cpu.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567
  1. /* CPU control.
  2. * (C) 2001, 2002, 2003, 2004 Rusty Russell
  3. *
  4. * This code is licenced under the GPL.
  5. */
  6. #include <linux/proc_fs.h>
  7. #include <linux/smp.h>
  8. #include <linux/init.h>
  9. #include <linux/notifier.h>
  10. #include <linux/sched.h>
  11. #include <linux/unistd.h>
  12. #include <linux/cpu.h>
  13. #include <linux/module.h>
  14. #include <linux/kthread.h>
  15. #include <linux/stop_machine.h>
  16. #include <linux/mutex.h>
  17. #ifdef CONFIG_SMP
  18. /* Serializes the updates to cpu_online_mask, cpu_present_mask */
  19. static DEFINE_MUTEX(cpu_add_remove_lock);
  20. static __cpuinitdata RAW_NOTIFIER_HEAD(cpu_chain);
  21. /* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
  22. * Should always be manipulated under cpu_add_remove_lock
  23. */
  24. static int cpu_hotplug_disabled;
  25. static struct {
  26. struct task_struct *active_writer;
  27. struct mutex lock; /* Synchronizes accesses to refcount, */
  28. /*
  29. * Also blocks the new readers during
  30. * an ongoing cpu hotplug operation.
  31. */
  32. int refcount;
  33. } cpu_hotplug;
  34. void __init cpu_hotplug_init(void)
  35. {
  36. cpu_hotplug.active_writer = NULL;
  37. mutex_init(&cpu_hotplug.lock);
  38. cpu_hotplug.refcount = 0;
  39. }
  40. #ifdef CONFIG_HOTPLUG_CPU
  41. void get_online_cpus(void)
  42. {
  43. might_sleep();
  44. if (cpu_hotplug.active_writer == current)
  45. return;
  46. mutex_lock(&cpu_hotplug.lock);
  47. cpu_hotplug.refcount++;
  48. mutex_unlock(&cpu_hotplug.lock);
  49. }
  50. EXPORT_SYMBOL_GPL(get_online_cpus);
  51. void put_online_cpus(void)
  52. {
  53. if (cpu_hotplug.active_writer == current)
  54. return;
  55. mutex_lock(&cpu_hotplug.lock);
  56. if (!--cpu_hotplug.refcount && unlikely(cpu_hotplug.active_writer))
  57. wake_up_process(cpu_hotplug.active_writer);
  58. mutex_unlock(&cpu_hotplug.lock);
  59. }
  60. EXPORT_SYMBOL_GPL(put_online_cpus);
  61. #endif /* CONFIG_HOTPLUG_CPU */
  62. /*
  63. * The following two API's must be used when attempting
  64. * to serialize the updates to cpu_online_mask, cpu_present_mask.
  65. */
  66. void cpu_maps_update_begin(void)
  67. {
  68. mutex_lock(&cpu_add_remove_lock);
  69. }
  70. void cpu_maps_update_done(void)
  71. {
  72. mutex_unlock(&cpu_add_remove_lock);
  73. }
  74. /*
  75. * This ensures that the hotplug operation can begin only when the
  76. * refcount goes to zero.
  77. *
  78. * Note that during a cpu-hotplug operation, the new readers, if any,
  79. * will be blocked by the cpu_hotplug.lock
  80. *
  81. * Since cpu_hotplug_begin() is always called after invoking
  82. * cpu_maps_update_begin(), we can be sure that only one writer is active.
  83. *
  84. * Note that theoretically, there is a possibility of a livelock:
  85. * - Refcount goes to zero, last reader wakes up the sleeping
  86. * writer.
  87. * - Last reader unlocks the cpu_hotplug.lock.
  88. * - A new reader arrives at this moment, bumps up the refcount.
  89. * - The writer acquires the cpu_hotplug.lock finds the refcount
  90. * non zero and goes to sleep again.
  91. *
  92. * However, this is very difficult to achieve in practice since
  93. * get_online_cpus() not an api which is called all that often.
