. */
  751. if (rq->curr != p)
  752. delta = max_t(s64, 10000LL, delta);
  753. hrtick_start(rq, delta);
  754. }
  755. }
  756. /*
  757. * called from enqueue/dequeue and updates the hrtick when the
  758. * current task is from our class and nr_running is low enough
  759. * to matter.
  760. */
  761. static void hrtick_update(struct rq *rq)
  762. {
  763. struct task_struct *curr = rq->curr;
  764. if (curr->sched_class != &fair_sched_class)
  765. return;
  766. if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
  767. hrtick_start_fair(rq, curr);
  768. }
  769. #else /* !CONFIG_SCHED_HRTICK */
  770. static inline void
  771. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  772. {
  773. }
  774. static inline void hrtick_update(struct rq *rq)
  775. {
  776. }
  777. #endif
  778. /*
  779. * The enqueue_task method is called before nr_running is
  780. * increased. Here we update the fair scheduling stats and
  781. * then put the task into the rbtree:
  782. */
  783. static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
  784. {
  785. struct cfs_rq *cfs_rq;
  786. struct sched_entity *se = &p->se;
  787. for_each_sched_entity(se) {
  788. if (se->on_rq)
  789. break;
  790. cfs_rq = cfs_rq_of(se);
  791. enqueue_entity(cfs_rq, se, wakeup);
  792. wakeup = 1;
  793. }
  794. hrtick_update(rq);
  795. }
  796. /*
  797. * The dequeue_task method is called before nr_running is
  798. * decreased. We remove the task from the rbtree and
  799. * update the fair scheduling stats:
  800. */
  801. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
  802. {
  803. struct cfs_rq *cfs_rq;
  804. struct sched_entity *se = &p->se;
  805. for_each_sched_entity(se) {
  806. cfs_rq = cfs_rq_of(se);
  807. dequeue_entity(cfs_rq, se, sleep);
  808. /* Don't dequeue parent if it has other entities besides us */
  809. if (cfs_rq->load.weight)
  810. break;
  811. sleep = 1;
  812. }
  813. hrtick_update(rq);
  814. }
  815. /*
  816. * sched_yield() support is very simple - we dequeue and enqueue.
  817. *
  818. * If compat_yield is turned on then we requeue to the end of the tree.
  819. */
  820. static void yield_task_fair(struct rq *rq)
  821. {
  822. struct task_struct *curr = rq->curr;
  823. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  824. struct sched_entity *rightmost, *se = &curr->se;
  825. /*
  826. * Are we the only task in the tree?
  827. */
  828. if (unlikely(cfs_rq->nr_running == 1))
  829. return;
  830. clear_buddies(cfs_rq, se);
  831. if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
  832. update_rq_clock(rq);
  833. /*
  834. * Update run-time statistics of the 'current'.
  835. */
  836. update_curr(cfs_rq);
  837. return;
  838. }
  839. /*
  840. * Find the rightmost entry in the rbtree:
  841. */
  842. rightmost = __pick_last_entity(cfs_rq);
  843. /*
  844. * Already in the rightmost position?
  845. */
  846. if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
  847. return;
  848. /*
  849. * Minimally necessary key value to be last in the tree:
  850. * Upon rescheduling, sched_class::put_prev_task() will place
  851. * 'current' within the tree based on its new key value.
  852. */
  853. se->vruntime = rightmost->vruntime + 1;
  854. }
  855. /*
  856. * wake_idle() will wake a task on an idle cpu if task->cpu is
  857. * not idle and an idle cpu is available. The span of cpus to
  858. * search starts with cpus closest then further out as needed,
  859. * so we always favor a closer, idle cpu.
  860. * Domains may include CPUs that are not usable for migration,
  861. * hence we need to mask them out (cpu_active_mask)
  862. *
  863. * Returns the CPU we should wake onto.
  864. */
  865. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  866. static int wake_idle(int cpu, struct task_struct *p)
  867. {
  868. struct sched_domain *sd;
  869. int i;
  870. unsigned int chosen_wakeup_cpu;
  871. int this_cpu;
  872. /*
  873. * At POWERSAVINGS_BALANCE_WAKEUP level, if both this_cpu and prev_cpu
  874. * are idle and this is not a kernel thread and this task's affinity
  875. * allows it to be moved to preferred cpu, then just move!
