sched.c 250 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/proc_fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/sysctl.h>
  60. #include <linux/syscalls.h>
  61. #include <linux/times.h>
  62. #include <linux/tsacct_kern.h>
  63. #include <linux/kprobes.h>
  64. #include <linux/delayacct.h>
  65. #include <linux/reciprocal_div.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/bootmem.h>
  71. #include <linux/debugfs.h>
  72. #include <linux/ctype.h>
  73. #include <linux/ftrace.h>
  74. #include <trace/sched.h>
  75. #include <asm/tlb.h>
  76. #include <asm/irq_regs.h>
  77. #include "sched_cpupri.h"
  78. /*
  79. * Convert user-nice values [ -20 ... 0 ... 19 ]
  80. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  81. * and back.
  82. */
  83. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  84. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  85. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  86. /*
  87. * 'User priority' is the nice value converted to something we
  88. * can work with better when scaling various scheduler parameters,
  89. * it's a [ 0 ... 39 ] range.
  90. */
  91. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  92. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  93. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  94. /*
  95. * Helpers for converting nanosecond timing to jiffy resolution
  96. */
  97. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  98. #define NICE_0_LOAD SCHED_LOAD_SCALE
  99. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  100. /*
  101. * These are the 'tuning knobs' of the scheduler:
  102. *
  103. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  104. * Timeslices get refilled after they expire.
  105. */
  106. #define DEF_TIMESLICE (100 * HZ / 1000)
  107. /*
  108. * single value that denotes runtime == period, ie unlimited time.
  109. */
  110. #define RUNTIME_INF ((u64)~0ULL)
  111. DEFINE_TRACE(sched_wait_task);
  112. DEFINE_TRACE(sched_wakeup);
  113. DEFINE_TRACE(sched_wakeup_new);
  114. DEFINE_TRACE(sched_switch);
  115. DEFINE_TRACE(sched_migrate_task);
  116. #ifdef CONFIG_SMP
  117. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  118. /*
  119. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  120. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  121. */
  122. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  123. {
  124. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  125. }
  126. /*
  127. * Each time a sched group cpu_power is changed,
  128. * we must compute its reciprocal value
  129. */
  130. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  131. {
  132. sg->__cpu_power += val;
  133. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  134. }
  135. #endif
  136. static inline int rt_policy(int policy)
  137. {
  138. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  139. return 1;
  140. return 0;
  141. }
  142. static inline int task_has_rt_policy(struct task_struct *p)
  143. {
  144. return rt_policy(p->policy);
  145. }
  146. /*
  147. * This is the priority-queue data structure of the RT scheduling class:
  148. */
  149. struct rt_prio_array {
  150. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  151. struct list_head queue[MAX_RT_PRIO];
  152. };
  153. struct rt_bandwidth {
  154. /* nests inside the rq lock: */
  155. spinlock_t rt_runtime_lock;
  156. ktime_t rt_period;
  157. u64 rt_runtime;
  158. struct hrtimer rt_period_timer;
  159. };
  160. static struct rt_bandwidth def_rt_bandwidth;
  161. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  162. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  163. {
  164. struct rt_bandwidth *rt_b =
  165. container_of(timer, struct rt_bandwidth, rt_period_timer);
  166. ktime_t now;
  167. int overrun;
  168. int idle = 0;
  169. for (;;) {
  170. now = hrtimer_cb_get_time(timer);
  171. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  172. if (!overrun)
  173. break;
  174. idle = do_sched_rt_period_timer(rt_b, overrun);
  175. }
  176. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  177. }
  178. static
  179. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  180. {
  181. rt_b->rt_period = ns_to_ktime(period);
  182. rt_b->rt_runtime = runtime;
  183. spin_lock_init(&rt_b->rt_runtime_lock);
  184. hrtimer_init(&rt_b->rt_period_timer,
  185. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  186. rt_b->rt_period_timer.function = sched_rt_period_timer;
  187. }
  188. static inline int rt_bandwidth_enabled(void)
  189. {
  190. return sysctl_sched_rt_runtime >= 0;
  191. }
  192. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  193. {
  194. ktime_t now;
  195. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  196. return;
  197. if (hrtimer_active(&rt_b->rt_period_timer))
  198. return;
  199. spin_lock(&rt_b->rt_runtime_lock);
  200. for (;;) {
  201. unsigned long delta;
  202. ktime_t soft, hard;
  203. if (hrtimer_active(&rt_b->rt_period_timer))
  204. break;
  205. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  206. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  207. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  208. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  209. delta = ktime_to_ns(ktime_sub(hard, soft));
  210. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  211. HRTIMER_MODE_ABS, 0);
  212. }
  213. spin_unlock(&rt_b->rt_runtime_lock);
  214. }
  215. #ifdef CONFIG_RT_GROUP_SCHED
  216. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  217. {
  218. hrtimer_cancel(&rt_b->rt_period_timer);
  219. }
  220. #endif
  221. /*
  222. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  223. * detach_destroy_domains and partition_sched_domains.
  224. */
  225. static DEFINE_MUTEX(sched_domains_mutex);
  226. #ifdef CONFIG_GROUP_SCHED
  227. #include <linux/cgroup.h>
  228. struct cfs_rq;
  229. static LIST_HEAD(task_groups);
  230. /* task group related information */
  231. struct task_group {
  232. #ifdef CONFIG_CGROUP_SCHED
  233. struct cgroup_subsys_state css;
  234. #endif
  235. #ifdef CONFIG_USER_SCHED
  236. uid_t uid;
  237. #endif
  238. #ifdef CONFIG_FAIR_GROUP_SCHED
  239. /* schedulable entities of this group on each cpu */
  240. struct sched_entity **se;
  241. /* runqueue "owned" by this group on each cpu */
  242. struct cfs_rq **cfs_rq;
  243. unsigned long shares;
  244. #endif
  245. #ifdef CONFIG_RT_GROUP_SCHED
  246. struct sched_rt_entity **rt_se;
  247. struct rt_rq **rt_rq;
  248. struct rt_bandwidth rt_bandwidth;
  249. #endif
  250. struct rcu_head rcu;
  251. struct list_head list;
  252. struct task_group *parent;
  253. struct list_head siblings;
  254. struct list_head children;
  255. };
  256. #ifdef CONFIG_USER_SCHED
  257. /* Helper function to pass uid information to create_sched_user() */
  258. void set_tg_uid(struct user_struct *user)
  259. {
  260. user->tg->uid = user->uid;
  261. }
  262. /*
  263. * Root task group.
  264. * Every UID task group (including init_task_group aka UID-0) will
  265. * be a child to this group.
  266. */
  267. struct task_group root_task_group;
  268. #ifdef CONFIG_FAIR_GROUP_SCHED
  269. /* Default task group's sched entity on each cpu */
  270. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  271. /* Default task group's cfs_rq on each cpu */
  272. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  273. #endif /* CONFIG_FAIR_GROUP_SCHED */
  274. #ifdef CONFIG_RT_GROUP_SCHED
  275. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  276. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  277. #endif /* CONFIG_RT_GROUP_SCHED */
  278. #else /* !CONFIG_USER_SCHED */
  279. #define root_task_group init_task_group
  280. #endif /* CONFIG_USER_SCHED */
  281. /* task_group_lock serializes add/remove of task groups and also changes to
  282. * a task group's cpu shares.
  283. */
  284. static DEFINE_SPINLOCK(task_group_lock);
  285. #ifdef CONFIG_SMP
  286. static int root_task_group_empty(void)
  287. {
  288. return list_empty(&root_task_group.children);
  289. }
  290. #endif
  291. #ifdef CONFIG_FAIR_GROUP_SCHED
  292. #ifdef CONFIG_USER_SCHED
  293. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  294. #else /* !CONFIG_USER_SCHED */
  295. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  296. #endif /* CONFIG_USER_SCHED */
  297. /*
  298. * A weight of 0 or 1 can cause arithmetics problems.
  299. * A weight of a cfs_rq is the sum of weights of which entities
  300. * are queued on this cfs_rq, so a weight of a entity should not be
  301. * too large, so as the shares value of a task group.
  302. * (The default weight is 1024 - so there's no practical
  303. * limitation from this.)
  304. */
  305. #define MIN_SHARES 2
  306. #define MAX_SHARES (1UL << 18)
  307. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  308. #endif
  309. /* Default task group.
  310. * Every task in system belong to this group at bootup.
  311. */
  312. struct task_group init_task_group;
  313. /* return group to which a task belongs */
  314. static inline struct task_group *task_group(struct task_struct *p)
  315. {
  316. struct task_group *tg;
  317. #ifdef CONFIG_USER_SCHED
  318. rcu_read_lock();
  319. tg = __task_cred(p)->user->tg;
  320. rcu_read_unlock();
  321. #elif defined(CONFIG_CGROUP_SCHED)
  322. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  323. struct task_group, css);
  324. #else
  325. tg = &init_task_group;
  326. #endif
  327. return tg;
  328. }
  329. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  330. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  331. {
  332. #ifdef CONFIG_FAIR_GROUP_SCHED
  333. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  334. p->se.parent = task_group(p)->se[cpu];
  335. #endif
  336. #ifdef CONFIG_RT_GROUP_SCHED
  337. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  338. p->rt.parent = task_group(p)->rt_se[cpu];
  339. #endif
  340. }
  341. #else
  342. #ifdef CONFIG_SMP
  343. static int root_task_group_empty(void)
  344. {
  345. return 1;
  346. }
  347. #endif
  348. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  349. static inline struct task_group *task_group(struct task_struct *p)
  350. {
  351. return NULL;
  352. }
  353. #endif /* CONFIG_GROUP_SCHED */
  354. /* CFS-related fields in a runqueue */
  355. struct cfs_rq {
  356. struct load_weight load;
  357. unsigned long nr_running;
  358. u64 exec_clock;
  359. u64 min_vruntime;
  360. struct rb_root tasks_timeline;
  361. struct rb_node *rb_leftmost;
  362. struct list_head tasks;
  363. struct list_head *balance_iterator;
  364. /*
  365. * 'curr' points to currently running entity on this cfs_rq.
  366. * It is set to NULL otherwise (i.e when none are currently running).
  367. */
  368. struct sched_entity *curr, *next, *last;
  369. unsigned int nr_spread_over;
  370. #ifdef CONFIG_FAIR_GROUP_SCHED
  371. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  372. /*
  373. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  374. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  375. * (like users, containers etc.)
  376. *
  377. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  378. * list is used during load balance.
  379. */
  380. struct list_head leaf_cfs_rq_list;
  381. struct task_group *tg; /* group that "owns" this runqueue */
  382. #ifdef CONFIG_SMP
  383. /*
  384. * the part of load.weight contributed by tasks
  385. */
  386. unsigned long task_weight;
  387. /*
  388. * h_load = weight * f(tg)
  389. *
  390. * Where f(tg) is the recursive weight fraction assigned to
  391. * this group.
  392. */
  393. unsigned long h_load;
  394. /*
  395. * this cpu's part of tg->shares
  396. */
  397. unsigned long shares;
  398. /*
  399. * load.weight at the time we set shares
  400. */
  401. unsigned long rq_weight;
  402. #endif
  403. #endif
  404. };
  405. /* Real-Time classes' related field in a runqueue: */
  406. struct rt_rq {
  407. struct rt_prio_array active;
  408. unsigned long rt_nr_running;
  409. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  410. struct {
  411. int curr; /* highest queued rt task prio */
  412. #ifdef CONFIG_SMP
  413. int next; /* next highest */
  414. #endif
  415. } highest_prio;
  416. #endif
  417. #ifdef CONFIG_SMP
  418. unsigned long rt_nr_migratory;
  419. int overloaded;
  420. struct plist_head pushable_tasks;
  421. #endif
  422. int rt_throttled;
  423. u64 rt_time;
  424. u64 rt_runtime;
  425. /* Nests inside the rq lock: */
  426. spinlock_t rt_runtime_lock;
  427. #ifdef CONFIG_RT_GROUP_SCHED
  428. unsigned long rt_nr_boosted;
  429. struct rq *rq;
  430. struct list_head leaf_rt_rq_list;
  431. struct task_group *tg;
  432. struct sched_rt_entity *rt_se;
  433. #endif
  434. };
  435. #ifdef CONFIG_SMP
  436. /*
  437. * We add the notion of a root-domain which will be used to define per-domain
  438. * variables. Each exclusive cpuset essentially defines an island domain by
  439. * fully partitioning the member cpus from any other cpuset. Whenever a new
  440. * exclusive cpuset is created, we also create and attach a new root-domain
  441. * object.
  442. *
  443. */
  444. struct root_domain {
  445. atomic_t refcount;
  446. cpumask_var_t span;
  447. cpumask_var_t online;
  448. /*
  449. * The "RT overload" flag: it gets set if a CPU has more than
  450. * one runnable RT task.
  451. */
  452. cpumask_var_t rto_mask;
  453. atomic_t rto_count;
  454. #ifdef CONFIG_SMP
  455. struct cpupri cpupri;
  456. #endif
  457. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  458. /*
  459. * Preferred wake up cpu nominated by sched_mc balance that will be
  460. * used when most cpus are idle in the system indicating overall very
  461. * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
  462. */
  463. unsigned int sched_mc_preferred_wakeup_cpu;
  464. #endif
  465. };
  466. /*
  467. * By default the system creates a single root-domain with all cpus as
  468. * members (mimicking the global state we have today).
  469. */
  470. static struct root_domain def_root_domain;
  471. #endif
  472. /*
  473. * This is the main, per-CPU runqueue data structure.
  474. *
  475. * Locking rule: those places that want to lock multiple runqueues
  476. * (such as the load balancing or the thread migration code), lock
  477. * acquire operations must be ordered by ascending &runqueue.
  478. */
  479. struct rq {
  480. /* runqueue lock: */
  481. spinlock_t lock;
  482. /*
  483. * nr_running and cpu_load should be in the same cacheline because
  484. * remote CPUs use both these fields when doing load calculation.
  485. */
  486. unsigned long nr_running;
  487. #define CPU_LOAD_IDX_MAX 5
  488. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  489. #ifdef CONFIG_NO_HZ
  490. unsigned long last_tick_seen;
  491. unsigned char in_nohz_recently;
  492. #endif
  493. /* capture load from *all* tasks on this cpu: */
  494. struct load_weight load;
  495. unsigned long nr_load_updates;
  496. u64 nr_switches;
  497. struct cfs_rq cfs;
  498. struct rt_rq rt;
  499. #ifdef CONFIG_FAIR_GROUP_SCHED
  500. /* list of leaf cfs_rq on this cpu: */
  501. struct list_head leaf_cfs_rq_list;
  502. #endif
  503. #ifdef CONFIG_RT_GROUP_SCHED
  504. struct list_head leaf_rt_rq_list;
  505. #endif
  506. /*
  507. * This is part of a global counter where only the total sum
  508. * over all CPUs matters. A task can increase this counter on
  509. * one CPU and if it got migrated afterwards it may decrease
  510. * it on another CPU. Always updated under the runqueue lock:
  511. */
  512. unsigned long nr_uninterruptible;
  513. struct task_struct *curr, *idle;
  514. unsigned long next_balance;
  515. struct mm_struct *prev_mm;
  516. u64 clock;
  517. atomic_t nr_iowait;
  518. #ifdef CONFIG_SMP
  519. struct root_domain *rd;
  520. struct sched_domain *sd;
  521. unsigned char idle_at_tick;
  522. /* For active balancing */
  523. int active_balance;
  524. int push_cpu;
  525. /* cpu of this runqueue: */
  526. int cpu;
  527. int online;
  528. unsigned long avg_load_per_task;
  529. struct task_struct *migration_thread;
  530. struct list_head migration_queue;
  531. #endif
  532. #ifdef CONFIG_SCHED_HRTICK
  533. #ifdef CONFIG_SMP
  534. int hrtick_csd_pending;
  535. struct call_single_data hrtick_csd;
  536. #endif
  537. struct hrtimer hrtick_timer;
  538. #endif
  539. #ifdef CONFIG_SCHEDSTATS
  540. /* latency stats */
  541. struct sched_info rq_sched_info;
  542. unsigned long long rq_cpu_time;
  543. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  544. /* sys_sched_yield() stats */
  545. unsigned int yld_count;
  546. /* schedule() stats */
  547. unsigned int sched_switch;
  548. unsigned int sched_count;
  549. unsigned int sched_goidle;
  550. /* try_to_wake_up() stats */
  551. unsigned int ttwu_count;
  552. unsigned int ttwu_local;
  553. /* BKL stats */
  554. unsigned int bkl_count;
  555. #endif
  556. };
  557. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  558. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
  559. {
  560. rq->curr->sched_class->check_preempt_curr(rq, p, sync);
  561. }
  562. static inline int cpu_of(struct rq *rq)
  563. {
  564. #ifdef CONFIG_SMP
  565. return rq->cpu;
  566. #else
  567. return 0;
  568. #endif
  569. }
  570. /*
  571. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  572. * See detach_destroy_domains: synchronize_sched for details.
  573. *
  574. * The domain tree of any CPU may only be accessed from within
  575. * preempt-disabled sections.
  576. */
  577. #define for_each_domain(cpu, __sd) \
  578. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  579. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  580. #define this_rq() (&__get_cpu_var(runqueues))
  581. #define task_rq(p) cpu_rq(task_cpu(p))
  582. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  583. static inline void update_rq_clock(struct rq *rq)
  584. {
  585. rq->clock = sched_clock_cpu(cpu_of(rq));
  586. }
  587. /*
  588. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  589. */
  590. #ifdef CONFIG_SCHED_DEBUG
  591. # define const_debug __read_mostly
  592. #else
  593. # define const_debug static const
  594. #endif
  595. /**
  596. * runqueue_is_locked
  597. *
  598. * Returns true if the current cpu runqueue is locked.
  599. * This interface allows printk to be called with the runqueue lock
  600. * held and know whether or not it is OK to wake up the klogd.
  601. */
  602. int runqueue_is_locked(void)
  603. {
  604. int cpu = get_cpu();
  605. struct rq *rq = cpu_rq(cpu);
  606. int ret;
  607. ret = spin_is_locked(&rq->lock);
  608. put_cpu();
  609. return ret;
  610. }
  611. /*
  612. * Debugging: various feature bits
  613. */
  614. #define SCHED_FEAT(name, enabled) \
  615. __SCHED_FEAT_##name ,
  616. enum {
  617. #include "sched_features.h"
  618. };
  619. #undef SCHED_FEAT
  620. #define SCHED_FEAT(name, enabled) \
  621. (1UL << __SCHED_FEAT_##name) * enabled |
  622. const_debug unsigned int sysctl_sched_features =
  623. #include "sched_features.h"
  624. 0;
  625. #undef SCHED_FEAT
  626. #ifdef CONFIG_SCHED_DEBUG
  627. #define SCHED_FEAT(name, enabled) \
  628. #name ,
  629. static __read_mostly char *sched_feat_names[] = {
  630. #include "sched_features.h"
  631. NULL
  632. };
  633. #undef SCHED_FEAT
  634. static int sched_feat_show(struct seq_file *m, void *v)
  635. {
  636. int i;
  637. for (i = 0; sched_feat_names[i]; i++) {
  638. if (!(sysctl_sched_features & (1UL << i)))
  639. seq_puts(m, "NO_");
  640. seq_printf(m, "%s ", sched_feat_names[i]);
  641. }
  642. seq_puts(m, "\n");
  643. return 0;
  644. }
  645. static ssize_t
  646. sched_feat_write(struct file *filp, const char __user *ubuf,
  647. size_t cnt, loff_t *ppos)
  648. {
  649. char buf[64];
  650. char *cmp = buf;
  651. int neg = 0;
  652. int i;
  653. if (cnt > 63)
  654. cnt = 63;
  655. if (copy_from_user(&buf, ubuf, cnt))
  656. return -EFAULT;
  657. buf[cnt] = 0;
  658. if (strncmp(buf, "NO_", 3) == 0) {
  659. neg = 1;
  660. cmp += 3;
  661. }
  662. for (i = 0; sched_feat_names[i]; i++) {
  663. int len = strlen(sched_feat_names[i]);
  664. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  665. if (neg)
  666. sysctl_sched_features &= ~(1UL << i);
  667. else
  668. sysctl_sched_features |= (1UL << i);
  669. break;
  670. }
  671. }
  672. if (!sched_feat_names[i])
  673. return -EINVAL;
  674. filp->f_pos += cnt;
  675. return cnt;
  676. }
  677. static int sched_feat_open(struct inode *inode, struct file *filp)
  678. {
  679. return single_open(filp, sched_feat_show, NULL);
  680. }
  681. static struct file_operations sched_feat_fops = {
  682. .open = sched_feat_open,
  683. .write = sched_feat_write,
  684. .read = seq_read,
  685. .llseek = seq_lseek,
  686. .release = single_release,
  687. };
  688. static __init int sched_init_debug(void)
  689. {
  690. debugfs_create_file("sched_features", 0644, NULL, NULL,
  691. &sched_feat_fops);
  692. return 0;
  693. }
  694. late_initcall(sched_init_debug);
  695. #endif
  696. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  697. /*
  698. * Number of tasks to iterate in a single balance run.
  699. * Limited because this is done with IRQs disabled.
  700. */
  701. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  702. /*
  703. * ratelimit for updating the group shares.
  704. * default: 0.25ms
  705. */
  706. unsigned int sysctl_sched_shares_ratelimit = 250000;
  707. /*
  708. * Inject some fuzzyness into changing the per-cpu group shares
  709. * this avoids remote rq-locks at the expense of fairness.
  710. * default: 4
  711. */
  712. unsigned int sysctl_sched_shares_thresh = 4;
  713. /*
  714. * period over which we measure -rt task cpu usage in us.
  715. * default: 1s
  716. */
  717. unsigned int sysctl_sched_rt_period = 1000000;
  718. static __read_mostly int scheduler_running;
  719. /*
  720. * part of the period that we allow rt tasks to run in us.
  721. * default: 0.95s
  722. */
  723. int sysctl_sched_rt_runtime = 950000;
  724. static inline u64 global_rt_period(void)
  725. {
  726. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  727. }
  728. static inline u64 global_rt_runtime(void)
  729. {
  730. if (sysctl_sched_rt_runtime < 0)
  731. return RUNTIME_INF;
  732. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  733. }
  734. #ifndef prepare_arch_switch
  735. # define prepare_arch_switch(next) do { } while (0)
  736. #endif
  737. #ifndef finish_arch_switch
  738. # define finish_arch_switch(prev) do { } while (0)
  739. #endif
  740. static inline int task_current(struct rq *rq, struct task_struct *p)
  741. {
  742. return rq->curr == p;
  743. }
  744. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  745. static inline int task_running(struct rq *rq, struct task_struct *p)
  746. {
  747. return task_current(rq, p);
  748. }
  749. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  750. {
  751. }
  752. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  753. {
  754. #ifdef CONFIG_DEBUG_SPINLOCK
  755. /* this is a valid case when another task releases the spinlock */
  756. rq->lock.owner = current;
  757. #endif
  758. /*
  759. * If we are tracking spinlock dependencies then we have to
  760. * fix up the runqueue lock - which gets 'carried over' from
  761. * prev into current:
  762. */
  763. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  764. spin_unlock_irq(&rq->lock);
  765. }
  766. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  767. static inline int task_running(struct rq *rq, struct task_struct *p)
  768. {
  769. #ifdef CONFIG_SMP
  770. return p->oncpu;
  771. #else
  772. return task_current(rq, p);
  773. #endif
  774. }
  775. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  776. {
  777. #ifdef CONFIG_SMP
  778. /*
  779. * We can optimise this out completely for !SMP, because the
  780. * SMP rebalancing from interrupt is the only thing that cares
  781. * here.
  782. */
  783. next->oncpu = 1;
  784. #endif
  785. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  786. spin_unlock_irq(&rq->lock);
  787. #else
  788. spin_unlock(&rq->lock);
  789. #endif
  790. }
  791. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  792. {
  793. #ifdef CONFIG_SMP
  794. /*
  795. * After ->oncpu is cleared, the task can be moved to a different CPU.
  796. * We must ensure this doesn't happen until the switch is completely
  797. * finished.
  798. */
  799. smp_wmb();
  800. prev->oncpu = 0;
  801. #endif
  802. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  803. local_irq_enable();
  804. #endif
  805. }
  806. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  807. /*
  808. * __task_rq_lock - lock the runqueue a given task resides on.
  809. * Must be called interrupts disabled.
  810. */
  811. static inline struct rq *__task_rq_lock(struct task_struct *p)
  812. __acquires(rq->lock)
  813. {
  814. for (;;) {
  815. struct rq *rq = task_rq(p);
  816. spin_lock(&rq->lock);
  817. if (likely(rq == task_rq(p)))
  818. return rq;
  819. spin_unlock(&rq->lock);
  820. }
  821. }
  822. /*
  823. * task_rq_lock - lock the runqueue a given task resides on and disable
  824. * interrupts. Note the ordering: we can safely lookup the task_rq without
  825. * explicitly disabling preemption.
  826. */
  827. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  828. __acquires(rq->lock)
  829. {
  830. struct rq *rq;
  831. for (;;) {
  832. local_irq_save(*flags);
  833. rq = task_rq(p);
  834. spin_lock(&rq->lock);
  835. if (likely(rq == task_rq(p)))
  836. return rq;
  837. spin_unlock_irqrestore(&rq->lock, *flags);
  838. }
  839. }
  840. void task_rq_unlock_wait(struct task_struct *p)
  841. {
  842. struct rq *rq = task_rq(p);
  843. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  844. spin_unlock_wait(&rq->lock);
  845. }
  846. static void __task_rq_unlock(struct rq *rq)
  847. __releases(rq->lock)
  848. {
  849. spin_unlock(&rq->lock);
  850. }
  851. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  852. __releases(rq->lock)
  853. {
  854. spin_unlock_irqrestore(&rq->lock, *flags);
  855. }
  856. /*
  857. * this_rq_lock - lock this runqueue and disable interrupts.
  858. */
  859. static struct rq *this_rq_lock(void)
  860. __acquires(rq->lock)
  861. {
  862. struct rq *rq;
  863. local_irq_disable();
  864. rq = this_rq();
  865. spin_lock(&rq->lock);
  866. return rq;
  867. }
  868. #ifdef CONFIG_SCHED_HRTICK
  869. /*
  870. * Use HR-timers to deliver accurate preemption points.
  871. *
  872. * Its all a bit involved since we cannot program an hrt while holding the
  873. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  874. * reschedule event.
  875. *
  876. * When we get rescheduled we reprogram the hrtick_timer outside of the
  877. * rq->lock.
  878. */
  879. /*
  880. * Use hrtick when:
  881. * - enabled by features
  882. * - hrtimer is actually high res
  883. */
  884. static inline int hrtick_enabled(struct rq *rq)
  885. {
  886. if (!sched_feat(HRTICK))
  887. return 0;
  888. if (!cpu_active(cpu_of(rq)))
  889. return 0;
  890. return hrtimer_is_hres_active(&rq->hrtick_timer);
  891. }
  892. static void hrtick_clear(struct rq *rq)
  893. {
  894. if (hrtimer_active(&rq->hrtick_timer))
  895. hrtimer_cancel(&rq->hrtick_timer);
  896. }
  897. /*
  898. * High-resolution timer tick.
  899. * Runs from hardirq context with interrupts disabled.
  900. */
  901. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  902. {
  903. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  904. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  905. spin_lock(&rq->lock);
  906. update_rq_clock(rq);
  907. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  908. spin_unlock(&rq->lock);
  909. return HRTIMER_NORESTART;
  910. }
  911. #ifdef CONFIG_SMP
  912. /*
  913. * called from hardirq (IPI) context
  914. */
  915. static void __hrtick_start(void *arg)
  916. {
  917. struct rq *rq = arg;
  918. spin_lock(&rq->lock);
  919. hrtimer_restart(&rq->hrtick_timer);
  920. rq->hrtick_csd_pending = 0;
  921. spin_unlock(&rq->lock);
  922. }
  923. /*
  924. * Called to set the hrtick timer state.
  925. *
  926. * called with rq->lock held and irqs disabled
  927. */
  928. static void hrtick_start(struct rq *rq, u64 delay)
  929. {
  930. struct hrtimer *timer = &rq->hrtick_timer;
  931. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  932. hrtimer_set_expires(timer, time);
  933. if (rq == this_rq()) {
  934. hrtimer_restart(timer);
  935. } else if (!rq->hrtick_csd_pending) {
  936. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  937. rq->hrtick_csd_pending = 1;
  938. }
  939. }
  940. static int
  941. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  942. {
  943. int cpu = (int)(long)hcpu;
  944. switch (action) {
  945. case CPU_UP_CANCELED:
  946. case CPU_UP_CANCELED_FROZEN:
  947. case CPU_DOWN_PREPARE:
  948. case CPU_DOWN_PREPARE_FROZEN:
  949. case CPU_DEAD:
  950. case CPU_DEAD_FROZEN:
  951. hrtick_clear(cpu_rq(cpu));
  952. return NOTIFY_OK;
  953. }
  954. return NOTIFY_DONE;
  955. }
  956. static __init void init_hrtick(void)
  957. {
  958. hotcpu_notifier(hotplug_hrtick, 0);
  959. }
  960. #else
  961. /*
  962. * Called to set the hrtick timer state.
  963. *
  964. * called with rq->lock held and irqs disabled
  965. */
  966. static void hrtick_start(struct rq *rq, u64 delay)
  967. {
  968. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  969. HRTIMER_MODE_REL, 0);
  970. }
  971. static inline void init_hrtick(void)
  972. {
  973. }
  974. #endif /* CONFIG_SMP */
  975. static void init_rq_hrtick(struct rq *rq)
  976. {
  977. #ifdef CONFIG_SMP
  978. rq->hrtick_csd_pending = 0;
  979. rq->hrtick_csd.flags = 0;
  980. rq->hrtick_csd.func = __hrtick_start;
  981. rq->hrtick_csd.info = rq;
  982. #endif
  983. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  984. rq->hrtick_timer.function = hrtick;
  985. }
  986. #else /* CONFIG_SCHED_HRTICK */
  987. static inline void hrtick_clear(struct rq *rq)
  988. {
  989. }
  990. static inline void init_rq_hrtick(struct rq *rq)
  991. {
  992. }
  993. static inline void init_hrtick(void)
  994. {
  995. }
  996. #endif /* CONFIG_SCHED_HRTICK */
  997. /*
  998. * resched_task - mark a task 'to be rescheduled now'.
  999. *
  1000. * On UP this means the setting of the need_resched flag, on SMP it
  1001. * might also involve a cross-CPU call to trigger the scheduler on
  1002. * the target CPU.
  1003. */
  1004. #ifdef CONFIG_SMP
  1005. #ifndef tsk_is_polling
  1006. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  1007. #endif
  1008. static void resched_task(struct task_struct *p)
  1009. {
  1010. int cpu;
  1011. assert_spin_locked(&task_rq(p)->lock);
  1012. if (test_tsk_need_resched(p))
  1013. return;
  1014. set_tsk_need_resched(p);
  1015. cpu = task_cpu(p);
  1016. if (cpu == smp_processor_id())
  1017. return;
  1018. /* NEED_RESCHED must be visible before we test polling */
  1019. smp_mb();
  1020. if (!tsk_is_polling(p))
  1021. smp_send_reschedule(cpu);
  1022. }
  1023. static void resched_cpu(int cpu)
  1024. {
  1025. struct rq *rq = cpu_rq(cpu);
  1026. unsigned long flags;
  1027. if (!spin_trylock_irqsave(&rq->lock, flags))
  1028. return;
  1029. resched_task(cpu_curr(cpu));
  1030. spin_unlock_irqrestore(&rq->lock, flags);
  1031. }
  1032. #ifdef CONFIG_NO_HZ
  1033. /*
  1034. * When add_timer_on() enqueues a timer into the timer wheel of an
  1035. * idle CPU then this timer might expire before the next timer event
  1036. * which is scheduled to wake up that CPU. In case of a completely
  1037. * idle system the next event might even be infinite time into the
  1038. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1039. * leaves the inner idle loop so the newly added timer is taken into
  1040. * account when the CPU goes back to idle and evaluates the timer
  1041. * wheel for the next timer event.
  1042. */
  1043. void wake_up_idle_cpu(int cpu)
  1044. {
  1045. struct rq *rq = cpu_rq(cpu);
  1046. if (cpu == smp_processor_id())
  1047. return;
  1048. /*
  1049. * This is safe, as this function is called with the timer
  1050. * wheel base lock of (cpu) held. When the CPU is on the way
  1051. * to idle and has not yet set rq->curr to idle then it will
  1052. * be serialized on the timer wheel base lock and take the new
  1053. * timer into account automatically.
  1054. */
  1055. if (rq->curr != rq->idle)
  1056. return;
  1057. /*
  1058. * We can set TIF_RESCHED on the idle task of the other CPU
  1059. * lockless. The worst case is that the other CPU runs the
  1060. * idle task through an additional NOOP schedule()
  1061. */
  1062. set_tsk_need_resched(rq->idle);
  1063. /* NEED_RESCHED must be visible before we test polling */
  1064. smp_mb();
  1065. if (!tsk_is_polling(rq->idle))
  1066. smp_send_reschedule(cpu);
  1067. }
  1068. #endif /* CONFIG_NO_HZ */
  1069. #else /* !CONFIG_SMP */
  1070. static void resched_task(struct task_struct *p)
  1071. {
  1072. assert_spin_locked(&task_rq(p)->lock);
  1073. set_tsk_need_resched(p);
  1074. }
  1075. #endif /* CONFIG_SMP */
  1076. #if BITS_PER_LONG == 32
  1077. # define WMULT_CONST (~0UL)
  1078. #else
  1079. # define WMULT_CONST (1UL << 32)
  1080. #endif
  1081. #define WMULT_SHIFT 32
  1082. /*
  1083. * Shift right and round:
  1084. */
  1085. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1086. /*
  1087. * delta *= weight / lw
  1088. */
  1089. static unsigned long
  1090. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1091. struct load_weight *lw)
  1092. {
  1093. u64 tmp;
  1094. if (!lw->inv_weight) {
  1095. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1096. lw->inv_weight = 1;
  1097. else
  1098. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1099. / (lw->weight+1);
  1100. }
  1101. tmp = (u64)delta_exec * weight;
  1102. /*
  1103. * Check whether we'd overflow the 64-bit multiplication:
  1104. */
  1105. if (unlikely(tmp > WMULT_CONST))
  1106. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1107. WMULT_SHIFT/2);
  1108. else
  1109. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1110. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1111. }
  1112. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1113. {
  1114. lw->weight += inc;
  1115. lw->inv_weight = 0;
  1116. }
  1117. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1118. {
  1119. lw->weight -= dec;
  1120. lw->inv_weight = 0;
  1121. }
  1122. /*
  1123. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1124. * of tasks with abnormal "nice" values across CPUs the contribution that
  1125. * each task makes to its run queue's load is weighted according to its
  1126. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1127. * scaled version of the new time slice allocation that they receive on time
  1128. * slice expiry etc.
  1129. */
  1130. #define WEIGHT_IDLEPRIO 3
  1131. #define WMULT_IDLEPRIO 1431655765
  1132. /*
  1133. * Nice levels are multiplicative, with a gentle 10% change for every
  1134. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1135. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1136. * that remained on nice 0.
  1137. *
  1138. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1139. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1140. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1141. * If a task goes up by ~10% and another task goes down by ~10% then
  1142. * the relative distance between them is ~25%.)
  1143. */
  1144. static const int prio_to_weight[40] = {
  1145. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1146. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1147. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1148. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1149. /* 0 */ 1024, 820, 655, 526, 423,
  1150. /* 5 */ 335, 272, 215, 172, 137,
  1151. /* 10 */ 110, 87, 70, 56, 45,
  1152. /* 15 */ 36, 29, 23, 18, 15,
  1153. };
  1154. /*
  1155. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1156. *
  1157. * In cases where the weight does not change often, we can use the
  1158. * precalculated inverse to speed up arithmetics by turning divisions
  1159. * into multiplications:
  1160. */
  1161. static const u32 prio_to_wmult[40] = {
  1162. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1163. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1164. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1165. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1166. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1167. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1168. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1169. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1170. };
  1171. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1172. /*
  1173. * runqueue iterator, to support SMP load-balancing between different
  1174. * scheduling classes, without having to expose their internal data
  1175. * structures to the load-balancing proper:
  1176. */
  1177. struct rq_iterator {
  1178. void *arg;
  1179. struct task_struct *(*start)(void *);
  1180. struct task_struct *(*next)(void *);
  1181. };
  1182. #ifdef CONFIG_SMP
  1183. static unsigned long
  1184. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1185. unsigned long max_load_move, struct sched_domain *sd,
  1186. enum cpu_idle_type idle, int *all_pinned,
  1187. int *this_best_prio, struct rq_iterator *iterator);
  1188. static int
  1189. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1190. struct sched_domain *sd, enum cpu_idle_type idle,
  1191. struct rq_iterator *iterator);
  1192. #endif
  1193. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1194. enum cpuacct_stat_index {
  1195. CPUACCT_STAT_USER, /* ... user mode */
  1196. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1197. CPUACCT_STAT_NSTATS,
  1198. };
  1199. #ifdef CONFIG_CGROUP_CPUACCT
  1200. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1201. static void cpuacct_update_stats(struct task_struct *tsk,
  1202. enum cpuacct_stat_index idx, cputime_t val);
  1203. #else
  1204. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1205. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1206. enum cpuacct_stat_index idx, cputime_t val) {}
  1207. #endif
  1208. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1209. {
  1210. update_load_add(&rq->load, load);
  1211. }
  1212. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1213. {
  1214. update_load_sub(&rq->load, load);
  1215. }
  1216. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1217. typedef int (*tg_visitor)(struct task_group *, void *);
  1218. /*
  1219. * Iterate the full tree, calling @down when first entering a node and @up when
  1220. * leaving it for the final time.