  94. *
  95. */
  96. static void cpu_hotplug_begin(void)
  97. {
  98. cpu_hotplug.active_writer = current;
  99. for (;;) {
  100. mutex_lock(&cpu_hotplug.lock);
  101. if (likely(!cpu_hotplug.refcount))
  102. break;
  103. __set_current_state(TASK_UNINTERRUPTIBLE);
  104. mutex_unlock(&cpu_hotplug.lock);
  105. schedule();
  106. }
  107. }
  108. static void cpu_hotplug_done(void)
  109. {
  110. cpu_hotplug.active_writer = NULL;
  111. mutex_unlock(&cpu_hotplug.lock);
  112. }
  113. /* Need to know about CPUs going up/down? */
  114. int __ref register_cpu_notifier(struct notifier_block *nb)
  115. {
  116. int ret;
  117. cpu_maps_update_begin();
  118. ret = raw_notifier_chain_register(&cpu_chain, nb);
  119. cpu_maps_update_done();
  120. return ret;
  121. }
  122. #ifdef CONFIG_HOTPLUG_CPU
  123. EXPORT_SYMBOL(register_cpu_notifier);
  124. void __ref unregister_cpu_notifier(struct notifier_block *nb)
  125. {
  126. cpu_maps_update_begin();
  127. raw_notifier_chain_unregister(&cpu_chain, nb);
  128. cpu_maps_update_done();
  129. }
  130. EXPORT_SYMBOL(unregister_cpu_notifier);
  131. static inline void check_for_tasks(int cpu)
  132. {
  133. struct task_struct *p;
  134. write_lock_irq(&tasklist_lock);
  135. for_each_process(p) {
  136. if (task_cpu(p) == cpu &&
  137. (!cputime_eq(p->utime, cputime_zero) ||
  138. !cputime_eq(p->stime, cputime_zero)))
  139. printk(KERN_WARNING "Task %s (pid = %d) is on cpu %d\
  140. (state = %ld, flags = %x) \n",
  141. p->comm, task_pid_nr(p), cpu,
  142. p->state, p->flags);
  143. }
  144. write_unlock_irq(&tasklist_lock);
  145. }
  146. struct take_cpu_down_param {
  147. unsigned long mod;
  148. void *hcpu;
  149. };
  150. /* Take this CPU down. */
  151. static int __ref take_cpu_down(void *_param)
  152. {
  153. struct take_cpu_down_param *param = _param;
  154. int err;
  155. /* Ensure this CPU doesn't handle any more interrupts. */
  156. err = __cpu_disable();
  157. if (err < 0)
  158. return err;
  159. raw_notifier_call_chain(&cpu_chain, CPU_DYING | param->mod,
  160. param->hcpu);
  161. /* Force idle task to run as soon as we yield: it should
  162. immediately notice cpu is offline and die quickly. */
  163. sched_idle_next();
  164. return 0;
  165. }
  166. /* Requires cpu_add_remove_lock to be held */
  167. static int __ref _cpu_down(unsigned int cpu, int tasks_frozen)
  168. {
  169. int err, nr_calls = 0;
  170. cpumask_var_t old_allowed;
  171. void *hcpu = (void *)(long)cpu;
  172. unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
  173. struct take_cpu_down_param tcd_param = {
  174. .mod = mod,
  175. .hcpu = hcpu,
  176. };
  177. if (num_online_cpus() == 1)
  178. return -EBUSY;
  179. if (!cpu_online(cpu))
  180. return -EINVAL;
  181. if (!alloc_cpumask_var(&old_allowed, GFP_KERNEL))
  182. return -ENOMEM;
  183. cpu_hotplug_begin();
  184. err = __raw_notifier_call_chain(&cpu_chain, CPU_DOWN_PREPARE | mod,
  185. hcpu, -1, &nr_calls);
  186. if (err == NOTIFY_BAD) {
  187. nr_calls--;
  188. __raw_notifier_call_chain(&cpu_chain, CPU_DOWN_FAILED | mod,
  189. hcpu, nr_calls, NULL);
  190. printk("%s: attempt to take down CPU %u failed\n",
  191. __func__, cpu);
  192. err = -EINVAL;