  876. */
  877. this_cpu = smp_processor_id();
  878. chosen_wakeup_cpu =
  879. cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu;
  880. if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP &&
  881. idle_cpu(cpu) && idle_cpu(this_cpu) &&
  882. p->mm && !(p->flags & PF_KTHREAD) &&
  883. cpu_isset(chosen_wakeup_cpu, p->cpus_allowed))
  884. return chosen_wakeup_cpu;
  885. /*
  886. * If it is idle, then it is the best cpu to run this task.
  887. *
  888. * This cpu is also the best, if it has more than one task already.
  889. * Siblings must be also busy(in most cases) as they didn't already
  890. * pickup the extra load from this cpu and hence we need not check
  891. * sibling runqueue info. This will avoid the checks and cache miss
  892. * penalities associated with that.
  893. */
  894. if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
  895. return cpu;
  896. for_each_domain(cpu, sd) {
  897. if ((sd->flags & SD_WAKE_IDLE)
  898. || ((sd->flags & SD_WAKE_IDLE_FAR)
  899. && !task_hot(p, task_rq(p)->clock, sd))) {
  900. for_each_cpu_and(i, sched_domain_span(sd),
  901. &p->cpus_allowed) {
  902. if (cpu_active(i) && idle_cpu(i)) {
  903. if (i != task_cpu(p)) {
  904. schedstat_inc(p,
  905. se.nr_wakeups_idle);
  906. }
  907. return i;
  908. }
  909. }
  910. } else {
  911. break;
  912. }
  913. }
  914. return cpu;
  915. }
  916. #else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
  917. static inline int wake_idle(int cpu, struct task_struct *p)
  918. {
  919. return cpu;
  920. }
  921. #endif
  922. #ifdef CONFIG_SMP
  923. #ifdef CONFIG_FAIR_GROUP_SCHED
  924. /*
  925. * effective_load() calculates the load change as seen from the root_task_group
  926. *
  927. * Adding load to a group doesn't make a group heavier, but can cause movement
  928. * of group shares between cpus. Assuming the shares were perfectly aligned one
  929. * can calculate the shift in shares.
  930. *
  931. * The problem is that perfectly aligning the shares is rather expensive, hence
  932. * we try to avoid doing that too often - see update_shares(), which ratelimits
  933. * this change.
  934. *
  935. * We compensate this by not only taking the current delta into account, but
  936. * also considering the delta between when the shares were last adjusted and
  937. * now.
  938. *
  939. * We still saw a performance dip, some tracing learned us that between
  940. * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
  941. * significantly. Therefore try to bias the error in direction of failing
  942. * the affine wakeup.
  943. *
  944. */
  945. static long effective_load(struct task_group *tg, int cpu,
  946. long wl, long wg)
  947. {
  948. struct sched_entity *se = tg->se[cpu];
  949. if (!tg->parent)
  950. return wl;
  951. /*
  952. * By not taking the decrease of shares on the other cpu into
  953. * account our error leans towards reducing the affine wakeups.
  954. */
  955. if (!wl && sched_feat(ASYM_EFF_LOAD))
  956. return wl;
  957. for_each_sched_entity(se) {
  958. long S, rw, s, a, b;
  959. long more_w;
  960. /*
  961. * Instead of using this increment, also add the difference
  962. * between when the shares were last updated and now.
  963. */
  964. more_w = se->my_q->load.weight - se->my_q->rq_weight;
  965. wl += more_w;
  966. wg += more_w;
  967. S = se->my_q->tg->shares;
  968. s = se->my_q->shares;
  969. rw = se->my_q->rq_weight;
  970. a = S*(rw + wl);
  971. b = S*rw + s*wg;
  972. wl = s*(a-b);
  973. if (likely(b))
  974. wl /= b;
  975. /*
  976. * Assume the group is already running and will
  977. * thus already be accounted for in the weight.
  978. *
  979. * That is, moving shares between CPUs, does not
  980. * alter the group weight.