  1221. */
  1222. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1223. {
  1224. struct task_group *parent, *child;
  1225. int ret;
  1226. rcu_read_lock();
  1227. parent = &root_task_group;
  1228. down:
  1229. ret = (*down)(parent, data);
  1230. if (ret)
  1231. goto out_unlock;
  1232. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1233. parent = child;
  1234. goto down;
  1235. up:
  1236. continue;
  1237. }
  1238. ret = (*up)(parent, data);
  1239. if (ret)
  1240. goto out_unlock;
  1241. child = parent;
  1242. parent = parent->parent;
  1243. if (parent)
  1244. goto up;
  1245. out_unlock:
  1246. rcu_read_unlock();
  1247. return ret;
  1248. }
  1249. static int tg_nop(struct task_group *tg, void *data)
  1250. {
  1251. return 0;
  1252. }
  1253. #endif
  1254. #ifdef CONFIG_SMP
  1255. static unsigned long source_load(int cpu, int type);
  1256. static unsigned long target_load(int cpu, int type);
  1257. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1258. static unsigned long cpu_avg_load_per_task(int cpu)
  1259. {
  1260. struct rq *rq = cpu_rq(cpu);
  1261. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1262. if (nr_running)
  1263. rq->avg_load_per_task = rq->load.weight / nr_running;
  1264. else
  1265. rq->avg_load_per_task = 0;
  1266. return rq->avg_load_per_task;
  1267. }
  1268. #ifdef CONFIG_FAIR_GROUP_SCHED
  1269. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1270. /*
  1271. * Calculate and set the cpu's group shares.
  1272. */
  1273. static void
  1274. update_group_shares_cpu(struct task_group *tg, int cpu,
  1275. unsigned long sd_shares, unsigned long sd_rq_weight)
  1276. {
  1277. unsigned long shares;
  1278. unsigned long rq_weight;
  1279. if (!tg->se[cpu])
  1280. return;
  1281. rq_weight = tg->cfs_rq[cpu]->rq_weight;
  1282. /*
  1283. * \Sum shares * rq_weight
  1284. * shares = -----------------------
  1285. * \Sum rq_weight
  1286. *
  1287. */
  1288. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1289. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1290. if (abs(shares - tg->se[cpu]->load.weight) >
  1291. sysctl_sched_shares_thresh) {
  1292. struct rq *rq = cpu_rq(cpu);
  1293. unsigned long flags;
  1294. spin_lock_irqsave(&rq->lock, flags);
  1295. tg->cfs_rq[cpu]->shares = shares;
  1296. __set_se_shares(tg->se[cpu], shares);
  1297. spin_unlock_irqrestore(&rq->lock, flags);
  1298. }
  1299. }
  1300. /*
  1301. * Re-compute the task group their per cpu shares over the given domain.
  1302. * This needs to be done in a bottom-up fashion because the rq weight of a
  1303. * parent group depends on the shares of its child groups.
  1304. */
  1305. static int tg_shares_up(struct task_group *tg, void *data)
  1306. {
  1307. unsigned long weight, rq_weight = 0;
  1308. unsigned long shares = 0;
  1309. struct sched_domain *sd = data;
  1310. int i;
  1311. for_each_cpu(i, sched_domain_span(sd)) {
  1312. /*
  1313. * If there are currently no tasks on the cpu pretend there
  1314. * is one of average load so that when a new task gets to
  1315. * run here it will not get delayed by group starvation.
  1316. */
  1317. weight = tg->cfs_rq[i]->load.weight;
  1318. if (!weight)
  1319. weight = NICE_0_LOAD;
  1320. tg->cfs_rq[i]->rq_weight = weight;
  1321. rq_weight += weight;
  1322. shares += tg->cfs_rq[i]->shares;
  1323. }
  1324. if ((!shares && rq_weight) || shares > tg->shares)
  1325. shares = tg->shares;
  1326. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1327. shares = tg->shares;
  1328. for_each_cpu(i, sched_domain_span(sd))
  1329. update_group_shares_cpu(tg, i, shares, rq_weight);
  1330. return 0;
  1331. }
  1332. /*
  1333. * Compute the cpu's hierarchical load factor for each task group.
  1334. * This needs to be done in a top-down fashion because the load of a child
  1335. * group is a fraction of its parents load.
  1336. */
  1337. static int tg_load_down(struct task_group *tg, void *data)
  1338. {
  1339. unsigned long load;
  1340. long cpu = (long)data;
  1341. if (!tg->parent) {
  1342. load = cpu_rq(cpu)->load.weight;
  1343. } else {
  1344. load = tg->parent->cfs_rq[cpu]->h_load;
  1345. load *= tg->cfs_rq[cpu]->shares;
  1346. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1347. }
  1348. tg->cfs_rq[cpu]->h_load = load;
  1349. return 0;
  1350. }
  1351. static void update_shares(struct sched_domain *sd)
  1352. {
  1353. u64 now = cpu_clock(raw_smp_processor_id());
  1354. s64 elapsed = now - sd->last_update;
  1355. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1356. sd->last_update = now;
  1357. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1358. }
  1359. }
  1360. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1361. {
  1362. spin_unlock(&rq->lock);
  1363. update_shares(sd);
  1364. spin_lock(&rq->lock);
  1365. }
  1366. static void update_h_load(long cpu)
  1367. {
  1368. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1369. }
  1370. #else
  1371. static inline void update_shares(struct sched_domain *sd)
  1372. {
  1373. }
  1374. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1375. {
  1376. }
  1377. #endif
  1378. #ifdef CONFIG_PREEMPT
  1379. /*
  1380. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1381. * way at the expense of forcing extra atomic operations in all
  1382. * invocations. This assures that the double_lock is acquired using the
  1383. * same underlying policy as the spinlock_t on this architecture, which
  1384. * reduces latency compared to the unfair variant below. However, it
  1385. * also adds more overhead and therefore may reduce throughput.
  1386. */
  1387. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1388. __releases(this_rq->lock)
  1389. __acquires(busiest->lock)
  1390. __acquires(this_rq->lock)
  1391. {
  1392. spin_unlock(&this_rq->lock);
  1393. double_rq_lock(this_rq, busiest);
  1394. return 1;
  1395. }
  1396. #else
  1397. /*
  1398. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1399. * latency by eliminating extra atomic operations when the locks are
  1400. * already in proper order on entry. This favors lower cpu-ids and will
  1401. * grant the double lock to lower cpus over higher ids under contention,
  1402. * regardless of entry order into the function.
  1403. */
  1404. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1405. __releases(this_rq->lock)
  1406. __acquires(busiest->lock)
  1407. __acquires(this_rq->lock)
  1408. {
  1409. int ret = 0;
  1410. if (unlikely(!spin_trylock(&busiest->lock))) {
  1411. if (busiest < this_rq) {
  1412. spin_unlock(&this_rq->lock);
  1413. spin_lock(&busiest->lock);
  1414. spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
  1415. ret = 1;
  1416. } else
  1417. spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
  1418. }
  1419. return ret;
  1420. }
  1421. #endif /* CONFIG_PREEMPT */
  1422. /*
  1423. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1424. */
  1425. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1426. {
  1427. if (unlikely(!irqs_disabled())) {
  1428. /* printk() doesn't work good under rq->lock */
  1429. spin_unlock(&this_rq->lock);
  1430. BUG_ON(1);
  1431. }
  1432. return _double_lock_balance(this_rq, busiest);
  1433. }
  1434. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1435. __releases(busiest->lock)
  1436. {
  1437. spin_unlock(&busiest->lock);
  1438. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1439. }
  1440. #endif
  1441. #ifdef CONFIG_FAIR_GROUP_SCHED
  1442. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1443. {
  1444. #ifdef CONFIG_SMP
  1445. cfs_rq->shares = shares;
  1446. #endif
  1447. }
  1448. #endif
  1449. #include "sched_stats.h"
  1450. #include "sched_idletask.c"
  1451. #include "sched_fair.c"
  1452. #include "sched_rt.c"
  1453. #ifdef CONFIG_SCHED_DEBUG
  1454. # include "sched_debug.c"
  1455. #endif
  1456. #define sched_class_highest (&rt_sched_class)
  1457. #define for_each_class(class) \
  1458. for (class = sched_class_highest; class; class = class->next)
  1459. static void inc_nr_running(struct rq *rq)
  1460. {
  1461. rq->nr_running++;
  1462. }
  1463. static void dec_nr_running(struct rq *rq)
  1464. {
  1465. rq->nr_running--;
  1466. }
  1467. static void set_load_weight(struct task_struct *p)
  1468. {
  1469. if (task_has_rt_policy(p)) {
  1470. p->se.load.weight = prio_to_weight[0] * 2;
  1471. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1472. return;
  1473. }
  1474. /*
  1475. * SCHED_IDLE tasks get minimal weight:
  1476. */
  1477. if (p->policy == SCHED_IDLE) {
  1478. p->se.load.weight = WEIGHT_IDLEPRIO;
  1479. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1480. return;
  1481. }
  1482. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1483. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1484. }
  1485. static void update_avg(u64 *avg, u64 sample)
  1486. {
  1487. s64 diff = sample - *avg;
  1488. *avg += diff >> 3;
  1489. }
  1490. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1491. {
  1492. if (wakeup)
  1493. p->se.start_runtime = p->se.sum_exec_runtime;
  1494. sched_info_queued(p);
  1495. p->sched_class->enqueue_task(rq, p, wakeup);
  1496. p->se.on_rq = 1;
  1497. }
  1498. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1499. {
  1500. if (sleep) {
  1501. if (p->se.last_wakeup) {
  1502. update_avg(&p->se.avg_overlap,
  1503. p->se.sum_exec_runtime - p->se.last_wakeup);
  1504. p->se.last_wakeup = 0;
  1505. } else {
  1506. update_avg(&p->se.avg_wakeup,
  1507. sysctl_sched_wakeup_granularity);
  1508. }
  1509. }
  1510. sched_info_dequeued(p);
  1511. p->sched_class->dequeue_task(rq, p, sleep);
  1512. p->se.on_rq = 0;
  1513. }
  1514. /*
  1515. * __normal_prio - return the priority that is based on the static prio
  1516. */
  1517. static inline int __normal_prio(struct task_struct *p)
  1518. {
  1519. return p->static_prio;
  1520. }
  1521. /*
  1522. * Calculate the expected normal priority: i.e. priority
  1523. * without taking RT-inheritance into account. Might be
  1524. * boosted by interactivity modifiers. Changes upon fork,
  1525. * setprio syscalls, and whenever the interactivity
  1526. * estimator recalculates.
  1527. */
  1528. static inline int normal_prio(struct task_struct *p)
  1529. {
  1530. int prio;
  1531. if (task_has_rt_policy(p))
  1532. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1533. else
  1534. prio = __normal_prio(p);
  1535. return prio;
  1536. }
  1537. /*
  1538. * Calculate the current priority, i.e. the priority
  1539. * taken into account by the scheduler. This value might
  1540. * be boosted by RT tasks, or might be boosted by
  1541. * interactivity modifiers. Will be RT if the task got
  1542. * RT-boosted. If not then it returns p->normal_prio.
  1543. */
  1544. static int effective_prio(struct task_struct *p)
  1545. {
  1546. p->normal_prio = normal_prio(p);
  1547. /*
  1548. * If we are RT tasks or we were boosted to RT priority,
  1549. * keep the priority unchanged. Otherwise, update priority
  1550. * to the normal priority:
  1551. */
  1552. if (!rt_prio(p->prio))
  1553. return p->normal_prio;
  1554. return p->prio;
  1555. }
  1556. /*
  1557. * activate_task - move a task to the runqueue.
  1558. */
  1559. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1560. {
  1561. if (task_contributes_to_load(p))
  1562. rq->nr_uninterruptible--;
  1563. enqueue_task(rq, p, wakeup);
  1564. inc_nr_running(rq);
  1565. }
  1566. /*
  1567. * deactivate_task - remove a task from the runqueue.
  1568. */
  1569. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1570. {
  1571. if (task_contributes_to_load(p))
  1572. rq->nr_uninterruptible++;
  1573. dequeue_task(rq, p, sleep);
  1574. dec_nr_running(rq);
  1575. }
  1576. /**
  1577. * task_curr - is this task currently executing on a CPU?
  1578. * @p: the task in question.
  1579. */
  1580. inline int task_curr(const struct task_struct *p)
  1581. {
  1582. return cpu_curr(task_cpu(p)) == p;
  1583. }
  1584. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1585. {
  1586. set_task_rq(p, cpu);
  1587. #ifdef CONFIG_SMP
  1588. /*
  1589. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1590. * successfuly executed on another CPU. We must ensure that updates of
  1591. * per-task data have been completed by this moment.
  1592. */
  1593. smp_wmb();
  1594. task_thread_info(p)->cpu = cpu;
  1595. #endif
  1596. }
  1597. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1598. const struct sched_class *prev_class,
  1599. int oldprio, int running)
  1600. {
  1601. if (prev_class != p->sched_class) {
  1602. if (prev_class->switched_from)
  1603. prev_class->switched_from(rq, p, running);
  1604. p->sched_class->switched_to(rq, p, running);
  1605. } else
  1606. p->sched_class->prio_changed(rq, p, oldprio, running);
  1607. }
  1608. #ifdef CONFIG_SMP
  1609. /* Used instead of source_load when we know the type == 0 */
  1610. static unsigned long weighted_cpuload(const int cpu)
  1611. {
  1612. return cpu_rq(cpu)->load.weight;
  1613. }
  1614. /*
  1615. * Is this task likely cache-hot:
  1616. */
  1617. static int
  1618. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1619. {
  1620. s64 delta;
  1621. /*
  1622. * Buddy candidates are cache hot:
  1623. */
  1624. if (sched_feat(CACHE_HOT_BUDDY) &&
  1625. (&p->se == cfs_rq_of(&p->se)->next ||
  1626. &p->se == cfs_rq_of(&p->se)->last))
  1627. return 1;
  1628. if (p->sched_class != &fair_sched_class)
  1629. return 0;
  1630. if (sysctl_sched_migration_cost == -1)
  1631. return 1;
  1632. if (sysctl_sched_migration_cost == 0)
  1633. return 0;
  1634. delta = now - p->se.exec_start;
  1635. return delta < (s64)sysctl_sched_migration_cost;
  1636. }
  1637. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1638. {
  1639. int old_cpu = task_cpu(p);
  1640. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1641. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1642. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1643. u64 clock_offset;
  1644. clock_offset = old_rq->clock - new_rq->clock;
  1645. trace_sched_migrate_task(p, task_cpu(p), new_cpu);
  1646. #ifdef CONFIG_SCHEDSTATS
  1647. if (p->se.wait_start)
  1648. p->se.wait_start -= clock_offset;
  1649. if (p->se.sleep_start)
  1650. p->se.sleep_start -= clock_offset;
  1651. if (p->se.block_start)
  1652. p->se.block_start -= clock_offset;
  1653. if (old_cpu != new_cpu) {
  1654. schedstat_inc(p, se.nr_migrations);
  1655. if (task_hot(p, old_rq->clock, NULL))
  1656. schedstat_inc(p, se.nr_forced2_migrations);
  1657. }
  1658. #endif
  1659. p->se.vruntime -= old_cfsrq->min_vruntime -
  1660. new_cfsrq->min_vruntime;
  1661. __set_task_cpu(p, new_cpu);
  1662. }
  1663. struct migration_req {
  1664. struct list_head list;
  1665. struct task_struct *task;
  1666. int dest_cpu;
  1667. struct completion done;
  1668. };
  1669. /*
  1670. * The task's runqueue lock must be held.
  1671. * Returns true if you have to wait for migration thread.
  1672. */
  1673. static int
  1674. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1675. {
  1676. struct rq *rq = task_rq(p);
  1677. /*
  1678. * If the task is not on a runqueue (and not running), then
  1679. * it is sufficient to simply update the task's cpu field.
  1680. */
  1681. if (!p->se.on_rq && !task_running(rq, p)) {
  1682. set_task_cpu(p, dest_cpu);
  1683. return 0;
  1684. }
  1685. init_completion(&req->done);
  1686. req->task = p;
  1687. req->dest_cpu = dest_cpu;
  1688. list_add(&req->list, &rq->migration_queue);
  1689. return 1;
  1690. }
  1691. /*
  1692. * wait_task_inactive - wait for a thread to unschedule.
  1693. *
  1694. * If @match_state is nonzero, it's the @p->state value just checked and
  1695. * not expected to change. If it changes, i.e. @p might have woken up,
  1696. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1697. * we return a positive number (its total switch count). If a second call
  1698. * a short while later returns the same number, the caller can be sure that
  1699. * @p has remained unscheduled the whole time.
  1700. *
  1701. * The caller must ensure that the task *will* unschedule sometime soon,
  1702. * else this function might spin for a *long* time. This function can't
  1703. * be called with interrupts off, or it may introduce deadlock with
  1704. * smp_call_function() if an IPI is sent by the same process we are
  1705. * waiting to become inactive.
  1706. */
  1707. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1708. {
  1709. unsigned long flags;
  1710. int running, on_rq;
  1711. unsigned long ncsw;
  1712. struct rq *rq;
  1713. for (;;) {
  1714. /*
  1715. * We do the initial early heuristics without holding
  1716. * any task-queue locks at all. We'll only try to get
  1717. * the runqueue lock when things look like they will
  1718. * work out!
  1719. */
  1720. rq = task_rq(p);
  1721. /*
  1722. * If the task is actively running on another CPU
  1723. * still, just relax and busy-wait without holding
  1724. * any locks.
  1725. *
  1726. * NOTE! Since we don't hold any locks, it's not
  1727. * even sure that "rq" stays as the right runqueue!
  1728. * But we don't care, since "task_running()" will
  1729. * return false if the runqueue has changed and p
  1730. * is actually now running somewhere else!
  1731. */
  1732. while (task_running(rq, p)) {
  1733. if (match_state && unlikely(p->state != match_state))
  1734. return 0;
  1735. cpu_relax();
  1736. }
  1737. /*
  1738. * Ok, time to look more closely! We need the rq
  1739. * lock now, to be *sure*. If we're wrong, we'll
  1740. * just go back and repeat.
  1741. */
  1742. rq = task_rq_lock(p, &flags);
  1743. trace_sched_wait_task(rq, p);
  1744. running = task_running(rq, p);
  1745. on_rq = p->se.on_rq;
  1746. ncsw = 0;
  1747. if (!match_state || p->state == match_state)
  1748. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1749. task_rq_unlock(rq, &flags);
  1750. /*
  1751. * If it changed from the expected state, bail out now.
  1752. */
  1753. if (unlikely(!ncsw))
  1754. break;
  1755. /*
  1756. * Was it really running after all now that we
  1757. * checked with the proper locks actually held?
  1758. *
  1759. * Oops. Go back and try again..
  1760. */
  1761. if (unlikely(running)) {
  1762. cpu_relax();
  1763. continue;
  1764. }
  1765. /*
  1766. * It's not enough that it's not actively running,
  1767. * it must be off the runqueue _entirely_, and not
  1768. * preempted!
  1769. *
  1770. * So if it was still runnable (but just not actively
  1771. * running right now), it's preempted, and we should
  1772. * yield - it could be a while.
  1773. */
  1774. if (unlikely(on_rq)) {
  1775. schedule_timeout_uninterruptible(1);
  1776. continue;
  1777. }
  1778. /*
  1779. * Ahh, all good. It wasn't running, and it wasn't
  1780. * runnable, which means that it will never become
  1781. * running in the future either. We're all done!
  1782. */
  1783. break;
  1784. }
  1785. return ncsw;
  1786. }
  1787. /***
  1788. * kick_process - kick a running thread to enter/exit the kernel
  1789. * @p: the to-be-kicked thread
  1790. *
  1791. * Cause a process which is running on another CPU to enter
  1792. * kernel-mode, without any delay. (to get signals handled.)
  1793. *
  1794. * NOTE: this function doesnt have to take the runqueue lock,
  1795. * because all it wants to ensure is that the remote task enters
  1796. * the kernel. If the IPI races and the task has been migrated
  1797. * to another CPU then no harm is done and the purpose has been
  1798. * achieved as well.
  1799. */
  1800. void kick_process(struct task_struct *p)
  1801. {
  1802. int cpu;
  1803. preempt_disable();
  1804. cpu = task_cpu(p);
  1805. if ((cpu != smp_processor_id()) && task_curr(p))
  1806. smp_send_reschedule(cpu);
  1807. preempt_enable();
  1808. }
  1809. /*
  1810. * Return a low guess at the load of a migration-source cpu weighted
  1811. * according to the scheduling class and "nice" value.
  1812. *
  1813. * We want to under-estimate the load of migration sources, to
  1814. * balance conservatively.
  1815. */
  1816. static unsigned long source_load(int cpu, int type)
  1817. {
  1818. struct rq *rq = cpu_rq(cpu);
  1819. unsigned long total = weighted_cpuload(cpu);
  1820. if (type == 0 || !sched_feat(LB_BIAS))
  1821. return total;
  1822. return min(rq->cpu_load[type-1], total);
  1823. }
  1824. /*
  1825. * Return a high guess at the load of a migration-target cpu weighted
  1826. * according to the scheduling class and "nice" value.
  1827. */
  1828. static unsigned long target_load(int cpu, int type)
  1829. {
  1830. struct rq *rq = cpu_rq(cpu);
  1831. unsigned long total = weighted_cpuload(cpu);
  1832. if (type == 0 || !sched_feat(LB_BIAS))
  1833. return total;
  1834. return max(rq->cpu_load[type-1], total);
  1835. }
  1836. /*
  1837. * find_idlest_group finds and returns the least busy CPU group within the
  1838. * domain.
  1839. */
  1840. static struct sched_group *
  1841. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1842. {
  1843. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1844. unsigned long min_load = ULONG_MAX, this_load = 0;
  1845. int load_idx = sd->forkexec_idx;
  1846. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1847. do {
  1848. unsigned long load, avg_load;
  1849. int local_group;
  1850. int i;
  1851. /* Skip over this group if it has no CPUs allowed */
  1852. if (!cpumask_intersects(sched_group_cpus(group),
  1853. &p->cpus_allowed))
  1854. continue;
  1855. local_group = cpumask_test_cpu(this_cpu,
  1856. sched_group_cpus(group));
  1857. /* Tally up the load of all CPUs in the group */
  1858. avg_load = 0;
  1859. for_each_cpu(i, sched_group_cpus(group)) {
  1860. /* Bias balancing toward cpus of our domain */
  1861. if (local_group)
  1862. load = source_load(i, load_idx);
  1863. else
  1864. load = target_load(i, load_idx);
  1865. avg_load += load;
  1866. }
  1867. /* Adjust by relative CPU power of the group */
  1868. avg_load = sg_div_cpu_power(group,
  1869. avg_load * SCHED_LOAD_SCALE);
  1870. if (local_group) {
  1871. this_load = avg_load;
  1872. this = group;
  1873. } else if (avg_load < min_load) {
  1874. min_load = avg_load;
  1875. idlest = group;
  1876. }
  1877. } while (group = group->next, group != sd->groups);
  1878. if (!idlest || 100*this_load < imbalance*min_load)
  1879. return NULL;
  1880. return idlest;
  1881. }
  1882. /*
  1883. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1884. */
  1885. static int
  1886. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1887. {
  1888. unsigned long load, min_load = ULONG_MAX;
  1889. int idlest = -1;
  1890. int i;
  1891. /* Traverse only the allowed CPUs */
  1892. for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
  1893. load = weighted_cpuload(i);
  1894. if (load < min_load || (load == min_load && i == this_cpu)) {
  1895. min_load = load;
  1896. idlest = i;
  1897. }
  1898. }
  1899. return idlest;
  1900. }
  1901. /*
  1902. * sched_balance_self: balance the current task (running on cpu) in domains
  1903. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1904. * SD_BALANCE_EXEC.
  1905. *
  1906. * Balance, ie. select the least loaded group.
  1907. *
  1908. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1909. *
  1910. * preempt must be disabled.
  1911. */
  1912. static int sched_balance_self(int cpu, int flag)
  1913. {
  1914. struct task_struct *t = current;
  1915. struct sched_domain *tmp, *sd = NULL;
  1916. for_each_domain(cpu, tmp) {
  1917. /*
  1918. * If power savings logic is enabled for a domain, stop there.
  1919. */
  1920. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1921. break;
  1922. if (tmp->flags & flag)
  1923. sd = tmp;
  1924. }
  1925. if (sd)
  1926. update_shares(sd);
  1927. while (sd) {
  1928. struct sched_group *group;
  1929. int new_cpu, weight;
  1930. if (!(sd->flags & flag)) {
  1931. sd = sd->child;
  1932. continue;
  1933. }
  1934. group = find_idlest_group(sd, t, cpu);
  1935. if (!group) {
  1936. sd = sd->child;
  1937. continue;
  1938. }
  1939. new_cpu = find_idlest_cpu(group, t, cpu);
  1940. if (new_cpu == -1 || new_cpu == cpu) {
  1941. /* Now try balancing at a lower domain level of cpu */
  1942. sd = sd->child;
  1943. continue;
  1944. }
  1945. /* Now try balancing at a lower domain level of new_cpu */
  1946. cpu = new_cpu;
  1947. weight = cpumask_weight(sched_domain_span(sd));
  1948. sd = NULL;
  1949. for_each_domain(cpu, tmp) {
  1950. if (weight <= cpumask_weight(sched_domain_span(tmp)))
  1951. break;
  1952. if (tmp->flags & flag)
  1953. sd = tmp;
  1954. }
  1955. /* while loop will break here if sd == NULL */
  1956. }
  1957. return cpu;
  1958. }
  1959. #endif /* CONFIG_SMP */
  1960. /***
  1961. * try_to_wake_up - wake up a thread
  1962. * @p: the to-be-woken-up thread
  1963. * @state: the mask of task states that can be woken
  1964. * @sync: do a synchronous wakeup?
  1965. *
  1966. * Put it on the run-queue if it's not already there. The "current"
  1967. * thread is always on the run-queue (except when the actual
  1968. * re-schedule is in progress), and as such you're allowed to do
  1969. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1970. * runnable without the overhead of this.
  1971. *
  1972. * returns failure only if the task is already active.
  1973. */
  1974. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1975. {
  1976. int cpu, orig_cpu, this_cpu, success = 0;
  1977. unsigned long flags;
  1978. long old_state;
  1979. struct rq *rq;
  1980. if (!sched_feat(SYNC_WAKEUPS))
  1981. sync = 0;
  1982. #ifdef CONFIG_SMP
  1983. if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
  1984. struct sched_domain *sd;
  1985. this_cpu = raw_smp_processor_id();
  1986. cpu = task_cpu(p);
  1987. for_each_domain(this_cpu, sd) {
  1988. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1989. update_shares(sd);
  1990. break;
  1991. }
  1992. }
  1993. }
  1994. #endif
  1995. smp_wmb();
  1996. rq = task_rq_lock(p, &flags);
  1997. update_rq_clock(rq);
  1998. old_state = p->state;
  1999. if (!(old_state & state))
  2000. goto out;
  2001. if (p->se.on_rq)
  2002. goto out_running;
  2003. cpu = task_cpu(p);
  2004. orig_cpu = cpu;
  2005. this_cpu = smp_processor_id();
  2006. #ifdef CONFIG_SMP
  2007. if (unlikely(task_running(rq, p)))
  2008. goto out_activate;
  2009. cpu = p->sched_class->select_task_rq(p, sync);
  2010. if (cpu != orig_cpu) {
  2011. set_task_cpu(p, cpu);
  2012. task_rq_unlock(rq, &flags);
  2013. /* might preempt at this point */
  2014. rq = task_rq_lock(p, &flags);
  2015. old_state = p->state;
  2016. if (!(old_state & state))
  2017. goto out;
  2018. if (p->se.on_rq)
  2019. goto out_running;
  2020. this_cpu = smp_processor_id();
  2021. cpu = task_cpu(p);
  2022. }
  2023. #ifdef CONFIG_SCHEDSTATS
  2024. schedstat_inc(rq, ttwu_count);
  2025. if (cpu == this_cpu)
  2026. schedstat_inc(rq, ttwu_local);
  2027. else {
  2028. struct sched_domain *sd;
  2029. for_each_domain(this_cpu, sd) {
  2030. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2031. schedstat_inc(sd, ttwu_wake_remote);
  2032. break;
  2033. }
  2034. }
  2035. }
  2036. #endif /* CONFIG_SCHEDSTATS */
  2037. out_activate:
  2038. #endif /* CONFIG_SMP */
  2039. schedstat_inc(p, se.nr_wakeups);
  2040. if (sync)
  2041. schedstat_inc(p, se.nr_wakeups_sync);
  2042. if (orig_cpu != cpu)
  2043. schedstat_inc(p, se.nr_wakeups_migrate);
  2044. if (cpu == this_cpu)
  2045. schedstat_inc(p, se.nr_wakeups_local);
  2046. else
  2047. schedstat_inc(p, se.nr_wakeups_remote);
  2048. activate_task(rq, p, 1);
  2049. success = 1;
  2050. /*
  2051. * Only attribute actual wakeups done by this task.
  2052. */
  2053. if (!in_interrupt()) {
  2054. struct sched_entity *se = &current->se;
  2055. u64 sample = se->sum_exec_runtime;
  2056. if (se->last_wakeup)
  2057. sample -= se->last_wakeup;
  2058. else
  2059. sample -= se->start_runtime;
  2060. update_avg(&se->avg_wakeup, sample);
  2061. se->last_wakeup = se->sum_exec_runtime;
  2062. }
  2063. out_running:
  2064. trace_sched_wakeup(rq, p, success);
  2065. check_preempt_curr(rq, p, sync);
  2066. p->state = TASK_RUNNING;
  2067. #ifdef CONFIG_SMP
  2068. if (p->sched_class->task_wake_up)
  2069. p->sched_class->task_wake_up(rq, p);
  2070. #endif
  2071. out:
  2072. task_rq_unlock(rq, &flags);
  2073. return success;
  2074. }
  2075. int wake_up_process(struct task_struct *p)
  2076. {
  2077. return try_to_wake_up(p, TASK_ALL, 0);
  2078. }
  2079. EXPORT_SYMBOL(wake_up_process);
  2080. int wake_up_state(struct task_struct *p, unsigned int state)
  2081. {
  2082. return try_to_wake_up(p, state, 0);
  2083. }
  2084. /*
  2085. * Perform scheduler related setup for a newly forked process p.
  2086. * p is forked by current.
  2087. *
  2088. * __sched_fork() is basic setup used by init_idle() too:
  2089. */
  2090. static void __sched_fork(struct task_struct *p)
  2091. {
  2092. p->se.exec_start = 0;
  2093. p->se.sum_exec_runtime = 0;
  2094. p->se.prev_sum_exec_runtime = 0;
  2095. p->se.last_wakeup = 0;
  2096. p->se.avg_overlap = 0;
  2097. p->se.start_runtime = 0;
  2098. p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
  2099. #ifdef CONFIG_SCHEDSTATS
  2100. p->se.wait_start = 0;
  2101. p->se.sum_sleep_runtime = 0;
  2102. p->se.sleep_start = 0;
  2103. p->se.block_start = 0;
  2104. p->se.sleep_max = 0;
  2105. p->se.block_max = 0;
  2106. p->se.exec_max = 0;
  2107. p->se.slice_max = 0;
  2108. p->se.wait_max = 0;
  2109. #endif
  2110. INIT_LIST_HEAD(&p->rt.run_list);
  2111. p->se.on_rq = 0;
  2112. INIT_LIST_HEAD(&p->se.group_node);
  2113. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2114. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2115. #endif
  2116. /*
  2117. * We mark the process as running here, but have not actually
  2118. * inserted it onto the runqueue yet. This guarantees that
  2119. * nobody will actually run it, and a signal or other external
  2120. * event cannot wake it up and insert it on the runqueue either.
  2121. */
  2122. p->state = TASK_RUNNING;
  2123. }
  2124. /*
  2125. * fork()/clone()-time setup:
  2126. */
  2127. void sched_fork(struct task_struct *p, int clone_flags)
  2128. {
  2129. int cpu = get_cpu();
  2130. __sched_fork(p);
  2131. #ifdef CONFIG_SMP
  2132. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  2133. #endif
  2134. set_task_cpu(p, cpu);
  2135. /*
  2136. * Make sure we do not leak PI boosting priority to the child:
  2137. */
  2138. p->prio = current->normal_prio;
  2139. if (!rt_prio(p->prio))
  2140. p->sched_class = &fair_sched_class;
  2141. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2142. if (likely(sched_info_on()))
  2143. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2144. #endif
  2145. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2146. p->oncpu = 0;
  2147. #endif
  2148. #ifdef CONFIG_PREEMPT
  2149. /* Want to start with kernel preemption disabled. */
  2150. task_thread_info(p)->preempt_count = 1;
  2151. #endif
  2152. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2153. put_cpu();
  2154. }
  2155. /*
  2156. * wake_up_new_task - wake up a newly created task for the first time.
  2157. *
  2158. * This function will do some initial scheduler statistics housekeeping
  2159. * that must be done for every newly created context, then puts the task
  2160. * on the runqueue and wakes it.
  2161. */
  2162. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2163. {
  2164. unsigned long flags;
  2165. struct rq *rq;
  2166. rq = task_rq_lock(p, &flags);
  2167. BUG_ON(p->state != TASK_RUNNING);
  2168. update_rq_clock(rq);
  2169. p->prio = effective_prio(p);
  2170. if (!p->sched_class->task_new || !current->se.on_rq) {
  2171. activate_task(rq, p, 0);
  2172. } else {
  2173. /*
  2174. * Let the scheduling class do new task startup
  2175. * management (if any):
  2176. */
  2177. p->sched_class->task_new(rq, p);
  2178. inc_nr_running(rq);
  2179. }
  2180. trace_sched_wakeup_new(rq, p, 1);
  2181. check_preempt_curr(rq, p, 0);
  2182. #ifdef CONFIG_SMP
  2183. if (p->sched_class->task_wake_up)
  2184. p->sched_class->task_wake_up(rq, p);
  2185. #endif
  2186. task_rq_unlock(rq, &flags);
  2187. }
  2188. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2189. /**
  2190. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2191. * @notifier: notifier struct to register
  2192. */
  2193. void preempt_notifier_register(struct preempt_notifier *notifier)
  2194. {
  2195. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2196. }
  2197. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2198. /**
  2199. * preempt_notifier_unregister - no longer interested in preemption notifications
  2200. * @notifier: notifier struct to unregister
  2201. *
  2202. * This is safe to call from within a preemption notifier.
  2203. */
  2204. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2205. {
  2206. hlist_del(&notifier->link);
  2207. }
  2208. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2209. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2210. {
  2211. struct preempt_notifier *notifier;
  2212. struct hlist_node *node;
  2213. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2214. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2215. }
  2216. static void
  2217. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2218. struct task_struct *next)
  2219. {
  2220. struct preempt_notifier *notifier;
  2221. struct hlist_node *node;
  2222. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2223. notifier->ops->sched_out(notifier, next);
  2224. }
  2225. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2226. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2227. {
  2228. }
  2229. static void
  2230. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2231. struct task_struct *next)
  2232. {
  2233. }
  2234. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2235. /**
  2236. * prepare_task_switch - prepare to switch tasks
  2237. * @rq: the runqueue preparing to switch
  2238. * @prev: the current task that is being switched out
  2239. * @next: the task we are going to switch to.
  2240. *
  2241. * This is called with the rq lock held and interrupts off. It must
  2242. * be paired with a subsequent finish_task_switch after the context
  2243. * switch.
  2244. *
  2245. * prepare_task_switch sets up locking and calls architecture specific
  2246. * hooks.
  2247. */
  2248. static inline void
  2249. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2250. struct task_struct *next)
  2251. {
  2252. fire_sched_out_preempt_notifiers(prev, next);
  2253. prepare_lock_switch(rq, next);
  2254. prepare_arch_switch(next);
  2255. }
  2256. /**
  2257. * finish_task_switch - clean up after a task-switch
  2258. * @rq: runqueue associated with task-switch
  2259. * @prev: the thread we just switched away from.
  2260. *
  2261. * finish_task_switch must be called after the context switch, paired
  2262. * with a prepare_task_switch call before the context switch.
  2263. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2264. * and do any other architecture-specific cleanup actions.
  2265. *
  2266. * Note that we may have delayed dropping an mm in context_switch(). If
  2267. * so, we finish that here outside of the runqueue lock. (Doing it
  2268. * with the lock held can cause deadlocks; see schedule() for
  2269. * details.)
  2270. */
  2271. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2272. __releases(rq->lock)
  2273. {
  2274. struct mm_struct *mm = rq->prev_mm;
  2275. long prev_state;
  2276. #ifdef CONFIG_SMP
  2277. int post_schedule = 0;
  2278. if (current->sched_class->needs_post_schedule)
  2279. post_schedule = current->sched_class->needs_post_schedule(rq);
  2280. #endif
  2281. rq->prev_mm = NULL;
  2282. /*
  2283. * A task struct has one reference for the use as "current".
  2284. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2285. * schedule one last time. The schedule call will never return, and
  2286. * the scheduled task must drop that reference.
  2287. * The test for TASK_DEAD must occur while the runqueue locks are
  2288. * still held, otherwise prev could be scheduled on another cpu, die
  2289. * there before we look at prev->state, and then the reference would
  2290. * be dropped twice.
  2291. * Manfred Spraul <manfred@colorfullife.com>
  2292. */
  2293. prev_state = prev->state;
  2294. finish_arch_switch(prev);
  2295. finish_lock_switch(rq, prev);
  2296. #ifdef CONFIG_SMP
  2297. if (post_schedule)
  2298. current->sched_class->post_schedule(rq);
  2299. #endif
  2300. fire_sched_in_preempt_notifiers(current);
  2301. if (mm)
  2302. mmdrop(mm);
  2303. if (unlikely(prev_state == TASK_DEAD)) {
  2304. /*
  2305. * Remove function-return probe instances associated with this
  2306. * task and put them back on the free list.
  2307. */
  2308. kprobe_flush_task(prev);
  2309. put_task_struct(prev);
  2310. }
  2311. }
  2312. /**
  2313. * schedule_tail - first thing a freshly forked thread must call.
  2314. * @prev: the thread we just switched away from.