  193. goto out_release;
  194. }
  195. /* Ensure that we are not runnable on dying cpu */
  196. cpumask_copy(old_allowed, &current->cpus_allowed);
  197. set_cpus_allowed_ptr(current,
  198. cpumask_of(cpumask_any_but(cpu_online_mask, cpu)));
  199. err = __stop_machine(take_cpu_down, &tcd_param, cpumask_of(cpu));
  200. if (err) {
  201. /* CPU didn't die: tell everyone. Can't complain. */
  202. if (raw_notifier_call_chain(&cpu_chain, CPU_DOWN_FAILED | mod,
  203. hcpu) == NOTIFY_BAD)
  204. BUG();
  205. goto out_allowed;
  206. }
  207. BUG_ON(cpu_online(cpu));
  208. /* Wait for it to sleep (leaving idle task). */
  209. while (!idle_cpu(cpu))
  210. yield();
  211. /* This actually kills the CPU. */
  212. __cpu_die(cpu);
  213. /* CPU is completely dead: tell everyone. Too late to complain. */
  214. if (raw_notifier_call_chain(&cpu_chain, CPU_DEAD | mod,
  215. hcpu) == NOTIFY_BAD)
  216. BUG();
  217. check_for_tasks(cpu);
  218. out_allowed:
  219. set_cpus_allowed_ptr(current, old_allowed);
  220. out_release:
  221. cpu_hotplug_done();
  222. if (!err) {
  223. if (raw_notifier_call_chain(&cpu_chain, CPU_POST_DEAD | mod,
  224. hcpu) == NOTIFY_BAD)
  225. BUG();
  226. }
  227. free_cpumask_var(old_allowed);
  228. return err;
  229. }
  230. int __ref cpu_down(unsigned int cpu)
  231. {
  232. int err;
  233. err = stop_machine_create();
  234. if (err)
  235. return err;
  236. cpu_maps_update_begin();
  237. if (cpu_hotplug_disabled) {
  238. err = -EBUSY;
  239. goto out;
  240. }
  241. set_cpu_active(cpu, false);
  242. /*
  243. * Make sure the all cpus did the reschedule and are not
  244. * using stale version of the cpu_active_mask.
  245. * This is not strictly necessary becuase stop_machine()
  246. * that we run down the line already provides the required
  247. * synchronization. But it's really a side effect and we do not
  248. * want to depend on the innards of the stop_machine here.
  249. */
  250. synchronize_sched();
  251. err = _cpu_down(cpu, 0);
  252. if (cpu_online(cpu))
  253. set_cpu_active(cpu, true);
  254. out:
  255. cpu_maps_update_done();
  256. stop_machine_destroy();
  257. return err;
  258. }
  259. EXPORT_SYMBOL(cpu_down);
  260. #endif /*CONFIG_HOTPLUG_CPU*/
  261. /* Requires cpu_add_remove_lock to be held */
  262. static int __cpuinit _cpu_up(unsigned int cpu, int tasks_frozen)
  263. {
  264. int ret, nr_calls = 0;
  265. void *hcpu = (void *)(long)cpu;
  266. unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
  267. if (cpu_online(cpu) || !cpu_present(cpu))
  268. return -EINVAL;
  269. cpu_hotplug_begin();
  270. ret = __raw_notifier_call_chain(&cpu_chain, CPU_UP_PREPARE | mod, hcpu,
  271. -1, &nr_calls);
  272. if (ret == NOTIFY_BAD) {
  273. nr_calls--;
  274. printk("%s: attempt to bring up CPU %u failed\n",
  275. __func__, cpu);
  276. ret = -EINVAL;
  277. goto out_notify;
  278. }
  279. /* Arch-specific enabling code. */
  280. ret = __cpu_up(cpu);
  281. if (ret != 0)
  282. goto out_notify;
  283. BUG_ON(!cpu_online(cpu));
  284. set_cpu_active(cpu, true);
  285. /* Now call notifier in preparation. */
  286. raw_notifier_call_chain(&cpu_chain, CPU_ONLINE | mod, hcpu);
  287. out_notify:
  288. if (ret != 0)