  981. */
  982. wg = 0;
  983. }
  984. return wl;
  985. }
  986. #else
  987. static inline unsigned long effective_load(struct task_group *tg, int cpu,
  988. unsigned long wl, unsigned long wg)
  989. {
  990. return wl;
  991. }
  992. #endif
  993. static int
  994. wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
  995. struct task_struct *p, int prev_cpu, int this_cpu, int sync,
  996. int idx, unsigned long load, unsigned long this_load,
  997. unsigned int imbalance)
  998. {
  999. struct task_struct *curr = this_rq->curr;
  1000. struct task_group *tg;
  1001. unsigned long tl = this_load;
  1002. unsigned long tl_per_task;
  1003. unsigned long weight;
  1004. int balanced;
  1005. if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
  1006. return 0;
  1007. if (sync && (curr->se.avg_overlap > sysctl_sched_migration_cost ||
  1008. p->se.avg_overlap > sysctl_sched_migration_cost))
  1009. sync = 0;
  1010. /*
  1011. * If sync wakeup then subtract the (maximum possible)
  1012. * effect of the currently running task from the load
  1013. * of the current CPU:
  1014. */
  1015. if (sync) {
  1016. tg = task_group(current);
  1017. weight = current->se.load.weight;
  1018. tl += effective_load(tg, this_cpu, -weight, -weight);
  1019. load += effective_load(tg, prev_cpu, 0, -weight);
  1020. }
  1021. tg = task_group(p);
  1022. weight = p->se.load.weight;
  1023. balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
  1024. imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
  1025. /*
  1026. * If the currently running task will sleep within
  1027. * a reasonable amount of time then attract this newly
  1028. * woken task:
  1029. */
  1030. if (sync && balanced)
  1031. return 1;
  1032. schedstat_inc(p, se.nr_wakeups_affine_attempts);
  1033. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1034. if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
  1035. tl_per_task)) {
  1036. /*
  1037. * This domain has SD_WAKE_AFFINE and
  1038. * p is cache cold in this domain, and
  1039. * there is no bad imbalance.
  1040. */
  1041. schedstat_inc(this_sd, ttwu_move_affine);
  1042. schedstat_inc(p, se.nr_wakeups_affine);
  1043. return 1;
  1044. }
  1045. return 0;
  1046. }
  1047. static int select_task_rq_fair(struct task_struct *p, int sync)
  1048. {
  1049. struct sched_domain *sd, *this_sd = NULL;
  1050. int prev_cpu, this_cpu, new_cpu;
  1051. unsigned long load, this_load;
  1052. struct rq *this_rq;
  1053. unsigned int imbalance;
  1054. int idx;
  1055. prev_cpu = task_cpu(p);
  1056. this_cpu = smp_processor_id();
  1057. this_rq = cpu_rq(this_cpu);
  1058. new_cpu = prev_cpu;
  1059. if (prev_cpu == this_cpu)
  1060. goto out;
  1061. /*
  1062. * 'this_sd' is the first domain that both
  1063. * this_cpu and prev_cpu are present in:
  1064. */
  1065. for_each_domain(this_cpu, sd) {
  1066. if (cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) {
  1067. this_sd = sd;
  1068. break;
  1069. }
  1070. }
  1071. if (unlikely(!cpumask_test_cpu(this_cpu, &p->cpus_allowed)))
  1072. goto out;
  1073. /*
  1074. * Check for affine wakeup and passive balancing possibilities.
  1075. */
  1076. if (!this_sd)
  1077. goto out;
  1078. idx = this_sd->wake_idx;
  1079. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1080. load = source_load(prev_cpu, idx);
  1081. this_load = target_load(this_cpu, idx);
  1082. if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
  1083. load, this_load, imbalance))
  1084. return this_cpu;
  1085. /*
  1086. * Start passive balancing when half the imbalance_pct
  1087. * limit is reached.
  1088. */
  1089. if (this_sd->flags & SD_WAKE_BALANCE) {
  1090. if (imbalance*this_load <= 100*load) {
  1091. schedstat_inc(this_sd, ttwu_move_balance);
  1092. schedstat_inc(p, se.nr_wakeups_passive);
  1093. return this_cpu;
  1094. }
  1095. }
  1096. out:
  1097. return wake_idle(new_cpu, p);
  1098. }
  1099. #endif /* CONFIG_SMP */
  1100. /*
  1101. * Adaptive granularity
  1102. *
  1103. * se->avg_wakeup gives the average time a task runs until it does a wakeup,
  1104. * with the limit of wakeup_gran -- when it never does a wakeup.
