segment.c 78 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978
  1. /*
  2. * segment.c - NILFS segment constructor.
  3. *
  4. * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  19. *
  20. * Written by Ryusuke Konishi <ryusuke@osrg.net>
  21. *
  22. */
  23. #include <linux/pagemap.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/writeback.h>
  26. #include <linux/bio.h>
  27. #include <linux/completion.h>
  28. #include <linux/blkdev.h>
  29. #include <linux/backing-dev.h>
  30. #include <linux/freezer.h>
  31. #include <linux/kthread.h>
  32. #include <linux/crc32.h>
  33. #include <linux/pagevec.h>
  34. #include "nilfs.h"
  35. #include "btnode.h"
  36. #include "page.h"
  37. #include "segment.h"
  38. #include "sufile.h"
  39. #include "cpfile.h"
  40. #include "ifile.h"
  41. #include "seglist.h"
  42. #include "segbuf.h"
  43. /*
  44. * Segment constructor
  45. */
  46. #define SC_N_INODEVEC 16 /* Size of locally allocated inode vector */
  47. #define SC_MAX_SEGDELTA 64 /* Upper limit of the number of segments
  48. appended in collection retry loop */
  49. /* Construction mode */
  50. enum {
  51. SC_LSEG_SR = 1, /* Make a logical segment having a super root */
  52. SC_LSEG_DSYNC, /* Flush data blocks of a given file and make
  53. a logical segment without a super root */
  54. SC_FLUSH_FILE, /* Flush data files, leads to segment writes without
  55. creating a checkpoint */
  56. SC_FLUSH_DAT, /* Flush DAT file. This also creates segments without
  57. a checkpoint */
  58. };
  59. /* Stage numbers of dirty block collection */
  60. enum {
  61. NILFS_ST_INIT = 0,
  62. NILFS_ST_GC, /* Collecting dirty blocks for GC */
  63. NILFS_ST_FILE,
  64. NILFS_ST_IFILE,
  65. NILFS_ST_CPFILE,
  66. NILFS_ST_SUFILE,
  67. NILFS_ST_DAT,
  68. NILFS_ST_SR, /* Super root */
  69. NILFS_ST_DSYNC, /* Data sync blocks */
  70. NILFS_ST_DONE,
  71. };
  72. /* State flags of collection */
  73. #define NILFS_CF_NODE 0x0001 /* Collecting node blocks */
  74. #define NILFS_CF_IFILE_STARTED 0x0002 /* IFILE stage has started */
  75. #define NILFS_CF_HISTORY_MASK (NILFS_CF_IFILE_STARTED)
  76. /* Operations depending on the construction mode and file type */
  77. struct nilfs_sc_operations {
  78. int (*collect_data)(struct nilfs_sc_info *, struct buffer_head *,
  79. struct inode *);
  80. int (*collect_node)(struct nilfs_sc_info *, struct buffer_head *,
  81. struct inode *);
  82. int (*collect_bmap)(struct nilfs_sc_info *, struct buffer_head *,
  83. struct inode *);
  84. void (*write_data_binfo)(struct nilfs_sc_info *,
  85. struct nilfs_segsum_pointer *,
  86. union nilfs_binfo *);
  87. void (*write_node_binfo)(struct nilfs_sc_info *,
  88. struct nilfs_segsum_pointer *,
  89. union nilfs_binfo *);
  90. };
  91. /*
  92. * Other definitions
  93. */
  94. static void nilfs_segctor_start_timer(struct nilfs_sc_info *);
  95. static void nilfs_segctor_do_flush(struct nilfs_sc_info *, int);
  96. static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *);
  97. static void nilfs_dispose_list(struct nilfs_sb_info *, struct list_head *,
  98. int);
  99. #define nilfs_cnt32_gt(a, b) \
  100. (typecheck(__u32, a) && typecheck(__u32, b) && \
  101. ((__s32)(b) - (__s32)(a) < 0))
  102. #define nilfs_cnt32_ge(a, b) \
  103. (typecheck(__u32, a) && typecheck(__u32, b) && \
  104. ((__s32)(a) - (__s32)(b) >= 0))
  105. #define nilfs_cnt32_lt(a, b) nilfs_cnt32_gt(b, a)
  106. #define nilfs_cnt32_le(a, b) nilfs_cnt32_ge(b, a)
  107. /*
  108. * Transaction
  109. */
  110. static struct kmem_cache *nilfs_transaction_cachep;
  111. /**
  112. * nilfs_init_transaction_cache - create a cache for nilfs_transaction_info
  113. *
  114. * nilfs_init_transaction_cache() creates a slab cache for the struct
  115. * nilfs_transaction_info.