  289. __raw_notifier_call_chain(&cpu_chain,
  290. CPU_UP_CANCELED | mod, hcpu, nr_calls, NULL);
  291. cpu_hotplug_done();
  292. return ret;
  293. }
  294. int __cpuinit cpu_up(unsigned int cpu)
  295. {
  296. int err = 0;
  297. if (!cpu_possible(cpu)) {
  298. printk(KERN_ERR "can't online cpu %d because it is not "
  299. "configured as may-hotadd at boot time\n", cpu);
  300. #if defined(CONFIG_IA64) || defined(CONFIG_X86_64)
  301. printk(KERN_ERR "please check additional_cpus= boot "
  302. "parameter\n");
  303. #endif
  304. return -EINVAL;
  305. }
  306. cpu_maps_update_begin();
  307. if (cpu_hotplug_disabled) {
  308. err = -EBUSY;
  309. goto out;
  310. }
  311. err = _cpu_up(cpu, 0);
  312. out:
  313. cpu_maps_update_done();
  314. return err;
  315. }
  316. #ifdef CONFIG_PM_SLEEP_SMP
  317. static cpumask_var_t frozen_cpus;
  318. int disable_nonboot_cpus(void)
  319. {
  320. int cpu, first_cpu, error;
  321. error = stop_machine_create();
  322. if (error)
  323. return error;
  324. cpu_maps_update_begin();
  325. first_cpu = cpumask_first(cpu_online_mask);
  326. /* We take down all of the non-boot CPUs in one shot to avoid races
  327. * with the userspace trying to use the CPU hotplug at the same time
  328. */
  329. cpumask_clear(frozen_cpus);
  330. printk("Disabling non-boot CPUs ...\n");
  331. for_each_online_cpu(cpu) {
  332. if (cpu == first_cpu)
  333. continue;
  334. error = _cpu_down(cpu, 1);
  335. if (!error) {
  336. cpumask_set_cpu(cpu, frozen_cpus);
  337. printk("CPU%d is down\n", cpu);
  338. } else {
  339. printk(KERN_ERR "Error taking CPU%d down: %d\n",
  340. cpu, error);
  341. break;
  342. }
  343. }
  344. if (!error) {
  345. BUG_ON(num_online_cpus() > 1);
  346. /* Make sure the CPUs won't be enabled by someone else */
  347. cpu_hotplug_disabled = 1;
  348. } else {
  349. printk(KERN_ERR "Non-boot CPUs are not disabled\n");
  350. }
  351. cpu_maps_update_done();
  352. stop_machine_destroy();
  353. return error;
  354. }
  355. void __ref enable_nonboot_cpus(void)
  356. {
  357. int cpu, error;
  358. /* Allow everyone to use the CPU hotplug again */
  359. cpu_maps_update_begin();
  360. cpu_hotplug_disabled = 0;
  361. if (cpumask_empty(frozen_cpus))
  362. goto out;
  363. printk("Enabling non-boot CPUs ...\n");
  364. for_each_cpu(cpu, frozen_cpus) {
  365. error = _cpu_up(cpu, 1);
  366. if (!error) {
  367. printk("CPU%d is up\n", cpu);
  368. continue;
  369. }
  370. printk(KERN_WARNING "Error taking CPU%d up: %d\n", cpu, error);
  371. }
  372. cpumask_clear(frozen_cpus);
  373. out:
  374. cpu_maps_update_done();
  375. }
  376. static int alloc_frozen_cpus(void)
  377. {
  378. if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
  379. return -ENOMEM;
  380. return 0;
  381. }
  382. core_initcall(alloc_frozen_cpus);
  383. #endif /* CONFIG_PM_SLEEP_SMP */
  384. /**
  385. * notify_cpu_starting(cpu) - call the CPU_STARTING notifiers
  386. * @cpu: cpu that just started
  387. *
  388. * This function calls the cpu_chain notifiers with CPU_STARTING.
  389. * It must be called by the arch code on the new cpu, before the new cpu
  390. * enables interrupts and before the "boot" cpu returns from __cpu_up().