  2315. */
  2316. asmlinkage void schedule_tail(struct task_struct *prev)
  2317. __releases(rq->lock)
  2318. {
  2319. struct rq *rq = this_rq();
  2320. finish_task_switch(rq, prev);
  2321. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2322. /* In this case, finish_task_switch does not reenable preemption */
  2323. preempt_enable();
  2324. #endif
  2325. if (current->set_child_tid)
  2326. put_user(task_pid_vnr(current), current->set_child_tid);
  2327. }
  2328. /*
  2329. * context_switch - switch to the new MM and the new
  2330. * thread's register state.
  2331. */
  2332. static inline void
  2333. context_switch(struct rq *rq, struct task_struct *prev,
  2334. struct task_struct *next)
  2335. {
  2336. struct mm_struct *mm, *oldmm;
  2337. prepare_task_switch(rq, prev, next);
  2338. trace_sched_switch(rq, prev, next);
  2339. mm = next->mm;
  2340. oldmm = prev->active_mm;
  2341. /*
  2342. * For paravirt, this is coupled with an exit in switch_to to
  2343. * combine the page table reload and the switch backend into
  2344. * one hypercall.
  2345. */
  2346. arch_enter_lazy_cpu_mode();
  2347. if (unlikely(!mm)) {
  2348. next->active_mm = oldmm;
  2349. atomic_inc(&oldmm->mm_count);
  2350. enter_lazy_tlb(oldmm, next);
  2351. } else
  2352. switch_mm(oldmm, mm, next);
  2353. if (unlikely(!prev->mm)) {
  2354. prev->active_mm = NULL;
  2355. rq->prev_mm = oldmm;
  2356. }
  2357. /*
  2358. * Since the runqueue lock will be released by the next
  2359. * task (which is an invalid locking op but in the case
  2360. * of the scheduler it's an obvious special-case), so we
  2361. * do an early lockdep release here:
  2362. */
  2363. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2364. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2365. #endif
  2366. /* Here we just switch the register state and the stack. */
  2367. switch_to(prev, next, prev);
  2368. barrier();
  2369. /*
  2370. * this_rq must be evaluated again because prev may have moved
  2371. * CPUs since it called schedule(), thus the 'rq' on its stack
  2372. * frame will be invalid.
  2373. */
  2374. finish_task_switch(this_rq(), prev);
  2375. }
  2376. /*
  2377. * nr_running, nr_uninterruptible and nr_context_switches:
  2378. *
  2379. * externally visible scheduler statistics: current number of runnable
  2380. * threads, current number of uninterruptible-sleeping threads, total
  2381. * number of context switches performed since bootup.
  2382. */
  2383. unsigned long nr_running(void)
  2384. {
  2385. unsigned long i, sum = 0;
  2386. for_each_online_cpu(i)
  2387. sum += cpu_rq(i)->nr_running;
  2388. return sum;
  2389. }
  2390. unsigned long nr_uninterruptible(void)
  2391. {
  2392. unsigned long i, sum = 0;
  2393. for_each_possible_cpu(i)
  2394. sum += cpu_rq(i)->nr_uninterruptible;
  2395. /*
  2396. * Since we read the counters lockless, it might be slightly
  2397. * inaccurate. Do not allow it to go below zero though:
  2398. */
  2399. if (unlikely((long)sum < 0))
  2400. sum = 0;
  2401. return sum;
  2402. }
  2403. unsigned long long nr_context_switches(void)
  2404. {
  2405. int i;
  2406. unsigned long long sum = 0;
  2407. for_each_possible_cpu(i)
  2408. sum += cpu_rq(i)->nr_switches;
  2409. return sum;
  2410. }
  2411. unsigned long nr_iowait(void)
  2412. {
  2413. unsigned long i, sum = 0;
  2414. for_each_possible_cpu(i)
  2415. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2416. return sum;
  2417. }
  2418. unsigned long nr_active(void)
  2419. {
  2420. unsigned long i, running = 0, uninterruptible = 0;
  2421. for_each_online_cpu(i) {
  2422. running += cpu_rq(i)->nr_running;
  2423. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2424. }
  2425. if (unlikely((long)uninterruptible < 0))
  2426. uninterruptible = 0;
  2427. return running + uninterruptible;
  2428. }
  2429. /*
  2430. * Update rq->cpu_load[] statistics. This function is usually called every
  2431. * scheduler tick (TICK_NSEC).
  2432. */
  2433. static void update_cpu_load(struct rq *this_rq)
  2434. {
  2435. unsigned long this_load = this_rq->load.weight;
  2436. int i, scale;
  2437. this_rq->nr_load_updates++;
  2438. /* Update our load: */
  2439. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2440. unsigned long old_load, new_load;
  2441. /* scale is effectively 1 << i now, and >> i divides by scale */
  2442. old_load = this_rq->cpu_load[i];
  2443. new_load = this_load;
  2444. /*
  2445. * Round up the averaging division if load is increasing. This
  2446. * prevents us from getting stuck on 9 if the load is 10, for
  2447. * example.
  2448. */
  2449. if (new_load > old_load)
  2450. new_load += scale-1;
  2451. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2452. }
  2453. }
  2454. #ifdef CONFIG_SMP
  2455. /*
  2456. * double_rq_lock - safely lock two runqueues
  2457. *
  2458. * Note this does not disable interrupts like task_rq_lock,
  2459. * you need to do so manually before calling.
  2460. */
  2461. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2462. __acquires(rq1->lock)
  2463. __acquires(rq2->lock)
  2464. {
  2465. BUG_ON(!irqs_disabled());
  2466. if (rq1 == rq2) {
  2467. spin_lock(&rq1->lock);
  2468. __acquire(rq2->lock); /* Fake it out ;) */
  2469. } else {
  2470. if (rq1 < rq2) {
  2471. spin_lock(&rq1->lock);
  2472. spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2473. } else {
  2474. spin_lock(&rq2->lock);
  2475. spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2476. }
  2477. }
  2478. update_rq_clock(rq1);
  2479. update_rq_clock(rq2);
  2480. }
  2481. /*
  2482. * double_rq_unlock - safely unlock two runqueues
  2483. *
  2484. * Note this does not restore interrupts like task_rq_unlock,
  2485. * you need to do so manually after calling.
  2486. */
  2487. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2488. __releases(rq1->lock)
  2489. __releases(rq2->lock)
  2490. {
  2491. spin_unlock(&rq1->lock);
  2492. if (rq1 != rq2)
  2493. spin_unlock(&rq2->lock);
  2494. else
  2495. __release(rq2->lock);
  2496. }
  2497. /*
  2498. * If dest_cpu is allowed for this process, migrate the task to it.
  2499. * This is accomplished by forcing the cpu_allowed mask to only
  2500. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2501. * the cpu_allowed mask is restored.
  2502. */
  2503. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2504. {
  2505. struct migration_req req;
  2506. unsigned long flags;
  2507. struct rq *rq;
  2508. rq = task_rq_lock(p, &flags);
  2509. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
  2510. || unlikely(!cpu_active(dest_cpu)))
  2511. goto out;
  2512. /* force the process onto the specified CPU */
  2513. if (migrate_task(p, dest_cpu, &req)) {
  2514. /* Need to wait for migration thread (might exit: take ref). */
  2515. struct task_struct *mt = rq->migration_thread;
  2516. get_task_struct(mt);
  2517. task_rq_unlock(rq, &flags);
  2518. wake_up_process(mt);
  2519. put_task_struct(mt);
  2520. wait_for_completion(&req.done);
  2521. return;
  2522. }
  2523. out:
  2524. task_rq_unlock(rq, &flags);
  2525. }
  2526. /*
  2527. * sched_exec - execve() is a valuable balancing opportunity, because at
  2528. * this point the task has the smallest effective memory and cache footprint.
  2529. */
  2530. void sched_exec(void)
  2531. {
  2532. int new_cpu, this_cpu = get_cpu();
  2533. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2534. put_cpu();
  2535. if (new_cpu != this_cpu)
  2536. sched_migrate_task(current, new_cpu);
  2537. }
  2538. /*
  2539. * pull_task - move a task from a remote runqueue to the local runqueue.
  2540. * Both runqueues must be locked.
  2541. */
  2542. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2543. struct rq *this_rq, int this_cpu)
  2544. {
  2545. deactivate_task(src_rq, p, 0);
  2546. set_task_cpu(p, this_cpu);
  2547. activate_task(this_rq, p, 0);
  2548. /*
  2549. * Note that idle threads have a prio of MAX_PRIO, for this test
  2550. * to be always true for them.
  2551. */
  2552. check_preempt_curr(this_rq, p, 0);
  2553. }
  2554. /*
  2555. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2556. */
  2557. static
  2558. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2559. struct sched_domain *sd, enum cpu_idle_type idle,
  2560. int *all_pinned)
  2561. {
  2562. int tsk_cache_hot = 0;
  2563. /*
  2564. * We do not migrate tasks that are:
  2565. * 1) running (obviously), or
  2566. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2567. * 3) are cache-hot on their current CPU.
  2568. */
  2569. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  2570. schedstat_inc(p, se.nr_failed_migrations_affine);
  2571. return 0;
  2572. }
  2573. *all_pinned = 0;
  2574. if (task_running(rq, p)) {
  2575. schedstat_inc(p, se.nr_failed_migrations_running);
  2576. return 0;
  2577. }
  2578. /*
  2579. * Aggressive migration if:
  2580. * 1) task is cache cold, or
  2581. * 2) too many balance attempts have failed.
  2582. */
  2583. tsk_cache_hot = task_hot(p, rq->clock, sd);
  2584. if (!tsk_cache_hot ||
  2585. sd->nr_balance_failed > sd->cache_nice_tries) {
  2586. #ifdef CONFIG_SCHEDSTATS
  2587. if (tsk_cache_hot) {
  2588. schedstat_inc(sd, lb_hot_gained[idle]);
  2589. schedstat_inc(p, se.nr_forced_migrations);
  2590. }
  2591. #endif
  2592. return 1;
  2593. }
  2594. if (tsk_cache_hot) {
  2595. schedstat_inc(p, se.nr_failed_migrations_hot);
  2596. return 0;
  2597. }
  2598. return 1;
  2599. }
  2600. static unsigned long
  2601. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2602. unsigned long max_load_move, struct sched_domain *sd,
  2603. enum cpu_idle_type idle, int *all_pinned,
  2604. int *this_best_prio, struct rq_iterator *iterator)
  2605. {
  2606. int loops = 0, pulled = 0, pinned = 0;
  2607. struct task_struct *p;
  2608. long rem_load_move = max_load_move;
  2609. if (max_load_move == 0)
  2610. goto out;
  2611. pinned = 1;
  2612. /*
  2613. * Start the load-balancing iterator:
  2614. */
  2615. p = iterator->start(iterator->arg);
  2616. next:
  2617. if (!p || loops++ > sysctl_sched_nr_migrate)
  2618. goto out;
  2619. if ((p->se.load.weight >> 1) > rem_load_move ||
  2620. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2621. p = iterator->next(iterator->arg);
  2622. goto next;
  2623. }
  2624. pull_task(busiest, p, this_rq, this_cpu);
  2625. pulled++;
  2626. rem_load_move -= p->se.load.weight;
  2627. #ifdef CONFIG_PREEMPT
  2628. /*
  2629. * NEWIDLE balancing is a source of latency, so preemptible kernels
  2630. * will stop after the first task is pulled to minimize the critical
  2631. * section.
  2632. */
  2633. if (idle == CPU_NEWLY_IDLE)
  2634. goto out;
  2635. #endif
  2636. /*
  2637. * We only want to steal up to the prescribed amount of weighted load.
  2638. */
  2639. if (rem_load_move > 0) {
  2640. if (p->prio < *this_best_prio)
  2641. *this_best_prio = p->prio;
  2642. p = iterator->next(iterator->arg);
  2643. goto next;
  2644. }
  2645. out:
  2646. /*
  2647. * Right now, this is one of only two places pull_task() is called,
  2648. * so we can safely collect pull_task() stats here rather than
  2649. * inside pull_task().
  2650. */
  2651. schedstat_add(sd, lb_gained[idle], pulled);
  2652. if (all_pinned)
  2653. *all_pinned = pinned;
  2654. return max_load_move - rem_load_move;
  2655. }
  2656. /*
  2657. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2658. * this_rq, as part of a balancing operation within domain "sd".
  2659. * Returns 1 if successful and 0 otherwise.
  2660. *
  2661. * Called with both runqueues locked.
  2662. */
  2663. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2664. unsigned long max_load_move,
  2665. struct sched_domain *sd, enum cpu_idle_type idle,
  2666. int *all_pinned)
  2667. {
  2668. const struct sched_class *class = sched_class_highest;
  2669. unsigned long total_load_moved = 0;
  2670. int this_best_prio = this_rq->curr->prio;
  2671. do {
  2672. total_load_moved +=
  2673. class->load_balance(this_rq, this_cpu, busiest,
  2674. max_load_move - total_load_moved,
  2675. sd, idle, all_pinned, &this_best_prio);
  2676. class = class->next;
  2677. #ifdef CONFIG_PREEMPT
  2678. /*
  2679. * NEWIDLE balancing is a source of latency, so preemptible
  2680. * kernels will stop after the first task is pulled to minimize
  2681. * the critical section.
  2682. */
  2683. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2684. break;
  2685. #endif
  2686. } while (class && max_load_move > total_load_moved);
  2687. return total_load_moved > 0;
  2688. }
  2689. static int
  2690. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2691. struct sched_domain *sd, enum cpu_idle_type idle,
  2692. struct rq_iterator *iterator)
  2693. {
  2694. struct task_struct *p = iterator->start(iterator->arg);
  2695. int pinned = 0;
  2696. while (p) {
  2697. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2698. pull_task(busiest, p, this_rq, this_cpu);
  2699. /*
  2700. * Right now, this is only the second place pull_task()
  2701. * is called, so we can safely collect pull_task()
  2702. * stats here rather than inside pull_task().
  2703. */
  2704. schedstat_inc(sd, lb_gained[idle]);
  2705. return 1;
  2706. }
  2707. p = iterator->next(iterator->arg);
  2708. }
  2709. return 0;
  2710. }
  2711. /*
  2712. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2713. * part of active balancing operations within "domain".
  2714. * Returns 1 if successful and 0 otherwise.
  2715. *
  2716. * Called with both runqueues locked.
  2717. */
  2718. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2719. struct sched_domain *sd, enum cpu_idle_type idle)
  2720. {
  2721. const struct sched_class *class;
  2722. for (class = sched_class_highest; class; class = class->next)
  2723. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2724. return 1;
  2725. return 0;
  2726. }
  2727. /********** Helpers for find_busiest_group ************************/
  2728. /*
  2729. * sd_lb_stats - Structure to store the statistics of a sched_domain
  2730. * during load balancing.
  2731. */
  2732. struct sd_lb_stats {
  2733. struct sched_group *busiest; /* Busiest group in this sd */
  2734. struct sched_group *this; /* Local group in this sd */
  2735. unsigned long total_load; /* Total load of all groups in sd */
  2736. unsigned long total_pwr; /* Total power of all groups in sd */
  2737. unsigned long avg_load; /* Average load across all groups in sd */
  2738. /** Statistics of this group */
  2739. unsigned long this_load;
  2740. unsigned long this_load_per_task;
  2741. unsigned long this_nr_running;
  2742. /* Statistics of the busiest group */
  2743. unsigned long max_load;
  2744. unsigned long busiest_load_per_task;
  2745. unsigned long busiest_nr_running;
  2746. int group_imb; /* Is there imbalance in this sd */
  2747. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2748. int power_savings_balance; /* Is powersave balance needed for this sd */
  2749. struct sched_group *group_min; /* Least loaded group in sd */
  2750. struct sched_group *group_leader; /* Group which relieves group_min */
  2751. unsigned long min_load_per_task; /* load_per_task in group_min */
  2752. unsigned long leader_nr_running; /* Nr running of group_leader */
  2753. unsigned long min_nr_running; /* Nr running of group_min */
  2754. #endif
  2755. };
  2756. /*
  2757. * sg_lb_stats - stats of a sched_group required for load_balancing
  2758. */
  2759. struct sg_lb_stats {
  2760. unsigned long avg_load; /*Avg load across the CPUs of the group */
  2761. unsigned long group_load; /* Total load over the CPUs of the group */
  2762. unsigned long sum_nr_running; /* Nr tasks running in the group */
  2763. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  2764. unsigned long group_capacity;
  2765. int group_imb; /* Is there an imbalance in the group ? */
  2766. };
  2767. /**
  2768. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  2769. * @group: The group whose first cpu is to be returned.
  2770. */
  2771. static inline unsigned int group_first_cpu(struct sched_group *group)
  2772. {
  2773. return cpumask_first(sched_group_cpus(group));
  2774. }
  2775. /**
  2776. * get_sd_load_idx - Obtain the load index for a given sched domain.
  2777. * @sd: The sched_domain whose load_idx is to be obtained.
  2778. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  2779. */
  2780. static inline int get_sd_load_idx(struct sched_domain *sd,
  2781. enum cpu_idle_type idle)
  2782. {
  2783. int load_idx;
  2784. switch (idle) {
  2785. case CPU_NOT_IDLE:
  2786. load_idx = sd->busy_idx;
  2787. break;
  2788. case CPU_NEWLY_IDLE:
  2789. load_idx = sd->newidle_idx;
  2790. break;
  2791. default:
  2792. load_idx = sd->idle_idx;
  2793. break;
  2794. }
  2795. return load_idx;
  2796. }
  2797. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2798. /**
  2799. * init_sd_power_savings_stats - Initialize power savings statistics for
  2800. * the given sched_domain, during load balancing.
  2801. *
  2802. * @sd: Sched domain whose power-savings statistics are to be initialized.
  2803. * @sds: Variable containing the statistics for sd.
  2804. * @idle: Idle status of the CPU at which we're performing load-balancing.
  2805. */
  2806. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2807. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2808. {
  2809. /*
  2810. * Busy processors will not participate in power savings
  2811. * balance.
  2812. */
  2813. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2814. sds->power_savings_balance = 0;
  2815. else {
  2816. sds->power_savings_balance = 1;
  2817. sds->min_nr_running = ULONG_MAX;
  2818. sds->leader_nr_running = 0;
  2819. }
  2820. }
  2821. /**
  2822. * update_sd_power_savings_stats - Update the power saving stats for a
  2823. * sched_domain while performing load balancing.
  2824. *
  2825. * @group: sched_group belonging to the sched_domain under consideration.
  2826. * @sds: Variable containing the statistics of the sched_domain
  2827. * @local_group: Does group contain the CPU for which we're performing
  2828. * load balancing ?
  2829. * @sgs: Variable containing the statistics of the group.
  2830. */
  2831. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2832. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2833. {
  2834. if (!sds->power_savings_balance)
  2835. return;
  2836. /*
  2837. * If the local group is idle or completely loaded
  2838. * no need to do power savings balance at this domain
  2839. */
  2840. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  2841. !sds->this_nr_running))
  2842. sds->power_savings_balance = 0;
  2843. /*
  2844. * If a group is already running at full capacity or idle,
  2845. * don't include that group in power savings calculations
  2846. */
  2847. if (!sds->power_savings_balance ||
  2848. sgs->sum_nr_running >= sgs->group_capacity ||
  2849. !sgs->sum_nr_running)
  2850. return;
  2851. /*
  2852. * Calculate the group which has the least non-idle load.
  2853. * This is the group from where we need to pick up the load
  2854. * for saving power
  2855. */
  2856. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  2857. (sgs->sum_nr_running == sds->min_nr_running &&
  2858. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  2859. sds->group_min = group;
  2860. sds->min_nr_running = sgs->sum_nr_running;
  2861. sds->min_load_per_task = sgs->sum_weighted_load /
  2862. sgs->sum_nr_running;
  2863. }
  2864. /*
  2865. * Calculate the group which is almost near its
  2866. * capacity but still has some space to pick up some load
  2867. * from other group and save more power
  2868. */
  2869. if (sgs->sum_nr_running > sgs->group_capacity - 1)
  2870. return;
  2871. if (sgs->sum_nr_running > sds->leader_nr_running ||
  2872. (sgs->sum_nr_running == sds->leader_nr_running &&
  2873. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  2874. sds->group_leader = group;
  2875. sds->leader_nr_running = sgs->sum_nr_running;
  2876. }
  2877. }
  2878. /**
  2879. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  2880. * @sds: Variable containing the statistics of the sched_domain
  2881. * under consideration.
  2882. * @this_cpu: Cpu at which we're currently performing load-balancing.
  2883. * @imbalance: Variable to store the imbalance.
  2884. *
  2885. * Description:
  2886. * Check if we have potential to perform some power-savings balance.
  2887. * If yes, set the busiest group to be the least loaded group in the
  2888. * sched_domain, so that it's CPUs can be put to idle.
  2889. *
  2890. * Returns 1 if there is potential to perform power-savings balance.
  2891. * Else returns 0.
  2892. */
  2893. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2894. int this_cpu, unsigned long *imbalance)
  2895. {
  2896. if (!sds->power_savings_balance)
  2897. return 0;
  2898. if (sds->this != sds->group_leader ||
  2899. sds->group_leader == sds->group_min)
  2900. return 0;
  2901. *imbalance = sds->min_load_per_task;
  2902. sds->busiest = sds->group_min;
  2903. if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
  2904. cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
  2905. group_first_cpu(sds->group_leader);
  2906. }
  2907. return 1;
  2908. }
  2909. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  2910. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2911. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2912. {
  2913. return;
  2914. }
  2915. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2916. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2917. {
  2918. return;
  2919. }
  2920. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2921. int this_cpu, unsigned long *imbalance)
  2922. {
  2923. return 0;
  2924. }
  2925. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  2926. /**
  2927. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  2928. * @group: sched_group whose statistics are to be updated.
  2929. * @this_cpu: Cpu for which load balance is currently performed.
  2930. * @idle: Idle status of this_cpu
  2931. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  2932. * @sd_idle: Idle status of the sched_domain containing group.
  2933. * @local_group: Does group contain this_cpu.
  2934. * @cpus: Set of cpus considered for load balancing.
  2935. * @balance: Should we balance.
  2936. * @sgs: variable to hold the statistics for this group.
  2937. */
  2938. static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
  2939. enum cpu_idle_type idle, int load_idx, int *sd_idle,
  2940. int local_group, const struct cpumask *cpus,
  2941. int *balance, struct sg_lb_stats *sgs)
  2942. {
  2943. unsigned long load, max_cpu_load, min_cpu_load;
  2944. int i;
  2945. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2946. unsigned long sum_avg_load_per_task;
  2947. unsigned long avg_load_per_task;
  2948. if (local_group)
  2949. balance_cpu = group_first_cpu(group);
  2950. /* Tally up the load of all CPUs in the group */
  2951. sum_avg_load_per_task = avg_load_per_task = 0;
  2952. max_cpu_load = 0;
  2953. min_cpu_load = ~0UL;
  2954. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  2955. struct rq *rq = cpu_rq(i);
  2956. if (*sd_idle && rq->nr_running)
  2957. *sd_idle = 0;
  2958. /* Bias balancing toward cpus of our domain */
  2959. if (local_group) {
  2960. if (idle_cpu(i) && !first_idle_cpu) {
  2961. first_idle_cpu = 1;
  2962. balance_cpu = i;
  2963. }
  2964. load = target_load(i, load_idx);
  2965. } else {
  2966. load = source_load(i, load_idx);
  2967. if (load > max_cpu_load)
  2968. max_cpu_load = load;
  2969. if (min_cpu_load > load)
  2970. min_cpu_load = load;
  2971. }
  2972. sgs->group_load += load;
  2973. sgs->sum_nr_running += rq->nr_running;
  2974. sgs->sum_weighted_load += weighted_cpuload(i);
  2975. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  2976. }
  2977. /*
  2978. * First idle cpu or the first cpu(busiest) in this sched group
  2979. * is eligible for doing load balancing at this and above
  2980. * domains. In the newly idle case, we will allow all the cpu's
  2981. * to do the newly idle load balance.
  2982. */
  2983. if (idle != CPU_NEWLY_IDLE && local_group &&
  2984. balance_cpu != this_cpu && balance) {
  2985. *balance = 0;
  2986. return;
  2987. }
  2988. /* Adjust by relative CPU power of the group */
  2989. sgs->avg_load = sg_div_cpu_power(group,
  2990. sgs->group_load * SCHED_LOAD_SCALE);
  2991. /*
  2992. * Consider the group unbalanced when the imbalance is larger
  2993. * than the average weight of two tasks.
  2994. *
  2995. * APZ: with cgroup the avg task weight can vary wildly and
  2996. * might not be a suitable number - should we keep a
  2997. * normalized nr_running number somewhere that negates
  2998. * the hierarchy?
  2999. */
  3000. avg_load_per_task = sg_div_cpu_power(group,
  3001. sum_avg_load_per_task * SCHED_LOAD_SCALE);
  3002. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  3003. sgs->group_imb = 1;
  3004. sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  3005. }
  3006. /**
  3007. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  3008. * @sd: sched_domain whose statistics are to be updated.
  3009. * @this_cpu: Cpu for which load balance is currently performed.
  3010. * @idle: Idle status of this_cpu
  3011. * @sd_idle: Idle status of the sched_domain containing group.
  3012. * @cpus: Set of cpus considered for load balancing.
  3013. * @balance: Should we balance.
  3014. * @sds: variable to hold the statistics for this sched_domain.
  3015. */
  3016. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  3017. enum cpu_idle_type idle, int *sd_idle,
  3018. const struct cpumask *cpus, int *balance,
  3019. struct sd_lb_stats *sds)
  3020. {
  3021. struct sched_group *group = sd->groups;
  3022. struct sg_lb_stats sgs;
  3023. int load_idx;
  3024. init_sd_power_savings_stats(sd, sds, idle);
  3025. load_idx = get_sd_load_idx(sd, idle);
  3026. do {
  3027. int local_group;
  3028. local_group = cpumask_test_cpu(this_cpu,
  3029. sched_group_cpus(group));
  3030. memset(&sgs, 0, sizeof(sgs));
  3031. update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
  3032. local_group, cpus, balance, &sgs);
  3033. if (local_group && balance && !(*balance))
  3034. return;
  3035. sds->total_load += sgs.group_load;
  3036. sds->total_pwr += group->__cpu_power;
  3037. if (local_group) {
  3038. sds->this_load = sgs.avg_load;
  3039. sds->this = group;
  3040. sds->this_nr_running = sgs.sum_nr_running;
  3041. sds->this_load_per_task = sgs.sum_weighted_load;
  3042. } else if (sgs.avg_load > sds->max_load &&
  3043. (sgs.sum_nr_running > sgs.group_capacity ||
  3044. sgs.group_imb)) {
  3045. sds->max_load = sgs.avg_load;
  3046. sds->busiest = group;
  3047. sds->busiest_nr_running = sgs.sum_nr_running;
  3048. sds->busiest_load_per_task = sgs.sum_weighted_load;
  3049. sds->group_imb = sgs.group_imb;
  3050. }
  3051. update_sd_power_savings_stats(group, sds, local_group, &sgs);
  3052. group = group->next;
  3053. } while (group != sd->groups);
  3054. }
  3055. /**
  3056. * fix_small_imbalance - Calculate the minor imbalance that exists
  3057. * amongst the groups of a sched_domain, during
  3058. * load balancing.
  3059. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  3060. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  3061. * @imbalance: Variable to store the imbalance.
  3062. */
  3063. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  3064. int this_cpu, unsigned long *imbalance)
  3065. {
  3066. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  3067. unsigned int imbn = 2;
  3068. if (sds->this_nr_running) {
  3069. sds->this_load_per_task /= sds->this_nr_running;
  3070. if (sds->busiest_load_per_task >
  3071. sds->this_load_per_task)
  3072. imbn = 1;
  3073. } else
  3074. sds->this_load_per_task =
  3075. cpu_avg_load_per_task(this_cpu);
  3076. if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
  3077. sds->busiest_load_per_task * imbn) {
  3078. *imbalance = sds->busiest_load_per_task;
  3079. return;
  3080. }
  3081. /*
  3082. * OK, we don't have enough imbalance to justify moving tasks,
  3083. * however we may be able to increase total CPU power used by
  3084. * moving them.
  3085. */
  3086. pwr_now += sds->busiest->__cpu_power *
  3087. min(sds->busiest_load_per_task, sds->max_load);
  3088. pwr_now += sds->this->__cpu_power *
  3089. min(sds->this_load_per_task, sds->this_load);
  3090. pwr_now /= SCHED_LOAD_SCALE;
  3091. /* Amount of load we'd subtract */
  3092. tmp = sg_div_cpu_power(sds->busiest,
  3093. sds->busiest_load_per_task * SCHED_LOAD_SCALE);
  3094. if (sds->max_load > tmp)
  3095. pwr_move += sds->busiest->__cpu_power *
  3096. min(sds->busiest_load_per_task, sds->max_load - tmp);
  3097. /* Amount of load we'd add */
  3098. if (sds->max_load * sds->busiest->__cpu_power <
  3099. sds->busiest_load_per_task * SCHED_LOAD_SCALE)
  3100. tmp = sg_div_cpu_power(sds->this,
  3101. sds->max_load * sds->busiest->__cpu_power);
  3102. else
  3103. tmp = sg_div_cpu_power(sds->this,
  3104. sds->busiest_load_per_task * SCHED_LOAD_SCALE);
  3105. pwr_move += sds->this->__cpu_power *
  3106. min(sds->this_load_per_task, sds->this_load + tmp);
  3107. pwr_move /= SCHED_LOAD_SCALE;
  3108. /* Move if we gain throughput */
  3109. if (pwr_move > pwr_now)
  3110. *imbalance = sds->busiest_load_per_task;
  3111. }
  3112. /**
  3113. * calculate_imbalance - Calculate the amount of imbalance present within the
  3114. * groups of a given sched_domain during load balance.
  3115. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  3116. * @this_cpu: Cpu for which currently load balance is being performed.
  3117. * @imbalance: The variable to store the imbalance.
  3118. */
  3119. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  3120. unsigned long *imbalance)
  3121. {
  3122. unsigned long max_pull;
  3123. /*
  3124. * In the presence of smp nice balancing, certain scenarios can have
  3125. * max load less than avg load(as we skip the groups at or below
  3126. * its cpu_power, while calculating max_load..)
  3127. */
  3128. if (sds->max_load < sds->avg_load) {
  3129. *imbalance = 0;
  3130. return fix_small_imbalance(sds, this_cpu, imbalance);
  3131. }
  3132. /* Don't want to pull so many tasks that a group would go idle */
  3133. max_pull = min(sds->max_load - sds->avg_load,
  3134. sds->max_load - sds->busiest_load_per_task);
  3135. /* How much load to actually move to equalise the imbalance */
  3136. *imbalance = min(max_pull * sds->busiest->__cpu_power,
  3137. (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
  3138. / SCHED_LOAD_SCALE;
  3139. /*
  3140. * if *imbalance is less than the average load per runnable task
  3141. * there is no gaurantee that any tasks will be moved so we'll have
  3142. * a think about bumping its value to force at least one task to be
  3143. * moved
  3144. */
  3145. if (*imbalance < sds->busiest_load_per_task)
  3146. return fix_small_imbalance(sds, this_cpu, imbalance);
  3147. }
  3148. /******* find_busiest_group() helpers end here *********************/
  3149. /**
  3150. * find_busiest_group - Returns the busiest group within the sched_domain
  3151. * if there is an imbalance. If there isn't an imbalance, and
  3152. * the user has opted for power-savings, it returns a group whose
  3153. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  3154. * such a group exists.
  3155. *
  3156. * Also calculates the amount of weighted load which should be moved
  3157. * to restore balance.
  3158. *
  3159. * @sd: The sched_domain whose busiest group is to be returned.
  3160. * @this_cpu: The cpu for which load balancing is currently being performed.
  3161. * @imbalance: Variable which stores amount of weighted load which should
  3162. * be moved to restore balance/put a group to idle.
  3163. * @idle: The idle status of this_cpu.
  3164. * @sd_idle: The idleness of sd
  3165. * @cpus: The set of CPUs under consideration for load-balancing.
  3166. * @balance: Pointer to a variable indicating if this_cpu
  3167. * is the appropriate cpu to perform load balancing at this_level.
  3168. *
  3169. * Returns: - the busiest group if imbalance exists.
  3170. * - If no imbalance and user has opted for power-savings balance,
  3171. * return the least loaded group whose CPUs can be
  3172. * put to idle by rebalancing its tasks onto our group.
  3173. */
  3174. static struct sched_group *
  3175. find_busiest_group(struct sched_domain *sd, int this_cpu,
  3176. unsigned long *imbalance, enum cpu_idle_type idle,
  3177. int *sd_idle, const struct cpumask *cpus, int *balance)
  3178. {
  3179. struct sd_lb_stats sds;
  3180. memset(&sds, 0, sizeof(sds));
  3181. /*
  3182. * Compute the various statistics relavent for load balancing at
  3183. * this level.
  3184. */
  3185. update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
  3186. balance, &sds);
  3187. /* Cases where imbalance does not exist from POV of this_cpu */
  3188. /* 1) this_cpu is not the appropriate cpu to perform load balancing
  3189. * at this level.
  3190. * 2) There is no busy sibling group to pull from.
  3191. * 3) This group is the busiest group.
  3192. * 4) This group is more busy than the avg busieness at this
  3193. * sched_domain.
  3194. * 5) The imbalance is within the specified limit.
  3195. * 6) Any rebalance would lead to ping-pong
  3196. */
  3197. if (balance && !(*balance))
  3198. goto ret;
  3199. if (!sds.busiest || sds.busiest_nr_running == 0)
  3200. goto out_balanced;
  3201. if (sds.this_load >= sds.max_load)
  3202. goto out_balanced;
  3203. sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
  3204. if (sds.this_load >= sds.avg_load)
  3205. goto out_balanced;
  3206. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  3207. goto out_balanced;
  3208. sds.busiest_load_per_task /= sds.busiest_nr_running;
  3209. if (sds.group_imb)
  3210. sds.busiest_load_per_task =
  3211. min(sds.busiest_load_per_task, sds.avg_load);
  3212. /*
  3213. * We're trying to get all the cpus to the average_load, so we don't
  3214. * want to push ourselves above the average load, nor do we wish to
  3215. * reduce the max loaded cpu below the average load, as either of these
  3216. * actions would just result in more rebalancing later, and ping-pong
  3217. * tasks around. Thus we look for the minimum possible imbalance.
  3218. * Negative imbalances (*we* are more loaded than anyone else) will
  3219. * be counted as no imbalance for these purposes -- we can't fix that
  3220. * by pulling tasks to us. Be careful of negative numbers as they'll
  3221. * appear as very large values with unsigned longs.
  3222. */
  3223. if (sds.max_load <= sds.busiest_load_per_task)
  3224. goto out_balanced;
  3225. /* Looks like there is an imbalance. Compute it */
  3226. calculate_imbalance(&sds, this_cpu, imbalance);
  3227. return sds.busiest;
  3228. out_balanced:
  3229. /*
  3230. * There is no obvious imbalance. But check if we can do some balancing
  3231. * to save power.
  3232. */
  3233. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  3234. return sds.busiest;
  3235. ret:
  3236. *imbalance = 0;
  3237. return NULL;
  3238. }
  3239. /*
  3240. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  3241. */
  3242. static struct rq *
  3243. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  3244. unsigned long imbalance, const struct cpumask *cpus)
  3245. {
  3246. struct rq *busiest = NULL, *rq;
  3247. unsigned long max_load = 0;
  3248. int i;
  3249. for_each_cpu(i, sched_group_cpus(group)) {
  3250. unsigned long wl;
  3251. if (!cpumask_test_cpu(i, cpus))
  3252. continue;
  3253. rq = cpu_rq(i);
  3254. wl = weighted_cpuload(i);
  3255. if (rq->nr_running == 1 && wl > imbalance)
  3256. continue;
  3257. if (wl > max_load) {
  3258. max_load = wl;
  3259. busiest = rq;
  3260. }
  3261. }
  3262. return busiest;
  3263. }
  3264. /*
  3265. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3266. * so long as it is large enough.
  3267. */
  3268. #define MAX_PINNED_INTERVAL 512
  3269. /* Working cpumask for load_balance and load_balance_newidle. */
  3270. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  3271. /*
  3272. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3273. * tasks if there is an imbalance.
  3274. */
  3275. static int load_balance(int this_cpu, struct rq *this_rq,
  3276. struct sched_domain *sd, enum cpu_idle_type idle,
  3277. int *balance)
  3278. {
  3279. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  3280. struct sched_group *group;
  3281. unsigned long imbalance;
  3282. struct rq *busiest;
  3283. unsigned long flags;
  3284. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3285. cpumask_setall(cpus);
  3286. /*
  3287. * When power savings policy is enabled for the parent domain, idle
  3288. * sibling can pick up load irrespective of busy siblings. In this case,
  3289. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  3290. * portraying it as CPU_NOT_IDLE.
  3291. */
  3292. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  3293. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3294. sd_idle = 1;
  3295. schedstat_inc(sd, lb_count[idle]);
  3296. redo:
  3297. update_shares(sd);
  3298. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  3299. cpus, balance);
  3300. if (*balance == 0)
  3301. goto out_balanced;
  3302. if (!group) {
  3303. schedstat_inc(sd, lb_nobusyg[idle]);
  3304. goto out_balanced;
  3305. }
  3306. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  3307. if (!busiest) {
  3308. schedstat_inc(sd, lb_nobusyq[idle]);
  3309. goto out_balanced;
  3310. }
  3311. BUG_ON(busiest == this_rq);
  3312. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3313. ld_moved = 0;
  3314. if (busiest->nr_running > 1) {
  3315. /*
  3316. * Attempt to move tasks. If find_busiest_group has found
  3317. * an imbalance but busiest->nr_running <= 1, the group is
  3318. * still unbalanced. ld_moved simply stays zero, so it is
  3319. * correctly treated as an imbalance.
  3320. */
  3321. local_irq_save(flags);
  3322. double_rq_lock(this_rq, busiest);
  3323. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3324. imbalance, sd, idle, &all_pinned);
  3325. double_rq_unlock(this_rq, busiest);
  3326. local_irq_restore(flags);
  3327. /*
  3328. * some other cpu did the load balance for us.