  1105. *
  1106. * So the smaller avg_wakeup is the faster we want this task to preempt,
  1107. * but we don't want to treat the preemptee unfairly and therefore allow it
  1108. * to run for at least the amount of time we'd like to run.
  1109. *
  1110. * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
  1111. *
  1112. * NOTE: we use *nr_running to scale with load, this nicely matches the
  1113. * degrading latency on load.
  1114. */
  1115. static unsigned long
  1116. adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
  1117. {
  1118. u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  1119. u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
  1120. u64 gran = 0;
  1121. if (this_run < expected_wakeup)
  1122. gran = expected_wakeup - this_run;
  1123. return min_t(s64, gran, sysctl_sched_wakeup_granularity);
  1124. }
  1125. static unsigned long
  1126. wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
  1127. {
  1128. unsigned long gran = sysctl_sched_wakeup_granularity;
  1129. if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
  1130. gran = adaptive_gran(curr, se);
  1131. /*
  1132. * Since its curr running now, convert the gran from real-time
  1133. * to virtual-time in his units.
  1134. */
  1135. if (sched_feat(ASYM_GRAN)) {
  1136. /*
  1137. * By using 'se' instead of 'curr' we penalize light tasks, so
  1138. * they get preempted easier. That is, if 'se' < 'curr' then
  1139. * the resulting gran will be larger, therefore penalizing the
  1140. * lighter, if otoh 'se' > 'curr' then the resulting gran will
  1141. * be smaller, again penalizing the lighter task.
  1142. *
  1143. * This is especially important for buddies when the leftmost
  1144. * task is higher priority than the buddy.
  1145. */
  1146. if (unlikely(se->load.weight != NICE_0_LOAD))
  1147. gran = calc_delta_fair(gran, se);
  1148. } else {
  1149. if (unlikely(curr->load.weight != NICE_0_LOAD))
  1150. gran = calc_delta_fair(gran, curr);
  1151. }
  1152. return gran;
  1153. }
  1154. /*
  1155. * Should 'se' preempt 'curr'.
  1156. *
  1157. * |s1
  1158. * |s2
  1159. * |s3
  1160. * g
  1161. * |<--->|c
  1162. *
  1163. * w(c, s1) = -1
  1164. * w(c, s2) = 0
  1165. * w(c, s3) = 1
  1166. *
  1167. */
  1168. static int
  1169. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  1170. {
  1171. s64 gran, vdiff = curr->vruntime - se->vruntime;
  1172. if (vdiff <= 0)
  1173. return -1;
  1174. gran = wakeup_gran(curr, se);
  1175. if (vdiff > gran)
  1176. return 1;
  1177. return 0;
  1178. }
  1179. static void set_last_buddy(struct sched_entity *se)
  1180. {
  1181. if (likely(task_of(se)->policy != SCHED_IDLE)) {
  1182. for_each_sched_entity(se)
  1183. cfs_rq_of(se)->last = se;
  1184. }
  1185. }
  1186. static void set_next_buddy(struct sched_entity *se)
  1187. {
  1188. if (likely(task_of(se)->policy != SCHED_IDLE)) {
  1189. for_each_sched_entity(se)
  1190. cfs_rq_of(se)->next = se;
  1191. }
  1192. }
  1193. /*
  1194. * Preempt the current task with a newly woken task if needed:
  1195. */
  1196. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
  1197. {
  1198. struct task_struct *curr = rq->curr;
  1199. struct sched_entity *se = &curr->se, *pse = &p->se;
  1200. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  1201. update_curr(cfs_rq);
  1202. if (unlikely(rt_prio(p->prio))) {
  1203. resched_task(curr);
  1204. return;
  1205. }
  1206. if (unlikely(p->sched_class != &fair_sched_class))
  1207. return;
  1208. if (unlikely(se == pse))
  1209. return;
  1210. /*
  1211. * Only set the backward buddy when the current task is still on the
  1212. * rq. This can happen when a wakeup gets interleaved with schedule on
  1213. * the ->pre_schedule() or idle_balance() point, either of which can
  1214. * drop the rq lock.