  116. *
  117. * Return Value: On success, it returns 0. On error, one of the following
  118. * negative error code is returned.
  119. *
  120. * %-ENOMEM - Insufficient memory available.
  121. */
  122. int nilfs_init_transaction_cache(void)
  123. {
  124. nilfs_transaction_cachep =
  125. kmem_cache_create("nilfs2_transaction_cache",
  126. sizeof(struct nilfs_transaction_info),
  127. 0, SLAB_RECLAIM_ACCOUNT, NULL);
  128. return (nilfs_transaction_cachep == NULL) ? -ENOMEM : 0;
  129. }
  130. /**
  131. * nilfs_detroy_transaction_cache - destroy the cache for transaction info
  132. *
  133. * nilfs_destroy_transaction_cache() frees the slab cache for the struct
  134. * nilfs_transaction_info.
  135. */
  136. void nilfs_destroy_transaction_cache(void)
  137. {
  138. kmem_cache_destroy(nilfs_transaction_cachep);
  139. }
  140. static int nilfs_prepare_segment_lock(struct nilfs_transaction_info *ti)
  141. {
  142. struct nilfs_transaction_info *cur_ti = current->journal_info;
  143. void *save = NULL;
  144. if (cur_ti) {
  145. if (cur_ti->ti_magic == NILFS_TI_MAGIC)
  146. return ++cur_ti->ti_count;
  147. else {
  148. /*
  149. * If journal_info field is occupied by other FS,
  150. * it is saved and will be restored on
  151. * nilfs_transaction_commit().
  152. */
  153. printk(KERN_WARNING
  154. "NILFS warning: journal info from a different "
  155. "FS\n");
  156. save = current->journal_info;
  157. }
  158. }
  159. if (!ti) {
  160. ti = kmem_cache_alloc(nilfs_transaction_cachep, GFP_NOFS);
  161. if (!ti)
  162. return -ENOMEM;
  163. ti->ti_flags = NILFS_TI_DYNAMIC_ALLOC;
  164. } else {
  165. ti->ti_flags = 0;
  166. }
  167. ti->ti_count = 0;
  168. ti->ti_save = save;
  169. ti->ti_magic = NILFS_TI_MAGIC;
  170. current->journal_info = ti;
  171. return 0;
  172. }
  173. /**
  174. * nilfs_transaction_begin - start indivisible file operations.
  175. * @sb: super block
  176. * @ti: nilfs_transaction_info
  177. * @vacancy_check: flags for vacancy rate checks
  178. *
  179. * nilfs_transaction_begin() acquires a reader/writer semaphore, called
  180. * the segment semaphore, to make a segment construction and write tasks
  181. * exclusive. The function is used with nilfs_transaction_commit() in pairs.
  182. * The region enclosed by these two functions can be nested. To avoid a
  183. * deadlock, the semaphore is only acquired or released in the outermost call.
  184. *
  185. * This function allocates a nilfs_transaction_info struct to keep context
  186. * information on it. It is initialized and hooked onto the current task in
  187. * the outermost call. If a pre-allocated struct is given to @ti, it is used
  188. * instead; othewise a new struct is assigned from a slab.
  189. *
  190. * When @vacancy_check flag is set, this function will check the amount of
  191. * free space, and will wait for the GC to reclaim disk space if low capacity.
  192. *
  193. * Return Value: On success, 0 is returned. On error, one of the following
  194. * negative error code is returned.
  195. *
  196. * %-ENOMEM - Insufficient memory available.
  197. *
  198. * %-ENOSPC - No space left on device
  199. */
  200. int nilfs_transaction_begin(struct super_block *sb,
  201. struct nilfs_transaction_info *ti,
  202. int vacancy_check)
  203. {
  204. struct nilfs_sb_info *sbi;
  205. struct the_nilfs *nilfs;
  206. int ret = nilfs_prepare_segment_lock(ti);
  207. if (unlikely(ret < 0))
  208. return ret;
  209. if (ret > 0)
  210. return 0;
  211. sbi = NILFS_SB(sb);
  212. nilfs = sbi->s_nilfs;
  213. down_read(&nilfs->ns_segctor_sem);
  214. if (vacancy_check && nilfs_near_disk_full(nilfs)) {
  215. up_read(&nilfs->ns_segctor_sem);
  216. ret = -ENOSPC;
  217. goto failed;
  218. }
  219. return 0;
  220. failed:
  221. ti = current->journal_info;
  222. current->journal_info = ti->ti_save;
  223. if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
  224. kmem_cache_free(nilfs_transaction_cachep, ti);
  225. return ret;
  226. }
  227. /**
  228. * nilfs_transaction_commit - commit indivisible file operations.