  3329. */
  3330. if (ld_moved && this_cpu != smp_processor_id())
  3331. resched_cpu(this_cpu);
  3332. /* All tasks on this runqueue were pinned by CPU affinity */
  3333. if (unlikely(all_pinned)) {
  3334. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3335. if (!cpumask_empty(cpus))
  3336. goto redo;
  3337. goto out_balanced;
  3338. }
  3339. }
  3340. if (!ld_moved) {
  3341. schedstat_inc(sd, lb_failed[idle]);
  3342. sd->nr_balance_failed++;
  3343. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3344. spin_lock_irqsave(&busiest->lock, flags);
  3345. /* don't kick the migration_thread, if the curr
  3346. * task on busiest cpu can't be moved to this_cpu
  3347. */
  3348. if (!cpumask_test_cpu(this_cpu,
  3349. &busiest->curr->cpus_allowed)) {
  3350. spin_unlock_irqrestore(&busiest->lock, flags);
  3351. all_pinned = 1;
  3352. goto out_one_pinned;
  3353. }
  3354. if (!busiest->active_balance) {
  3355. busiest->active_balance = 1;
  3356. busiest->push_cpu = this_cpu;
  3357. active_balance = 1;
  3358. }
  3359. spin_unlock_irqrestore(&busiest->lock, flags);
  3360. if (active_balance)
  3361. wake_up_process(busiest->migration_thread);
  3362. /*
  3363. * We've kicked active balancing, reset the failure
  3364. * counter.
  3365. */
  3366. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3367. }
  3368. } else
  3369. sd->nr_balance_failed = 0;
  3370. if (likely(!active_balance)) {
  3371. /* We were unbalanced, so reset the balancing interval */
  3372. sd->balance_interval = sd->min_interval;
  3373. } else {
  3374. /*
  3375. * If we've begun active balancing, start to back off. This
  3376. * case may not be covered by the all_pinned logic if there
  3377. * is only 1 task on the busy runqueue (because we don't call
  3378. * move_tasks).
  3379. */
  3380. if (sd->balance_interval < sd->max_interval)
  3381. sd->balance_interval *= 2;
  3382. }
  3383. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3384. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3385. ld_moved = -1;
  3386. goto out;
  3387. out_balanced:
  3388. schedstat_inc(sd, lb_balanced[idle]);
  3389. sd->nr_balance_failed = 0;
  3390. out_one_pinned:
  3391. /* tune up the balancing interval */
  3392. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3393. (sd->balance_interval < sd->max_interval))
  3394. sd->balance_interval *= 2;
  3395. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3396. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3397. ld_moved = -1;
  3398. else
  3399. ld_moved = 0;
  3400. out:
  3401. if (ld_moved)
  3402. update_shares(sd);
  3403. return ld_moved;
  3404. }
  3405. /*
  3406. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3407. * tasks if there is an imbalance.
  3408. *
  3409. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3410. * this_rq is locked.
  3411. */
  3412. static int
  3413. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  3414. {
  3415. struct sched_group *group;
  3416. struct rq *busiest = NULL;
  3417. unsigned long imbalance;
  3418. int ld_moved = 0;
  3419. int sd_idle = 0;
  3420. int all_pinned = 0;
  3421. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3422. cpumask_setall(cpus);
  3423. /*
  3424. * When power savings policy is enabled for the parent domain, idle
  3425. * sibling can pick up load irrespective of busy siblings. In this case,
  3426. * let the state of idle sibling percolate up as IDLE, instead of
  3427. * portraying it as CPU_NOT_IDLE.
  3428. */
  3429. if (sd->flags & SD_SHARE_CPUPOWER &&
  3430. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3431. sd_idle = 1;
  3432. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3433. redo:
  3434. update_shares_locked(this_rq, sd);
  3435. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3436. &sd_idle, cpus, NULL);
  3437. if (!group) {
  3438. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3439. goto out_balanced;
  3440. }
  3441. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3442. if (!busiest) {
  3443. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3444. goto out_balanced;
  3445. }
  3446. BUG_ON(busiest == this_rq);
  3447. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3448. ld_moved = 0;
  3449. if (busiest->nr_running > 1) {
  3450. /* Attempt to move tasks */
  3451. double_lock_balance(this_rq, busiest);
  3452. /* this_rq->clock is already updated */
  3453. update_rq_clock(busiest);
  3454. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3455. imbalance, sd, CPU_NEWLY_IDLE,
  3456. &all_pinned);
  3457. double_unlock_balance(this_rq, busiest);
  3458. if (unlikely(all_pinned)) {
  3459. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3460. if (!cpumask_empty(cpus))
  3461. goto redo;
  3462. }
  3463. }
  3464. if (!ld_moved) {
  3465. int active_balance = 0;
  3466. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3467. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3468. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3469. return -1;
  3470. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  3471. return -1;
  3472. if (sd->nr_balance_failed++ < 2)
  3473. return -1;
  3474. /*
  3475. * The only task running in a non-idle cpu can be moved to this
  3476. * cpu in an attempt to completely freeup the other CPU
  3477. * package. The same method used to move task in load_balance()
  3478. * have been extended for load_balance_newidle() to speedup
  3479. * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
  3480. *
  3481. * The package power saving logic comes from
  3482. * find_busiest_group(). If there are no imbalance, then
  3483. * f_b_g() will return NULL. However when sched_mc={1,2} then
  3484. * f_b_g() will select a group from which a running task may be
  3485. * pulled to this cpu in order to make the other package idle.
  3486. * If there is no opportunity to make a package idle and if
  3487. * there are no imbalance, then f_b_g() will return NULL and no
  3488. * action will be taken in load_balance_newidle().
  3489. *
  3490. * Under normal task pull operation due to imbalance, there
  3491. * will be more than one task in the source run queue and
  3492. * move_tasks() will succeed. ld_moved will be true and this
  3493. * active balance code will not be triggered.
  3494. */
  3495. /* Lock busiest in correct order while this_rq is held */
  3496. double_lock_balance(this_rq, busiest);
  3497. /*
  3498. * don't kick the migration_thread, if the curr
  3499. * task on busiest cpu can't be moved to this_cpu
  3500. */
  3501. if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
  3502. double_unlock_balance(this_rq, busiest);
  3503. all_pinned = 1;
  3504. return ld_moved;
  3505. }
  3506. if (!busiest->active_balance) {
  3507. busiest->active_balance = 1;
  3508. busiest->push_cpu = this_cpu;
  3509. active_balance = 1;
  3510. }
  3511. double_unlock_balance(this_rq, busiest);
  3512. /*
  3513. * Should not call ttwu while holding a rq->lock
  3514. */
  3515. spin_unlock(&this_rq->lock);
  3516. if (active_balance)
  3517. wake_up_process(busiest->migration_thread);
  3518. spin_lock(&this_rq->lock);
  3519. } else
  3520. sd->nr_balance_failed = 0;
  3521. update_shares_locked(this_rq, sd);
  3522. return ld_moved;
  3523. out_balanced:
  3524. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3525. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3526. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3527. return -1;
  3528. sd->nr_balance_failed = 0;
  3529. return 0;
  3530. }
  3531. /*
  3532. * idle_balance is called by schedule() if this_cpu is about to become
  3533. * idle. Attempts to pull tasks from other CPUs.
  3534. */
  3535. static void idle_balance(int this_cpu, struct rq *this_rq)
  3536. {
  3537. struct sched_domain *sd;
  3538. int pulled_task = 0;
  3539. unsigned long next_balance = jiffies + HZ;
  3540. for_each_domain(this_cpu, sd) {
  3541. unsigned long interval;
  3542. if (!(sd->flags & SD_LOAD_BALANCE))
  3543. continue;
  3544. if (sd->flags & SD_BALANCE_NEWIDLE)
  3545. /* If we've pulled tasks over stop searching: */
  3546. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3547. sd);
  3548. interval = msecs_to_jiffies(sd->balance_interval);
  3549. if (time_after(next_balance, sd->last_balance + interval))
  3550. next_balance = sd->last_balance + interval;
  3551. if (pulled_task)
  3552. break;
  3553. }
  3554. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3555. /*
  3556. * We are going idle. next_balance may be set based on
  3557. * a busy processor. So reset next_balance.
  3558. */
  3559. this_rq->next_balance = next_balance;
  3560. }
  3561. }
  3562. /*
  3563. * active_load_balance is run by migration threads. It pushes running tasks
  3564. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3565. * running on each physical CPU where possible, and avoids physical /
  3566. * logical imbalances.
  3567. *
  3568. * Called with busiest_rq locked.
  3569. */
  3570. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3571. {
  3572. int target_cpu = busiest_rq->push_cpu;
  3573. struct sched_domain *sd;
  3574. struct rq *target_rq;
  3575. /* Is there any task to move? */
  3576. if (busiest_rq->nr_running <= 1)
  3577. return;
  3578. target_rq = cpu_rq(target_cpu);
  3579. /*
  3580. * This condition is "impossible", if it occurs
  3581. * we need to fix it. Originally reported by
  3582. * Bjorn Helgaas on a 128-cpu setup.
  3583. */
  3584. BUG_ON(busiest_rq == target_rq);
  3585. /* move a task from busiest_rq to target_rq */
  3586. double_lock_balance(busiest_rq, target_rq);
  3587. update_rq_clock(busiest_rq);
  3588. update_rq_clock(target_rq);
  3589. /* Search for an sd spanning us and the target CPU. */
  3590. for_each_domain(target_cpu, sd) {
  3591. if ((sd->flags & SD_LOAD_BALANCE) &&
  3592. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3593. break;
  3594. }
  3595. if (likely(sd)) {
  3596. schedstat_inc(sd, alb_count);
  3597. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3598. sd, CPU_IDLE))
  3599. schedstat_inc(sd, alb_pushed);
  3600. else
  3601. schedstat_inc(sd, alb_failed);
  3602. }
  3603. double_unlock_balance(busiest_rq, target_rq);
  3604. }
  3605. #ifdef CONFIG_NO_HZ
  3606. static struct {
  3607. atomic_t load_balancer;
  3608. cpumask_var_t cpu_mask;
  3609. } nohz ____cacheline_aligned = {
  3610. .load_balancer = ATOMIC_INIT(-1),
  3611. };
  3612. /*
  3613. * This routine will try to nominate the ilb (idle load balancing)
  3614. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3615. * load balancing on behalf of all those cpus. If all the cpus in the system
  3616. * go into this tickless mode, then there will be no ilb owner (as there is
  3617. * no need for one) and all the cpus will sleep till the next wakeup event
  3618. * arrives...
  3619. *
  3620. * For the ilb owner, tick is not stopped. And this tick will be used
  3621. * for idle load balancing. ilb owner will still be part of
  3622. * nohz.cpu_mask..
  3623. *
  3624. * While stopping the tick, this cpu will become the ilb owner if there
  3625. * is no other owner. And will be the owner till that cpu becomes busy
  3626. * or if all cpus in the system stop their ticks at which point
  3627. * there is no need for ilb owner.
  3628. *
  3629. * When the ilb owner becomes busy, it nominates another owner, during the
  3630. * next busy scheduler_tick()
  3631. */
  3632. int select_nohz_load_balancer(int stop_tick)
  3633. {
  3634. int cpu = smp_processor_id();
  3635. if (stop_tick) {
  3636. cpu_rq(cpu)->in_nohz_recently = 1;
  3637. if (!cpu_active(cpu)) {
  3638. if (atomic_read(&nohz.load_balancer) != cpu)
  3639. return 0;
  3640. /*
  3641. * If we are going offline and still the leader,
  3642. * give up!
  3643. */
  3644. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3645. BUG();
  3646. return 0;
  3647. }
  3648. cpumask_set_cpu(cpu, nohz.cpu_mask);
  3649. /* time for ilb owner also to sleep */
  3650. if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  3651. if (atomic_read(&nohz.load_balancer) == cpu)
  3652. atomic_set(&nohz.load_balancer, -1);
  3653. return 0;
  3654. }
  3655. if (atomic_read(&nohz.load_balancer) == -1) {
  3656. /* make me the ilb owner */
  3657. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3658. return 1;
  3659. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3660. return 1;
  3661. } else {
  3662. if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
  3663. return 0;
  3664. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  3665. if (atomic_read(&nohz.load_balancer) == cpu)
  3666. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3667. BUG();
  3668. }
  3669. return 0;
  3670. }
  3671. #endif
  3672. static DEFINE_SPINLOCK(balancing);
  3673. /*
  3674. * It checks each scheduling domain to see if it is due to be balanced,
  3675. * and initiates a balancing operation if so.
  3676. *
  3677. * Balancing parameters are set up in arch_init_sched_domains.
  3678. */
  3679. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3680. {
  3681. int balance = 1;
  3682. struct rq *rq = cpu_rq(cpu);
  3683. unsigned long interval;
  3684. struct sched_domain *sd;
  3685. /* Earliest time when we have to do rebalance again */
  3686. unsigned long next_balance = jiffies + 60*HZ;
  3687. int update_next_balance = 0;
  3688. int need_serialize;
  3689. for_each_domain(cpu, sd) {
  3690. if (!(sd->flags & SD_LOAD_BALANCE))
  3691. continue;
  3692. interval = sd->balance_interval;
  3693. if (idle != CPU_IDLE)
  3694. interval *= sd->busy_factor;
  3695. /* scale ms to jiffies */
  3696. interval = msecs_to_jiffies(interval);
  3697. if (unlikely(!interval))
  3698. interval = 1;
  3699. if (interval > HZ*NR_CPUS/10)
  3700. interval = HZ*NR_CPUS/10;
  3701. need_serialize = sd->flags & SD_SERIALIZE;
  3702. if (need_serialize) {
  3703. if (!spin_trylock(&balancing))
  3704. goto out;
  3705. }
  3706. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3707. if (load_balance(cpu, rq, sd, idle, &balance)) {
  3708. /*
  3709. * We've pulled tasks over so either we're no
  3710. * longer idle, or one of our SMT siblings is
  3711. * not idle.
  3712. */
  3713. idle = CPU_NOT_IDLE;
  3714. }
  3715. sd->last_balance = jiffies;
  3716. }
  3717. if (need_serialize)
  3718. spin_unlock(&balancing);
  3719. out:
  3720. if (time_after(next_balance, sd->last_balance + interval)) {
  3721. next_balance = sd->last_balance + interval;
  3722. update_next_balance = 1;
  3723. }
  3724. /*
  3725. * Stop the load balance at this level. There is another
  3726. * CPU in our sched group which is doing load balancing more
  3727. * actively.
  3728. */
  3729. if (!balance)
  3730. break;
  3731. }
  3732. /*
  3733. * next_balance will be updated only when there is a need.
  3734. * When the cpu is attached to null domain for ex, it will not be
  3735. * updated.
  3736. */
  3737. if (likely(update_next_balance))
  3738. rq->next_balance = next_balance;
  3739. }
  3740. /*
  3741. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3742. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3743. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3744. */
  3745. static void run_rebalance_domains(struct softirq_action *h)
  3746. {
  3747. int this_cpu = smp_processor_id();
  3748. struct rq *this_rq = cpu_rq(this_cpu);
  3749. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3750. CPU_IDLE : CPU_NOT_IDLE;
  3751. rebalance_domains(this_cpu, idle);
  3752. #ifdef CONFIG_NO_HZ
  3753. /*
  3754. * If this cpu is the owner for idle load balancing, then do the
  3755. * balancing on behalf of the other idle cpus whose ticks are
  3756. * stopped.
  3757. */
  3758. if (this_rq->idle_at_tick &&
  3759. atomic_read(&nohz.load_balancer) == this_cpu) {
  3760. struct rq *rq;
  3761. int balance_cpu;
  3762. for_each_cpu(balance_cpu, nohz.cpu_mask) {
  3763. if (balance_cpu == this_cpu)
  3764. continue;
  3765. /*
  3766. * If this cpu gets work to do, stop the load balancing
  3767. * work being done for other cpus. Next load
  3768. * balancing owner will pick it up.
  3769. */
  3770. if (need_resched())
  3771. break;
  3772. rebalance_domains(balance_cpu, CPU_IDLE);
  3773. rq = cpu_rq(balance_cpu);
  3774. if (time_after(this_rq->next_balance, rq->next_balance))
  3775. this_rq->next_balance = rq->next_balance;
  3776. }
  3777. }
  3778. #endif
  3779. }
  3780. static inline int on_null_domain(int cpu)
  3781. {
  3782. return !rcu_dereference(cpu_rq(cpu)->sd);
  3783. }
  3784. /*
  3785. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3786. *
  3787. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3788. * idle load balancing owner or decide to stop the periodic load balancing,
  3789. * if the whole system is idle.
  3790. */
  3791. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3792. {
  3793. #ifdef CONFIG_NO_HZ
  3794. /*
  3795. * If we were in the nohz mode recently and busy at the current
  3796. * scheduler tick, then check if we need to nominate new idle
  3797. * load balancer.
  3798. */
  3799. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3800. rq->in_nohz_recently = 0;
  3801. if (atomic_read(&nohz.load_balancer) == cpu) {
  3802. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  3803. atomic_set(&nohz.load_balancer, -1);
  3804. }
  3805. if (atomic_read(&nohz.load_balancer) == -1) {
  3806. /*
  3807. * simple selection for now: Nominate the
  3808. * first cpu in the nohz list to be the next
  3809. * ilb owner.
  3810. *
  3811. * TBD: Traverse the sched domains and nominate
  3812. * the nearest cpu in the nohz.cpu_mask.
  3813. */
  3814. int ilb = cpumask_first(nohz.cpu_mask);
  3815. if (ilb < nr_cpu_ids)
  3816. resched_cpu(ilb);
  3817. }
  3818. }
  3819. /*
  3820. * If this cpu is idle and doing idle load balancing for all the
  3821. * cpus with ticks stopped, is it time for that to stop?
  3822. */
  3823. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3824. cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  3825. resched_cpu(cpu);
  3826. return;
  3827. }
  3828. /*
  3829. * If this cpu is idle and the idle load balancing is done by
  3830. * someone else, then no need raise the SCHED_SOFTIRQ
  3831. */
  3832. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3833. cpumask_test_cpu(cpu, nohz.cpu_mask))
  3834. return;
  3835. #endif
  3836. /* Don't need to rebalance while attached to NULL domain */
  3837. if (time_after_eq(jiffies, rq->next_balance) &&
  3838. likely(!on_null_domain(cpu)))
  3839. raise_softirq(SCHED_SOFTIRQ);
  3840. }
  3841. #else /* CONFIG_SMP */
  3842. /*
  3843. * on UP we do not need to balance between CPUs:
  3844. */
  3845. static inline void idle_balance(int cpu, struct rq *rq)
  3846. {
  3847. }
  3848. #endif
  3849. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3850. EXPORT_PER_CPU_SYMBOL(kstat);
  3851. /*
  3852. * Return any ns on the sched_clock that have not yet been accounted in
  3853. * @p in case that task is currently running.
  3854. *
  3855. * Called with task_rq_lock() held on @rq.
  3856. */
  3857. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  3858. {
  3859. u64 ns = 0;
  3860. if (task_current(rq, p)) {
  3861. update_rq_clock(rq);
  3862. ns = rq->clock - p->se.exec_start;
  3863. if ((s64)ns < 0)
  3864. ns = 0;
  3865. }
  3866. return ns;
  3867. }
  3868. unsigned long long task_delta_exec(struct task_struct *p)
  3869. {
  3870. unsigned long flags;
  3871. struct rq *rq;
  3872. u64 ns = 0;
  3873. rq = task_rq_lock(p, &flags);
  3874. ns = do_task_delta_exec(p, rq);
  3875. task_rq_unlock(rq, &flags);
  3876. return ns;
  3877. }
  3878. /*
  3879. * Return accounted runtime for the task.
  3880. * In case the task is currently running, return the runtime plus current's
  3881. * pending runtime that have not been accounted yet.
  3882. */
  3883. unsigned long long task_sched_runtime(struct task_struct *p)
  3884. {
  3885. unsigned long flags;
  3886. struct rq *rq;
  3887. u64 ns = 0;
  3888. rq = task_rq_lock(p, &flags);
  3889. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  3890. task_rq_unlock(rq, &flags);
  3891. return ns;
  3892. }
  3893. /*
  3894. * Return sum_exec_runtime for the thread group.
  3895. * In case the task is currently running, return the sum plus current's
  3896. * pending runtime that have not been accounted yet.
  3897. *
  3898. * Note that the thread group might have other running tasks as well,
  3899. * so the return value not includes other pending runtime that other
  3900. * running tasks might have.
  3901. */
  3902. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  3903. {
  3904. struct task_cputime totals;
  3905. unsigned long flags;
  3906. struct rq *rq;
  3907. u64 ns;
  3908. rq = task_rq_lock(p, &flags);
  3909. thread_group_cputime(p, &totals);
  3910. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  3911. task_rq_unlock(rq, &flags);
  3912. return ns;
  3913. }
  3914. /*
  3915. * Account user cpu time to a process.
  3916. * @p: the process that the cpu time gets accounted to
  3917. * @cputime: the cpu time spent in user space since the last update
  3918. * @cputime_scaled: cputime scaled by cpu frequency
  3919. */
  3920. void account_user_time(struct task_struct *p, cputime_t cputime,
  3921. cputime_t cputime_scaled)
  3922. {
  3923. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3924. cputime64_t tmp;
  3925. /* Add user time to process. */
  3926. p->utime = cputime_add(p->utime, cputime);
  3927. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3928. account_group_user_time(p, cputime);
  3929. /* Add user time to cpustat. */
  3930. tmp = cputime_to_cputime64(cputime);
  3931. if (TASK_NICE(p) > 0)
  3932. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3933. else
  3934. cpustat->user = cputime64_add(cpustat->user, tmp);
  3935. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  3936. /* Account for user time used */
  3937. acct_update_integrals(p);
  3938. }
  3939. /*
  3940. * Account guest cpu time to a process.
  3941. * @p: the process that the cpu time gets accounted to
  3942. * @cputime: the cpu time spent in virtual machine since the last update
  3943. * @cputime_scaled: cputime scaled by cpu frequency
  3944. */
  3945. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  3946. cputime_t cputime_scaled)
  3947. {
  3948. cputime64_t tmp;
  3949. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3950. tmp = cputime_to_cputime64(cputime);
  3951. /* Add guest time to process. */
  3952. p->utime = cputime_add(p->utime, cputime);
  3953. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3954. account_group_user_time(p, cputime);
  3955. p->gtime = cputime_add(p->gtime, cputime);
  3956. /* Add guest time to cpustat. */
  3957. cpustat->user = cputime64_add(cpustat->user, tmp);
  3958. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3959. }
  3960. /*
  3961. * Account system cpu time to a process.
  3962. * @p: the process that the cpu time gets accounted to
  3963. * @hardirq_offset: the offset to subtract from hardirq_count()
  3964. * @cputime: the cpu time spent in kernel space since the last update
  3965. * @cputime_scaled: cputime scaled by cpu frequency
  3966. */
  3967. void account_system_time(struct task_struct *p, int hardirq_offset,
  3968. cputime_t cputime, cputime_t cputime_scaled)
  3969. {
  3970. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3971. cputime64_t tmp;
  3972. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3973. account_guest_time(p, cputime, cputime_scaled);
  3974. return;
  3975. }
  3976. /* Add system time to process. */
  3977. p->stime = cputime_add(p->stime, cputime);
  3978. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  3979. account_group_system_time(p, cputime);
  3980. /* Add system time to cpustat. */
  3981. tmp = cputime_to_cputime64(cputime);
  3982. if (hardirq_count() - hardirq_offset)
  3983. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3984. else if (softirq_count())
  3985. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3986. else
  3987. cpustat->system = cputime64_add(cpustat->system, tmp);
  3988. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  3989. /* Account for system time used */
  3990. acct_update_integrals(p);
  3991. }
  3992. /*
  3993. * Account for involuntary wait time.
  3994. * @steal: the cpu time spent in involuntary wait
  3995. */
  3996. void account_steal_time(cputime_t cputime)
  3997. {
  3998. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3999. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4000. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  4001. }
  4002. /*
  4003. * Account for idle time.
  4004. * @cputime: the cpu time spent in idle wait
  4005. */
  4006. void account_idle_time(cputime_t cputime)
  4007. {
  4008. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4009. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4010. struct rq *rq = this_rq();
  4011. if (atomic_read(&rq->nr_iowait) > 0)
  4012. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  4013. else
  4014. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  4015. }
  4016. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  4017. /*
  4018. * Account a single tick of cpu time.
  4019. * @p: the process that the cpu time gets accounted to
  4020. * @user_tick: indicates if the tick is a user or a system tick
  4021. */
  4022. void account_process_tick(struct task_struct *p, int user_tick)
  4023. {
  4024. cputime_t one_jiffy = jiffies_to_cputime(1);
  4025. cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
  4026. struct rq *rq = this_rq();
  4027. if (user_tick)
  4028. account_user_time(p, one_jiffy, one_jiffy_scaled);
  4029. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  4030. account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
  4031. one_jiffy_scaled);
  4032. else
  4033. account_idle_time(one_jiffy);
  4034. }
  4035. /*
  4036. * Account multiple ticks of steal time.
  4037. * @p: the process from which the cpu time has been stolen
  4038. * @ticks: number of stolen ticks
  4039. */
  4040. void account_steal_ticks(unsigned long ticks)
  4041. {
  4042. account_steal_time(jiffies_to_cputime(ticks));
  4043. }
  4044. /*
  4045. * Account multiple ticks of idle time.
  4046. * @ticks: number of stolen ticks
  4047. */
  4048. void account_idle_ticks(unsigned long ticks)
  4049. {
  4050. account_idle_time(jiffies_to_cputime(ticks));
  4051. }
  4052. #endif
  4053. /*
  4054. * Use precise platform statistics if available:
  4055. */
  4056. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  4057. cputime_t task_utime(struct task_struct *p)
  4058. {
  4059. return p->utime;
  4060. }
  4061. cputime_t task_stime(struct task_struct *p)
  4062. {
  4063. return p->stime;
  4064. }
  4065. #else
  4066. cputime_t task_utime(struct task_struct *p)
  4067. {
  4068. clock_t utime = cputime_to_clock_t(p->utime),
  4069. total = utime + cputime_to_clock_t(p->stime);
  4070. u64 temp;
  4071. /*
  4072. * Use CFS's precise accounting:
  4073. */
  4074. temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
  4075. if (total) {
  4076. temp *= utime;
  4077. do_div(temp, total);
  4078. }
  4079. utime = (clock_t)temp;
  4080. p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
  4081. return p->prev_utime;
  4082. }
  4083. cputime_t task_stime(struct task_struct *p)
  4084. {
  4085. clock_t stime;
  4086. /*
  4087. * Use CFS's precise accounting. (we subtract utime from
  4088. * the total, to make sure the total observed by userspace
  4089. * grows monotonically - apps rely on that):
  4090. */
  4091. stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
  4092. cputime_to_clock_t(task_utime(p));
  4093. if (stime >= 0)
  4094. p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
  4095. return p->prev_stime;
  4096. }
  4097. #endif
  4098. inline cputime_t task_gtime(struct task_struct *p)
  4099. {
  4100. return p->gtime;
  4101. }
  4102. /*
  4103. * This function gets called by the timer code, with HZ frequency.
  4104. * We call it with interrupts disabled.
  4105. *
  4106. * It also gets called by the fork code, when changing the parent's
  4107. * timeslices.
  4108. */
  4109. void scheduler_tick(void)
  4110. {
  4111. int cpu = smp_processor_id();
  4112. struct rq *rq = cpu_rq(cpu);
  4113. struct task_struct *curr = rq->curr;
  4114. sched_clock_tick();
  4115. spin_lock(&rq->lock);
  4116. update_rq_clock(rq);
  4117. update_cpu_load(rq);
  4118. curr->sched_class->task_tick(rq, curr, 0);
  4119. spin_unlock(&rq->lock);
  4120. #ifdef CONFIG_SMP
  4121. rq->idle_at_tick = idle_cpu(cpu);
  4122. trigger_load_balance(rq, cpu);
  4123. #endif
  4124. }
  4125. notrace unsigned long get_parent_ip(unsigned long addr)
  4126. {
  4127. if (in_lock_functions(addr)) {
  4128. addr = CALLER_ADDR2;
  4129. if (in_lock_functions(addr))
  4130. addr = CALLER_ADDR3;
  4131. }
  4132. return addr;
  4133. }
  4134. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  4135. defined(CONFIG_PREEMPT_TRACER))
  4136. void __kprobes add_preempt_count(int val)
  4137. {
  4138. #ifdef CONFIG_DEBUG_PREEMPT
  4139. /*
  4140. * Underflow?
  4141. */
  4142. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  4143. return;
  4144. #endif
  4145. preempt_count() += val;
  4146. #ifdef CONFIG_DEBUG_PREEMPT
  4147. /*
  4148. * Spinlock count overflowing soon?
  4149. */
  4150. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  4151. PREEMPT_MASK - 10);
  4152. #endif
  4153. if (preempt_count() == val)
  4154. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4155. }
  4156. EXPORT_SYMBOL(add_preempt_count);
  4157. void __kprobes sub_preempt_count(int val)
  4158. {
  4159. #ifdef CONFIG_DEBUG_PREEMPT
  4160. /*
  4161. * Underflow?
  4162. */
  4163. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  4164. return;
  4165. /*
  4166. * Is the spinlock portion underflowing?
  4167. */
  4168. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  4169. !(preempt_count() & PREEMPT_MASK)))
  4170. return;
  4171. #endif
  4172. if (preempt_count() == val)
  4173. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4174. preempt_count() -= val;
  4175. }
  4176. EXPORT_SYMBOL(sub_preempt_count);
  4177. #endif
  4178. /*
  4179. * Print scheduling while atomic bug:
  4180. */
  4181. static noinline void __schedule_bug(struct task_struct *prev)
  4182. {
  4183. struct pt_regs *regs = get_irq_regs();
  4184. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  4185. prev->comm, prev->pid, preempt_count());
  4186. debug_show_held_locks(prev);
  4187. print_modules();
  4188. if (irqs_disabled())
  4189. print_irqtrace_events(prev);
  4190. if (regs)
  4191. show_regs(regs);
  4192. else
  4193. dump_stack();
  4194. }
  4195. /*
  4196. * Various schedule()-time debugging checks and statistics:
  4197. */
  4198. static inline void schedule_debug(struct task_struct *prev)
  4199. {
  4200. /*
  4201. * Test if we are atomic. Since do_exit() needs to call into
  4202. * schedule() atomically, we ignore that path for now.
  4203. * Otherwise, whine if we are scheduling when we should not be.
  4204. */
  4205. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  4206. __schedule_bug(prev);
  4207. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  4208. schedstat_inc(this_rq(), sched_count);
  4209. #ifdef CONFIG_SCHEDSTATS
  4210. if (unlikely(prev->lock_depth >= 0)) {
  4211. schedstat_inc(this_rq(), bkl_count);
  4212. schedstat_inc(prev, sched_info.bkl_count);
  4213. }
  4214. #endif
  4215. }
  4216. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  4217. {
  4218. if (prev->state == TASK_RUNNING) {
  4219. u64 runtime = prev->se.sum_exec_runtime;
  4220. runtime -= prev->se.prev_sum_exec_runtime;
  4221. runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
  4222. /*
  4223. * In order to avoid avg_overlap growing stale when we are
  4224. * indeed overlapping and hence not getting put to sleep, grow
  4225. * the avg_overlap on preemption.
  4226. *
  4227. * We use the average preemption runtime because that
  4228. * correlates to the amount of cache footprint a task can
  4229. * build up.
  4230. */
  4231. update_avg(&prev->se.avg_overlap, runtime);
  4232. }
  4233. prev->sched_class->put_prev_task(rq, prev);
  4234. }
  4235. /*
  4236. * Pick up the highest-prio task:
  4237. */
  4238. static inline struct task_struct *
  4239. pick_next_task(struct rq *rq)
  4240. {
  4241. const struct sched_class *class;
  4242. struct task_struct *p;
  4243. /*
  4244. * Optimization: we know that if all tasks are in
  4245. * the fair class we can call that function directly:
  4246. */
  4247. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  4248. p = fair_sched_class.pick_next_task(rq);
  4249. if (likely(p))
  4250. return p;
  4251. }
  4252. class = sched_class_highest;
  4253. for ( ; ; ) {
  4254. p = class->pick_next_task(rq);
  4255. if (p)
  4256. return p;
  4257. /*
  4258. * Will never be NULL as the idle class always
  4259. * returns a non-NULL p:
  4260. */
  4261. class = class->next;
  4262. }
  4263. }
  4264. /*
  4265. * schedule() is the main scheduler function.
  4266. */
  4267. asmlinkage void __sched __schedule(void)
  4268. {
  4269. struct task_struct *prev, *next;
  4270. unsigned long *switch_count;
  4271. struct rq *rq;
  4272. int cpu;
  4273. cpu = smp_processor_id();
  4274. rq = cpu_rq(cpu);
  4275. rcu_qsctr_inc(cpu);
  4276. prev = rq->curr;
  4277. switch_count = &prev->nivcsw;
  4278. release_kernel_lock(prev);
  4279. need_resched_nonpreemptible:
  4280. schedule_debug(prev);
  4281. if (sched_feat(HRTICK))
  4282. hrtick_clear(rq);
  4283. spin_lock_irq(&rq->lock);
  4284. update_rq_clock(rq);
  4285. clear_tsk_need_resched(prev);
  4286. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  4287. if (unlikely(signal_pending_state(prev->state, prev)))
  4288. prev->state = TASK_RUNNING;
  4289. else
  4290. deactivate_task(rq, prev, 1);
  4291. switch_count = &prev->nvcsw;
  4292. }
  4293. #ifdef CONFIG_SMP
  4294. if (prev->sched_class->pre_schedule)
  4295. prev->sched_class->pre_schedule(rq, prev);
  4296. #endif
  4297. if (unlikely(!rq->nr_running))
  4298. idle_balance(cpu, rq);
  4299. put_prev_task(rq, prev);
  4300. next = pick_next_task(rq);
  4301. if (likely(prev != next)) {
  4302. sched_info_switch(prev, next);
  4303. rq->nr_switches++;
  4304. rq->curr = next;
  4305. ++*switch_count;
  4306. context_switch(rq, prev, next); /* unlocks the rq */
  4307. /*
  4308. * the context switch might have flipped the stack from under
  4309. * us, hence refresh the local variables.
  4310. */
  4311. cpu = smp_processor_id();
  4312. rq = cpu_rq(cpu);
  4313. } else
  4314. spin_unlock_irq(&rq->lock);
  4315. if (unlikely(reacquire_kernel_lock(current) < 0))
  4316. goto need_resched_nonpreemptible;
  4317. }
  4318. asmlinkage void __sched schedule(void)
  4319. {
  4320. need_resched:
  4321. preempt_disable();
  4322. __schedule();
  4323. preempt_enable_no_resched();
  4324. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  4325. goto need_resched;
  4326. }
  4327. EXPORT_SYMBOL(schedule);
  4328. #ifdef CONFIG_SMP
  4329. /*
  4330. * Look out! "owner" is an entirely speculative pointer
  4331. * access and not reliable.
  4332. */
  4333. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  4334. {
  4335. unsigned int cpu;
  4336. struct rq *rq;
  4337. if (!sched_feat(OWNER_SPIN))
  4338. return 0;
  4339. #ifdef CONFIG_DEBUG_PAGEALLOC
  4340. /*
  4341. * Need to access the cpu field knowing that
  4342. * DEBUG_PAGEALLOC could have unmapped it if
  4343. * the mutex owner just released it and exited.
  4344. */
  4345. if (probe_kernel_address(&owner->cpu, cpu))
  4346. goto out;
  4347. #else
  4348. cpu = owner->cpu;
  4349. #endif
  4350. /*
  4351. * Even if the access succeeded (likely case),
  4352. * the cpu field may no longer be valid.
  4353. */
  4354. if (cpu >= nr_cpumask_bits)
  4355. goto out;
  4356. /*
  4357. * We need to validate that we can do a
  4358. * get_cpu() and that we have the percpu area.
  4359. */
  4360. if (!cpu_online(cpu))
  4361. goto out;
  4362. rq = cpu_rq(cpu);
  4363. for (;;) {
  4364. /*
  4365. * Owner changed, break to re-assess state.
  4366. */
  4367. if (lock->owner != owner)
  4368. break;
  4369. /*
  4370. * Is that owner really running on that cpu?
  4371. */
  4372. if (task_thread_info(rq->curr) != owner || need_resched())
  4373. return 0;
  4374. cpu_relax();
  4375. }
  4376. out:
  4377. return 1;
  4378. }
  4379. #endif
  4380. #ifdef CONFIG_PREEMPT
  4381. /*
  4382. * this is the entry point to schedule() from in-kernel preemption
  4383. * off of preempt_enable. Kernel preemptions off return from interrupt
  4384. * occur there and call schedule directly.
  4385. */
  4386. asmlinkage void __sched preempt_schedule(void)
  4387. {
  4388. struct thread_info *ti = current_thread_info();
  4389. /*
  4390. * If there is a non-zero preempt_count or interrupts are disabled,
  4391. * we do not want to preempt the current task. Just return..
  4392. */
  4393. if (likely(ti->preempt_count || irqs_disabled()))
  4394. return;
  4395. do {
  4396. add_preempt_count(PREEMPT_ACTIVE);
  4397. schedule();
  4398. sub_preempt_count(PREEMPT_ACTIVE);
  4399. /*
  4400. * Check again in case we missed a preemption opportunity
  4401. * between schedule and now.
  4402. */
  4403. barrier();
  4404. } while (need_resched());
  4405. }
  4406. EXPORT_SYMBOL(preempt_schedule);
  4407. /*
  4408. * this is the entry point to schedule() from kernel preemption
  4409. * off of irq context.
  4410. * Note, that this is called and return with irqs disabled. This will
  4411. * protect us against recursive calling from irq.