  1215. *
  1216. * Also, during early boot the idle thread is in the fair class, for
  1217. * obvious reasons its a bad idea to schedule back to the idle thread.
  1218. */
  1219. if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle))
  1220. set_last_buddy(se);
  1221. set_next_buddy(pse);
  1222. /*
  1223. * We can come here with TIF_NEED_RESCHED already set from new task
  1224. * wake up path.
  1225. */
  1226. if (test_tsk_need_resched(curr))
  1227. return;
  1228. /*
  1229. * Batch and idle tasks do not preempt (their preemption is driven by
  1230. * the tick):
  1231. */
  1232. if (unlikely(p->policy != SCHED_NORMAL))
  1233. return;
  1234. /* Idle tasks are by definition preempted by everybody. */
  1235. if (unlikely(curr->policy == SCHED_IDLE)) {
  1236. resched_task(curr);
  1237. return;
  1238. }
  1239. if (!sched_feat(WAKEUP_PREEMPT))
  1240. return;
  1241. if (sched_feat(WAKEUP_OVERLAP) && (sync ||
  1242. (se->avg_overlap < sysctl_sched_migration_cost &&
  1243. pse->avg_overlap < sysctl_sched_migration_cost))) {
  1244. resched_task(curr);
  1245. return;
  1246. }
  1247. find_matching_se(&se, &pse);
  1248. while (se) {
  1249. BUG_ON(!pse);
  1250. if (wakeup_preempt_entity(se, pse) == 1) {
  1251. resched_task(curr);
  1252. break;
  1253. }
  1254. se = parent_entity(se);
  1255. pse = parent_entity(pse);
  1256. }
  1257. }
  1258. static struct task_struct *pick_next_task_fair(struct rq *rq)
  1259. {
  1260. struct task_struct *p;
  1261. struct cfs_rq *cfs_rq = &rq->cfs;
  1262. struct sched_entity *se;
  1263. if (unlikely(!cfs_rq->nr_running))
  1264. return NULL;
  1265. do {
  1266. se = pick_next_entity(cfs_rq);
  1267. /*
  1268. * If se was a buddy, clear it so that it will have to earn
  1269. * the favour again.
  1270. */
  1271. __clear_buddies(cfs_rq, se);
  1272. set_next_entity(cfs_rq, se);
  1273. cfs_rq = group_cfs_rq(se);
  1274. } while (cfs_rq);
  1275. p = task_of(se);
  1276. hrtick_start_fair(rq, p);
  1277. return p;
  1278. }
  1279. /*
  1280. * Account for a descheduled task:
  1281. */
  1282. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  1283. {
  1284. struct sched_entity *se = &prev->se;
  1285. struct cfs_rq *cfs_rq;
  1286. for_each_sched_entity(se) {
  1287. cfs_rq = cfs_rq_of(se);
  1288. put_prev_entity(cfs_rq, se);
  1289. }
  1290. }
  1291. #ifdef CONFIG_SMP
  1292. /**************************************************
  1293. * Fair scheduling class load-balancing methods:
  1294. */
  1295. /*
  1296. * Load-balancing iterator. Note: while the runqueue stays locked
  1297. * during the whole iteration, the current task might be
  1298. * dequeued so the iterator has to be dequeue-safe. Here we
  1299. * achieve that by always pre-iterating before returning
  1300. * the current task:
  1301. */
  1302. static struct task_struct *
  1303. __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
  1304. {
  1305. struct task_struct *p = NULL;
  1306. struct sched_entity *se;
  1307. if (next == &cfs_rq->tasks)
  1308. return NULL;
  1309. se = list_entry(next, struct sched_entity, group_node);
  1310. p = task_of(se);
  1311. cfs_rq->balance_iterator = next->next;
  1312. return p;
  1313. }
  1314. static struct task_struct *load_balance_start_fair(void *arg)
  1315. {
  1316. struct cfs_rq *cfs_rq = arg;
  1317. return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
  1318. }
  1319. static struct task_struct *load_balance_next_fair(void *arg)
  1320. {
  1321. struct cfs_rq *cfs_rq = arg;
  1322. return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
  1323. }
  1324. static unsigned long
  1325. __load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1326. unsigned long max_load_move, struct sched_domain *sd,