  391. */
  392. void __cpuinit notify_cpu_starting(unsigned int cpu)
  393. {
  394. unsigned long val = CPU_STARTING;
  395. #ifdef CONFIG_PM_SLEEP_SMP
  396. if (frozen_cpus != NULL && cpumask_test_cpu(cpu, frozen_cpus))
  397. val = CPU_STARTING_FROZEN;
  398. #endif /* CONFIG_PM_SLEEP_SMP */
  399. raw_notifier_call_chain(&cpu_chain, val, (void *)(long)cpu);
  400. }
  401. #endif /* CONFIG_SMP */
  402. /*
  403. * cpu_bit_bitmap[] is a special, "compressed" data structure that
  404. * represents all NR_CPUS bits binary values of 1<<nr.
  405. *
  406. * It is used by cpumask_of() to get a constant address to a CPU
  407. * mask value that has a single bit set only.
  408. */
  409. /* cpu_bit_bitmap[0] is empty - so we can back into it */
  410. #define MASK_DECLARE_1(x) [x+1][0] = 1UL << (x)
  411. #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
  412. #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
  413. #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
  414. const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
  415. MASK_DECLARE_8(0), MASK_DECLARE_8(8),
  416. MASK_DECLARE_8(16), MASK_DECLARE_8(24),
  417. #if BITS_PER_LONG > 32
  418. MASK_DECLARE_8(32), MASK_DECLARE_8(40),
  419. MASK_DECLARE_8(48), MASK_DECLARE_8(56),
  420. #endif
  421. };
  422. EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
  423. const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
  424. EXPORT_SYMBOL(cpu_all_bits);
  425. #ifdef CONFIG_INIT_ALL_POSSIBLE
  426. static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly
  427. = CPU_BITS_ALL;
  428. #else
  429. static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly;
  430. #endif
  431. const struct cpumask *const cpu_possible_mask = to_cpumask(cpu_possible_bits);
  432. EXPORT_SYMBOL(cpu_possible_mask);
  433. static DECLARE_BITMAP(cpu_online_bits, CONFIG_NR_CPUS) __read_mostly;
  434. const struct cpumask *const cpu_online_mask = to_cpumask(cpu_online_bits);
  435. EXPORT_SYMBOL(cpu_online_mask);
  436. static DECLARE_BITMAP(cpu_present_bits, CONFIG_NR_CPUS) __read_mostly;
  437. const struct cpumask *const cpu_present_mask = to_cpumask(cpu_present_bits);
  438. EXPORT_SYMBOL(cpu_present_mask);
  439. static DECLARE_BITMAP(cpu_active_bits, CONFIG_NR_CPUS) __read_mostly;
  440. const struct cpumask *const cpu_active_mask = to_cpumask(cpu_active_bits);
  441. EXPORT_SYMBOL(cpu_active_mask);
  442. void set_cpu_possible(unsigned int cpu, bool possible)
  443. {
  444. if (possible)
  445. cpumask_set_cpu(cpu, to_cpumask(cpu_possible_bits));
  446. else
  447. cpumask_clear_cpu(cpu, to_cpumask(cpu_possible_bits));
  448. }
  449. void set_cpu_present(unsigned int cpu, bool present)
  450. {
  451. if (present)
  452. cpumask_set_cpu(cpu, to_cpumask(cpu_present_bits));
  453. else
  454. cpumask_clear_cpu(cpu, to_cpumask(cpu_present_bits));
  455. }
  456. void set_cpu_online(unsigned int cpu, bool online)
  457. {
  458. if (online)
  459. cpumask_set_cpu(cpu, to_cpumask(cpu_online_bits));
  460. else
  461. cpumask_clear_cpu(cpu, to_cpumask(cpu_online_bits));
  462. }
  463. void set_cpu_active(unsigned int cpu, bool active)
  464. {
  465. if (active)
  466. cpumask_set_cpu(cpu, to_cpumask(cpu_active_bits));
  467. else
  468. cpumask_clear_cpu(cpu, to_cpumask(cpu_active_bits));
  469. }
  470. void init_cpu_present(const struct cpumask *src)
  471. {
  472. cpumask_copy(to_cpumask(cpu_present_bits), src);
  473. }
  474. void init_cpu_possible(const struct cpumask *src)
  475. {
  476. cpumask_copy(to_cpumask(cpu_possible_bits), src);
  477. }
  478. void init_cpu_online(const struct cpumask *src)
  479. {
  480. cpumask_copy(to_cpumask(cpu_online_bits), src);
  481. }