  229. * @sb: super block
  230. *
  231. * nilfs_transaction_commit() releases the read semaphore which is
  232. * acquired by nilfs_transaction_begin(). This is only performed
  233. * in outermost call of this function. If a commit flag is set,
  234. * nilfs_transaction_commit() sets a timer to start the segment
  235. * constructor. If a sync flag is set, it starts construction
  236. * directly.
  237. */
  238. int nilfs_transaction_commit(struct super_block *sb)
  239. {
  240. struct nilfs_transaction_info *ti = current->journal_info;
  241. struct nilfs_sb_info *sbi;
  242. struct nilfs_sc_info *sci;
  243. int err = 0;
  244. BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
  245. ti->ti_flags |= NILFS_TI_COMMIT;
  246. if (ti->ti_count > 0) {
  247. ti->ti_count--;
  248. return 0;
  249. }
  250. sbi = NILFS_SB(sb);
  251. sci = NILFS_SC(sbi);
  252. if (sci != NULL) {
  253. if (ti->ti_flags & NILFS_TI_COMMIT)
  254. nilfs_segctor_start_timer(sci);
  255. if (atomic_read(&sbi->s_nilfs->ns_ndirtyblks) >
  256. sci->sc_watermark)
  257. nilfs_segctor_do_flush(sci, 0);
  258. }
  259. up_read(&sbi->s_nilfs->ns_segctor_sem);
  260. current->journal_info = ti->ti_save;
  261. if (ti->ti_flags & NILFS_TI_SYNC)
  262. err = nilfs_construct_segment(sb);
  263. if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
  264. kmem_cache_free(nilfs_transaction_cachep, ti);
  265. return err;
  266. }
  267. void nilfs_transaction_abort(struct super_block *sb)
  268. {
  269. struct nilfs_transaction_info *ti = current->journal_info;
  270. BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
  271. if (ti->ti_count > 0) {
  272. ti->ti_count--;
  273. return;
  274. }
  275. up_read(&NILFS_SB(sb)->s_nilfs->ns_segctor_sem);
  276. current->journal_info = ti->ti_save;
  277. if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
  278. kmem_cache_free(nilfs_transaction_cachep, ti);
  279. }
  280. void nilfs_relax_pressure_in_lock(struct super_block *sb)
  281. {
  282. struct nilfs_sb_info *sbi = NILFS_SB(sb);
  283. struct nilfs_sc_info *sci = NILFS_SC(sbi);
  284. struct the_nilfs *nilfs = sbi->s_nilfs;
  285. if (!sci || !sci->sc_flush_request)
  286. return;
  287. set_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
  288. up_read(&nilfs->ns_segctor_sem);
  289. down_write(&nilfs->ns_segctor_sem);
  290. if (sci->sc_flush_request &&
  291. test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) {
  292. struct nilfs_transaction_info *ti = current->journal_info;
  293. ti->ti_flags |= NILFS_TI_WRITER;
  294. nilfs_segctor_do_immediate_flush(sci);
  295. ti->ti_flags &= ~NILFS_TI_WRITER;
  296. }
  297. downgrade_write(&nilfs->ns_segctor_sem);
  298. }
  299. static void nilfs_transaction_lock(struct nilfs_sb_info *sbi,
  300. struct nilfs_transaction_info *ti,
  301. int gcflag)
  302. {
  303. struct nilfs_transaction_info *cur_ti = current->journal_info;
  304. WARN_ON(cur_ti);
  305. ti->ti_flags = NILFS_TI_WRITER;
  306. ti->ti_count = 0;
  307. ti->ti_save = cur_ti;
  308. ti->ti_magic = NILFS_TI_MAGIC;
  309. INIT_LIST_HEAD(&ti->ti_garbage);
  310. current->journal_info = ti;
  311. for (;;) {
  312. down_write(&sbi->s_nilfs->ns_segctor_sem);
  313. if (!test_bit(NILFS_SC_PRIOR_FLUSH, &NILFS_SC(sbi)->sc_flags))
  314. break;
  315. nilfs_segctor_do_immediate_flush(NILFS_SC(sbi));
  316. up_write(&sbi->s_nilfs->ns_segctor_sem);
  317. yield();
  318. }
  319. if (gcflag)
  320. ti->ti_flags |= NILFS_TI_GC;
  321. }
  322. static void nilfs_transaction_unlock(struct nilfs_sb_info *sbi)
