calibrate.c 5.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176
  1. /* calibrate.c: default delay calibration
  2. *
  3. * Excised from init/main.c
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. #include <linux/jiffies.h>
  7. #include <linux/delay.h>
  8. #include <linux/init.h>
  9. #include <linux/timex.h>
  10. #include <linux/smp.h>
  11. unsigned long lpj_fine;
  12. unsigned long preset_lpj;
  13. static int __init lpj_setup(char *str)
  14. {
  15. preset_lpj = simple_strtoul(str,NULL,0);
  16. return 1;
  17. }
  18. __setup("lpj=", lpj_setup);
  19. #ifdef ARCH_HAS_READ_CURRENT_TIMER
  20. /* This routine uses the read_current_timer() routine and gets the
  21. * loops per jiffy directly, instead of guessing it using delay().
  22. * Also, this code tries to handle non-maskable asynchronous events
  23. * (like SMIs)
  24. */
  25. #define DELAY_CALIBRATION_TICKS ((HZ < 100) ? 1 : (HZ/100))
  26. #define MAX_DIRECT_CALIBRATION_RETRIES 5
  27. static unsigned long __cpuinit calibrate_delay_direct(void)
  28. {
  29. unsigned long pre_start, start, post_start;
  30. unsigned long pre_end, end, post_end;
  31. unsigned long start_jiffies;
  32. unsigned long timer_rate_min, timer_rate_max;
  33. unsigned long good_timer_sum = 0;
  34. unsigned long good_timer_count = 0;
  35. int i;
  36. if (read_current_timer(&pre_start) < 0 )
  37. return 0;
  38. /*
  39. * A simple loop like
  40. * while ( jiffies < start_jiffies+1)
  41. * start = read_current_timer();
  42. * will not do. As we don't really know whether jiffy switch
  43. * happened first or timer_value was read first. And some asynchronous
  44. * event can happen between these two events introducing errors in lpj.
  45. *
  46. * So, we do
  47. * 1. pre_start <- When we are sure that jiffy switch hasn't happened
  48. * 2. check jiffy switch
  49. * 3. start <- timer value before or after jiffy switch
  50. * 4. post_start <- When we are sure that jiffy switch has happened
  51. *
  52. * Note, we don't know anything about order of 2 and 3.
  53. * Now, by looking at post_start and pre_start difference, we can
  54. * check whether any asynchronous event happened or not
  55. */
  56. for (i = 0; i < MAX_DIRECT_CALIBRATION_RETRIES; i++) {
  57. pre_start = 0;
  58. read_current_timer(&start);
  59. start_jiffies = jiffies;
  60. while (jiffies <= (start_jiffies + 1)) {
  61. pre_start = start;
  62. read_current_timer(&start);
  63. }
  64. read_current_timer(&post_start);
  65. pre_end = 0;
  66. end = post_start;
  67. while (jiffies <=
  68. (start_jiffies + 1 + DELAY_CALIBRATION_TICKS)) {
  69. pre_end = end;
  70. read_current_timer(&end);
  71. }
  72. read_current_timer(&post_end);
  73. timer_rate_max = (post_end - pre_start) /
  74. DELAY_CALIBRATION_TICKS;
  75. timer_rate_min = (pre_end - post_start) /
  76. DELAY_CALIBRATION_TICKS;
  77. /*
  78. * If the upper limit and lower limit of the timer_rate is
  79. * >= 12.5% apart, redo calibration.
  80. */
  81. if (pre_start != 0 && pre_end != 0 &&
  82. (timer_rate_max - timer_rate_min) < (timer_rate_max >> 3)) {
  83. good_timer_count++;
  84. good_timer_sum += timer_rate_max;
  85. }
  86. }
  87. if (good_timer_count)
  88. return (good_timer_sum/good_timer_count);
  89. printk(KERN_WARNING "calibrate_delay_direct() failed to get a good "
  90. "estimate for loops_per_jiffy.\nProbably due to long platform interrupts. Consider using \"lpj=\" boot option.\n");
  91. return 0;
  92. }
  93. #else
  94. static unsigned long __cpuinit calibrate_delay_direct(void) {return 0;}
  95. #endif
  96. /*
  97. * This is the number of bits of precision for the loops_per_jiffy. Each
  98. * bit takes on average 1.5/HZ seconds. This (like the original) is a little
  99. * better than 1%
  100. * For the boot cpu we can skip the delay calibration and assign it a value
  101. * calculated based on the timer frequency.
  102. * For the rest of the CPUs we cannot assume that the timer frequency is same as
  103. * the cpu frequency, hence do the calibration for those.
  104. */
  105. #define LPS_PREC 8
  106. void __cpuinit calibrate_delay(void)
  107. {
  108. unsigned long ticks, loopbit;
  109. int lps_precision = LPS_PREC;
  110. if (preset_lpj) {
  111. loops_per_jiffy = preset_lpj;
  112. printk(KERN_INFO
  113. "Calibrating delay loop (skipped) preset value.. ");
  114. } else if ((smp_processor_id() == 0) && lpj_fine) {
  115. loops_per_jiffy = lpj_fine;
  116. printk(KERN_INFO
  117. "Calibrating delay loop (skipped), "
  118. "value calculated using timer frequency.. ");
  119. } else if ((loops_per_jiffy = calibrate_delay_direct()) != 0) {
  120. printk(KERN_INFO
  121. "Calibrating delay using timer specific routine.. ");
  122. } else {
  123. loops_per_jiffy = (1<<12);
  124. printk(KERN_INFO "Calibrating delay loop... ");
  125. while ((loops_per_jiffy <<= 1) != 0) {
  126. /* wait for "start of" clock tick */
  127. ticks = jiffies;
  128. while (ticks == jiffies)
  129. /* nothing */;
  130. /* Go .. */
  131. ticks = jiffies;
  132. __delay(loops_per_jiffy);
  133. ticks = jiffies - ticks;
  134. if (ticks)
  135. break;
  136. }
  137. /*
  138. * Do a binary approximation to get loops_per_jiffy set to
  139. * equal one clock (up to lps_precision bits)
  140. */
  141. loops_per_jiffy >>= 1;
  142. loopbit = loops_per_jiffy;
  143. while (lps_precision-- && (loopbit >>= 1)) {
  144. loops_per_jiffy |= loopbit;
  145. ticks = jiffies;
  146. while (ticks == jiffies)
  147. /* nothing */;
  148. ticks = jiffies;
  149. __delay(loops_per_jiffy);
  150. if (jiffies != ticks) /* longer than 1 tick */
  151. loops_per_jiffy &= ~loopbit;
  152. }
  153. }
  154. printk(KERN_CONT "%lu.%02lu BogoMIPS (lpj=%lu)\n",
  155. loops_per_jiffy/(500000/HZ),
  156. (loops_per_jiffy/(5000/HZ)) % 100, loops_per_jiffy);
  157. }