  4412. */
  4413. asmlinkage void __sched preempt_schedule_irq(void)
  4414. {
  4415. struct thread_info *ti = current_thread_info();
  4416. /* Catch callers which need to be fixed */
  4417. BUG_ON(ti->preempt_count || !irqs_disabled());
  4418. do {
  4419. add_preempt_count(PREEMPT_ACTIVE);
  4420. local_irq_enable();
  4421. schedule();
  4422. local_irq_disable();
  4423. sub_preempt_count(PREEMPT_ACTIVE);
  4424. /*
  4425. * Check again in case we missed a preemption opportunity
  4426. * between schedule and now.
  4427. */
  4428. barrier();
  4429. } while (need_resched());
  4430. }
  4431. #endif /* CONFIG_PREEMPT */
  4432. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  4433. void *key)
  4434. {
  4435. return try_to_wake_up(curr->private, mode, sync);
  4436. }
  4437. EXPORT_SYMBOL(default_wake_function);
  4438. /*
  4439. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  4440. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  4441. * number) then we wake all the non-exclusive tasks and one exclusive task.
  4442. *
  4443. * There are circumstances in which we can try to wake a task which has already
  4444. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  4445. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  4446. */
  4447. void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  4448. int nr_exclusive, int sync, void *key)
  4449. {
  4450. wait_queue_t *curr, *next;
  4451. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  4452. unsigned flags = curr->flags;
  4453. if (curr->func(curr, mode, sync, key) &&
  4454. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  4455. break;
  4456. }
  4457. }
  4458. /**
  4459. * __wake_up - wake up threads blocked on a waitqueue.
  4460. * @q: the waitqueue
  4461. * @mode: which threads
  4462. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4463. * @key: is directly passed to the wakeup function
  4464. */
  4465. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  4466. int nr_exclusive, void *key)
  4467. {
  4468. unsigned long flags;
  4469. spin_lock_irqsave(&q->lock, flags);
  4470. __wake_up_common(q, mode, nr_exclusive, 0, key);
  4471. spin_unlock_irqrestore(&q->lock, flags);
  4472. }
  4473. EXPORT_SYMBOL(__wake_up);
  4474. /*
  4475. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  4476. */
  4477. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  4478. {
  4479. __wake_up_common(q, mode, 1, 0, NULL);
  4480. }
  4481. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  4482. {
  4483. __wake_up_common(q, mode, 1, 0, key);
  4484. }
  4485. /**
  4486. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  4487. * @q: the waitqueue
  4488. * @mode: which threads
  4489. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4490. * @key: opaque value to be passed to wakeup targets
  4491. *
  4492. * The sync wakeup differs that the waker knows that it will schedule
  4493. * away soon, so while the target thread will be woken up, it will not
  4494. * be migrated to another CPU - ie. the two threads are 'synchronized'
  4495. * with each other. This can prevent needless bouncing between CPUs.
  4496. *
  4497. * On UP it can prevent extra preemption.
  4498. */
  4499. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  4500. int nr_exclusive, void *key)
  4501. {
  4502. unsigned long flags;
  4503. int sync = 1;
  4504. if (unlikely(!q))
  4505. return;
  4506. if (unlikely(!nr_exclusive))
  4507. sync = 0;
  4508. spin_lock_irqsave(&q->lock, flags);
  4509. __wake_up_common(q, mode, nr_exclusive, sync, key);
  4510. spin_unlock_irqrestore(&q->lock, flags);
  4511. }
  4512. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  4513. /*
  4514. * __wake_up_sync - see __wake_up_sync_key()
  4515. */
  4516. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  4517. {
  4518. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  4519. }
  4520. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  4521. /**
  4522. * complete: - signals a single thread waiting on this completion
  4523. * @x: holds the state of this particular completion
  4524. *
  4525. * This will wake up a single thread waiting on this completion. Threads will be
  4526. * awakened in the same order in which they were queued.
  4527. *
  4528. * See also complete_all(), wait_for_completion() and related routines.
  4529. */
  4530. void complete(struct completion *x)
  4531. {
  4532. unsigned long flags;
  4533. spin_lock_irqsave(&x->wait.lock, flags);
  4534. x->done++;
  4535. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  4536. spin_unlock_irqrestore(&x->wait.lock, flags);
  4537. }
  4538. EXPORT_SYMBOL(complete);
  4539. /**
  4540. * complete_all: - signals all threads waiting on this completion
  4541. * @x: holds the state of this particular completion
  4542. *
  4543. * This will wake up all threads waiting on this particular completion event.
  4544. */
  4545. void complete_all(struct completion *x)
  4546. {
  4547. unsigned long flags;
  4548. spin_lock_irqsave(&x->wait.lock, flags);
  4549. x->done += UINT_MAX/2;
  4550. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  4551. spin_unlock_irqrestore(&x->wait.lock, flags);
  4552. }
  4553. EXPORT_SYMBOL(complete_all);
  4554. static inline long __sched
  4555. do_wait_for_common(struct completion *x, long timeout, int state)
  4556. {
  4557. if (!x->done) {
  4558. DECLARE_WAITQUEUE(wait, current);
  4559. wait.flags |= WQ_FLAG_EXCLUSIVE;
  4560. __add_wait_queue_tail(&x->wait, &wait);
  4561. do {
  4562. if (signal_pending_state(state, current)) {
  4563. timeout = -ERESTARTSYS;
  4564. break;
  4565. }
  4566. __set_current_state(state);
  4567. spin_unlock_irq(&x->wait.lock);
  4568. timeout = schedule_timeout(timeout);
  4569. spin_lock_irq(&x->wait.lock);
  4570. } while (!x->done && timeout);
  4571. __remove_wait_queue(&x->wait, &wait);
  4572. if (!x->done)
  4573. return timeout;
  4574. }
  4575. x->done--;
  4576. return timeout ?: 1;
  4577. }
  4578. static long __sched
  4579. wait_for_common(struct completion *x, long timeout, int state)
  4580. {
  4581. might_sleep();
  4582. spin_lock_irq(&x->wait.lock);
  4583. timeout = do_wait_for_common(x, timeout, state);
  4584. spin_unlock_irq(&x->wait.lock);
  4585. return timeout;
  4586. }
  4587. /**
  4588. * wait_for_completion: - waits for completion of a task
  4589. * @x: holds the state of this particular completion
  4590. *
  4591. * This waits to be signaled for completion of a specific task. It is NOT
  4592. * interruptible and there is no timeout.
  4593. *
  4594. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4595. * and interrupt capability. Also see complete().
  4596. */
  4597. void __sched wait_for_completion(struct completion *x)
  4598. {
  4599. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4600. }
  4601. EXPORT_SYMBOL(wait_for_completion);
  4602. /**
  4603. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4604. * @x: holds the state of this particular completion
  4605. * @timeout: timeout value in jiffies
  4606. *
  4607. * This waits for either a completion of a specific task to be signaled or for a
  4608. * specified timeout to expire. The timeout is in jiffies. It is not
  4609. * interruptible.
  4610. */
  4611. unsigned long __sched
  4612. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4613. {
  4614. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4615. }
  4616. EXPORT_SYMBOL(wait_for_completion_timeout);
  4617. /**
  4618. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4619. * @x: holds the state of this particular completion
  4620. *
  4621. * This waits for completion of a specific task to be signaled. It is
  4622. * interruptible.
  4623. */
  4624. int __sched wait_for_completion_interruptible(struct completion *x)
  4625. {
  4626. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4627. if (t == -ERESTARTSYS)
  4628. return t;
  4629. return 0;
  4630. }
  4631. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4632. /**
  4633. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  4634. * @x: holds the state of this particular completion
  4635. * @timeout: timeout value in jiffies
  4636. *
  4637. * This waits for either a completion of a specific task to be signaled or for a
  4638. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  4639. */
  4640. unsigned long __sched
  4641. wait_for_completion_interruptible_timeout(struct completion *x,
  4642. unsigned long timeout)
  4643. {
  4644. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4645. }
  4646. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4647. /**
  4648. * wait_for_completion_killable: - waits for completion of a task (killable)
  4649. * @x: holds the state of this particular completion
  4650. *
  4651. * This waits to be signaled for completion of a specific task. It can be
  4652. * interrupted by a kill signal.
  4653. */
  4654. int __sched wait_for_completion_killable(struct completion *x)
  4655. {
  4656. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4657. if (t == -ERESTARTSYS)
  4658. return t;
  4659. return 0;
  4660. }
  4661. EXPORT_SYMBOL(wait_for_completion_killable);
  4662. /**
  4663. * try_wait_for_completion - try to decrement a completion without blocking
  4664. * @x: completion structure
  4665. *
  4666. * Returns: 0 if a decrement cannot be done without blocking
  4667. * 1 if a decrement succeeded.
  4668. *
  4669. * If a completion is being used as a counting completion,
  4670. * attempt to decrement the counter without blocking. This
  4671. * enables us to avoid waiting if the resource the completion
  4672. * is protecting is not available.
  4673. */
  4674. bool try_wait_for_completion(struct completion *x)
  4675. {
  4676. int ret = 1;
  4677. spin_lock_irq(&x->wait.lock);
  4678. if (!x->done)
  4679. ret = 0;
  4680. else
  4681. x->done--;
  4682. spin_unlock_irq(&x->wait.lock);
  4683. return ret;
  4684. }
  4685. EXPORT_SYMBOL(try_wait_for_completion);
  4686. /**
  4687. * completion_done - Test to see if a completion has any waiters
  4688. * @x: completion structure
  4689. *
  4690. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  4691. * 1 if there are no waiters.
  4692. *
  4693. */
  4694. bool completion_done(struct completion *x)
  4695. {
  4696. int ret = 1;
  4697. spin_lock_irq(&x->wait.lock);
  4698. if (!x->done)
  4699. ret = 0;
  4700. spin_unlock_irq(&x->wait.lock);
  4701. return ret;
  4702. }
  4703. EXPORT_SYMBOL(completion_done);
  4704. static long __sched
  4705. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4706. {
  4707. unsigned long flags;
  4708. wait_queue_t wait;
  4709. init_waitqueue_entry(&wait, current);
  4710. __set_current_state(state);
  4711. spin_lock_irqsave(&q->lock, flags);
  4712. __add_wait_queue(q, &wait);
  4713. spin_unlock(&q->lock);
  4714. timeout = schedule_timeout(timeout);
  4715. spin_lock_irq(&q->lock);
  4716. __remove_wait_queue(q, &wait);
  4717. spin_unlock_irqrestore(&q->lock, flags);
  4718. return timeout;
  4719. }
  4720. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4721. {
  4722. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4723. }
  4724. EXPORT_SYMBOL(interruptible_sleep_on);
  4725. long __sched
  4726. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4727. {
  4728. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4729. }
  4730. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4731. void __sched sleep_on(wait_queue_head_t *q)
  4732. {
  4733. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4734. }
  4735. EXPORT_SYMBOL(sleep_on);
  4736. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4737. {
  4738. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4739. }
  4740. EXPORT_SYMBOL(sleep_on_timeout);
  4741. #ifdef CONFIG_RT_MUTEXES
  4742. /*
  4743. * rt_mutex_setprio - set the current priority of a task
  4744. * @p: task
  4745. * @prio: prio value (kernel-internal form)
  4746. *
  4747. * This function changes the 'effective' priority of a task. It does
  4748. * not touch ->normal_prio like __setscheduler().
  4749. *
  4750. * Used by the rt_mutex code to implement priority inheritance logic.
  4751. */
  4752. void rt_mutex_setprio(struct task_struct *p, int prio)
  4753. {
  4754. unsigned long flags;
  4755. int oldprio, on_rq, running;
  4756. struct rq *rq;
  4757. const struct sched_class *prev_class = p->sched_class;
  4758. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4759. rq = task_rq_lock(p, &flags);
  4760. update_rq_clock(rq);
  4761. oldprio = p->prio;
  4762. on_rq = p->se.on_rq;
  4763. running = task_current(rq, p);
  4764. if (on_rq)
  4765. dequeue_task(rq, p, 0);
  4766. if (running)
  4767. p->sched_class->put_prev_task(rq, p);
  4768. if (rt_prio(prio))
  4769. p->sched_class = &rt_sched_class;
  4770. else
  4771. p->sched_class = &fair_sched_class;
  4772. p->prio = prio;
  4773. if (running)
  4774. p->sched_class->set_curr_task(rq);
  4775. if (on_rq) {
  4776. enqueue_task(rq, p, 0);
  4777. check_class_changed(rq, p, prev_class, oldprio, running);
  4778. }
  4779. task_rq_unlock(rq, &flags);
  4780. }
  4781. #endif
  4782. void set_user_nice(struct task_struct *p, long nice)
  4783. {
  4784. int old_prio, delta, on_rq;
  4785. unsigned long flags;
  4786. struct rq *rq;
  4787. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4788. return;
  4789. /*
  4790. * We have to be careful, if called from sys_setpriority(),
  4791. * the task might be in the middle of scheduling on another CPU.
  4792. */
  4793. rq = task_rq_lock(p, &flags);
  4794. update_rq_clock(rq);
  4795. /*
  4796. * The RT priorities are set via sched_setscheduler(), but we still
  4797. * allow the 'normal' nice value to be set - but as expected
  4798. * it wont have any effect on scheduling until the task is
  4799. * SCHED_FIFO/SCHED_RR:
  4800. */
  4801. if (task_has_rt_policy(p)) {
  4802. p->static_prio = NICE_TO_PRIO(nice);
  4803. goto out_unlock;
  4804. }
  4805. on_rq = p->se.on_rq;
  4806. if (on_rq)
  4807. dequeue_task(rq, p, 0);
  4808. p->static_prio = NICE_TO_PRIO(nice);
  4809. set_load_weight(p);
  4810. old_prio = p->prio;
  4811. p->prio = effective_prio(p);
  4812. delta = p->prio - old_prio;
  4813. if (on_rq) {
  4814. enqueue_task(rq, p, 0);
  4815. /*
  4816. * If the task increased its priority or is running and
  4817. * lowered its priority, then reschedule its CPU:
  4818. */
  4819. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4820. resched_task(rq->curr);
  4821. }
  4822. out_unlock:
  4823. task_rq_unlock(rq, &flags);
  4824. }
  4825. EXPORT_SYMBOL(set_user_nice);
  4826. /*
  4827. * can_nice - check if a task can reduce its nice value
  4828. * @p: task
  4829. * @nice: nice value
  4830. */
  4831. int can_nice(const struct task_struct *p, const int nice)
  4832. {
  4833. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4834. int nice_rlim = 20 - nice;
  4835. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  4836. capable(CAP_SYS_NICE));
  4837. }
  4838. #ifdef __ARCH_WANT_SYS_NICE
  4839. /*
  4840. * sys_nice - change the priority of the current process.
  4841. * @increment: priority increment
  4842. *
  4843. * sys_setpriority is a more generic, but much slower function that
  4844. * does similar things.
  4845. */
  4846. SYSCALL_DEFINE1(nice, int, increment)
  4847. {
  4848. long nice, retval;
  4849. /*
  4850. * Setpriority might change our priority at the same moment.
  4851. * We don't have to worry. Conceptually one call occurs first
  4852. * and we have a single winner.
  4853. */
  4854. if (increment < -40)
  4855. increment = -40;
  4856. if (increment > 40)
  4857. increment = 40;
  4858. nice = TASK_NICE(current) + increment;
  4859. if (nice < -20)
  4860. nice = -20;
  4861. if (nice > 19)
  4862. nice = 19;
  4863. if (increment < 0 && !can_nice(current, nice))
  4864. return -EPERM;
  4865. retval = security_task_setnice(current, nice);
  4866. if (retval)
  4867. return retval;
  4868. set_user_nice(current, nice);
  4869. return 0;
  4870. }
  4871. #endif
  4872. /**
  4873. * task_prio - return the priority value of a given task.
  4874. * @p: the task in question.
  4875. *
  4876. * This is the priority value as seen by users in /proc.
  4877. * RT tasks are offset by -200. Normal tasks are centered
  4878. * around 0, value goes from -16 to +15.
  4879. */
  4880. int task_prio(const struct task_struct *p)
  4881. {
  4882. return p->prio - MAX_RT_PRIO;
  4883. }
  4884. /**
  4885. * task_nice - return the nice value of a given task.
  4886. * @p: the task in question.
  4887. */
  4888. int task_nice(const struct task_struct *p)
  4889. {
  4890. return TASK_NICE(p);
  4891. }
  4892. EXPORT_SYMBOL(task_nice);
  4893. /**
  4894. * idle_cpu - is a given cpu idle currently?
  4895. * @cpu: the processor in question.
  4896. */
  4897. int idle_cpu(int cpu)
  4898. {
  4899. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4900. }
  4901. /**
  4902. * idle_task - return the idle task for a given cpu.
  4903. * @cpu: the processor in question.
  4904. */
  4905. struct task_struct *idle_task(int cpu)
  4906. {
  4907. return cpu_rq(cpu)->idle;
  4908. }
  4909. /**
  4910. * find_process_by_pid - find a process with a matching PID value.
  4911. * @pid: the pid in question.
  4912. */
  4913. static struct task_struct *find_process_by_pid(pid_t pid)
  4914. {
  4915. return pid ? find_task_by_vpid(pid) : current;
  4916. }
  4917. /* Actually do priority change: must hold rq lock. */
  4918. static void
  4919. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4920. {
  4921. BUG_ON(p->se.on_rq);
  4922. p->policy = policy;
  4923. switch (p->policy) {
  4924. case SCHED_NORMAL:
  4925. case SCHED_BATCH:
  4926. case SCHED_IDLE:
  4927. p->sched_class = &fair_sched_class;
  4928. break;
  4929. case SCHED_FIFO:
  4930. case SCHED_RR:
  4931. p->sched_class = &rt_sched_class;
  4932. break;
  4933. }
  4934. p->rt_priority = prio;
  4935. p->normal_prio = normal_prio(p);
  4936. /* we are holding p->pi_lock already */
  4937. p->prio = rt_mutex_getprio(p);
  4938. set_load_weight(p);
  4939. }
  4940. /*
  4941. * check the target process has a UID that matches the current process's
  4942. */
  4943. static bool check_same_owner(struct task_struct *p)
  4944. {
  4945. const struct cred *cred = current_cred(), *pcred;
  4946. bool match;
  4947. rcu_read_lock();
  4948. pcred = __task_cred(p);
  4949. match = (cred->euid == pcred->euid ||
  4950. cred->euid == pcred->uid);
  4951. rcu_read_unlock();
  4952. return match;
  4953. }
  4954. static int __sched_setscheduler(struct task_struct *p, int policy,
  4955. struct sched_param *param, bool user)
  4956. {
  4957. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4958. unsigned long flags;
  4959. const struct sched_class *prev_class = p->sched_class;
  4960. struct rq *rq;
  4961. /* may grab non-irq protected spin_locks */
  4962. BUG_ON(in_interrupt());
  4963. recheck:
  4964. /* double check policy once rq lock held */
  4965. if (policy < 0)
  4966. policy = oldpolicy = p->policy;
  4967. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4968. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4969. policy != SCHED_IDLE)
  4970. return -EINVAL;
  4971. /*
  4972. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4973. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4974. * SCHED_BATCH and SCHED_IDLE is 0.
  4975. */
  4976. if (param->sched_priority < 0 ||
  4977. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4978. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4979. return -EINVAL;
  4980. if (rt_policy(policy) != (param->sched_priority != 0))
  4981. return -EINVAL;
  4982. /*
  4983. * Allow unprivileged RT tasks to decrease priority:
  4984. */
  4985. if (user && !capable(CAP_SYS_NICE)) {
  4986. if (rt_policy(policy)) {
  4987. unsigned long rlim_rtprio;
  4988. if (!lock_task_sighand(p, &flags))
  4989. return -ESRCH;
  4990. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4991. unlock_task_sighand(p, &flags);
  4992. /* can't set/change the rt policy */
  4993. if (policy != p->policy && !rlim_rtprio)
  4994. return -EPERM;
  4995. /* can't increase priority */
  4996. if (param->sched_priority > p->rt_priority &&
  4997. param->sched_priority > rlim_rtprio)
  4998. return -EPERM;
  4999. }
  5000. /*
  5001. * Like positive nice levels, dont allow tasks to
  5002. * move out of SCHED_IDLE either:
  5003. */
  5004. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  5005. return -EPERM;
  5006. /* can't change other user's priorities */
  5007. if (!check_same_owner(p))
  5008. return -EPERM;
  5009. }
  5010. if (user) {
  5011. #ifdef CONFIG_RT_GROUP_SCHED
  5012. /*
  5013. * Do not allow realtime tasks into groups that have no runtime
  5014. * assigned.
  5015. */
  5016. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  5017. task_group(p)->rt_bandwidth.rt_runtime == 0)
  5018. return -EPERM;
  5019. #endif
  5020. retval = security_task_setscheduler(p, policy, param);
  5021. if (retval)
  5022. return retval;
  5023. }
  5024. /*
  5025. * make sure no PI-waiters arrive (or leave) while we are
  5026. * changing the priority of the task:
  5027. */
  5028. spin_lock_irqsave(&p->pi_lock, flags);
  5029. /*
  5030. * To be able to change p->policy safely, the apropriate
  5031. * runqueue lock must be held.
  5032. */
  5033. rq = __task_rq_lock(p);
  5034. /* recheck policy now with rq lock held */
  5035. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  5036. policy = oldpolicy = -1;
  5037. __task_rq_unlock(rq);
  5038. spin_unlock_irqrestore(&p->pi_lock, flags);
  5039. goto recheck;
  5040. }
  5041. update_rq_clock(rq);
  5042. on_rq = p->se.on_rq;
  5043. running = task_current(rq, p);
  5044. if (on_rq)
  5045. deactivate_task(rq, p, 0);
  5046. if (running)
  5047. p->sched_class->put_prev_task(rq, p);
  5048. oldprio = p->prio;
  5049. __setscheduler(rq, p, policy, param->sched_priority);
  5050. if (running)
  5051. p->sched_class->set_curr_task(rq);
  5052. if (on_rq) {
  5053. activate_task(rq, p, 0);
  5054. check_class_changed(rq, p, prev_class, oldprio, running);
  5055. }
  5056. __task_rq_unlock(rq);
  5057. spin_unlock_irqrestore(&p->pi_lock, flags);
  5058. rt_mutex_adjust_pi(p);
  5059. return 0;
  5060. }
  5061. /**
  5062. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  5063. * @p: the task in question.
  5064. * @policy: new policy.
  5065. * @param: structure containing the new RT priority.
  5066. *
  5067. * NOTE that the task may be already dead.
  5068. */
  5069. int sched_setscheduler(struct task_struct *p, int policy,
  5070. struct sched_param *param)
  5071. {
  5072. return __sched_setscheduler(p, policy, param, true);
  5073. }
  5074. EXPORT_SYMBOL_GPL(sched_setscheduler);
  5075. /**
  5076. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  5077. * @p: the task in question.
  5078. * @policy: new policy.
  5079. * @param: structure containing the new RT priority.
  5080. *
  5081. * Just like sched_setscheduler, only don't bother checking if the
  5082. * current context has permission. For example, this is needed in
  5083. * stop_machine(): we create temporary high priority worker threads,
  5084. * but our caller might not have that capability.
  5085. */
  5086. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  5087. struct sched_param *param)
  5088. {
  5089. return __sched_setscheduler(p, policy, param, false);
  5090. }
  5091. static int
  5092. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  5093. {
  5094. struct sched_param lparam;
  5095. struct task_struct *p;
  5096. int retval;
  5097. if (!param || pid < 0)
  5098. return -EINVAL;
  5099. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  5100. return -EFAULT;
  5101. rcu_read_lock();
  5102. retval = -ESRCH;
  5103. p = find_process_by_pid(pid);
  5104. if (p != NULL)
  5105. retval = sched_setscheduler(p, policy, &lparam);
  5106. rcu_read_unlock();
  5107. return retval;
  5108. }
  5109. /**
  5110. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  5111. * @pid: the pid in question.
  5112. * @policy: new policy.
  5113. * @param: structure containing the new RT priority.
  5114. */
  5115. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  5116. struct sched_param __user *, param)
  5117. {
  5118. /* negative values for policy are not valid */
  5119. if (policy < 0)
  5120. return -EINVAL;
  5121. return do_sched_setscheduler(pid, policy, param);
  5122. }
  5123. /**
  5124. * sys_sched_setparam - set/change the RT priority of a thread
  5125. * @pid: the pid in question.
  5126. * @param: structure containing the new RT priority.
  5127. */
  5128. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  5129. {
  5130. return do_sched_setscheduler(pid, -1, param);
  5131. }
  5132. /**
  5133. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  5134. * @pid: the pid in question.
  5135. */
  5136. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  5137. {
  5138. struct task_struct *p;
  5139. int retval;
  5140. if (pid < 0)
  5141. return -EINVAL;
  5142. retval = -ESRCH;
  5143. read_lock(&tasklist_lock);
  5144. p = find_process_by_pid(pid);
  5145. if (p) {
  5146. retval = security_task_getscheduler(p);
  5147. if (!retval)
  5148. retval = p->policy;
  5149. }
  5150. read_unlock(&tasklist_lock);
  5151. return retval;
  5152. }
  5153. /**
  5154. * sys_sched_getscheduler - get the RT priority of a thread
  5155. * @pid: the pid in question.
  5156. * @param: structure containing the RT priority.
  5157. */
  5158. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  5159. {
  5160. struct sched_param lp;
  5161. struct task_struct *p;
  5162. int retval;
  5163. if (!param || pid < 0)
  5164. return -EINVAL;
  5165. read_lock(&tasklist_lock);
  5166. p = find_process_by_pid(pid);
  5167. retval = -ESRCH;
  5168. if (!p)
  5169. goto out_unlock;
  5170. retval = security_task_getscheduler(p);
  5171. if (retval)
  5172. goto out_unlock;
  5173. lp.sched_priority = p->rt_priority;
  5174. read_unlock(&tasklist_lock);
  5175. /*
  5176. * This one might sleep, we cannot do it with a spinlock held ...
  5177. */
  5178. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  5179. return retval;
  5180. out_unlock:
  5181. read_unlock(&tasklist_lock);
  5182. return retval;
  5183. }
  5184. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  5185. {
  5186. cpumask_var_t cpus_allowed, new_mask;
  5187. struct task_struct *p;
  5188. int retval;
  5189. get_online_cpus();
  5190. read_lock(&tasklist_lock);
  5191. p = find_process_by_pid(pid);
  5192. if (!p) {
  5193. read_unlock(&tasklist_lock);
  5194. put_online_cpus();
  5195. return -ESRCH;
  5196. }
  5197. /*
  5198. * It is not safe to call set_cpus_allowed with the
  5199. * tasklist_lock held. We will bump the task_struct's
  5200. * usage count and then drop tasklist_lock.
  5201. */
  5202. get_task_struct(p);
  5203. read_unlock(&tasklist_lock);
  5204. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  5205. retval = -ENOMEM;
  5206. goto out_put_task;
  5207. }
  5208. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  5209. retval = -ENOMEM;
  5210. goto out_free_cpus_allowed;
  5211. }
  5212. retval = -EPERM;
  5213. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  5214. goto out_unlock;
  5215. retval = security_task_setscheduler(p, 0, NULL);
  5216. if (retval)
  5217. goto out_unlock;
  5218. cpuset_cpus_allowed(p, cpus_allowed);
  5219. cpumask_and(new_mask, in_mask, cpus_allowed);
  5220. again:
  5221. retval = set_cpus_allowed_ptr(p, new_mask);
  5222. if (!retval) {
  5223. cpuset_cpus_allowed(p, cpus_allowed);
  5224. if (!cpumask_subset(new_mask, cpus_allowed)) {
  5225. /*
  5226. * We must have raced with a concurrent cpuset
  5227. * update. Just reset the cpus_allowed to the
  5228. * cpuset's cpus_allowed
  5229. */
  5230. cpumask_copy(new_mask, cpus_allowed);
  5231. goto again;
  5232. }
  5233. }
  5234. out_unlock:
  5235. free_cpumask_var(new_mask);
  5236. out_free_cpus_allowed:
  5237. free_cpumask_var(cpus_allowed);
  5238. out_put_task:
  5239. put_task_struct(p);
  5240. put_online_cpus();
  5241. return retval;
  5242. }
  5243. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  5244. struct cpumask *new_mask)
  5245. {
  5246. if (len < cpumask_size())
  5247. cpumask_clear(new_mask);
  5248. else if (len > cpumask_size())
  5249. len = cpumask_size();
  5250. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  5251. }
  5252. /**
  5253. * sys_sched_setaffinity - set the cpu affinity of a process
  5254. * @pid: pid of the process
  5255. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5256. * @user_mask_ptr: user-space pointer to the new cpu mask
  5257. */
  5258. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  5259. unsigned long __user *, user_mask_ptr)
  5260. {
  5261. cpumask_var_t new_mask;
  5262. int retval;
  5263. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  5264. return -ENOMEM;
  5265. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  5266. if (retval == 0)
  5267. retval = sched_setaffinity(pid, new_mask);
  5268. free_cpumask_var(new_mask);
  5269. return retval;
  5270. }
  5271. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  5272. {
  5273. struct task_struct *p;
  5274. int retval;
  5275. get_online_cpus();
  5276. read_lock(&tasklist_lock);
  5277. retval = -ESRCH;
  5278. p = find_process_by_pid(pid);
  5279. if (!p)
  5280. goto out_unlock;
  5281. retval = security_task_getscheduler(p);
  5282. if (retval)
  5283. goto out_unlock;
  5284. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  5285. out_unlock:
  5286. read_unlock(&tasklist_lock);
  5287. put_online_cpus();
  5288. return retval;
  5289. }
  5290. /**
  5291. * sys_sched_getaffinity - get the cpu affinity of a process
  5292. * @pid: pid of the process
  5293. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5294. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  5295. */
  5296. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  5297. unsigned long __user *, user_mask_ptr)
  5298. {
  5299. int ret;
  5300. cpumask_var_t mask;
  5301. if (len < cpumask_size())
  5302. return -EINVAL;
  5303. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  5304. return -ENOMEM;
  5305. ret = sched_getaffinity(pid, mask);
  5306. if (ret == 0) {
  5307. if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
  5308. ret = -EFAULT;
  5309. else
  5310. ret = cpumask_size();
  5311. }
  5312. free_cpumask_var(mask);
  5313. return ret;
  5314. }
  5315. /**
  5316. * sys_sched_yield - yield the current processor to other threads.
  5317. *
  5318. * This function yields the current CPU to other tasks. If there are no
  5319. * other threads running on this CPU then this function will return.
  5320. */
  5321. SYSCALL_DEFINE0(sched_yield)
  5322. {
  5323. struct rq *rq = this_rq_lock();
  5324. schedstat_inc(rq, yld_count);
  5325. current->sched_class->yield_task(rq);
  5326. /*
  5327. * Since we are going to call schedule() anyway, there's
  5328. * no need to preempt or enable interrupts:
  5329. */
  5330. __release(rq->lock);
  5331. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  5332. _raw_spin_unlock(&rq->lock);
  5333. preempt_enable_no_resched();
  5334. schedule();
  5335. return 0;
  5336. }
  5337. static void __cond_resched(void)
  5338. {
  5339. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5340. __might_sleep(__FILE__, __LINE__);
  5341. #endif
  5342. /*
  5343. * The BKS might be reacquired before we have dropped
  5344. * PREEMPT_ACTIVE, which could trigger a second
  5345. * cond_resched() call.
  5346. */
  5347. do {
  5348. add_preempt_count(PREEMPT_ACTIVE);
  5349. schedule();
  5350. sub_preempt_count(PREEMPT_ACTIVE);
  5351. } while (need_resched());
  5352. }
  5353. int __sched _cond_resched(void)
  5354. {
  5355. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  5356. system_state == SYSTEM_RUNNING) {
  5357. __cond_resched();
  5358. return 1;
  5359. }
  5360. return 0;
  5361. }
  5362. EXPORT_SYMBOL(_cond_resched);
  5363. /*
  5364. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  5365. * call schedule, and on return reacquire the lock.
  5366. *
  5367. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  5368. * operations here to prevent schedule() from being called twice (once via
  5369. * spin_unlock(), once by hand).
  5370. */
  5371. int cond_resched_lock(spinlock_t *lock)
  5372. {
  5373. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  5374. int ret = 0;
  5375. if (spin_needbreak(lock) || resched) {
  5376. spin_unlock(lock);
  5377. if (resched && need_resched())
  5378. __cond_resched();
  5379. else
  5380. cpu_relax();
  5381. ret = 1;
  5382. spin_lock(lock);
  5383. }
  5384. return ret;
  5385. }
  5386. EXPORT_SYMBOL(cond_resched_lock);
  5387. int __sched cond_resched_softirq(void)
  5388. {
  5389. BUG_ON(!in_softirq());
  5390. if (need_resched() && system_state == SYSTEM_RUNNING) {
  5391. local_bh_enable();
  5392. __cond_resched();
  5393. local_bh_disable();
  5394. return 1;
  5395. }
  5396. return 0;
  5397. }
  5398. EXPORT_SYMBOL(cond_resched_softirq);
  5399. /**
  5400. * yield - yield the current processor to other threads.
  5401. *
  5402. * This is a shortcut for kernel-space yielding - it marks the
  5403. * thread runnable and calls sys_sched_yield().
  5404. */
  5405. void __sched yield(void)
  5406. {
  5407. set_current_state(TASK_RUNNING);
  5408. sys_sched_yield();
  5409. }
  5410. EXPORT_SYMBOL(yield);
  5411. /*
  5412. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  5413. * that process accounting knows that this is a task in IO wait state.
  5414. *
  5415. * But don't do that if it is a deliberate, throttling IO wait (this task
  5416. * has set its backing_dev_info: the queue against which it should throttle)
  5417. */
  5418. void __sched io_schedule(void)
  5419. {
  5420. struct rq *rq = &__raw_get_cpu_var(runqueues);
  5421. delayacct_blkio_start();
  5422. atomic_inc(&rq->nr_iowait);
  5423. schedule();
  5424. atomic_dec(&rq->nr_iowait);
  5425. delayacct_blkio_end();
  5426. }
  5427. EXPORT_SYMBOL(io_schedule);
  5428. long __sched io_schedule_timeout(long timeout)
  5429. {
  5430. struct rq *rq = &__raw_get_cpu_var(runqueues);
  5431. long ret;
  5432. delayacct_blkio_start();
  5433. atomic_inc(&rq->nr_iowait);
  5434. ret = schedule_timeout(timeout);
  5435. atomic_dec(&rq->nr_iowait);
  5436. delayacct_blkio_end();
  5437. return ret;
  5438. }
  5439. /**
  5440. * sys_sched_get_priority_max - return maximum RT priority.
  5441. * @policy: scheduling class.
  5442. *
  5443. * this syscall returns the maximum rt_priority that can be used
  5444. * by a given scheduling class.
  5445. */
  5446. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  5447. {
  5448. int ret = -EINVAL;
  5449. switch (policy) {
  5450. case SCHED_FIFO:
  5451. case SCHED_RR:
  5452. ret = MAX_USER_RT_PRIO-1;
  5453. break;
  5454. case SCHED_NORMAL:
  5455. case SCHED_BATCH:
  5456. case SCHED_IDLE:
  5457. ret = 0;
  5458. break;
  5459. }
  5460. return ret;
  5461. }
  5462. /**
  5463. * sys_sched_get_priority_min - return minimum RT priority.
  5464. * @policy: scheduling class.
  5465. *
  5466. * this syscall returns the minimum rt_priority that can be used
  5467. * by a given scheduling class.
  5468. */
  5469. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  5470. {
  5471. int ret = -EINVAL;
  5472. switch (policy) {
  5473. case SCHED_FIFO:
  5474. case SCHED_RR:
  5475. ret = 1;
  5476. break;
  5477. case SCHED_NORMAL:
  5478. case SCHED_BATCH:
  5479. case SCHED_IDLE:
  5480. ret = 0;
  5481. }
  5482. return ret;
  5483. }
  5484. /**
  5485. * sys_sched_rr_get_interval - return the default timeslice of a process.
  5486. * @pid: pid of the process.
  5487. * @interval: userspace pointer to the timeslice value.
  5488. *
  5489. * this syscall writes the default timeslice value of a given process
  5490. * into the user-space timespec buffer. A value of '0' means infinity.
  5491. */
  5492. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  5493. struct timespec __user *, interval)
  5494. {
  5495. struct task_struct *p;
  5496. unsigned int time_slice;
  5497. int retval;
  5498. struct timespec t;
  5499. if (pid < 0)
  5500. return -EINVAL;
  5501. retval = -ESRCH;
  5502. read_lock(&tasklist_lock);
  5503. p = find_process_by_pid(pid);
  5504. if (!p)
  5505. goto out_unlock;
  5506. retval = security_task_getscheduler(p);
  5507. if (retval)
  5508. goto out_unlock;
  5509. /*
  5510. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  5511. * tasks that are on an otherwise idle runqueue:
  5512. */
  5513. time_slice = 0;
  5514. if (p->policy == SCHED_RR) {
  5515. time_slice = DEF_TIMESLICE;
  5516. } else if (p->policy != SCHED_FIFO) {
  5517. struct sched_entity *se = &p->se;
  5518. unsigned long flags;
  5519. struct rq *rq;
  5520. rq = task_rq_lock(p, &flags);
  5521. if (rq->cfs.load.weight)
  5522. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  5523. task_rq_unlock(rq, &flags);
  5524. }
  5525. read_unlock(&tasklist_lock);
  5526. jiffies_to_timespec(time_slice, &t);
  5527. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  5528. return retval;
  5529. out_unlock:
  5530. read_unlock(&tasklist_lock);
  5531. return retval;
  5532. }
  5533. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  5534. void sched_show_task(struct task_struct *p)
  5535. {
  5536. unsigned long free = 0;
  5537. unsigned state;
  5538. state = p->state ? __ffs(p->state) + 1 : 0;
  5539. printk(KERN_INFO "%-13.13s %c", p->comm,
  5540. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  5541. #if BITS_PER_LONG == 32
  5542. if (state == TASK_RUNNING)
  5543. printk(KERN_CONT " running ");
  5544. else
  5545. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  5546. #else
  5547. if (state == TASK_RUNNING)
  5548. printk(KERN_CONT " running task ");
  5549. else
  5550. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  5551. #endif
  5552. #ifdef CONFIG_DEBUG_STACK_USAGE
  5553. free = stack_not_used(p);
  5554. #endif
  5555. printk(KERN_CONT "%5lu %5d %6d\n", free,
  5556. task_pid_nr(p), task_pid_nr(p->real_parent));
  5557. show_stack(p, NULL);
  5558. }
  5559. void show_state_filter(unsigned long state_filter)
  5560. {
  5561. struct task_struct *g, *p;
  5562. #if BITS_PER_LONG == 32
  5563. printk(KERN_INFO
  5564. " task PC stack pid father\n");
  5565. #else
  5566. printk(KERN_INFO
  5567. " task PC stack pid father\n");
  5568. #endif
  5569. read_lock(&tasklist_lock);
  5570. do_each_thread(g, p) {
  5571. /*
  5572. * reset the NMI-timeout, listing all files on a slow
  5573. * console might take alot of time:
  5574. */
  5575. touch_nmi_watchdog();
  5576. if (!state_filter || (p->state & state_filter))
  5577. sched_show_task(p);
  5578. } while_each_thread(g, p);
  5579. touch_all_softlockup_watchdogs();
  5580. #ifdef CONFIG_SCHED_DEBUG
  5581. sysrq_sched_debug_show();
  5582. #endif
  5583. read_unlock(&tasklist_lock);
  5584. /*
  5585. * Only show locks if all tasks are dumped:
  5586. */
  5587. if (state_filter == -1)
  5588. debug_show_all_locks();
  5589. }
  5590. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5591. {
  5592. idle->sched_class = &idle_sched_class;
  5593. }
  5594. /**
  5595. * init_idle - set up an idle thread for a given CPU
  5596. * @idle: task in question
  5597. * @cpu: cpu the idle task belongs to
  5598. *
  5599. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5600. * flag, to make booting more robust.