  323. {
  324. struct nilfs_transaction_info *ti = current->journal_info;
  325. BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
  326. BUG_ON(ti->ti_count > 0);
  327. up_write(&sbi->s_nilfs->ns_segctor_sem);
  328. current->journal_info = ti->ti_save;
  329. if (!list_empty(&ti->ti_garbage))
  330. nilfs_dispose_list(sbi, &ti->ti_garbage, 0);
  331. }
  332. static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info *sci,
  333. struct nilfs_segsum_pointer *ssp,
  334. unsigned bytes)
  335. {
  336. struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
  337. unsigned blocksize = sci->sc_super->s_blocksize;
  338. void *p;
  339. if (unlikely(ssp->offset + bytes > blocksize)) {
  340. ssp->offset = 0;
  341. BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp->bh,
  342. &segbuf->sb_segsum_buffers));
  343. ssp->bh = NILFS_SEGBUF_NEXT_BH(ssp->bh);
  344. }
  345. p = ssp->bh->b_data + ssp->offset;
  346. ssp->offset += bytes;
  347. return p;
  348. }
  349. /**
  350. * nilfs_segctor_reset_segment_buffer - reset the current segment buffer
  351. * @sci: nilfs_sc_info
  352. */
  353. static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info *sci)
  354. {
  355. struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
  356. struct buffer_head *sumbh;
  357. unsigned sumbytes;
  358. unsigned flags = 0;
  359. int err;
  360. if (nilfs_doing_gc())
  361. flags = NILFS_SS_GC;
  362. err = nilfs_segbuf_reset(segbuf, flags, sci->sc_seg_ctime);
  363. if (unlikely(err))
  364. return err;
  365. sumbh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
  366. sumbytes = segbuf->sb_sum.sumbytes;
  367. sci->sc_finfo_ptr.bh = sumbh; sci->sc_finfo_ptr.offset = sumbytes;
  368. sci->sc_binfo_ptr.bh = sumbh; sci->sc_binfo_ptr.offset = sumbytes;
  369. sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
  370. return 0;
  371. }
  372. static int nilfs_segctor_feed_segment(struct nilfs_sc_info *sci)
  373. {
  374. sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
  375. if (NILFS_SEGBUF_IS_LAST(sci->sc_curseg, &sci->sc_segbufs))
  376. return -E2BIG; /* The current segment is filled up
  377. (internal code) */
  378. sci->sc_curseg = NILFS_NEXT_SEGBUF(sci->sc_curseg);
  379. return nilfs_segctor_reset_segment_buffer(sci);
  380. }
  381. static int nilfs_segctor_add_super_root(struct nilfs_sc_info *sci)
  382. {
  383. struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
  384. int err;
  385. if (segbuf->sb_sum.nblocks >= segbuf->sb_rest_blocks) {
  386. err = nilfs_segctor_feed_segment(sci);
  387. if (err)
  388. return err;
  389. segbuf = sci->sc_curseg;
  390. }
  391. err = nilfs_segbuf_extend_payload(segbuf, &sci->sc_super_root);
  392. if (likely(!err))
  393. segbuf->sb_sum.flags |= NILFS_SS_SR;
  394. return err;
  395. }
  396. /*
  397. * Functions for making segment summary and payloads
  398. */
  399. static int nilfs_segctor_segsum_block_required(
  400. struct nilfs_sc_info *sci, const struct nilfs_segsum_pointer *ssp,
  401. unsigned binfo_size)
  402. {
  403. unsigned blocksize = sci->sc_super->s_blocksize;
  404. /* Size of finfo and binfo is enough small against blocksize */
  405. return ssp->offset + binfo_size +
  406. (!sci->sc_blk_cnt ? sizeof(struct nilfs_finfo) : 0) >
  407. blocksize;
  408. }
  409. static void nilfs_segctor_begin_finfo(struct nilfs_sc_info *sci,
  410. struct inode *inode)
  411. {
  412. sci->sc_curseg->sb_sum.nfinfo++;
  413. sci->sc_binfo_ptr = sci->sc_finfo_ptr;
  414. nilfs_segctor_map_segsum_entry(