  1327. enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
  1328. struct cfs_rq *cfs_rq)
  1329. {
  1330. struct rq_iterator cfs_rq_iterator;
  1331. cfs_rq_iterator.start = load_balance_start_fair;
  1332. cfs_rq_iterator.next = load_balance_next_fair;
  1333. cfs_rq_iterator.arg = cfs_rq;
  1334. return balance_tasks(this_rq, this_cpu, busiest,
  1335. max_load_move, sd, idle, all_pinned,
  1336. this_best_prio, &cfs_rq_iterator);
  1337. }
  1338. #ifdef CONFIG_FAIR_GROUP_SCHED
  1339. static unsigned long
  1340. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1341. unsigned long max_load_move,
  1342. struct sched_domain *sd, enum cpu_idle_type idle,
  1343. int *all_pinned, int *this_best_prio)
  1344. {
  1345. long rem_load_move = max_load_move;
  1346. int busiest_cpu = cpu_of(busiest);
  1347. struct task_group *tg;
  1348. rcu_read_lock();
  1349. update_h_load(busiest_cpu);
  1350. list_for_each_entry_rcu(tg, &task_groups, list) {
  1351. struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
  1352. unsigned long busiest_h_load = busiest_cfs_rq->h_load;
  1353. unsigned long busiest_weight = busiest_cfs_rq->load.weight;
  1354. u64 rem_load, moved_load;
  1355. /*
  1356. * empty group
  1357. */
  1358. if (!busiest_cfs_rq->task_weight)
  1359. continue;
  1360. rem_load = (u64)rem_load_move * busiest_weight;
  1361. rem_load = div_u64(rem_load, busiest_h_load + 1);
  1362. moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
  1363. rem_load, sd, idle, all_pinned, this_best_prio,
  1364. tg->cfs_rq[busiest_cpu]);
  1365. if (!moved_load)
  1366. continue;
  1367. moved_load *= busiest_h_load;
  1368. moved_load = div_u64(moved_load, busiest_weight + 1);
  1369. rem_load_move -= moved_load;
  1370. if (rem_load_move < 0)
  1371. break;
  1372. }
  1373. rcu_read_unlock();
  1374. return max_load_move - rem_load_move;
  1375. }
  1376. #else
  1377. static unsigned long
  1378. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1379. unsigned long max_load_move,
  1380. struct sched_domain *sd, enum cpu_idle_type idle,
  1381. int *all_pinned, int *this_best_prio)
  1382. {
  1383. return __load_balance_fair(this_rq, this_cpu, busiest,
  1384. max_load_move, sd, idle, all_pinned,
  1385. this_best_prio, &busiest->cfs);
  1386. }
  1387. #endif
  1388. static int
  1389. move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1390. struct sched_domain *sd, enum cpu_idle_type idle)
  1391. {
  1392. struct cfs_rq *busy_cfs_rq;
  1393. struct rq_iterator cfs_rq_iterator;
  1394. cfs_rq_iterator.start = load_balance_start_fair;
  1395. cfs_rq_iterator.next = load_balance_next_fair;
  1396. for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
  1397. /*
  1398. * pass busy_cfs_rq argument into
  1399. * load_balance_[start|next]_fair iterators
  1400. */
  1401. cfs_rq_iterator.arg = busy_cfs_rq;
  1402. if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
  1403. &cfs_rq_iterator))
  1404. return 1;
  1405. }
  1406. return 0;
  1407. }
  1408. #endif /* CONFIG_SMP */
  1409. /*
  1410. * scheduler tick hitting a task of our scheduling class:
  1411. */
  1412. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  1413. {
  1414. struct cfs_rq *cfs_rq;
  1415. struct sched_entity *se = &curr->se;
  1416. for_each_sched_entity(se) {
  1417. cfs_rq = cfs_rq_of(se);
  1418. entity_tick(cfs_rq, se, queued);
  1419. }
  1420. }
  1421. /*
  1422. * Share the fairness runtime between parent and child, thus the
  1423. * total amount of pressure for CPU stays equal - new tasks
  1424. * get a chance to run but frequent forkers are not allowed to
  1425. * monopolize the CPU. Note: the parent runqueue is locked,
  1426. * the child is not running yet.