  5601. */
  5602. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5603. {
  5604. struct rq *rq = cpu_rq(cpu);
  5605. unsigned long flags;
  5606. spin_lock_irqsave(&rq->lock, flags);
  5607. __sched_fork(idle);
  5608. idle->se.exec_start = sched_clock();
  5609. idle->prio = idle->normal_prio = MAX_PRIO;
  5610. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  5611. __set_task_cpu(idle, cpu);
  5612. rq->curr = rq->idle = idle;
  5613. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5614. idle->oncpu = 1;
  5615. #endif
  5616. spin_unlock_irqrestore(&rq->lock, flags);
  5617. /* Set the preempt count _outside_ the spinlocks! */
  5618. #if defined(CONFIG_PREEMPT)
  5619. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  5620. #else
  5621. task_thread_info(idle)->preempt_count = 0;
  5622. #endif
  5623. /*
  5624. * The idle tasks have their own, simple scheduling class:
  5625. */
  5626. idle->sched_class = &idle_sched_class;
  5627. ftrace_graph_init_task(idle);
  5628. }
  5629. /*
  5630. * In a system that switches off the HZ timer nohz_cpu_mask
  5631. * indicates which cpus entered this state. This is used
  5632. * in the rcu update to wait only for active cpus. For system
  5633. * which do not switch off the HZ timer nohz_cpu_mask should
  5634. * always be CPU_BITS_NONE.
  5635. */
  5636. cpumask_var_t nohz_cpu_mask;
  5637. /*
  5638. * Increase the granularity value when there are more CPUs,
  5639. * because with more CPUs the 'effective latency' as visible
  5640. * to users decreases. But the relationship is not linear,
  5641. * so pick a second-best guess by going with the log2 of the
  5642. * number of CPUs.
  5643. *
  5644. * This idea comes from the SD scheduler of Con Kolivas:
  5645. */
  5646. static inline void sched_init_granularity(void)
  5647. {
  5648. unsigned int factor = 1 + ilog2(num_online_cpus());
  5649. const unsigned long limit = 200000000;
  5650. sysctl_sched_min_granularity *= factor;
  5651. if (sysctl_sched_min_granularity > limit)
  5652. sysctl_sched_min_granularity = limit;
  5653. sysctl_sched_latency *= factor;
  5654. if (sysctl_sched_latency > limit)
  5655. sysctl_sched_latency = limit;
  5656. sysctl_sched_wakeup_granularity *= factor;
  5657. sysctl_sched_shares_ratelimit *= factor;
  5658. }
  5659. #ifdef CONFIG_SMP
  5660. /*
  5661. * This is how migration works:
  5662. *
  5663. * 1) we queue a struct migration_req structure in the source CPU's
  5664. * runqueue and wake up that CPU's migration thread.
  5665. * 2) we down() the locked semaphore => thread blocks.
  5666. * 3) migration thread wakes up (implicitly it forces the migrated
  5667. * thread off the CPU)
  5668. * 4) it gets the migration request and checks whether the migrated
  5669. * task is still in the wrong runqueue.
  5670. * 5) if it's in the wrong runqueue then the migration thread removes
  5671. * it and puts it into the right queue.
  5672. * 6) migration thread up()s the semaphore.
  5673. * 7) we wake up and the migration is done.
  5674. */
  5675. /*
  5676. * Change a given task's CPU affinity. Migrate the thread to a
  5677. * proper CPU and schedule it away if the CPU it's executing on
  5678. * is removed from the allowed bitmask.
  5679. *
  5680. * NOTE: the caller must have a valid reference to the task, the
  5681. * task must not exit() & deallocate itself prematurely. The
  5682. * call is not atomic; no spinlocks may be held.
  5683. */
  5684. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  5685. {
  5686. struct migration_req req;
  5687. unsigned long flags;
  5688. struct rq *rq;
  5689. int ret = 0;
  5690. rq = task_rq_lock(p, &flags);
  5691. if (!cpumask_intersects(new_mask, cpu_online_mask)) {
  5692. ret = -EINVAL;
  5693. goto out;
  5694. }
  5695. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  5696. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  5697. ret = -EINVAL;
  5698. goto out;
  5699. }
  5700. if (p->sched_class->set_cpus_allowed)
  5701. p->sched_class->set_cpus_allowed(p, new_mask);
  5702. else {
  5703. cpumask_copy(&p->cpus_allowed, new_mask);
  5704. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  5705. }
  5706. /* Can the task run on the task's current CPU? If so, we're done */
  5707. if (cpumask_test_cpu(task_cpu(p), new_mask))
  5708. goto out;
  5709. if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
  5710. /* Need help from migration thread: drop lock and wait. */
  5711. task_rq_unlock(rq, &flags);
  5712. wake_up_process(rq->migration_thread);
  5713. wait_for_completion(&req.done);
  5714. tlb_migrate_finish(p->mm);
  5715. return 0;
  5716. }
  5717. out:
  5718. task_rq_unlock(rq, &flags);
  5719. return ret;
  5720. }
  5721. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5722. /*
  5723. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5724. * this because either it can't run here any more (set_cpus_allowed()
  5725. * away from this CPU, or CPU going down), or because we're
  5726. * attempting to rebalance this task on exec (sched_exec).
  5727. *
  5728. * So we race with normal scheduler movements, but that's OK, as long
  5729. * as the task is no longer on this CPU.
  5730. *
  5731. * Returns non-zero if task was successfully migrated.
  5732. */
  5733. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5734. {
  5735. struct rq *rq_dest, *rq_src;
  5736. int ret = 0, on_rq;
  5737. if (unlikely(!cpu_active(dest_cpu)))
  5738. return ret;
  5739. rq_src = cpu_rq(src_cpu);
  5740. rq_dest = cpu_rq(dest_cpu);
  5741. double_rq_lock(rq_src, rq_dest);
  5742. /* Already moved. */
  5743. if (task_cpu(p) != src_cpu)
  5744. goto done;
  5745. /* Affinity changed (again). */
  5746. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5747. goto fail;
  5748. on_rq = p->se.on_rq;
  5749. if (on_rq)
  5750. deactivate_task(rq_src, p, 0);
  5751. set_task_cpu(p, dest_cpu);
  5752. if (on_rq) {
  5753. activate_task(rq_dest, p, 0);
  5754. check_preempt_curr(rq_dest, p, 0);
  5755. }
  5756. done:
  5757. ret = 1;
  5758. fail:
  5759. double_rq_unlock(rq_src, rq_dest);
  5760. return ret;
  5761. }
  5762. /*
  5763. * migration_thread - this is a highprio system thread that performs
  5764. * thread migration by bumping thread off CPU then 'pushing' onto
  5765. * another runqueue.
  5766. */
  5767. static int migration_thread(void *data)
  5768. {
  5769. int cpu = (long)data;
  5770. struct rq *rq;
  5771. rq = cpu_rq(cpu);
  5772. BUG_ON(rq->migration_thread != current);
  5773. set_current_state(TASK_INTERRUPTIBLE);
  5774. while (!kthread_should_stop()) {
  5775. struct migration_req *req;
  5776. struct list_head *head;
  5777. spin_lock_irq(&rq->lock);
  5778. if (cpu_is_offline(cpu)) {
  5779. spin_unlock_irq(&rq->lock);
  5780. goto wait_to_die;
  5781. }
  5782. if (rq->active_balance) {
  5783. active_load_balance(rq, cpu);
  5784. rq->active_balance = 0;
  5785. }
  5786. head = &rq->migration_queue;
  5787. if (list_empty(head)) {
  5788. spin_unlock_irq(&rq->lock);
  5789. schedule();
  5790. set_current_state(TASK_INTERRUPTIBLE);
  5791. continue;
  5792. }
  5793. req = list_entry(head->next, struct migration_req, list);
  5794. list_del_init(head->next);
  5795. spin_unlock(&rq->lock);
  5796. __migrate_task(req->task, cpu, req->dest_cpu);
  5797. local_irq_enable();
  5798. complete(&req->done);
  5799. }
  5800. __set_current_state(TASK_RUNNING);
  5801. return 0;
  5802. wait_to_die:
  5803. /* Wait for kthread_stop */
  5804. set_current_state(TASK_INTERRUPTIBLE);
  5805. while (!kthread_should_stop()) {
  5806. schedule();
  5807. set_current_state(TASK_INTERRUPTIBLE);
  5808. }
  5809. __set_current_state(TASK_RUNNING);
  5810. return 0;
  5811. }
  5812. #ifdef CONFIG_HOTPLUG_CPU
  5813. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  5814. {
  5815. int ret;
  5816. local_irq_disable();
  5817. ret = __migrate_task(p, src_cpu, dest_cpu);
  5818. local_irq_enable();
  5819. return ret;
  5820. }
  5821. /*
  5822. * Figure out where task on dead CPU should go, use force if necessary.
  5823. */
  5824. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  5825. {
  5826. int dest_cpu;
  5827. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
  5828. again:
  5829. /* Look for allowed, online CPU in same node. */
  5830. for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
  5831. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5832. goto move;
  5833. /* Any allowed, online CPU? */
  5834. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
  5835. if (dest_cpu < nr_cpu_ids)
  5836. goto move;
  5837. /* No more Mr. Nice Guy. */
  5838. if (dest_cpu >= nr_cpu_ids) {
  5839. cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
  5840. dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
  5841. /*
  5842. * Don't tell them about moving exiting tasks or
  5843. * kernel threads (both mm NULL), since they never
  5844. * leave kernel.
  5845. */
  5846. if (p->mm && printk_ratelimit()) {
  5847. printk(KERN_INFO "process %d (%s) no "
  5848. "longer affine to cpu%d\n",
  5849. task_pid_nr(p), p->comm, dead_cpu);
  5850. }
  5851. }
  5852. move:
  5853. /* It can have affinity changed while we were choosing. */
  5854. if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
  5855. goto again;
  5856. }
  5857. /*
  5858. * While a dead CPU has no uninterruptible tasks queued at this point,
  5859. * it might still have a nonzero ->nr_uninterruptible counter, because
  5860. * for performance reasons the counter is not stricly tracking tasks to
  5861. * their home CPUs. So we just add the counter to another CPU's counter,
  5862. * to keep the global sum constant after CPU-down:
  5863. */
  5864. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5865. {
  5866. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
  5867. unsigned long flags;
  5868. local_irq_save(flags);
  5869. double_rq_lock(rq_src, rq_dest);
  5870. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5871. rq_src->nr_uninterruptible = 0;
  5872. double_rq_unlock(rq_src, rq_dest);
  5873. local_irq_restore(flags);
  5874. }
  5875. /* Run through task list and migrate tasks from the dead cpu. */
  5876. static void migrate_live_tasks(int src_cpu)
  5877. {
  5878. struct task_struct *p, *t;
  5879. read_lock(&tasklist_lock);
  5880. do_each_thread(t, p) {
  5881. if (p == current)
  5882. continue;
  5883. if (task_cpu(p) == src_cpu)
  5884. move_task_off_dead_cpu(src_cpu, p);
  5885. } while_each_thread(t, p);
  5886. read_unlock(&tasklist_lock);
  5887. }
  5888. /*
  5889. * Schedules idle task to be the next runnable task on current CPU.
  5890. * It does so by boosting its priority to highest possible.
  5891. * Used by CPU offline code.
  5892. */
  5893. void sched_idle_next(void)
  5894. {
  5895. int this_cpu = smp_processor_id();
  5896. struct rq *rq = cpu_rq(this_cpu);
  5897. struct task_struct *p = rq->idle;
  5898. unsigned long flags;
  5899. /* cpu has to be offline */
  5900. BUG_ON(cpu_online(this_cpu));
  5901. /*
  5902. * Strictly not necessary since rest of the CPUs are stopped by now
  5903. * and interrupts disabled on the current cpu.
  5904. */
  5905. spin_lock_irqsave(&rq->lock, flags);
  5906. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5907. update_rq_clock(rq);
  5908. activate_task(rq, p, 0);
  5909. spin_unlock_irqrestore(&rq->lock, flags);
  5910. }
  5911. /*
  5912. * Ensures that the idle task is using init_mm right before its cpu goes
  5913. * offline.
  5914. */
  5915. void idle_task_exit(void)
  5916. {
  5917. struct mm_struct *mm = current->active_mm;
  5918. BUG_ON(cpu_online(smp_processor_id()));
  5919. if (mm != &init_mm)
  5920. switch_mm(mm, &init_mm, current);
  5921. mmdrop(mm);
  5922. }
  5923. /* called under rq->lock with disabled interrupts */
  5924. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  5925. {
  5926. struct rq *rq = cpu_rq(dead_cpu);
  5927. /* Must be exiting, otherwise would be on tasklist. */
  5928. BUG_ON(!p->exit_state);
  5929. /* Cannot have done final schedule yet: would have vanished. */
  5930. BUG_ON(p->state == TASK_DEAD);
  5931. get_task_struct(p);
  5932. /*
  5933. * Drop lock around migration; if someone else moves it,
  5934. * that's OK. No task can be added to this CPU, so iteration is
  5935. * fine.
  5936. */
  5937. spin_unlock_irq(&rq->lock);
  5938. move_task_off_dead_cpu(dead_cpu, p);
  5939. spin_lock_irq(&rq->lock);
  5940. put_task_struct(p);
  5941. }
  5942. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  5943. static void migrate_dead_tasks(unsigned int dead_cpu)
  5944. {
  5945. struct rq *rq = cpu_rq(dead_cpu);
  5946. struct task_struct *next;
  5947. for ( ; ; ) {
  5948. if (!rq->nr_running)
  5949. break;
  5950. update_rq_clock(rq);
  5951. next = pick_next_task(rq);
  5952. if (!next)
  5953. break;
  5954. next->sched_class->put_prev_task(rq, next);
  5955. migrate_dead(dead_cpu, next);
  5956. }
  5957. }
  5958. #endif /* CONFIG_HOTPLUG_CPU */
  5959. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5960. static struct ctl_table sd_ctl_dir[] = {
  5961. {
  5962. .procname = "sched_domain",
  5963. .mode = 0555,
  5964. },
  5965. {0, },
  5966. };
  5967. static struct ctl_table sd_ctl_root[] = {
  5968. {
  5969. .ctl_name = CTL_KERN,
  5970. .procname = "kernel",
  5971. .mode = 0555,
  5972. .child = sd_ctl_dir,
  5973. },
  5974. {0, },
  5975. };
  5976. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5977. {
  5978. struct ctl_table *entry =
  5979. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5980. return entry;
  5981. }
  5982. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5983. {
  5984. struct ctl_table *entry;
  5985. /*
  5986. * In the intermediate directories, both the child directory and
  5987. * procname are dynamically allocated and could fail but the mode
  5988. * will always be set. In the lowest directory the names are
  5989. * static strings and all have proc handlers.
  5990. */
  5991. for (entry = *tablep; entry->mode; entry++) {
  5992. if (entry->child)
  5993. sd_free_ctl_entry(&entry->child);
  5994. if (entry->proc_handler == NULL)
  5995. kfree(entry->procname);
  5996. }
  5997. kfree(*tablep);
  5998. *tablep = NULL;
  5999. }
  6000. static void
  6001. set_table_entry(struct ctl_table *entry,
  6002. const char *procname, void *data, int maxlen,
  6003. mode_t mode, proc_handler *proc_handler)
  6004. {
  6005. entry->procname = procname;
  6006. entry->data = data;
  6007. entry->maxlen = maxlen;
  6008. entry->mode = mode;
  6009. entry->proc_handler = proc_handler;
  6010. }
  6011. static struct ctl_table *
  6012. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  6013. {
  6014. struct ctl_table *table = sd_alloc_ctl_entry(13);
  6015. if (table == NULL)
  6016. return NULL;
  6017. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  6018. sizeof(long), 0644, proc_doulongvec_minmax);
  6019. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  6020. sizeof(long), 0644, proc_doulongvec_minmax);
  6021. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  6022. sizeof(int), 0644, proc_dointvec_minmax);
  6023. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  6024. sizeof(int), 0644, proc_dointvec_minmax);
  6025. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  6026. sizeof(int), 0644, proc_dointvec_minmax);
  6027. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  6028. sizeof(int), 0644, proc_dointvec_minmax);
  6029. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  6030. sizeof(int), 0644, proc_dointvec_minmax);
  6031. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  6032. sizeof(int), 0644, proc_dointvec_minmax);
  6033. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  6034. sizeof(int), 0644, proc_dointvec_minmax);
  6035. set_table_entry(&table[9], "cache_nice_tries",
  6036. &sd->cache_nice_tries,
  6037. sizeof(int), 0644, proc_dointvec_minmax);
  6038. set_table_entry(&table[10], "flags", &sd->flags,
  6039. sizeof(int), 0644, proc_dointvec_minmax);
  6040. set_table_entry(&table[11], "name", sd->name,
  6041. CORENAME_MAX_SIZE, 0444, proc_dostring);
  6042. /* &table[12] is terminator */
  6043. return table;
  6044. }
  6045. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  6046. {
  6047. struct ctl_table *entry, *table;
  6048. struct sched_domain *sd;
  6049. int domain_num = 0, i;
  6050. char buf[32];
  6051. for_each_domain(cpu, sd)
  6052. domain_num++;
  6053. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  6054. if (table == NULL)
  6055. return NULL;
  6056. i = 0;
  6057. for_each_domain(cpu, sd) {
  6058. snprintf(buf, 32, "domain%d", i);
  6059. entry->procname = kstrdup(buf, GFP_KERNEL);
  6060. entry->mode = 0555;
  6061. entry->child = sd_alloc_ctl_domain_table(sd);
  6062. entry++;
  6063. i++;
  6064. }
  6065. return table;
  6066. }
  6067. static struct ctl_table_header *sd_sysctl_header;
  6068. static void register_sched_domain_sysctl(void)
  6069. {
  6070. int i, cpu_num = num_online_cpus();
  6071. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  6072. char buf[32];
  6073. WARN_ON(sd_ctl_dir[0].child);
  6074. sd_ctl_dir[0].child = entry;
  6075. if (entry == NULL)
  6076. return;
  6077. for_each_online_cpu(i) {
  6078. snprintf(buf, 32, "cpu%d", i);
  6079. entry->procname = kstrdup(buf, GFP_KERNEL);
  6080. entry->mode = 0555;
  6081. entry->child = sd_alloc_ctl_cpu_table(i);
  6082. entry++;
  6083. }
  6084. WARN_ON(sd_sysctl_header);
  6085. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  6086. }
  6087. /* may be called multiple times per register */
  6088. static void unregister_sched_domain_sysctl(void)
  6089. {
  6090. if (sd_sysctl_header)
  6091. unregister_sysctl_table(sd_sysctl_header);
  6092. sd_sysctl_header = NULL;
  6093. if (sd_ctl_dir[0].child)
  6094. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  6095. }
  6096. #else
  6097. static void register_sched_domain_sysctl(void)
  6098. {
  6099. }
  6100. static void unregister_sched_domain_sysctl(void)
  6101. {
  6102. }
  6103. #endif
  6104. static void set_rq_online(struct rq *rq)
  6105. {
  6106. if (!rq->online) {
  6107. const struct sched_class *class;
  6108. cpumask_set_cpu(rq->cpu, rq->rd->online);
  6109. rq->online = 1;
  6110. for_each_class(class) {
  6111. if (class->rq_online)
  6112. class->rq_online(rq);
  6113. }
  6114. }
  6115. }
  6116. static void set_rq_offline(struct rq *rq)
  6117. {
  6118. if (rq->online) {
  6119. const struct sched_class *class;
  6120. for_each_class(class) {
  6121. if (class->rq_offline)
  6122. class->rq_offline(rq);
  6123. }
  6124. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  6125. rq->online = 0;
  6126. }
  6127. }
  6128. /*
  6129. * migration_call - callback that gets triggered when a CPU is added.
  6130. * Here we can start up the necessary migration thread for the new CPU.
  6131. */
  6132. static int __cpuinit
  6133. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  6134. {
  6135. struct task_struct *p;
  6136. int cpu = (long)hcpu;
  6137. unsigned long flags;
  6138. struct rq *rq;
  6139. switch (action) {
  6140. case CPU_UP_PREPARE:
  6141. case CPU_UP_PREPARE_FROZEN:
  6142. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  6143. if (IS_ERR(p))
  6144. return NOTIFY_BAD;
  6145. kthread_bind(p, cpu);
  6146. /* Must be high prio: stop_machine expects to yield to it. */
  6147. rq = task_rq_lock(p, &flags);
  6148. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6149. task_rq_unlock(rq, &flags);
  6150. cpu_rq(cpu)->migration_thread = p;
  6151. break;
  6152. case CPU_ONLINE:
  6153. case CPU_ONLINE_FROZEN:
  6154. /* Strictly unnecessary, as first user will wake it. */
  6155. wake_up_process(cpu_rq(cpu)->migration_thread);
  6156. /* Update our root-domain */
  6157. rq = cpu_rq(cpu);
  6158. spin_lock_irqsave(&rq->lock, flags);
  6159. if (rq->rd) {
  6160. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6161. set_rq_online(rq);
  6162. }
  6163. spin_unlock_irqrestore(&rq->lock, flags);
  6164. break;
  6165. #ifdef CONFIG_HOTPLUG_CPU
  6166. case CPU_UP_CANCELED:
  6167. case CPU_UP_CANCELED_FROZEN:
  6168. if (!cpu_rq(cpu)->migration_thread)
  6169. break;
  6170. /* Unbind it from offline cpu so it can run. Fall thru. */
  6171. kthread_bind(cpu_rq(cpu)->migration_thread,
  6172. cpumask_any(cpu_online_mask));
  6173. kthread_stop(cpu_rq(cpu)->migration_thread);
  6174. cpu_rq(cpu)->migration_thread = NULL;
  6175. break;
  6176. case CPU_DEAD:
  6177. case CPU_DEAD_FROZEN:
  6178. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  6179. migrate_live_tasks(cpu);
  6180. rq = cpu_rq(cpu);
  6181. kthread_stop(rq->migration_thread);
  6182. rq->migration_thread = NULL;
  6183. /* Idle task back to normal (off runqueue, low prio) */
  6184. spin_lock_irq(&rq->lock);
  6185. update_rq_clock(rq);
  6186. deactivate_task(rq, rq->idle, 0);
  6187. rq->idle->static_prio = MAX_PRIO;
  6188. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  6189. rq->idle->sched_class = &idle_sched_class;
  6190. migrate_dead_tasks(cpu);
  6191. spin_unlock_irq(&rq->lock);
  6192. cpuset_unlock();
  6193. migrate_nr_uninterruptible(rq);
  6194. BUG_ON(rq->nr_running != 0);
  6195. /*
  6196. * No need to migrate the tasks: it was best-effort if
  6197. * they didn't take sched_hotcpu_mutex. Just wake up
  6198. * the requestors.
  6199. */
  6200. spin_lock_irq(&rq->lock);
  6201. while (!list_empty(&rq->migration_queue)) {
  6202. struct migration_req *req;
  6203. req = list_entry(rq->migration_queue.next,
  6204. struct migration_req, list);
  6205. list_del_init(&req->list);
  6206. spin_unlock_irq(&rq->lock);
  6207. complete(&req->done);
  6208. spin_lock_irq(&rq->lock);
  6209. }
  6210. spin_unlock_irq(&rq->lock);
  6211. break;
  6212. case CPU_DYING:
  6213. case CPU_DYING_FROZEN:
  6214. /* Update our root-domain */
  6215. rq = cpu_rq(cpu);
  6216. spin_lock_irqsave(&rq->lock, flags);
  6217. if (rq->rd) {
  6218. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6219. set_rq_offline(rq);
  6220. }
  6221. spin_unlock_irqrestore(&rq->lock, flags);
  6222. break;
  6223. #endif
  6224. }
  6225. return NOTIFY_OK;
  6226. }
  6227. /* Register at highest priority so that task migration (migrate_all_tasks)
  6228. * happens before everything else.
  6229. */
  6230. static struct notifier_block __cpuinitdata migration_notifier = {
  6231. .notifier_call = migration_call,
  6232. .priority = 10
  6233. };
  6234. static int __init migration_init(void)
  6235. {
  6236. void *cpu = (void *)(long)smp_processor_id();
  6237. int err;
  6238. /* Start one for the boot CPU: */
  6239. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  6240. BUG_ON(err == NOTIFY_BAD);
  6241. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  6242. register_cpu_notifier(&migration_notifier);
  6243. return err;
  6244. }
  6245. early_initcall(migration_init);
  6246. #endif
  6247. #ifdef CONFIG_SMP
  6248. #ifdef CONFIG_SCHED_DEBUG
  6249. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  6250. struct cpumask *groupmask)
  6251. {
  6252. struct sched_group *group = sd->groups;
  6253. char str[256];
  6254. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  6255. cpumask_clear(groupmask);
  6256. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  6257. if (!(sd->flags & SD_LOAD_BALANCE)) {
  6258. printk("does not load-balance\n");
  6259. if (sd->parent)
  6260. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  6261. " has parent");
  6262. return -1;
  6263. }
  6264. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  6265. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  6266. printk(KERN_ERR "ERROR: domain->span does not contain "
  6267. "CPU%d\n", cpu);
  6268. }
  6269. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  6270. printk(KERN_ERR "ERROR: domain->groups does not contain"
  6271. " CPU%d\n", cpu);
  6272. }
  6273. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  6274. do {
  6275. if (!group) {
  6276. printk("\n");
  6277. printk(KERN_ERR "ERROR: group is NULL\n");
  6278. break;
  6279. }
  6280. if (!group->__cpu_power) {
  6281. printk(KERN_CONT "\n");
  6282. printk(KERN_ERR "ERROR: domain->cpu_power not "
  6283. "set\n");
  6284. break;
  6285. }
  6286. if (!cpumask_weight(sched_group_cpus(group))) {
  6287. printk(KERN_CONT "\n");
  6288. printk(KERN_ERR "ERROR: empty group\n");
  6289. break;
  6290. }
  6291. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  6292. printk(KERN_CONT "\n");
  6293. printk(KERN_ERR "ERROR: repeated CPUs\n");
  6294. break;
  6295. }
  6296. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  6297. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  6298. printk(KERN_CONT " %s", str);
  6299. if (group->__cpu_power != SCHED_LOAD_SCALE) {
  6300. printk(KERN_CONT " (__cpu_power = %d)",
  6301. group->__cpu_power);
  6302. }
  6303. group = group->next;
  6304. } while (group != sd->groups);
  6305. printk(KERN_CONT "\n");
  6306. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  6307. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  6308. if (sd->parent &&
  6309. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  6310. printk(KERN_ERR "ERROR: parent span is not a superset "
  6311. "of domain->span\n");
  6312. return 0;
  6313. }
  6314. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  6315. {
  6316. cpumask_var_t groupmask;
  6317. int level = 0;
  6318. if (!sd) {
  6319. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  6320. return;
  6321. }
  6322. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  6323. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  6324. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  6325. return;
  6326. }
  6327. for (;;) {
  6328. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  6329. break;
  6330. level++;
  6331. sd = sd->parent;
  6332. if (!sd)
  6333. break;
  6334. }
  6335. free_cpumask_var(groupmask);
  6336. }
  6337. #else /* !CONFIG_SCHED_DEBUG */
  6338. # define sched_domain_debug(sd, cpu) do { } while (0)
  6339. #endif /* CONFIG_SCHED_DEBUG */
  6340. static int sd_degenerate(struct sched_domain *sd)
  6341. {
  6342. if (cpumask_weight(sched_domain_span(sd)) == 1)
  6343. return 1;
  6344. /* Following flags need at least 2 groups */
  6345. if (sd->flags & (SD_LOAD_BALANCE |
  6346. SD_BALANCE_NEWIDLE |
  6347. SD_BALANCE_FORK |
  6348. SD_BALANCE_EXEC |
  6349. SD_SHARE_CPUPOWER |
  6350. SD_SHARE_PKG_RESOURCES)) {
  6351. if (sd->groups != sd->groups->next)
  6352. return 0;
  6353. }
  6354. /* Following flags don't use groups */
  6355. if (sd->flags & (SD_WAKE_IDLE |
  6356. SD_WAKE_AFFINE |
  6357. SD_WAKE_BALANCE))
  6358. return 0;
  6359. return 1;
  6360. }
  6361. static int
  6362. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  6363. {
  6364. unsigned long cflags = sd->flags, pflags = parent->flags;
  6365. if (sd_degenerate(parent))
  6366. return 1;
  6367. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  6368. return 0;
  6369. /* Does parent contain flags not in child? */
  6370. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  6371. if (cflags & SD_WAKE_AFFINE)
  6372. pflags &= ~SD_WAKE_BALANCE;
  6373. /* Flags needing groups don't count if only 1 group in parent */
  6374. if (parent->groups == parent->groups->next) {
  6375. pflags &= ~(SD_LOAD_BALANCE |
  6376. SD_BALANCE_NEWIDLE |
  6377. SD_BALANCE_FORK |
  6378. SD_BALANCE_EXEC |
  6379. SD_SHARE_CPUPOWER |
  6380. SD_SHARE_PKG_RESOURCES);
  6381. if (nr_node_ids == 1)
  6382. pflags &= ~SD_SERIALIZE;
  6383. }
  6384. if (~cflags & pflags)
  6385. return 0;
  6386. return 1;
  6387. }
  6388. static void free_rootdomain(struct root_domain *rd)
  6389. {
  6390. cpupri_cleanup(&rd->cpupri);
  6391. free_cpumask_var(rd->rto_mask);
  6392. free_cpumask_var(rd->online);
  6393. free_cpumask_var(rd->span);
  6394. kfree(rd);
  6395. }
  6396. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  6397. {
  6398. struct root_domain *old_rd = NULL;
  6399. unsigned long flags;
  6400. spin_lock_irqsave(&rq->lock, flags);
  6401. if (rq->rd) {
  6402. old_rd = rq->rd;
  6403. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  6404. set_rq_offline(rq);
  6405. cpumask_clear_cpu(rq->cpu, old_rd->span);
  6406. /*
  6407. * If we dont want to free the old_rt yet then
  6408. * set old_rd to NULL to skip the freeing later
  6409. * in this function:
  6410. */
  6411. if (!atomic_dec_and_test(&old_rd->refcount))
  6412. old_rd = NULL;
  6413. }
  6414. atomic_inc(&rd->refcount);
  6415. rq->rd = rd;
  6416. cpumask_set_cpu(rq->cpu, rd->span);
  6417. if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
  6418. set_rq_online(rq);
  6419. spin_unlock_irqrestore(&rq->lock, flags);
  6420. if (old_rd)
  6421. free_rootdomain(old_rd);
  6422. }
  6423. static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
  6424. {
  6425. memset(rd, 0, sizeof(*rd));
  6426. if (bootmem) {
  6427. alloc_bootmem_cpumask_var(&def_root_domain.span);
  6428. alloc_bootmem_cpumask_var(&def_root_domain.online);
  6429. alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
  6430. cpupri_init(&rd->cpupri, true);
  6431. return 0;
  6432. }
  6433. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  6434. goto out;
  6435. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  6436. goto free_span;
  6437. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  6438. goto free_online;
  6439. if (cpupri_init(&rd->cpupri, false) != 0)
  6440. goto free_rto_mask;
  6441. return 0;
  6442. free_rto_mask:
  6443. free_cpumask_var(rd->rto_mask);
  6444. free_online:
  6445. free_cpumask_var(rd->online);
  6446. free_span:
  6447. free_cpumask_var(rd->span);
  6448. out:
  6449. return -ENOMEM;
  6450. }
  6451. static void init_defrootdomain(void)
  6452. {
  6453. init_rootdomain(&def_root_domain, true);
  6454. atomic_set(&def_root_domain.refcount, 1);
  6455. }
  6456. static struct root_domain *alloc_rootdomain(void)
  6457. {
  6458. struct root_domain *rd;
  6459. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  6460. if (!rd)
  6461. return NULL;
  6462. if (init_rootdomain(rd, false) != 0) {
  6463. kfree(rd);
  6464. return NULL;
  6465. }
  6466. return rd;
  6467. }
  6468. /*
  6469. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  6470. * hold the hotplug lock.
  6471. */
  6472. static void
  6473. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  6474. {
  6475. struct rq *rq = cpu_rq(cpu);
  6476. struct sched_domain *tmp;
  6477. /* Remove the sched domains which do not contribute to scheduling. */
  6478. for (tmp = sd; tmp; ) {
  6479. struct sched_domain *parent = tmp->parent;
  6480. if (!parent)
  6481. break;
  6482. if (sd_parent_degenerate(tmp, parent)) {
  6483. tmp->parent = parent->parent;
  6484. if (parent->parent)
  6485. parent->parent->child = tmp;
  6486. } else
  6487. tmp = tmp->parent;
  6488. }
  6489. if (sd && sd_degenerate(sd)) {
  6490. sd = sd->parent;
  6491. if (sd)
  6492. sd->child = NULL;
  6493. }
  6494. sched_domain_debug(sd, cpu);
  6495. rq_attach_root(rq, rd);
  6496. rcu_assign_pointer(rq->sd, sd);
  6497. }
  6498. /* cpus with isolated domains */
  6499. static cpumask_var_t cpu_isolated_map;
  6500. /* Setup the mask of cpus configured for isolated domains */
  6501. static int __init isolated_cpu_setup(char *str)
  6502. {
  6503. cpulist_parse(str, cpu_isolated_map);
  6504. return 1;
  6505. }
  6506. __setup("isolcpus=", isolated_cpu_setup);
  6507. /*
  6508. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  6509. * to a function which identifies what group(along with sched group) a CPU
  6510. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  6511. * (due to the fact that we keep track of groups covered with a struct cpumask).
  6512. *
  6513. * init_sched_build_groups will build a circular linked list of the groups
  6514. * covered by the given span, and will set each group's ->cpumask correctly,
  6515. * and ->cpu_power to 0.
  6516. */
  6517. static void
  6518. init_sched_build_groups(const struct cpumask *span,
  6519. const struct cpumask *cpu_map,
  6520. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  6521. struct sched_group **sg,
  6522. struct cpumask *tmpmask),
  6523. struct cpumask *covered, struct cpumask *tmpmask)
  6524. {
  6525. struct sched_group *first = NULL, *last = NULL;
  6526. int i;
  6527. cpumask_clear(covered);
  6528. for_each_cpu(i, span) {
  6529. struct sched_group *sg;
  6530. int group = group_fn(i, cpu_map, &sg, tmpmask);
  6531. int j;
  6532. if (cpumask_test_cpu(i, covered))
  6533. continue;
  6534. cpumask_clear(sched_group_cpus(sg));
  6535. sg->__cpu_power = 0;
  6536. for_each_cpu(j, span) {
  6537. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  6538. continue;
  6539. cpumask_set_cpu(j, covered);
  6540. cpumask_set_cpu(j, sched_group_cpus(sg));
  6541. }
  6542. if (!first)
  6543. first = sg;
  6544. if (last)
  6545. last->next = sg;
  6546. last = sg;
  6547. }
  6548. last->next = first;
  6549. }
  6550. #define SD_NODES_PER_DOMAIN 16
  6551. #ifdef CONFIG_NUMA
  6552. /**
  6553. * find_next_best_node - find the next node to include in a sched_domain
  6554. * @node: node whose sched_domain we're building
  6555. * @used_nodes: nodes already in the sched_domain
  6556. *
  6557. * Find the next node to include in a given scheduling domain. Simply
  6558. * finds the closest node not already in the @used_nodes map.
  6559. *
  6560. * Should use nodemask_t.
  6561. */
  6562. static int find_next_best_node(int node, nodemask_t *used_nodes)
  6563. {
  6564. int i, n, val, min_val, best_node = 0;
  6565. min_val = INT_MAX;
  6566. for (i = 0; i < nr_node_ids; i++) {
  6567. /* Start at @node */
  6568. n = (node + i) % nr_node_ids;
  6569. if (!nr_cpus_node(n))
  6570. continue;
  6571. /* Skip already used nodes */
  6572. if (node_isset(n, *used_nodes))
  6573. continue;
  6574. /* Simple min distance search */
  6575. val = node_distance(node, n);
  6576. if (val < min_val) {
  6577. min_val = val;
  6578. best_node = n;
  6579. }
  6580. }
  6581. node_set(best_node, *used_nodes);
  6582. return best_node;
  6583. }
  6584. /**
  6585. * sched_domain_node_span - get a cpumask for a node's sched_domain
  6586. * @node: node whose cpumask we're constructing
  6587. * @span: resulting cpumask
  6588. *
  6589. * Given a node, construct a good cpumask for its sched_domain to span. It
  6590. * should be one that prevents unnecessary balancing, but also spreads tasks
  6591. * out optimally.