  415. sci, &sci->sc_binfo_ptr, sizeof(struct nilfs_finfo));
  416. if (inode->i_sb && !test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
  417. set_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
  418. /* skip finfo */
  419. }
  420. static void nilfs_segctor_end_finfo(struct nilfs_sc_info *sci,
  421. struct inode *inode)
  422. {
  423. struct nilfs_finfo *finfo;
  424. struct nilfs_inode_info *ii;
  425. struct nilfs_segment_buffer *segbuf;
  426. if (sci->sc_blk_cnt == 0)
  427. return;
  428. ii = NILFS_I(inode);
  429. finfo = nilfs_segctor_map_segsum_entry(sci, &sci->sc_finfo_ptr,
  430. sizeof(*finfo));
  431. finfo->fi_ino = cpu_to_le64(inode->i_ino);
  432. finfo->fi_nblocks = cpu_to_le32(sci->sc_blk_cnt);
  433. finfo->fi_ndatablk = cpu_to_le32(sci->sc_datablk_cnt);
  434. finfo->fi_cno = cpu_to_le64(ii->i_cno);
  435. segbuf = sci->sc_curseg;
  436. segbuf->sb_sum.sumbytes = sci->sc_binfo_ptr.offset +
  437. sci->sc_super->s_blocksize * (segbuf->sb_sum.nsumblk - 1);
  438. sci->sc_finfo_ptr = sci->sc_binfo_ptr;
  439. sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
  440. }
  441. static int nilfs_segctor_add_file_block(struct nilfs_sc_info *sci,
  442. struct buffer_head *bh,
  443. struct inode *inode,
  444. unsigned binfo_size)
  445. {
  446. struct nilfs_segment_buffer *segbuf;
  447. int required, err = 0;
  448. retry:
  449. segbuf = sci->sc_curseg;
  450. required = nilfs_segctor_segsum_block_required(
  451. sci, &sci->sc_binfo_ptr, binfo_size);
  452. if (segbuf->sb_sum.nblocks + required + 1 > segbuf->sb_rest_blocks) {
  453. nilfs_segctor_end_finfo(sci, inode);
  454. err = nilfs_segctor_feed_segment(sci);
  455. if (err)
  456. return err;
  457. goto retry;
  458. }
  459. if (unlikely(required)) {
  460. err = nilfs_segbuf_extend_segsum(segbuf);
  461. if (unlikely(err))
  462. goto failed;
  463. }
  464. if (sci->sc_blk_cnt == 0)
  465. nilfs_segctor_begin_finfo(sci, inode);
  466. nilfs_segctor_map_segsum_entry(sci, &sci->sc_binfo_ptr, binfo_size);
  467. /* Substitution to vblocknr is delayed until update_blocknr() */
  468. nilfs_segbuf_add_file_buffer(segbuf, bh);
  469. sci->sc_blk_cnt++;
  470. failed:
  471. return err;
  472. }
  473. static int nilfs_handle_bmap_error(int err, const char *fname,
  474. struct inode *inode, struct super_block *sb)
  475. {
  476. if (err == -EINVAL) {
  477. nilfs_error(sb, fname, "broken bmap (inode=%lu)\n",
  478. inode->i_ino);
  479. err = -EIO;
  480. }
  481. return err;
  482. }
  483. /*
  484. * Callback functions that enumerate, mark, and collect dirty blocks
  485. */
  486. static int nilfs_collect_file_data(struct nilfs_sc_info *sci,
  487. struct buffer_head *bh, struct inode *inode)
  488. {
  489. int err;
  490. err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
  491. if (unlikely(err < 0))
  492. return nilfs_handle_bmap_error(err, __func__, inode,
  493. sci->sc_super);
  494. err = nilfs_segctor_add_file_block(sci, bh, inode,
  495. sizeof(struct nilfs_binfo_v));
  496. if (!err)
  497. sci->sc_datablk_cnt++;
  498. return err;
  499. }
  500. static int nilfs_collect_file_node(struct nilfs_sc_info *sci,
  501. struct buffer_head *bh,
  502. struct inode *inode)
  503. {
  504. int err;
  505. err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
  506. if (unlikely(err < 0))
  507. return nilfs_handle_bmap_error(err, __func__, inode,
  508. sci->sc_super);
  509. return 0;
  510. }
  511. static int nilfs_collect_file_bmap(struct nilfs_sc_info *sci,
  512. struct buffer_head *bh,