  1427. */
  1428. static void task_new_fair(struct rq *rq, struct task_struct *p)
  1429. {
  1430. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  1431. struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
  1432. int this_cpu = smp_processor_id();
  1433. sched_info_queued(p);
  1434. update_curr(cfs_rq);
  1435. place_entity(cfs_rq, se, 1);
  1436. /* 'curr' will be NULL if the child belongs to a different group */
  1437. if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
  1438. curr && curr->vruntime < se->vruntime) {
  1439. /*
  1440. * Upon rescheduling, sched_class::put_prev_task() will place
  1441. * 'current' within the tree based on its new key value.
  1442. */
  1443. swap(curr->vruntime, se->vruntime);
  1444. resched_task(rq->curr);
  1445. }
  1446. enqueue_task_fair(rq, p, 0);
  1447. }
  1448. /*
  1449. * Priority of the task has changed. Check to see if we preempt
  1450. * the current task.
  1451. */
  1452. static void prio_changed_fair(struct rq *rq, struct task_struct *p,
  1453. int oldprio, int running)
  1454. {
  1455. /*
  1456. * Reschedule if we are currently running on this runqueue and
  1457. * our priority decreased, or if we are not currently running on
  1458. * this runqueue and our priority is higher than the current's
  1459. */
  1460. if (running) {
  1461. if (p->prio > oldprio)
  1462. resched_task(rq->curr);
  1463. } else
  1464. check_preempt_curr(rq, p, 0);
  1465. }
  1466. /*
  1467. * We switched to the sched_fair class.
  1468. */
  1469. static void switched_to_fair(struct rq *rq, struct task_struct *p,
  1470. int running)
  1471. {
  1472. /*
  1473. * We were most likely switched from sched_rt, so
  1474. * kick off the schedule if running, otherwise just see
  1475. * if we can still preempt the current task.
  1476. */
  1477. if (running)
  1478. resched_task(rq->curr);
  1479. else
  1480. check_preempt_curr(rq, p, 0);
  1481. }
  1482. /* Account for a task changing its policy or group.
  1483. *
  1484. * This routine is mostly called to set cfs_rq->curr field when a task
  1485. * migrates between groups/classes.
  1486. */
  1487. static void set_curr_task_fair(struct rq *rq)
  1488. {
  1489. struct sched_entity *se = &rq->curr->se;
  1490. for_each_sched_entity(se)
  1491. set_next_entity(cfs_rq_of(se), se);
  1492. }
  1493. #ifdef CONFIG_FAIR_GROUP_SCHED
  1494. static void moved_group_fair(struct task_struct *p)
  1495. {
  1496. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  1497. update_curr(cfs_rq);
  1498. place_entity(cfs_rq, &p->se, 1);
  1499. }
  1500. #endif
  1501. /*
  1502. * All the scheduling class methods:
  1503. */
  1504. static const struct sched_class fair_sched_class = {
  1505. .next = &idle_sched_class,
  1506. .enqueue_task = enqueue_task_fair,
  1507. .dequeue_task = dequeue_task_fair,
  1508. .yield_task = yield_task_fair,
  1509. .check_preempt_curr = check_preempt_wakeup,
  1510. .pick_next_task = pick_next_task_fair,
  1511. .put_prev_task = put_prev_task_fair,
  1512. #ifdef CONFIG_SMP
  1513. .select_task_rq = select_task_rq_fair,
  1514. .load_balance = load_balance_fair,
  1515. .move_one_task = move_one_task_fair,
  1516. #endif
  1517. .set_curr_task = set_curr_task_fair,
  1518. .task_tick = task_tick_fair,
  1519. .task_new = task_new_fair,
  1520. .prio_changed = prio_changed_fair,
  1521. .switched_to = switched_to_fair,
  1522. #ifdef CONFIG_FAIR_GROUP_SCHED
  1523. .moved_group = moved_group_fair,
  1524. #endif
  1525. };
  1526. #ifdef CONFIG_SCHED_DEBUG
  1527. static void print_cfs_stats(struct seq_file *m, int cpu)
  1528. {
  1529. struct cfs_rq *cfs_rq;
  1530. rcu_read_lock();
  1531. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  1532. print_cfs_rq(m, cpu, cfs_rq);
  1533. rcu_read_unlock();
  1534. }
  1535. #endif