  6592. */
  6593. static void sched_domain_node_span(int node, struct cpumask *span)
  6594. {
  6595. nodemask_t used_nodes;
  6596. int i;
  6597. cpumask_clear(span);
  6598. nodes_clear(used_nodes);
  6599. cpumask_or(span, span, cpumask_of_node(node));
  6600. node_set(node, used_nodes);
  6601. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  6602. int next_node = find_next_best_node(node, &used_nodes);
  6603. cpumask_or(span, span, cpumask_of_node(next_node));
  6604. }
  6605. }
  6606. #endif /* CONFIG_NUMA */
  6607. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  6608. /*
  6609. * The cpus mask in sched_group and sched_domain hangs off the end.
  6610. * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
  6611. * for nr_cpu_ids < CONFIG_NR_CPUS.
  6612. */
  6613. struct static_sched_group {
  6614. struct sched_group sg;
  6615. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  6616. };
  6617. struct static_sched_domain {
  6618. struct sched_domain sd;
  6619. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  6620. };
  6621. /*
  6622. * SMT sched-domains:
  6623. */
  6624. #ifdef CONFIG_SCHED_SMT
  6625. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  6626. static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
  6627. static int
  6628. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  6629. struct sched_group **sg, struct cpumask *unused)
  6630. {
  6631. if (sg)
  6632. *sg = &per_cpu(sched_group_cpus, cpu).sg;
  6633. return cpu;
  6634. }
  6635. #endif /* CONFIG_SCHED_SMT */
  6636. /*
  6637. * multi-core sched-domains:
  6638. */
  6639. #ifdef CONFIG_SCHED_MC
  6640. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  6641. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  6642. #endif /* CONFIG_SCHED_MC */
  6643. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  6644. static int
  6645. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  6646. struct sched_group **sg, struct cpumask *mask)
  6647. {
  6648. int group;
  6649. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  6650. group = cpumask_first(mask);
  6651. if (sg)
  6652. *sg = &per_cpu(sched_group_core, group).sg;
  6653. return group;
  6654. }
  6655. #elif defined(CONFIG_SCHED_MC)
  6656. static int
  6657. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  6658. struct sched_group **sg, struct cpumask *unused)
  6659. {
  6660. if (sg)
  6661. *sg = &per_cpu(sched_group_core, cpu).sg;
  6662. return cpu;
  6663. }
  6664. #endif
  6665. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  6666. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  6667. static int
  6668. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  6669. struct sched_group **sg, struct cpumask *mask)
  6670. {
  6671. int group;
  6672. #ifdef CONFIG_SCHED_MC
  6673. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  6674. group = cpumask_first(mask);
  6675. #elif defined(CONFIG_SCHED_SMT)
  6676. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  6677. group = cpumask_first(mask);
  6678. #else
  6679. group = cpu;
  6680. #endif
  6681. if (sg)
  6682. *sg = &per_cpu(sched_group_phys, group).sg;
  6683. return group;
  6684. }
  6685. #ifdef CONFIG_NUMA
  6686. /*
  6687. * The init_sched_build_groups can't handle what we want to do with node
  6688. * groups, so roll our own. Now each node has its own list of groups which
  6689. * gets dynamically allocated.
  6690. */
  6691. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  6692. static struct sched_group ***sched_group_nodes_bycpu;
  6693. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  6694. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  6695. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  6696. struct sched_group **sg,
  6697. struct cpumask *nodemask)
  6698. {
  6699. int group;
  6700. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  6701. group = cpumask_first(nodemask);
  6702. if (sg)
  6703. *sg = &per_cpu(sched_group_allnodes, group).sg;
  6704. return group;
  6705. }
  6706. static void init_numa_sched_groups_power(struct sched_group *group_head)
  6707. {
  6708. struct sched_group *sg = group_head;
  6709. int j;
  6710. if (!sg)
  6711. return;
  6712. do {
  6713. for_each_cpu(j, sched_group_cpus(sg)) {
  6714. struct sched_domain *sd;
  6715. sd = &per_cpu(phys_domains, j).sd;
  6716. if (j != cpumask_first(sched_group_cpus(sd->groups))) {
  6717. /*
  6718. * Only add "power" once for each
  6719. * physical package.
  6720. */
  6721. continue;
  6722. }
  6723. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  6724. }
  6725. sg = sg->next;
  6726. } while (sg != group_head);
  6727. }
  6728. #endif /* CONFIG_NUMA */
  6729. #ifdef CONFIG_NUMA
  6730. /* Free memory allocated for various sched_group structures */
  6731. static void free_sched_groups(const struct cpumask *cpu_map,
  6732. struct cpumask *nodemask)
  6733. {
  6734. int cpu, i;
  6735. for_each_cpu(cpu, cpu_map) {
  6736. struct sched_group **sched_group_nodes
  6737. = sched_group_nodes_bycpu[cpu];
  6738. if (!sched_group_nodes)
  6739. continue;
  6740. for (i = 0; i < nr_node_ids; i++) {
  6741. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  6742. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  6743. if (cpumask_empty(nodemask))
  6744. continue;
  6745. if (sg == NULL)
  6746. continue;
  6747. sg = sg->next;
  6748. next_sg:
  6749. oldsg = sg;
  6750. sg = sg->next;
  6751. kfree(oldsg);
  6752. if (oldsg != sched_group_nodes[i])
  6753. goto next_sg;
  6754. }
  6755. kfree(sched_group_nodes);
  6756. sched_group_nodes_bycpu[cpu] = NULL;
  6757. }
  6758. }
  6759. #else /* !CONFIG_NUMA */
  6760. static void free_sched_groups(const struct cpumask *cpu_map,
  6761. struct cpumask *nodemask)
  6762. {
  6763. }
  6764. #endif /* CONFIG_NUMA */
  6765. /*
  6766. * Initialize sched groups cpu_power.
  6767. *
  6768. * cpu_power indicates the capacity of sched group, which is used while
  6769. * distributing the load between different sched groups in a sched domain.
  6770. * Typically cpu_power for all the groups in a sched domain will be same unless
  6771. * there are asymmetries in the topology. If there are asymmetries, group
  6772. * having more cpu_power will pickup more load compared to the group having
  6773. * less cpu_power.
  6774. *
  6775. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  6776. * the maximum number of tasks a group can handle in the presence of other idle
  6777. * or lightly loaded groups in the same sched domain.
  6778. */
  6779. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6780. {
  6781. struct sched_domain *child;
  6782. struct sched_group *group;
  6783. WARN_ON(!sd || !sd->groups);
  6784. if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
  6785. return;
  6786. child = sd->child;
  6787. sd->groups->__cpu_power = 0;
  6788. /*
  6789. * For perf policy, if the groups in child domain share resources
  6790. * (for example cores sharing some portions of the cache hierarchy
  6791. * or SMT), then set this domain groups cpu_power such that each group
  6792. * can handle only one task, when there are other idle groups in the
  6793. * same sched domain.
  6794. */
  6795. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  6796. (child->flags &
  6797. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  6798. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  6799. return;
  6800. }
  6801. /*
  6802. * add cpu_power of each child group to this groups cpu_power
  6803. */
  6804. group = child->groups;
  6805. do {
  6806. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  6807. group = group->next;
  6808. } while (group != child->groups);
  6809. }
  6810. /*
  6811. * Initializers for schedule domains
  6812. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6813. */
  6814. #ifdef CONFIG_SCHED_DEBUG
  6815. # define SD_INIT_NAME(sd, type) sd->name = #type
  6816. #else
  6817. # define SD_INIT_NAME(sd, type) do { } while (0)
  6818. #endif
  6819. #define SD_INIT(sd, type) sd_init_##type(sd)
  6820. #define SD_INIT_FUNC(type) \
  6821. static noinline void sd_init_##type(struct sched_domain *sd) \
  6822. { \
  6823. memset(sd, 0, sizeof(*sd)); \
  6824. *sd = SD_##type##_INIT; \
  6825. sd->level = SD_LV_##type; \
  6826. SD_INIT_NAME(sd, type); \
  6827. }
  6828. SD_INIT_FUNC(CPU)
  6829. #ifdef CONFIG_NUMA
  6830. SD_INIT_FUNC(ALLNODES)
  6831. SD_INIT_FUNC(NODE)
  6832. #endif
  6833. #ifdef CONFIG_SCHED_SMT
  6834. SD_INIT_FUNC(SIBLING)
  6835. #endif
  6836. #ifdef CONFIG_SCHED_MC
  6837. SD_INIT_FUNC(MC)
  6838. #endif
  6839. static int default_relax_domain_level = -1;
  6840. static int __init setup_relax_domain_level(char *str)
  6841. {
  6842. unsigned long val;
  6843. val = simple_strtoul(str, NULL, 0);
  6844. if (val < SD_LV_MAX)
  6845. default_relax_domain_level = val;
  6846. return 1;
  6847. }
  6848. __setup("relax_domain_level=", setup_relax_domain_level);
  6849. static void set_domain_attribute(struct sched_domain *sd,
  6850. struct sched_domain_attr *attr)
  6851. {
  6852. int request;
  6853. if (!attr || attr->relax_domain_level < 0) {
  6854. if (default_relax_domain_level < 0)
  6855. return;
  6856. else
  6857. request = default_relax_domain_level;
  6858. } else
  6859. request = attr->relax_domain_level;
  6860. if (request < sd->level) {
  6861. /* turn off idle balance on this domain */
  6862. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  6863. } else {
  6864. /* turn on idle balance on this domain */
  6865. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  6866. }
  6867. }
  6868. /*
  6869. * Build sched domains for a given set of cpus and attach the sched domains
  6870. * to the individual cpus
  6871. */
  6872. static int __build_sched_domains(const struct cpumask *cpu_map,
  6873. struct sched_domain_attr *attr)
  6874. {
  6875. int i, err = -ENOMEM;
  6876. struct root_domain *rd;
  6877. cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
  6878. tmpmask;
  6879. #ifdef CONFIG_NUMA
  6880. cpumask_var_t domainspan, covered, notcovered;
  6881. struct sched_group **sched_group_nodes = NULL;
  6882. int sd_allnodes = 0;
  6883. if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
  6884. goto out;
  6885. if (!alloc_cpumask_var(&covered, GFP_KERNEL))
  6886. goto free_domainspan;
  6887. if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
  6888. goto free_covered;
  6889. #endif
  6890. if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
  6891. goto free_notcovered;
  6892. if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
  6893. goto free_nodemask;
  6894. if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
  6895. goto free_this_sibling_map;
  6896. if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
  6897. goto free_this_core_map;
  6898. if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
  6899. goto free_send_covered;
  6900. #ifdef CONFIG_NUMA
  6901. /*
  6902. * Allocate the per-node list of sched groups
  6903. */
  6904. sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
  6905. GFP_KERNEL);
  6906. if (!sched_group_nodes) {
  6907. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6908. goto free_tmpmask;
  6909. }
  6910. #endif
  6911. rd = alloc_rootdomain();
  6912. if (!rd) {
  6913. printk(KERN_WARNING "Cannot alloc root domain\n");
  6914. goto free_sched_groups;
  6915. }
  6916. #ifdef CONFIG_NUMA
  6917. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
  6918. #endif
  6919. /*
  6920. * Set up domains for cpus specified by the cpu_map.
  6921. */
  6922. for_each_cpu(i, cpu_map) {
  6923. struct sched_domain *sd = NULL, *p;
  6924. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
  6925. #ifdef CONFIG_NUMA
  6926. if (cpumask_weight(cpu_map) >
  6927. SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
  6928. sd = &per_cpu(allnodes_domains, i).sd;
  6929. SD_INIT(sd, ALLNODES);
  6930. set_domain_attribute(sd, attr);
  6931. cpumask_copy(sched_domain_span(sd), cpu_map);
  6932. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  6933. p = sd;
  6934. sd_allnodes = 1;
  6935. } else
  6936. p = NULL;
  6937. sd = &per_cpu(node_domains, i).sd;
  6938. SD_INIT(sd, NODE);
  6939. set_domain_attribute(sd, attr);
  6940. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  6941. sd->parent = p;
  6942. if (p)
  6943. p->child = sd;
  6944. cpumask_and(sched_domain_span(sd),
  6945. sched_domain_span(sd), cpu_map);
  6946. #endif
  6947. p = sd;
  6948. sd = &per_cpu(phys_domains, i).sd;
  6949. SD_INIT(sd, CPU);
  6950. set_domain_attribute(sd, attr);
  6951. cpumask_copy(sched_domain_span(sd), nodemask);
  6952. sd->parent = p;
  6953. if (p)
  6954. p->child = sd;
  6955. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  6956. #ifdef CONFIG_SCHED_MC
  6957. p = sd;
  6958. sd = &per_cpu(core_domains, i).sd;
  6959. SD_INIT(sd, MC);
  6960. set_domain_attribute(sd, attr);
  6961. cpumask_and(sched_domain_span(sd), cpu_map,
  6962. cpu_coregroup_mask(i));
  6963. sd->parent = p;
  6964. p->child = sd;
  6965. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  6966. #endif
  6967. #ifdef CONFIG_SCHED_SMT
  6968. p = sd;
  6969. sd = &per_cpu(cpu_domains, i).sd;
  6970. SD_INIT(sd, SIBLING);
  6971. set_domain_attribute(sd, attr);
  6972. cpumask_and(sched_domain_span(sd),
  6973. topology_thread_cpumask(i), cpu_map);
  6974. sd->parent = p;
  6975. p->child = sd;
  6976. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  6977. #endif
  6978. }
  6979. #ifdef CONFIG_SCHED_SMT
  6980. /* Set up CPU (sibling) groups */
  6981. for_each_cpu(i, cpu_map) {
  6982. cpumask_and(this_sibling_map,
  6983. topology_thread_cpumask(i), cpu_map);
  6984. if (i != cpumask_first(this_sibling_map))
  6985. continue;
  6986. init_sched_build_groups(this_sibling_map, cpu_map,
  6987. &cpu_to_cpu_group,
  6988. send_covered, tmpmask);
  6989. }
  6990. #endif
  6991. #ifdef CONFIG_SCHED_MC
  6992. /* Set up multi-core groups */
  6993. for_each_cpu(i, cpu_map) {
  6994. cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
  6995. if (i != cpumask_first(this_core_map))
  6996. continue;
  6997. init_sched_build_groups(this_core_map, cpu_map,
  6998. &cpu_to_core_group,
  6999. send_covered, tmpmask);
  7000. }
  7001. #endif
  7002. /* Set up physical groups */
  7003. for (i = 0; i < nr_node_ids; i++) {
  7004. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  7005. if (cpumask_empty(nodemask))
  7006. continue;
  7007. init_sched_build_groups(nodemask, cpu_map,
  7008. &cpu_to_phys_group,
  7009. send_covered, tmpmask);
  7010. }
  7011. #ifdef CONFIG_NUMA
  7012. /* Set up node groups */
  7013. if (sd_allnodes) {
  7014. init_sched_build_groups(cpu_map, cpu_map,
  7015. &cpu_to_allnodes_group,
  7016. send_covered, tmpmask);
  7017. }
  7018. for (i = 0; i < nr_node_ids; i++) {
  7019. /* Set up node groups */
  7020. struct sched_group *sg, *prev;
  7021. int j;
  7022. cpumask_clear(covered);
  7023. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  7024. if (cpumask_empty(nodemask)) {
  7025. sched_group_nodes[i] = NULL;
  7026. continue;
  7027. }
  7028. sched_domain_node_span(i, domainspan);
  7029. cpumask_and(domainspan, domainspan, cpu_map);
  7030. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  7031. GFP_KERNEL, i);
  7032. if (!sg) {
  7033. printk(KERN_WARNING "Can not alloc domain group for "
  7034. "node %d\n", i);
  7035. goto error;
  7036. }
  7037. sched_group_nodes[i] = sg;
  7038. for_each_cpu(j, nodemask) {
  7039. struct sched_domain *sd;
  7040. sd = &per_cpu(node_domains, j).sd;
  7041. sd->groups = sg;
  7042. }
  7043. sg->__cpu_power = 0;
  7044. cpumask_copy(sched_group_cpus(sg), nodemask);
  7045. sg->next = sg;
  7046. cpumask_or(covered, covered, nodemask);
  7047. prev = sg;
  7048. for (j = 0; j < nr_node_ids; j++) {
  7049. int n = (i + j) % nr_node_ids;
  7050. cpumask_complement(notcovered, covered);
  7051. cpumask_and(tmpmask, notcovered, cpu_map);
  7052. cpumask_and(tmpmask, tmpmask, domainspan);
  7053. if (cpumask_empty(tmpmask))
  7054. break;
  7055. cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
  7056. if (cpumask_empty(tmpmask))
  7057. continue;
  7058. sg = kmalloc_node(sizeof(struct sched_group) +
  7059. cpumask_size(),
  7060. GFP_KERNEL, i);
  7061. if (!sg) {
  7062. printk(KERN_WARNING
  7063. "Can not alloc domain group for node %d\n", j);
  7064. goto error;
  7065. }
  7066. sg->__cpu_power = 0;
  7067. cpumask_copy(sched_group_cpus(sg), tmpmask);
  7068. sg->next = prev->next;
  7069. cpumask_or(covered, covered, tmpmask);
  7070. prev->next = sg;
  7071. prev = sg;
  7072. }
  7073. }
  7074. #endif
  7075. /* Calculate CPU power for physical packages and nodes */
  7076. #ifdef CONFIG_SCHED_SMT
  7077. for_each_cpu(i, cpu_map) {
  7078. struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
  7079. init_sched_groups_power(i, sd);
  7080. }
  7081. #endif
  7082. #ifdef CONFIG_SCHED_MC
  7083. for_each_cpu(i, cpu_map) {
  7084. struct sched_domain *sd = &per_cpu(core_domains, i).sd;
  7085. init_sched_groups_power(i, sd);
  7086. }
  7087. #endif
  7088. for_each_cpu(i, cpu_map) {
  7089. struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
  7090. init_sched_groups_power(i, sd);
  7091. }
  7092. #ifdef CONFIG_NUMA
  7093. for (i = 0; i < nr_node_ids; i++)
  7094. init_numa_sched_groups_power(sched_group_nodes[i]);
  7095. if (sd_allnodes) {
  7096. struct sched_group *sg;
  7097. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  7098. tmpmask);
  7099. init_numa_sched_groups_power(sg);
  7100. }
  7101. #endif
  7102. /* Attach the domains */
  7103. for_each_cpu(i, cpu_map) {
  7104. struct sched_domain *sd;
  7105. #ifdef CONFIG_SCHED_SMT
  7106. sd = &per_cpu(cpu_domains, i).sd;
  7107. #elif defined(CONFIG_SCHED_MC)
  7108. sd = &per_cpu(core_domains, i).sd;
  7109. #else
  7110. sd = &per_cpu(phys_domains, i).sd;
  7111. #endif
  7112. cpu_attach_domain(sd, rd, i);
  7113. }
  7114. err = 0;
  7115. free_tmpmask:
  7116. free_cpumask_var(tmpmask);
  7117. free_send_covered:
  7118. free_cpumask_var(send_covered);
  7119. free_this_core_map:
  7120. free_cpumask_var(this_core_map);
  7121. free_this_sibling_map:
  7122. free_cpumask_var(this_sibling_map);
  7123. free_nodemask:
  7124. free_cpumask_var(nodemask);
  7125. free_notcovered:
  7126. #ifdef CONFIG_NUMA
  7127. free_cpumask_var(notcovered);
  7128. free_covered:
  7129. free_cpumask_var(covered);
  7130. free_domainspan:
  7131. free_cpumask_var(domainspan);
  7132. out:
  7133. #endif
  7134. return err;
  7135. free_sched_groups:
  7136. #ifdef CONFIG_NUMA
  7137. kfree(sched_group_nodes);
  7138. #endif
  7139. goto free_tmpmask;
  7140. #ifdef CONFIG_NUMA
  7141. error:
  7142. free_sched_groups(cpu_map, tmpmask);
  7143. free_rootdomain(rd);
  7144. goto free_tmpmask;
  7145. #endif
  7146. }
  7147. static int build_sched_domains(const struct cpumask *cpu_map)
  7148. {
  7149. return __build_sched_domains(cpu_map, NULL);
  7150. }
  7151. static struct cpumask *doms_cur; /* current sched domains */
  7152. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  7153. static struct sched_domain_attr *dattr_cur;
  7154. /* attribues of custom domains in 'doms_cur' */
  7155. /*
  7156. * Special case: If a kmalloc of a doms_cur partition (array of
  7157. * cpumask) fails, then fallback to a single sched domain,
  7158. * as determined by the single cpumask fallback_doms.
  7159. */
  7160. static cpumask_var_t fallback_doms;
  7161. /*
  7162. * arch_update_cpu_topology lets virtualized architectures update the
  7163. * cpu core maps. It is supposed to return 1 if the topology changed
  7164. * or 0 if it stayed the same.
  7165. */
  7166. int __attribute__((weak)) arch_update_cpu_topology(void)
  7167. {
  7168. return 0;
  7169. }
  7170. /*
  7171. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  7172. * For now this just excludes isolated cpus, but could be used to
  7173. * exclude other special cases in the future.
  7174. */
  7175. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  7176. {
  7177. int err;
  7178. arch_update_cpu_topology();
  7179. ndoms_cur = 1;
  7180. doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
  7181. if (!doms_cur)
  7182. doms_cur = fallback_doms;
  7183. cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
  7184. dattr_cur = NULL;
  7185. err = build_sched_domains(doms_cur);
  7186. register_sched_domain_sysctl();
  7187. return err;
  7188. }
  7189. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  7190. struct cpumask *tmpmask)
  7191. {
  7192. free_sched_groups(cpu_map, tmpmask);
  7193. }
  7194. /*
  7195. * Detach sched domains from a group of cpus specified in cpu_map
  7196. * These cpus will now be attached to the NULL domain
  7197. */
  7198. static void detach_destroy_domains(const struct cpumask *cpu_map)
  7199. {
  7200. /* Save because hotplug lock held. */
  7201. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  7202. int i;
  7203. for_each_cpu(i, cpu_map)
  7204. cpu_attach_domain(NULL, &def_root_domain, i);
  7205. synchronize_sched();
  7206. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  7207. }
  7208. /* handle null as "default" */
  7209. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  7210. struct sched_domain_attr *new, int idx_new)
  7211. {
  7212. struct sched_domain_attr tmp;
  7213. /* fast path */
  7214. if (!new && !cur)
  7215. return 1;
  7216. tmp = SD_ATTR_INIT;
  7217. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  7218. new ? (new + idx_new) : &tmp,
  7219. sizeof(struct sched_domain_attr));
  7220. }
  7221. /*
  7222. * Partition sched domains as specified by the 'ndoms_new'
  7223. * cpumasks in the array doms_new[] of cpumasks. This compares
  7224. * doms_new[] to the current sched domain partitioning, doms_cur[].
  7225. * It destroys each deleted domain and builds each new domain.
  7226. *
  7227. * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
  7228. * The masks don't intersect (don't overlap.) We should setup one
  7229. * sched domain for each mask. CPUs not in any of the cpumasks will
  7230. * not be load balanced. If the same cpumask appears both in the
  7231. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  7232. * it as it is.
  7233. *
  7234. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  7235. * ownership of it and will kfree it when done with it. If the caller
  7236. * failed the kmalloc call, then it can pass in doms_new == NULL &&
  7237. * ndoms_new == 1, and partition_sched_domains() will fallback to
  7238. * the single partition 'fallback_doms', it also forces the domains
  7239. * to be rebuilt.
  7240. *
  7241. * If doms_new == NULL it will be replaced with cpu_online_mask.
  7242. * ndoms_new == 0 is a special case for destroying existing domains,
  7243. * and it will not create the default domain.
  7244. *
  7245. * Call with hotplug lock held
  7246. */
  7247. /* FIXME: Change to struct cpumask *doms_new[] */
  7248. void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
  7249. struct sched_domain_attr *dattr_new)
  7250. {
  7251. int i, j, n;
  7252. int new_topology;
  7253. mutex_lock(&sched_domains_mutex);
  7254. /* always unregister in case we don't destroy any domains */
  7255. unregister_sched_domain_sysctl();
  7256. /* Let architecture update cpu core mappings. */
  7257. new_topology = arch_update_cpu_topology();
  7258. n = doms_new ? ndoms_new : 0;
  7259. /* Destroy deleted domains */
  7260. for (i = 0; i < ndoms_cur; i++) {
  7261. for (j = 0; j < n && !new_topology; j++) {
  7262. if (cpumask_equal(&doms_cur[i], &doms_new[j])
  7263. && dattrs_equal(dattr_cur, i, dattr_new, j))
  7264. goto match1;
  7265. }
  7266. /* no match - a current sched domain not in new doms_new[] */
  7267. detach_destroy_domains(doms_cur + i);
  7268. match1:
  7269. ;
  7270. }
  7271. if (doms_new == NULL) {
  7272. ndoms_cur = 0;
  7273. doms_new = fallback_doms;
  7274. cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
  7275. WARN_ON_ONCE(dattr_new);
  7276. }
  7277. /* Build new domains */
  7278. for (i = 0; i < ndoms_new; i++) {
  7279. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  7280. if (cpumask_equal(&doms_new[i], &doms_cur[j])
  7281. && dattrs_equal(dattr_new, i, dattr_cur, j))
  7282. goto match2;
  7283. }
  7284. /* no match - add a new doms_new */
  7285. __build_sched_domains(doms_new + i,
  7286. dattr_new ? dattr_new + i : NULL);
  7287. match2:
  7288. ;
  7289. }
  7290. /* Remember the new sched domains */
  7291. if (doms_cur != fallback_doms)
  7292. kfree(doms_cur);
  7293. kfree(dattr_cur); /* kfree(NULL) is safe */
  7294. doms_cur = doms_new;
  7295. dattr_cur = dattr_new;
  7296. ndoms_cur = ndoms_new;
  7297. register_sched_domain_sysctl();
  7298. mutex_unlock(&sched_domains_mutex);
  7299. }
  7300. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  7301. static void arch_reinit_sched_domains(void)
  7302. {
  7303. get_online_cpus();
  7304. /* Destroy domains first to force the rebuild */
  7305. partition_sched_domains(0, NULL, NULL);
  7306. rebuild_sched_domains();
  7307. put_online_cpus();
  7308. }
  7309. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  7310. {
  7311. unsigned int level = 0;
  7312. if (sscanf(buf, "%u", &level) != 1)
  7313. return -EINVAL;
  7314. /*
  7315. * level is always be positive so don't check for
  7316. * level < POWERSAVINGS_BALANCE_NONE which is 0
  7317. * What happens on 0 or 1 byte write,
  7318. * need to check for count as well?
  7319. */
  7320. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  7321. return -EINVAL;
  7322. if (smt)
  7323. sched_smt_power_savings = level;
  7324. else
  7325. sched_mc_power_savings = level;
  7326. arch_reinit_sched_domains();
  7327. return count;
  7328. }
  7329. #ifdef CONFIG_SCHED_MC
  7330. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  7331. char *page)
  7332. {
  7333. return sprintf(page, "%u\n", sched_mc_power_savings);
  7334. }
  7335. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  7336. const char *buf, size_t count)
  7337. {
  7338. return sched_power_savings_store(buf, count, 0);
  7339. }
  7340. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  7341. sched_mc_power_savings_show,
  7342. sched_mc_power_savings_store);
  7343. #endif
  7344. #ifdef CONFIG_SCHED_SMT
  7345. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  7346. char *page)
  7347. {
  7348. return sprintf(page, "%u\n", sched_smt_power_savings);
  7349. }
  7350. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  7351. const char *buf, size_t count)
  7352. {
  7353. return sched_power_savings_store(buf, count, 1);
  7354. }
  7355. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  7356. sched_smt_power_savings_show,
  7357. sched_smt_power_savings_store);
  7358. #endif
  7359. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  7360. {
  7361. int err = 0;
  7362. #ifdef CONFIG_SCHED_SMT
  7363. if (smt_capable())
  7364. err = sysfs_create_file(&cls->kset.kobj,
  7365. &attr_sched_smt_power_savings.attr);
  7366. #endif
  7367. #ifdef CONFIG_SCHED_MC
  7368. if (!err && mc_capable())
  7369. err = sysfs_create_file(&cls->kset.kobj,
  7370. &attr_sched_mc_power_savings.attr);
  7371. #endif
  7372. return err;
  7373. }
  7374. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  7375. #ifndef CONFIG_CPUSETS
  7376. /*
  7377. * Add online and remove offline CPUs from the scheduler domains.
  7378. * When cpusets are enabled they take over this function.
  7379. */
  7380. static int update_sched_domains(struct notifier_block *nfb,
  7381. unsigned long action, void *hcpu)
  7382. {
  7383. switch (action) {
  7384. case CPU_ONLINE:
  7385. case CPU_ONLINE_FROZEN:
  7386. case CPU_DEAD:
  7387. case CPU_DEAD_FROZEN:
  7388. partition_sched_domains(1, NULL, NULL);
  7389. return NOTIFY_OK;
  7390. default:
  7391. return NOTIFY_DONE;
  7392. }
  7393. }
  7394. #endif
  7395. static int update_runtime(struct notifier_block *nfb,
  7396. unsigned long action, void *hcpu)
  7397. {
  7398. int cpu = (int)(long)hcpu;
  7399. switch (action) {
  7400. case CPU_DOWN_PREPARE:
  7401. case CPU_DOWN_PREPARE_FROZEN:
  7402. disable_runtime(cpu_rq(cpu));
  7403. return NOTIFY_OK;
  7404. case CPU_DOWN_FAILED:
  7405. case CPU_DOWN_FAILED_FROZEN:
  7406. case CPU_ONLINE:
  7407. case CPU_ONLINE_FROZEN:
  7408. enable_runtime(cpu_rq(cpu));
  7409. return NOTIFY_OK;
  7410. default:
  7411. return NOTIFY_DONE;
  7412. }
  7413. }
  7414. void __init sched_init_smp(void)
  7415. {
  7416. cpumask_var_t non_isolated_cpus;
  7417. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  7418. #if defined(CONFIG_NUMA)
  7419. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  7420. GFP_KERNEL);
  7421. BUG_ON(sched_group_nodes_bycpu == NULL);
  7422. #endif
  7423. get_online_cpus();
  7424. mutex_lock(&sched_domains_mutex);
  7425. arch_init_sched_domains(cpu_online_mask);
  7426. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  7427. if (cpumask_empty(non_isolated_cpus))
  7428. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  7429. mutex_unlock(&sched_domains_mutex);
  7430. put_online_cpus();
  7431. #ifndef CONFIG_CPUSETS
  7432. /* XXX: Theoretical race here - CPU may be hotplugged now */
  7433. hotcpu_notifier(update_sched_domains, 0);
  7434. #endif
  7435. /* RT runtime code needs to handle some hotplug events */
  7436. hotcpu_notifier(update_runtime, 0);
  7437. init_hrtick();
  7438. /* Move init over to a non-isolated CPU */
  7439. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  7440. BUG();
  7441. sched_init_granularity();
  7442. free_cpumask_var(non_isolated_cpus);
  7443. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  7444. init_sched_rt_class();
  7445. }
  7446. #else
  7447. void __init sched_init_smp(void)
  7448. {
  7449. sched_init_granularity();
  7450. }
  7451. #endif /* CONFIG_SMP */
  7452. int in_sched_functions(unsigned long addr)
  7453. {
  7454. return in_lock_functions(addr) ||
  7455. (addr >= (unsigned long)__sched_text_start
  7456. && addr < (unsigned long)__sched_text_end);
  7457. }
  7458. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  7459. {
  7460. cfs_rq->tasks_timeline = RB_ROOT;
  7461. INIT_LIST_HEAD(&cfs_rq->tasks);
  7462. #ifdef CONFIG_FAIR_GROUP_SCHED
  7463. cfs_rq->rq = rq;
  7464. #endif
  7465. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  7466. }
  7467. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  7468. {
  7469. struct rt_prio_array *array;
  7470. int i;
  7471. array = &rt_rq->active;
  7472. for (i = 0; i < MAX_RT_PRIO; i++) {
  7473. INIT_LIST_HEAD(array->queue + i);
  7474. __clear_bit(i, array->bitmap);
  7475. }
  7476. /* delimiter for bitsearch: */
  7477. __set_bit(MAX_RT_PRIO, array->bitmap);
  7478. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  7479. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  7480. #ifdef CONFIG_SMP
  7481. rt_rq->highest_prio.next = MAX_RT_PRIO;
  7482. #endif
  7483. #endif
  7484. #ifdef CONFIG_SMP
  7485. rt_rq->rt_nr_migratory = 0;
  7486. rt_rq->overloaded = 0;
  7487. plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
  7488. #endif
  7489. rt_rq->rt_time = 0;
  7490. rt_rq->rt_throttled = 0;
  7491. rt_rq->rt_runtime = 0;
  7492. spin_lock_init(&rt_rq->rt_runtime_lock);
  7493. #ifdef CONFIG_RT_GROUP_SCHED
  7494. rt_rq->rt_nr_boosted = 0;
  7495. rt_rq->rq = rq;
  7496. #endif
  7497. }
  7498. #ifdef CONFIG_FAIR_GROUP_SCHED
  7499. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  7500. struct sched_entity *se, int cpu, int add,
  7501. struct sched_entity *parent)
  7502. {
  7503. struct rq *rq = cpu_rq(cpu);
  7504. tg->cfs_rq[cpu] = cfs_rq;
  7505. init_cfs_rq(cfs_rq, rq);
  7506. cfs_rq->tg = tg;
  7507. if (add)
  7508. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  7509. tg->se[cpu] = se;
  7510. /* se could be NULL for init_task_group */
  7511. if (!se)
  7512. return;
  7513. if (!parent)
  7514. se->cfs_rq = &rq->cfs;
  7515. else
  7516. se->cfs_rq = parent->my_q;
  7517. se->my_q = cfs_rq;
  7518. se->load.weight = tg->shares;
  7519. se->load.inv_weight = 0;
  7520. se->parent = parent;
  7521. }
  7522. #endif
  7523. #ifdef CONFIG_RT_GROUP_SCHED
  7524. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  7525. struct sched_rt_entity *rt_se, int cpu, int add,
  7526. struct sched_rt_entity *parent)
  7527. {
  7528. struct rq *rq = cpu_rq(cpu);
  7529. tg->rt_rq[cpu] = rt_rq;
  7530. init_rt_rq(rt_rq, rq);
  7531. rt_rq->tg = tg;
  7532. rt_rq->rt_se = rt_se;
  7533. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  7534. if (add)
  7535. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  7536. tg->rt_se[cpu] = rt_se;
  7537. if (!rt_se)
  7538. return;
  7539. if (!parent)
  7540. rt_se->rt_rq = &rq->rt;
  7541. else
  7542. rt_se->rt_rq = parent->my_q;
  7543. rt_se->my_q = rt_rq;
  7544. rt_se->parent = parent;
  7545. INIT_LIST_HEAD(&rt_se->run_list);
  7546. }
  7547. #endif
  7548. void __init sched_init(void)
  7549. {
  7550. int i, j;
  7551. unsigned long alloc_size = 0, ptr;
  7552. #ifdef CONFIG_FAIR_GROUP_SCHED
  7553. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7554. #endif
  7555. #ifdef CONFIG_RT_GROUP_SCHED
  7556. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7557. #endif
  7558. #ifdef CONFIG_USER_SCHED
  7559. alloc_size *= 2;
  7560. #endif
  7561. #ifdef CONFIG_CPUMASK_OFFSTACK
  7562. alloc_size += num_possible_cpus() * cpumask_size();
  7563. #endif
  7564. /*
  7565. * As sched_init() is called before page_alloc is setup,
  7566. * we use alloc_bootmem().
  7567. */
  7568. if (alloc_size) {
  7569. ptr = (unsigned long)alloc_bootmem(alloc_size);
  7570. #ifdef CONFIG_FAIR_GROUP_SCHED
  7571. init_task_group.se = (struct sched_entity **)ptr;
  7572. ptr += nr_cpu_ids * sizeof(void **);
  7573. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7574. ptr += nr_cpu_ids * sizeof(void **);
  7575. #ifdef CONFIG_USER_SCHED
  7576. root_task_group.se = (struct sched_entity **)ptr;
  7577. ptr += nr_cpu_ids * sizeof(void **);
  7578. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7579. ptr += nr_cpu_ids * sizeof(void **);
  7580. #endif /* CONFIG_USER_SCHED */
  7581. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7582. #ifdef CONFIG_RT_GROUP_SCHED
  7583. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7584. ptr += nr_cpu_ids * sizeof(void **);
  7585. init_task_group.rt_rq = (struct rt_rq **)ptr;
  7586. ptr += nr_cpu_ids * sizeof(void **);
  7587. #ifdef CONFIG_USER_SCHED
  7588. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7589. ptr += nr_cpu_ids * sizeof(void **);
  7590. root_task_group.rt_rq = (struct rt_rq **)ptr;
  7591. ptr += nr_cpu_ids * sizeof(void **);
  7592. #endif /* CONFIG_USER_SCHED */
  7593. #endif /* CONFIG_RT_GROUP_SCHED */
  7594. #ifdef CONFIG_CPUMASK_OFFSTACK
  7595. for_each_possible_cpu(i) {
  7596. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  7597. ptr += cpumask_size();
  7598. }
  7599. #endif /* CONFIG_CPUMASK_OFFSTACK */
  7600. }
  7601. #ifdef CONFIG_SMP
  7602. init_defrootdomain();
  7603. #endif
  7604. init_rt_bandwidth(&def_rt_bandwidth,
  7605. global_rt_period(), global_rt_runtime());
  7606. #ifdef CONFIG_RT_GROUP_SCHED
  7607. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  7608. global_rt_period(), global_rt_runtime());
  7609. #ifdef CONFIG_USER_SCHED
  7610. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  7611. global_rt_period(), RUNTIME_INF);
  7612. #endif /* CONFIG_USER_SCHED */
  7613. #endif /* CONFIG_RT_GROUP_SCHED */
  7614. #ifdef CONFIG_GROUP_SCHED
  7615. list_add(&init_task_group.list, &task_groups);
  7616. INIT_LIST_HEAD(&init_task_group.children);
  7617. #ifdef CONFIG_USER_SCHED
  7618. INIT_LIST_HEAD(&root_task_group.children);
  7619. init_task_group.parent = &root_task_group;
  7620. list_add(&init_task_group.siblings, &root_task_group.children);
  7621. #endif /* CONFIG_USER_SCHED */
  7622. #endif /* CONFIG_GROUP_SCHED */
  7623. for_each_possible_cpu(i) {
  7624. struct rq *rq;
  7625. rq = cpu_rq(i);
  7626. spin_lock_init(&rq->lock);
  7627. rq->nr_running = 0;
  7628. init_cfs_rq(&rq->cfs, rq);
  7629. init_rt_rq(&rq->rt, rq);
  7630. #ifdef CONFIG_FAIR_GROUP_SCHED
  7631. init_task_group.shares = init_task_group_load;
  7632. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  7633. #ifdef CONFIG_CGROUP_SCHED
  7634. /*
  7635. * How much cpu bandwidth does init_task_group get?