  513. struct inode *inode)
  514. {
  515. WARN_ON(!buffer_dirty(bh));
  516. return nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
  517. }
  518. static void nilfs_write_file_data_binfo(struct nilfs_sc_info *sci,
  519. struct nilfs_segsum_pointer *ssp,
  520. union nilfs_binfo *binfo)
  521. {
  522. struct nilfs_binfo_v *binfo_v = nilfs_segctor_map_segsum_entry(
  523. sci, ssp, sizeof(*binfo_v));
  524. *binfo_v = binfo->bi_v;
  525. }
  526. static void nilfs_write_file_node_binfo(struct nilfs_sc_info *sci,
  527. struct nilfs_segsum_pointer *ssp,
  528. union nilfs_binfo *binfo)
  529. {
  530. __le64 *vblocknr = nilfs_segctor_map_segsum_entry(
  531. sci, ssp, sizeof(*vblocknr));
  532. *vblocknr = binfo->bi_v.bi_vblocknr;
  533. }
  534. struct nilfs_sc_operations nilfs_sc_file_ops = {
  535. .collect_data = nilfs_collect_file_data,
  536. .collect_node = nilfs_collect_file_node,
  537. .collect_bmap = nilfs_collect_file_bmap,
  538. .write_data_binfo = nilfs_write_file_data_binfo,
  539. .write_node_binfo = nilfs_write_file_node_binfo,
  540. };
  541. static int nilfs_collect_dat_data(struct nilfs_sc_info *sci,
  542. struct buffer_head *bh, struct inode *inode)
  543. {
  544. int err;
  545. err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
  546. if (unlikely(err < 0))
  547. return nilfs_handle_bmap_error(err, __func__, inode,
  548. sci->sc_super);
  549. err = nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
  550. if (!err)
  551. sci->sc_datablk_cnt++;
  552. return err;
  553. }
  554. static int nilfs_collect_dat_bmap(struct nilfs_sc_info *sci,
  555. struct buffer_head *bh, struct inode *inode)
  556. {
  557. WARN_ON(!buffer_dirty(bh));
  558. return nilfs_segctor_add_file_block(sci, bh, inode,
  559. sizeof(struct nilfs_binfo_dat));
  560. }
  561. static void nilfs_write_dat_data_binfo(struct nilfs_sc_info *sci,
  562. struct nilfs_segsum_pointer *ssp,
  563. union nilfs_binfo *binfo)
  564. {
  565. __le64 *blkoff = nilfs_segctor_map_segsum_entry(sci, ssp,
  566. sizeof(*blkoff));
  567. *blkoff = binfo->bi_dat.bi_blkoff;
  568. }
  569. static void nilfs_write_dat_node_binfo(struct nilfs_sc_info *sci,
  570. struct nilfs_segsum_pointer *ssp,
  571. union nilfs_binfo *binfo)
  572. {
  573. struct nilfs_binfo_dat *binfo_dat =
  574. nilfs_segctor_map_segsum_entry(sci, ssp, sizeof(*binfo_dat));
  575. *binfo_dat = binfo->bi_dat;
  576. }
  577. struct nilfs_sc_operations nilfs_sc_dat_ops = {
  578. .collect_data = nilfs_collect_dat_data,
  579. .collect_node = nilfs_collect_file_node,
  580. .collect_bmap = nilfs_collect_dat_bmap,
  581. .write_data_binfo = nilfs_write_dat_data_binfo,
  582. .write_node_binfo = nilfs_write_dat_node_binfo,
  583. };
  584. struct nilfs_sc_operations nilfs_sc_dsync_ops = {
  585. .collect_data = nilfs_collect_file_data,
  586. .collect_node = NULL,
  587. .collect_bmap = NULL,
  588. .write_data_binfo = nilfs_write_file_data_binfo,
  589. .write_node_binfo = NULL,
  590. };
  591. static size_t nilfs_lookup_dirty_data_buffers(struct inode *inode,
  592. struct list_head *listp,
  593. size_t nlimit,
  594. loff_t start, loff_t end)
  595. {
  596. struct address_space *mapping = inode->i_mapping;
  597. struct pagevec pvec;
  598. pgoff_t index = 0, last = ULONG_MAX;
  599. size_t ndirties = 0;
  600. int i;
  601. if (unlikely(start != 0 || end != LLONG_MAX)) {
  602. /*
  603. * A valid range is given for sync-ing data pages. The
  604. * range is rounded to per-page; extra dirty buffers
  605. * may be included if blocksize < pagesize.