  7636. *
  7637. * In case of task-groups formed thr' the cgroup filesystem, it
  7638. * gets 100% of the cpu resources in the system. This overall
  7639. * system cpu resource is divided among the tasks of
  7640. * init_task_group and its child task-groups in a fair manner,
  7641. * based on each entity's (task or task-group's) weight
  7642. * (se->load.weight).
  7643. *
  7644. * In other words, if init_task_group has 10 tasks of weight
  7645. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  7646. * then A0's share of the cpu resource is:
  7647. *
  7648. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  7649. *
  7650. * We achieve this by letting init_task_group's tasks sit
  7651. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  7652. */
  7653. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  7654. #elif defined CONFIG_USER_SCHED
  7655. root_task_group.shares = NICE_0_LOAD;
  7656. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  7657. /*
  7658. * In case of task-groups formed thr' the user id of tasks,
  7659. * init_task_group represents tasks belonging to root user.
  7660. * Hence it forms a sibling of all subsequent groups formed.
  7661. * In this case, init_task_group gets only a fraction of overall
  7662. * system cpu resource, based on the weight assigned to root
  7663. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  7664. * by letting tasks of init_task_group sit in a separate cfs_rq
  7665. * (init_cfs_rq) and having one entity represent this group of
  7666. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  7667. */
  7668. init_tg_cfs_entry(&init_task_group,
  7669. &per_cpu(init_cfs_rq, i),
  7670. &per_cpu(init_sched_entity, i), i, 1,
  7671. root_task_group.se[i]);
  7672. #endif
  7673. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7674. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  7675. #ifdef CONFIG_RT_GROUP_SCHED
  7676. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  7677. #ifdef CONFIG_CGROUP_SCHED
  7678. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  7679. #elif defined CONFIG_USER_SCHED
  7680. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  7681. init_tg_rt_entry(&init_task_group,
  7682. &per_cpu(init_rt_rq, i),
  7683. &per_cpu(init_sched_rt_entity, i), i, 1,
  7684. root_task_group.rt_se[i]);
  7685. #endif
  7686. #endif
  7687. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  7688. rq->cpu_load[j] = 0;
  7689. #ifdef CONFIG_SMP
  7690. rq->sd = NULL;
  7691. rq->rd = NULL;
  7692. rq->active_balance = 0;
  7693. rq->next_balance = jiffies;
  7694. rq->push_cpu = 0;
  7695. rq->cpu = i;
  7696. rq->online = 0;
  7697. rq->migration_thread = NULL;
  7698. INIT_LIST_HEAD(&rq->migration_queue);
  7699. rq_attach_root(rq, &def_root_domain);
  7700. #endif
  7701. init_rq_hrtick(rq);
  7702. atomic_set(&rq->nr_iowait, 0);
  7703. }
  7704. set_load_weight(&init_task);
  7705. #ifdef CONFIG_PREEMPT_NOTIFIERS
  7706. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  7707. #endif
  7708. #ifdef CONFIG_SMP
  7709. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  7710. #endif
  7711. #ifdef CONFIG_RT_MUTEXES
  7712. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  7713. #endif
  7714. /*
  7715. * The boot idle thread does lazy MMU switching as well:
  7716. */
  7717. atomic_inc(&init_mm.mm_count);
  7718. enter_lazy_tlb(&init_mm, current);
  7719. /*
  7720. * Make us the idle thread. Technically, schedule() should not be
  7721. * called from this thread, however somewhere below it might be,
  7722. * but because we are the idle thread, we just pick up running again
  7723. * when this runqueue becomes "idle".
  7724. */
  7725. init_idle(current, smp_processor_id());
  7726. /*
  7727. * During early bootup we pretend to be a normal task:
  7728. */
  7729. current->sched_class = &fair_sched_class;
  7730. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  7731. alloc_bootmem_cpumask_var(&nohz_cpu_mask);
  7732. #ifdef CONFIG_SMP
  7733. #ifdef CONFIG_NO_HZ
  7734. alloc_bootmem_cpumask_var(&nohz.cpu_mask);
  7735. #endif
  7736. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  7737. #endif /* SMP */
  7738. scheduler_running = 1;
  7739. }
  7740. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  7741. void __might_sleep(char *file, int line)
  7742. {
  7743. #ifdef in_atomic
  7744. static unsigned long prev_jiffy; /* ratelimiting */
  7745. if ((!in_atomic() && !irqs_disabled()) ||
  7746. system_state != SYSTEM_RUNNING || oops_in_progress)
  7747. return;
  7748. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  7749. return;
  7750. prev_jiffy = jiffies;
  7751. printk(KERN_ERR
  7752. "BUG: sleeping function called from invalid context at %s:%d\n",
  7753. file, line);
  7754. printk(KERN_ERR
  7755. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  7756. in_atomic(), irqs_disabled(),
  7757. current->pid, current->comm);
  7758. debug_show_held_locks(current);
  7759. if (irqs_disabled())
  7760. print_irqtrace_events(current);
  7761. dump_stack();
  7762. #endif
  7763. }
  7764. EXPORT_SYMBOL(__might_sleep);
  7765. #endif
  7766. #ifdef CONFIG_MAGIC_SYSRQ
  7767. static void normalize_task(struct rq *rq, struct task_struct *p)
  7768. {
  7769. int on_rq;
  7770. update_rq_clock(rq);
  7771. on_rq = p->se.on_rq;
  7772. if (on_rq)
  7773. deactivate_task(rq, p, 0);
  7774. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7775. if (on_rq) {
  7776. activate_task(rq, p, 0);
  7777. resched_task(rq->curr);
  7778. }
  7779. }
  7780. void normalize_rt_tasks(void)
  7781. {
  7782. struct task_struct *g, *p;
  7783. unsigned long flags;
  7784. struct rq *rq;
  7785. read_lock_irqsave(&tasklist_lock, flags);
  7786. do_each_thread(g, p) {
  7787. /*
  7788. * Only normalize user tasks:
  7789. */
  7790. if (!p->mm)
  7791. continue;
  7792. p->se.exec_start = 0;
  7793. #ifdef CONFIG_SCHEDSTATS
  7794. p->se.wait_start = 0;
  7795. p->se.sleep_start = 0;
  7796. p->se.block_start = 0;
  7797. #endif
  7798. if (!rt_task(p)) {
  7799. /*
  7800. * Renice negative nice level userspace
  7801. * tasks back to 0:
  7802. */
  7803. if (TASK_NICE(p) < 0 && p->mm)
  7804. set_user_nice(p, 0);
  7805. continue;
  7806. }
  7807. spin_lock(&p->pi_lock);
  7808. rq = __task_rq_lock(p);
  7809. normalize_task(rq, p);
  7810. __task_rq_unlock(rq);
  7811. spin_unlock(&p->pi_lock);
  7812. } while_each_thread(g, p);
  7813. read_unlock_irqrestore(&tasklist_lock, flags);
  7814. }
  7815. #endif /* CONFIG_MAGIC_SYSRQ */
  7816. #ifdef CONFIG_IA64
  7817. /*
  7818. * These functions are only useful for the IA64 MCA handling.
  7819. *
  7820. * They can only be called when the whole system has been
  7821. * stopped - every CPU needs to be quiescent, and no scheduling
  7822. * activity can take place. Using them for anything else would
  7823. * be a serious bug, and as a result, they aren't even visible
  7824. * under any other configuration.
  7825. */
  7826. /**
  7827. * curr_task - return the current task for a given cpu.
  7828. * @cpu: the processor in question.
  7829. *
  7830. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7831. */
  7832. struct task_struct *curr_task(int cpu)
  7833. {
  7834. return cpu_curr(cpu);
  7835. }
  7836. /**
  7837. * set_curr_task - set the current task for a given cpu.
  7838. * @cpu: the processor in question.
  7839. * @p: the task pointer to set.
  7840. *
  7841. * Description: This function must only be used when non-maskable interrupts
  7842. * are serviced on a separate stack. It allows the architecture to switch the
  7843. * notion of the current task on a cpu in a non-blocking manner. This function
  7844. * must be called with all CPU's synchronized, and interrupts disabled, the
  7845. * and caller must save the original value of the current task (see
  7846. * curr_task() above) and restore that value before reenabling interrupts and
  7847. * re-starting the system.
  7848. *
  7849. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7850. */
  7851. void set_curr_task(int cpu, struct task_struct *p)
  7852. {
  7853. cpu_curr(cpu) = p;
  7854. }
  7855. #endif
  7856. #ifdef CONFIG_FAIR_GROUP_SCHED
  7857. static void free_fair_sched_group(struct task_group *tg)
  7858. {
  7859. int i;
  7860. for_each_possible_cpu(i) {
  7861. if (tg->cfs_rq)
  7862. kfree(tg->cfs_rq[i]);
  7863. if (tg->se)
  7864. kfree(tg->se[i]);
  7865. }
  7866. kfree(tg->cfs_rq);
  7867. kfree(tg->se);
  7868. }
  7869. static
  7870. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7871. {
  7872. struct cfs_rq *cfs_rq;
  7873. struct sched_entity *se;
  7874. struct rq *rq;
  7875. int i;
  7876. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7877. if (!tg->cfs_rq)
  7878. goto err;
  7879. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7880. if (!tg->se)
  7881. goto err;
  7882. tg->shares = NICE_0_LOAD;
  7883. for_each_possible_cpu(i) {
  7884. rq = cpu_rq(i);
  7885. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  7886. GFP_KERNEL, cpu_to_node(i));
  7887. if (!cfs_rq)
  7888. goto err;
  7889. se = kzalloc_node(sizeof(struct sched_entity),
  7890. GFP_KERNEL, cpu_to_node(i));
  7891. if (!se)
  7892. goto err;
  7893. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  7894. }
  7895. return 1;
  7896. err:
  7897. return 0;
  7898. }
  7899. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7900. {
  7901. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  7902. &cpu_rq(cpu)->leaf_cfs_rq_list);
  7903. }
  7904. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7905. {
  7906. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  7907. }
  7908. #else /* !CONFG_FAIR_GROUP_SCHED */
  7909. static inline void free_fair_sched_group(struct task_group *tg)
  7910. {
  7911. }
  7912. static inline
  7913. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7914. {
  7915. return 1;
  7916. }
  7917. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7918. {
  7919. }
  7920. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7921. {
  7922. }
  7923. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7924. #ifdef CONFIG_RT_GROUP_SCHED
  7925. static void free_rt_sched_group(struct task_group *tg)
  7926. {
  7927. int i;
  7928. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7929. for_each_possible_cpu(i) {
  7930. if (tg->rt_rq)
  7931. kfree(tg->rt_rq[i]);
  7932. if (tg->rt_se)
  7933. kfree(tg->rt_se[i]);
  7934. }
  7935. kfree(tg->rt_rq);
  7936. kfree(tg->rt_se);
  7937. }
  7938. static
  7939. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7940. {
  7941. struct rt_rq *rt_rq;
  7942. struct sched_rt_entity *rt_se;
  7943. struct rq *rq;
  7944. int i;
  7945. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7946. if (!tg->rt_rq)
  7947. goto err;
  7948. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7949. if (!tg->rt_se)
  7950. goto err;
  7951. init_rt_bandwidth(&tg->rt_bandwidth,
  7952. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7953. for_each_possible_cpu(i) {
  7954. rq = cpu_rq(i);
  7955. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  7956. GFP_KERNEL, cpu_to_node(i));
  7957. if (!rt_rq)
  7958. goto err;
  7959. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  7960. GFP_KERNEL, cpu_to_node(i));
  7961. if (!rt_se)
  7962. goto err;
  7963. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  7964. }
  7965. return 1;
  7966. err:
  7967. return 0;
  7968. }
  7969. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7970. {
  7971. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  7972. &cpu_rq(cpu)->leaf_rt_rq_list);
  7973. }
  7974. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7975. {
  7976. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  7977. }
  7978. #else /* !CONFIG_RT_GROUP_SCHED */
  7979. static inline void free_rt_sched_group(struct task_group *tg)
  7980. {
  7981. }
  7982. static inline
  7983. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7984. {
  7985. return 1;
  7986. }
  7987. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7988. {
  7989. }
  7990. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7991. {
  7992. }
  7993. #endif /* CONFIG_RT_GROUP_SCHED */
  7994. #ifdef CONFIG_GROUP_SCHED
  7995. static void free_sched_group(struct task_group *tg)
  7996. {
  7997. free_fair_sched_group(tg);
  7998. free_rt_sched_group(tg);
  7999. kfree(tg);
  8000. }
  8001. /* allocate runqueue etc for a new task group */
  8002. struct task_group *sched_create_group(struct task_group *parent)
  8003. {
  8004. struct task_group *tg;
  8005. unsigned long flags;
  8006. int i;
  8007. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  8008. if (!tg)
  8009. return ERR_PTR(-ENOMEM);
  8010. if (!alloc_fair_sched_group(tg, parent))
  8011. goto err;
  8012. if (!alloc_rt_sched_group(tg, parent))
  8013. goto err;
  8014. spin_lock_irqsave(&task_group_lock, flags);
  8015. for_each_possible_cpu(i) {
  8016. register_fair_sched_group(tg, i);
  8017. register_rt_sched_group(tg, i);
  8018. }
  8019. list_add_rcu(&tg->list, &task_groups);
  8020. WARN_ON(!parent); /* root should already exist */
  8021. tg->parent = parent;
  8022. INIT_LIST_HEAD(&tg->children);
  8023. list_add_rcu(&tg->siblings, &parent->children);
  8024. spin_unlock_irqrestore(&task_group_lock, flags);
  8025. return tg;
  8026. err:
  8027. free_sched_group(tg);
  8028. return ERR_PTR(-ENOMEM);
  8029. }
  8030. /* rcu callback to free various structures associated with a task group */
  8031. static void free_sched_group_rcu(struct rcu_head *rhp)
  8032. {
  8033. /* now it should be safe to free those cfs_rqs */
  8034. free_sched_group(container_of(rhp, struct task_group, rcu));
  8035. }
  8036. /* Destroy runqueue etc associated with a task group */
  8037. void sched_destroy_group(struct task_group *tg)
  8038. {
  8039. unsigned long flags;
  8040. int i;
  8041. spin_lock_irqsave(&task_group_lock, flags);
  8042. for_each_possible_cpu(i) {
  8043. unregister_fair_sched_group(tg, i);
  8044. unregister_rt_sched_group(tg, i);
  8045. }
  8046. list_del_rcu(&tg->list);
  8047. list_del_rcu(&tg->siblings);
  8048. spin_unlock_irqrestore(&task_group_lock, flags);
  8049. /* wait for possible concurrent references to cfs_rqs complete */
  8050. call_rcu(&tg->rcu, free_sched_group_rcu);
  8051. }
  8052. /* change task's runqueue when it moves between groups.
  8053. * The caller of this function should have put the task in its new group
  8054. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  8055. * reflect its new group.
  8056. */
  8057. void sched_move_task(struct task_struct *tsk)
  8058. {
  8059. int on_rq, running;
  8060. unsigned long flags;
  8061. struct rq *rq;
  8062. rq = task_rq_lock(tsk, &flags);
  8063. update_rq_clock(rq);
  8064. running = task_current(rq, tsk);
  8065. on_rq = tsk->se.on_rq;
  8066. if (on_rq)
  8067. dequeue_task(rq, tsk, 0);
  8068. if (unlikely(running))
  8069. tsk->sched_class->put_prev_task(rq, tsk);
  8070. set_task_rq(tsk, task_cpu(tsk));
  8071. #ifdef CONFIG_FAIR_GROUP_SCHED
  8072. if (tsk->sched_class->moved_group)
  8073. tsk->sched_class->moved_group(tsk);
  8074. #endif
  8075. if (unlikely(running))
  8076. tsk->sched_class->set_curr_task(rq);
  8077. if (on_rq)
  8078. enqueue_task(rq, tsk, 0);
  8079. task_rq_unlock(rq, &flags);
  8080. }
  8081. #endif /* CONFIG_GROUP_SCHED */
  8082. #ifdef CONFIG_FAIR_GROUP_SCHED
  8083. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  8084. {
  8085. struct cfs_rq *cfs_rq = se->cfs_rq;
  8086. int on_rq;
  8087. on_rq = se->on_rq;
  8088. if (on_rq)
  8089. dequeue_entity(cfs_rq, se, 0);
  8090. se->load.weight = shares;
  8091. se->load.inv_weight = 0;
  8092. if (on_rq)
  8093. enqueue_entity(cfs_rq, se, 0);
  8094. }
  8095. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  8096. {
  8097. struct cfs_rq *cfs_rq = se->cfs_rq;
  8098. struct rq *rq = cfs_rq->rq;
  8099. unsigned long flags;
  8100. spin_lock_irqsave(&rq->lock, flags);
  8101. __set_se_shares(se, shares);
  8102. spin_unlock_irqrestore(&rq->lock, flags);
  8103. }
  8104. static DEFINE_MUTEX(shares_mutex);
  8105. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  8106. {
  8107. int i;
  8108. unsigned long flags;
  8109. /*
  8110. * We can't change the weight of the root cgroup.
  8111. */
  8112. if (!tg->se[0])
  8113. return -EINVAL;
  8114. if (shares < MIN_SHARES)
  8115. shares = MIN_SHARES;
  8116. else if (shares > MAX_SHARES)
  8117. shares = MAX_SHARES;
  8118. mutex_lock(&shares_mutex);
  8119. if (tg->shares == shares)
  8120. goto done;
  8121. spin_lock_irqsave(&task_group_lock, flags);
  8122. for_each_possible_cpu(i)
  8123. unregister_fair_sched_group(tg, i);
  8124. list_del_rcu(&tg->siblings);
  8125. spin_unlock_irqrestore(&task_group_lock, flags);
  8126. /* wait for any ongoing reference to this group to finish */
  8127. synchronize_sched();
  8128. /*
  8129. * Now we are free to modify the group's share on each cpu
  8130. * w/o tripping rebalance_share or load_balance_fair.
  8131. */
  8132. tg->shares = shares;
  8133. for_each_possible_cpu(i) {
  8134. /*
  8135. * force a rebalance
  8136. */
  8137. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  8138. set_se_shares(tg->se[i], shares);
  8139. }
  8140. /*
  8141. * Enable load balance activity on this group, by inserting it back on
  8142. * each cpu's rq->leaf_cfs_rq_list.
  8143. */
  8144. spin_lock_irqsave(&task_group_lock, flags);
  8145. for_each_possible_cpu(i)
  8146. register_fair_sched_group(tg, i);
  8147. list_add_rcu(&tg->siblings, &tg->parent->children);
  8148. spin_unlock_irqrestore(&task_group_lock, flags);
  8149. done:
  8150. mutex_unlock(&shares_mutex);
  8151. return 0;
  8152. }
  8153. unsigned long sched_group_shares(struct task_group *tg)
  8154. {
  8155. return tg->shares;
  8156. }
  8157. #endif
  8158. #ifdef CONFIG_RT_GROUP_SCHED
  8159. /*
  8160. * Ensure that the real time constraints are schedulable.
  8161. */
  8162. static DEFINE_MUTEX(rt_constraints_mutex);
  8163. static unsigned long to_ratio(u64 period, u64 runtime)
  8164. {
  8165. if (runtime == RUNTIME_INF)
  8166. return 1ULL << 20;
  8167. return div64_u64(runtime << 20, period);
  8168. }
  8169. /* Must be called with tasklist_lock held */
  8170. static inline int tg_has_rt_tasks(struct task_group *tg)
  8171. {
  8172. struct task_struct *g, *p;
  8173. do_each_thread(g, p) {
  8174. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  8175. return 1;
  8176. } while_each_thread(g, p);
  8177. return 0;
  8178. }
  8179. struct rt_schedulable_data {
  8180. struct task_group *tg;
  8181. u64 rt_period;
  8182. u64 rt_runtime;
  8183. };
  8184. static int tg_schedulable(struct task_group *tg, void *data)
  8185. {
  8186. struct rt_schedulable_data *d = data;
  8187. struct task_group *child;
  8188. unsigned long total, sum = 0;
  8189. u64 period, runtime;
  8190. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8191. runtime = tg->rt_bandwidth.rt_runtime;
  8192. if (tg == d->tg) {
  8193. period = d->rt_period;
  8194. runtime = d->rt_runtime;
  8195. }
  8196. #ifdef CONFIG_USER_SCHED
  8197. if (tg == &root_task_group) {
  8198. period = global_rt_period();
  8199. runtime = global_rt_runtime();
  8200. }
  8201. #endif
  8202. /*
  8203. * Cannot have more runtime than the period.
  8204. */
  8205. if (runtime > period && runtime != RUNTIME_INF)
  8206. return -EINVAL;
  8207. /*
  8208. * Ensure we don't starve existing RT tasks.
  8209. */
  8210. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  8211. return -EBUSY;
  8212. total = to_ratio(period, runtime);
  8213. /*
  8214. * Nobody can have more than the global setting allows.
  8215. */
  8216. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  8217. return -EINVAL;
  8218. /*
  8219. * The sum of our children's runtime should not exceed our own.
  8220. */
  8221. list_for_each_entry_rcu(child, &tg->children, siblings) {
  8222. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  8223. runtime = child->rt_bandwidth.rt_runtime;
  8224. if (child == d->tg) {
  8225. period = d->rt_period;
  8226. runtime = d->rt_runtime;
  8227. }
  8228. sum += to_ratio(period, runtime);
  8229. }
  8230. if (sum > total)
  8231. return -EINVAL;
  8232. return 0;
  8233. }
  8234. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  8235. {
  8236. struct rt_schedulable_data data = {
  8237. .tg = tg,
  8238. .rt_period = period,
  8239. .rt_runtime = runtime,
  8240. };
  8241. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  8242. }
  8243. static int tg_set_bandwidth(struct task_group *tg,
  8244. u64 rt_period, u64 rt_runtime)
  8245. {
  8246. int i, err = 0;
  8247. mutex_lock(&rt_constraints_mutex);
  8248. read_lock(&tasklist_lock);
  8249. err = __rt_schedulable(tg, rt_period, rt_runtime);
  8250. if (err)
  8251. goto unlock;
  8252. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8253. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  8254. tg->rt_bandwidth.rt_runtime = rt_runtime;
  8255. for_each_possible_cpu(i) {
  8256. struct rt_rq *rt_rq = tg->rt_rq[i];
  8257. spin_lock(&rt_rq->rt_runtime_lock);
  8258. rt_rq->rt_runtime = rt_runtime;
  8259. spin_unlock(&rt_rq->rt_runtime_lock);
  8260. }
  8261. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8262. unlock:
  8263. read_unlock(&tasklist_lock);
  8264. mutex_unlock(&rt_constraints_mutex);
  8265. return err;
  8266. }
  8267. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  8268. {
  8269. u64 rt_runtime, rt_period;
  8270. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8271. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  8272. if (rt_runtime_us < 0)
  8273. rt_runtime = RUNTIME_INF;
  8274. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8275. }
  8276. long sched_group_rt_runtime(struct task_group *tg)
  8277. {
  8278. u64 rt_runtime_us;
  8279. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  8280. return -1;
  8281. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  8282. do_div(rt_runtime_us, NSEC_PER_USEC);
  8283. return rt_runtime_us;
  8284. }
  8285. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  8286. {
  8287. u64 rt_runtime, rt_period;
  8288. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  8289. rt_runtime = tg->rt_bandwidth.rt_runtime;
  8290. if (rt_period == 0)
  8291. return -EINVAL;
  8292. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8293. }
  8294. long sched_group_rt_period(struct task_group *tg)
  8295. {
  8296. u64 rt_period_us;
  8297. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8298. do_div(rt_period_us, NSEC_PER_USEC);
  8299. return rt_period_us;
  8300. }
  8301. static int sched_rt_global_constraints(void)
  8302. {
  8303. u64 runtime, period;
  8304. int ret = 0;
  8305. if (sysctl_sched_rt_period <= 0)
  8306. return -EINVAL;
  8307. runtime = global_rt_runtime();
  8308. period = global_rt_period();
  8309. /*
  8310. * Sanity check on the sysctl variables.
  8311. */
  8312. if (runtime > period && runtime != RUNTIME_INF)
  8313. return -EINVAL;
  8314. mutex_lock(&rt_constraints_mutex);
  8315. read_lock(&tasklist_lock);
  8316. ret = __rt_schedulable(NULL, 0, 0);
  8317. read_unlock(&tasklist_lock);
  8318. mutex_unlock(&rt_constraints_mutex);
  8319. return ret;
  8320. }
  8321. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  8322. {
  8323. /* Don't accept realtime tasks when there is no way for them to run */
  8324. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  8325. return 0;
  8326. return 1;
  8327. }
  8328. #else /* !CONFIG_RT_GROUP_SCHED */
  8329. static int sched_rt_global_constraints(void)
  8330. {
  8331. unsigned long flags;
  8332. int i;
  8333. if (sysctl_sched_rt_period <= 0)
  8334. return -EINVAL;
  8335. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  8336. for_each_possible_cpu(i) {
  8337. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  8338. spin_lock(&rt_rq->rt_runtime_lock);
  8339. rt_rq->rt_runtime = global_rt_runtime();
  8340. spin_unlock(&rt_rq->rt_runtime_lock);
  8341. }
  8342. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  8343. return 0;
  8344. }
  8345. #endif /* CONFIG_RT_GROUP_SCHED */
  8346. int sched_rt_handler(struct ctl_table *table, int write,
  8347. struct file *filp, void __user *buffer, size_t *lenp,
  8348. loff_t *ppos)
  8349. {
  8350. int ret;
  8351. int old_period, old_runtime;
  8352. static DEFINE_MUTEX(mutex);
  8353. mutex_lock(&mutex);
  8354. old_period = sysctl_sched_rt_period;
  8355. old_runtime = sysctl_sched_rt_runtime;
  8356. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  8357. if (!ret && write) {
  8358. ret = sched_rt_global_constraints();
  8359. if (ret) {
  8360. sysctl_sched_rt_period = old_period;
  8361. sysctl_sched_rt_runtime = old_runtime;
  8362. } else {
  8363. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  8364. def_rt_bandwidth.rt_period =
  8365. ns_to_ktime(global_rt_period());
  8366. }
  8367. }
  8368. mutex_unlock(&mutex);
  8369. return ret;
  8370. }
  8371. #ifdef CONFIG_CGROUP_SCHED
  8372. /* return corresponding task_group object of a cgroup */
  8373. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  8374. {
  8375. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  8376. struct task_group, css);
  8377. }
  8378. static struct cgroup_subsys_state *
  8379. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8380. {
  8381. struct task_group *tg, *parent;
  8382. if (!cgrp->parent) {
  8383. /* This is early initialization for the top cgroup */
  8384. return &init_task_group.css;
  8385. }
  8386. parent = cgroup_tg(cgrp->parent);
  8387. tg = sched_create_group(parent);
  8388. if (IS_ERR(tg))
  8389. return ERR_PTR(-ENOMEM);
  8390. return &tg->css;
  8391. }
  8392. static void
  8393. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8394. {
  8395. struct task_group *tg = cgroup_tg(cgrp);
  8396. sched_destroy_group(tg);
  8397. }
  8398. static int
  8399. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8400. struct task_struct *tsk)
  8401. {
  8402. #ifdef CONFIG_RT_GROUP_SCHED
  8403. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  8404. return -EINVAL;
  8405. #else
  8406. /* We don't support RT-tasks being in separate groups */
  8407. if (tsk->sched_class != &fair_sched_class)
  8408. return -EINVAL;
  8409. #endif
  8410. return 0;
  8411. }
  8412. static void
  8413. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8414. struct cgroup *old_cont, struct task_struct *tsk)
  8415. {
  8416. sched_move_task(tsk);
  8417. }
  8418. #ifdef CONFIG_FAIR_GROUP_SCHED
  8419. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  8420. u64 shareval)
  8421. {
  8422. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  8423. }
  8424. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  8425. {
  8426. struct task_group *tg = cgroup_tg(cgrp);
  8427. return (u64) tg->shares;
  8428. }
  8429. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8430. #ifdef CONFIG_RT_GROUP_SCHED
  8431. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  8432. s64 val)
  8433. {
  8434. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  8435. }
  8436. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  8437. {
  8438. return sched_group_rt_runtime(cgroup_tg(cgrp));
  8439. }
  8440. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  8441. u64 rt_period_us)
  8442. {
  8443. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  8444. }
  8445. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  8446. {
  8447. return sched_group_rt_period(cgroup_tg(cgrp));
  8448. }
  8449. #endif /* CONFIG_RT_GROUP_SCHED */
  8450. static struct cftype cpu_files[] = {
  8451. #ifdef CONFIG_FAIR_GROUP_SCHED
  8452. {
  8453. .name = "shares",
  8454. .read_u64 = cpu_shares_read_u64,
  8455. .write_u64 = cpu_shares_write_u64,
  8456. },
  8457. #endif
  8458. #ifdef CONFIG_RT_GROUP_SCHED
  8459. {
  8460. .name = "rt_runtime_us",
  8461. .read_s64 = cpu_rt_runtime_read,
  8462. .write_s64 = cpu_rt_runtime_write,
  8463. },
  8464. {
  8465. .name = "rt_period_us",
  8466. .read_u64 = cpu_rt_period_read_uint,
  8467. .write_u64 = cpu_rt_period_write_uint,
  8468. },
  8469. #endif
  8470. };
  8471. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  8472. {
  8473. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  8474. }
  8475. struct cgroup_subsys cpu_cgroup_subsys = {
  8476. .name = "cpu",
  8477. .create = cpu_cgroup_create,
  8478. .destroy = cpu_cgroup_destroy,
  8479. .can_attach = cpu_cgroup_can_attach,
  8480. .attach = cpu_cgroup_attach,
  8481. .populate = cpu_cgroup_populate,
  8482. .subsys_id = cpu_cgroup_subsys_id,
  8483. .early_init = 1,
  8484. };
  8485. #endif /* CONFIG_CGROUP_SCHED */
  8486. #ifdef CONFIG_CGROUP_CPUACCT
  8487. /*
  8488. * CPU accounting code for task groups.
  8489. *
  8490. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  8491. * (balbir@in.ibm.com).
  8492. */
  8493. /* track cpu usage of a group of tasks and its child groups */
  8494. struct cpuacct {
  8495. struct cgroup_subsys_state css;
  8496. /* cpuusage holds pointer to a u64-type object on every cpu */
  8497. u64 *cpuusage;
  8498. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  8499. struct cpuacct *parent;
  8500. };
  8501. struct cgroup_subsys cpuacct_subsys;
  8502. /* return cpu accounting group corresponding to this container */
  8503. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  8504. {
  8505. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  8506. struct cpuacct, css);
  8507. }
  8508. /* return cpu accounting group to which this task belongs */
  8509. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  8510. {
  8511. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  8512. struct cpuacct, css);
  8513. }
  8514. /* create a new cpu accounting group */
  8515. static struct cgroup_subsys_state *cpuacct_create(
  8516. struct cgroup_subsys *ss, struct cgroup *cgrp)
  8517. {
  8518. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  8519. int i;
  8520. if (!ca)
  8521. goto out;
  8522. ca->cpuusage = alloc_percpu(u64);
  8523. if (!ca->cpuusage)
  8524. goto out_free_ca;
  8525. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  8526. if (percpu_counter_init(&ca->cpustat[i], 0))
  8527. goto out_free_counters;
  8528. if (cgrp->parent)
  8529. ca->parent = cgroup_ca(cgrp->parent);
  8530. return &ca->css;
  8531. out_free_counters:
  8532. while (--i >= 0)
  8533. percpu_counter_destroy(&ca->cpustat[i]);
  8534. free_percpu(ca->cpuusage);
  8535. out_free_ca:
  8536. kfree(ca);
  8537. out:
  8538. return ERR_PTR(-ENOMEM);
  8539. }
  8540. /* destroy an existing cpu accounting group */
  8541. static void
  8542. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8543. {
  8544. struct cpuacct *ca = cgroup_ca(cgrp);
  8545. int i;
  8546. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  8547. percpu_counter_destroy(&ca->cpustat[i]);
  8548. free_percpu(ca->cpuusage);
  8549. kfree(ca);
  8550. }
  8551. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  8552. {
  8553. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8554. u64 data;
  8555. #ifndef CONFIG_64BIT
  8556. /*
  8557. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  8558. */
  8559. spin_lock_irq(&cpu_rq(cpu)->lock);
  8560. data = *cpuusage;
  8561. spin_unlock_irq(&cpu_rq(cpu)->lock);
  8562. #else
  8563. data = *cpuusage;
  8564. #endif
  8565. return data;
  8566. }
  8567. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  8568. {
  8569. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8570. #ifndef CONFIG_64BIT
  8571. /*
  8572. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  8573. */
  8574. spin_lock_irq(&cpu_rq(cpu)->lock);
  8575. *cpuusage = val;
  8576. spin_unlock_irq(&cpu_rq(cpu)->lock);
  8577. #else
  8578. *cpuusage = val;
  8579. #endif
  8580. }
  8581. /* return total cpu usage (in nanoseconds) of a group */
  8582. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  8583. {
  8584. struct cpuacct *ca = cgroup_ca(cgrp);
  8585. u64 totalcpuusage = 0;
  8586. int i;
  8587. for_each_present_cpu(i)
  8588. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  8589. return totalcpuusage;
  8590. }
  8591. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  8592. u64 reset)
  8593. {
  8594. struct cpuacct *ca = cgroup_ca(cgrp);
  8595. int err = 0;
  8596. int i;
  8597. if (reset) {
  8598. err = -EINVAL;
  8599. goto out;
  8600. }
  8601. for_each_present_cpu(i)
  8602. cpuacct_cpuusage_write(ca, i, 0);
  8603. out:
  8604. return err;
  8605. }
  8606. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  8607. struct seq_file *m)
  8608. {
  8609. struct cpuacct *ca = cgroup_ca(cgroup);
  8610. u64 percpu;
  8611. int i;
  8612. for_each_present_cpu(i) {
  8613. percpu = cpuacct_cpuusage_read(ca, i);
  8614. seq_printf(m, "%llu ", (unsigned long long) percpu);
  8615. }
  8616. seq_printf(m, "\n");
  8617. return 0;
  8618. }
  8619. static const char *cpuacct_stat_desc[] = {
  8620. [CPUACCT_STAT_USER] = "user",
  8621. [CPUACCT_STAT_SYSTEM] = "system",
  8622. };
  8623. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  8624. struct cgroup_map_cb *cb)
  8625. {
  8626. struct cpuacct *ca = cgroup_ca(cgrp);
  8627. int i;
  8628. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  8629. s64 val = percpu_counter_read(&ca->cpustat[i]);
  8630. val = cputime64_to_clock_t(val);
  8631. cb->fill(cb, cpuacct_stat_desc[i], val);
  8632. }
  8633. return 0;
  8634. }
  8635. static struct cftype files[] = {
  8636. {
  8637. .name = "usage",
  8638. .read_u64 = cpuusage_read,
  8639. .write_u64 = cpuusage_write,
  8640. },
  8641. {
  8642. .name = "usage_percpu",
  8643. .read_seq_string = cpuacct_percpu_seq_read,
  8644. },
  8645. {
  8646. .name = "stat",
  8647. .read_map = cpuacct_stats_show,
  8648. },
  8649. };
  8650. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8651. {
  8652. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  8653. }
  8654. /*
  8655. * charge this task's execution time to its accounting group.
  8656. *
  8657. * called with rq->lock held.
  8658. */
  8659. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  8660. {
  8661. struct cpuacct *ca;
  8662. int cpu;
  8663. if (unlikely(!cpuacct_subsys.active))
  8664. return;
  8665. cpu = task_cpu(tsk);
  8666. rcu_read_lock();
  8667. ca = task_ca(tsk);
  8668. for (; ca; ca = ca->parent) {
  8669. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8670. *cpuusage += cputime;
  8671. }
  8672. rcu_read_unlock();
  8673. }
  8674. /*
  8675. * Charge the system/user time to the task's accounting group.
  8676. */
  8677. static void cpuacct_update_stats(struct task_struct *tsk,
  8678. enum cpuacct_stat_index idx, cputime_t val)
  8679. {
  8680. struct cpuacct *ca;
  8681. if (unlikely(!cpuacct_subsys.active))
  8682. return;
  8683. rcu_read_lock();
  8684. ca = task_ca(tsk);
  8685. do {
  8686. percpu_counter_add(&ca->cpustat[idx], val);
  8687. ca = ca->parent;
  8688. } while (ca);
  8689. rcu_read_unlock();
  8690. }
  8691. struct cgroup_subsys cpuacct_subsys = {
  8692. .name = "cpuacct",
  8693. .create = cpuacct_create,
  8694. .destroy = cpuacct_destroy,
  8695. .populate = cpuacct_populate,
  8696. .subsys_id = cpuacct_subsys_id,
  8697. };
  8698. #endif /* CONFIG_CGROUP_CPUACCT */