  606. */
  607. index = start >> PAGE_SHIFT;
  608. last = end >> PAGE_SHIFT;
  609. }
  610. pagevec_init(&pvec, 0);
  611. repeat:
  612. if (unlikely(index > last) ||
  613. !pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
  614. min_t(pgoff_t, last - index,
  615. PAGEVEC_SIZE - 1) + 1))
  616. return ndirties;
  617. for (i = 0; i < pagevec_count(&pvec); i++) {
  618. struct buffer_head *bh, *head;
  619. struct page *page = pvec.pages[i];
  620. if (unlikely(page->index > last))
  621. break;
  622. if (mapping->host) {
  623. lock_page(page);
  624. if (!page_has_buffers(page))
  625. create_empty_buffers(page,
  626. 1 << inode->i_blkbits, 0);
  627. unlock_page(page);
  628. }
  629. bh = head = page_buffers(page);
  630. do {
  631. if (!buffer_dirty(bh))
  632. continue;
  633. get_bh(bh);
  634. list_add_tail(&bh->b_assoc_buffers, listp);
  635. ndirties++;
  636. if (unlikely(ndirties >= nlimit)) {
  637. pagevec_release(&pvec);
  638. cond_resched();
  639. return ndirties;
  640. }
  641. } while (bh = bh->b_this_page, bh != head);
  642. }
  643. pagevec_release(&pvec);
  644. cond_resched();
  645. goto repeat;
  646. }
  647. static void nilfs_lookup_dirty_node_buffers(struct inode *inode,
  648. struct list_head *listp)
  649. {
  650. struct nilfs_inode_info *ii = NILFS_I(inode);
  651. struct address_space *mapping = &ii->i_btnode_cache;
  652. struct pagevec pvec;
  653. struct buffer_head *bh, *head;
  654. unsigned int i;
  655. pgoff_t index = 0;
  656. pagevec_init(&pvec, 0);
  657. while (pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
  658. PAGEVEC_SIZE)) {
  659. for (i = 0; i < pagevec_count(&pvec); i++) {
  660. bh = head = page_buffers(pvec.pages[i]);
  661. do {
  662. if (buffer_dirty(bh)) {
  663. get_bh(bh);
  664. list_add_tail(&bh->b_assoc_buffers,
  665. listp);
  666. }
  667. bh = bh->b_this_page;
  668. } while (bh != head);
  669. }
  670. pagevec_release(&pvec);
  671. cond_resched();
  672. }
  673. }
  674. static void nilfs_dispose_list(struct nilfs_sb_info *sbi,
  675. struct list_head *head, int force)
  676. {
  677. struct nilfs_inode_info *ii, *n;
  678. struct nilfs_inode_info *ivec[SC_N_INODEVEC], **pii;
  679. unsigned nv = 0;
  680. while (!list_empty(head)) {
  681. spin_lock(&sbi->s_inode_lock);
  682. list_for_each_entry_safe(ii, n, head, i_dirty) {
  683. list_del_init(&ii->i_dirty);
  684. if (force) {
  685. if (unlikely(ii->i_bh)) {
  686. brelse(ii->i_bh);
  687. ii->i_bh = NULL;
  688. }
  689. } else if (test_bit(NILFS_I_DIRTY, &ii->i_state)) {
  690. set_bit(NILFS_I_QUEUED, &ii->i_state);
  691. list_add_tail(&ii->i_dirty,
  692. &sbi->s_dirty_files);
  693. continue;
  694. }
  695. ivec[nv++] = ii;
  696. if (nv == SC_N_INODEVEC)
  697. break;
  698. }
  699. spin_unlock(&sbi->s_inode_lock);
  700. for (pii = ivec; nv > 0; pii++, nv--)
  701. iput(&(*pii)->vfs_inode);
  702. }
  703. }
  704. static int nilfs_test_metadata_dirty(struct nilfs_sb_info *sbi)
  705. {
  706. struct the_nilfs *nilfs = sbi->s_nilfs;
  707. int ret = 0;
  708. if (nilfs_mdt_fetch_dirty(sbi->s_ifile))
  709. ret++;
  710. if (nilfs_mdt_fetch_dirty(nilfs->ns_cpfile))
  711. ret++;
  712. if (nilfs_mdt_fetch_dirty(nilfs->ns_sufile))
  713. ret++;
  714. if (ret || nilfs_doing_gc())
  715. if (nilfs_mdt_fetch_dirty(nilfs_dat_inode(nilfs)))
  716. ret++;
  717. return ret;
  718. }
  719. static int nilfs_segctor_clean(struct nilfs_sc_info *sci)
  720. {
  721. return list_empty(&sci->sc_dirty_files) &&
  722. !test_bit(NILFS_SC_DIRTY, &sci->sc_flags) &&
  723. list_empty(&sci->sc_cleaning_segments) &&
  724. (!nilfs_doing_gc() || list_empty(&sci->sc_gc_inodes));
  725. }
  726. static int nilfs_segctor_confirm(struct nilfs_sc_info *sci)
  727. {
  728. struct nilfs_sb_info *sbi = sci->sc_sbi;
  729. int ret = 0;
  730. if (nilfs_test_metadata_dirty(sbi))
  731. set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
  732. spin_lock(&sbi->s_inode_lock);
  733. if (list_empty(&sbi->s_dirty_files) && nilfs_segctor_clean(sci))
  734. ret++;
  735. spin_unlock(&sbi->s_inode_lock);
  736. return ret;
  737. }
  738. static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info *sci)
  739. {
  740. struct nilfs_sb_info *sbi = sci->sc_sbi;
  741. struct the_nilfs *nilfs = sbi->s_nilfs;
  742. nilfs_mdt_clear_dirty(sbi->s_ifile);
  743. nilfs_mdt_clear_dirty(nilfs->ns_cpfile);
  744. nilfs_mdt_clear_dirty(nilfs->ns_sufile);
  745. nilfs_mdt_clear_dirty(nilfs_dat_inode(nilfs));
  746. }
  747. static int nilfs_segctor_create_checkpoint(struct nilfs_sc_info *sci)
  748. {
  749. struct the_nilfs *nilfs = sci->sc_sbi->s_nilfs;
  750. struct buffer_head *bh_cp;
  751. struct nilfs_checkpoint *raw_cp;
  752. int err;
  753. /* XXX: this interface will be changed */
  754. err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 1,
  755. &raw_cp, &bh_cp);
  756. if (likely(!err)) {
  757. /* The following code is duplicated with cpfile. But, it is
  758. needed to collect the checkpoint even if it was not newly
  759. created */
  760. nilfs_mdt_mark_buffer_dirty(bh_cp);
  761. nilfs_mdt_mark_dirty(nilfs->ns_cpfile);
  762. nilfs_cpfile_put_checkpoint(
  763. nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
  764. } else
  765. WARN_ON(err == -EINVAL || err == -ENOENT);
  766. return err;
  767. }
  768. static int nilfs_segctor_fill_in_checkpoint(struct nilfs_sc_info *sci)
  769. {
  770. struct nilfs_sb_info *sbi = sci->sc_sbi;
  771. struct the_nilfs *nilfs = sbi->s_nilfs;
  772. struct buffer_head *bh_cp;
  773. struct nilfs_checkpoint *raw_cp;
  774. int err;
  775. err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 0,
  776. &raw_cp, &bh_cp);
  777. if (unlikely(err)) {
  778. WARN_ON(err == -EINVAL || err == -ENOENT);
  779. goto failed_ibh;
  780. }
  781. raw_cp->cp_snapshot_list.ssl_next = 0;
  782. raw_cp->cp_snapshot_list.ssl_prev = 0;
  783. raw_cp->cp_inodes_count =
  784. cpu_to_le64(atomic_read(&sbi->s_inodes_count));
  785. raw_cp->cp_blocks_count =
  786. cpu_to_le64(atomic_read(&sbi->s_blocks_count));
  787. raw_cp->cp_nblk_inc =
  788. cpu_to_le64(sci->sc_nblk_inc + sci->sc_nblk_this_inc);
  789. raw_cp->cp_create = cpu_to_le64(sci->sc_seg_ctime);
  790. raw_cp->cp_cno = cpu_to_le64(nilfs->ns_cno);
  791. if (test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
  792. nilfs_checkpoint_clear_minor(raw_cp);
  793. else
  794. nilfs_checkpoint_set_minor(raw_cp);
  795. nilfs_write_inode_common(sbi->s_ifile, &raw_cp->cp_ifile_inode, 1);
  796. nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
  797. return 0;
  798. failed_ibh:
  799. return err;
  800. }
  801. static void nilfs_fill_in_file_bmap(struct inode *ifile,
  802. struct nilfs_inode_info *ii)
  803. {
  804. struct buffer_head *ibh;
  805. struct nilfs_inode *raw_inode;
  806. if (test_bit(NILFS_I_BMAP, &ii->i_state)) {
  807. ibh = ii->i_bh;
  808. BUG_ON(!ibh);
  809. raw_inode = nilfs_ifile_map_inode(ifile, ii->vfs_inode.i_ino,
  810. ibh);
  811. nilfs_bmap_write(ii->i_bmap, raw_inode);
  812. nilfs_ifile_unmap_inode(ifile, ii->vfs_inode.i_ino, ibh);
  813. }
  814. }
  815. static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info *sci,
  816. struct inode *ifile)
  817. {
  818. struct nilfs_inode_info *ii;
  819. list_for_each_entry(ii, &sci->sc_dirty_files, i_dirty) {
  820. nilfs_fill_in_file_bmap(ifile, ii);
  821. set_bit(NILFS_I_COLLECTED, &ii->i_state);
  822. }
  823. }
  824. /*
  825. * CRC calculation routines
  826. */
  827. static void nilfs_fill_in_super_root_crc(struct buffer_head *bh_sr, u32 seed)
  828. {
  829. struct nilfs_super_root *raw_sr =
  830. (struct nilfs_super_root *)bh_sr->b_data;
  831. u32 crc;
  832. crc = crc32_le(seed,
  833. (unsigned char *)raw_sr + sizeof(raw_sr->sr_sum),
  834. NILFS_SR_BYTES - sizeof(raw_sr->sr_sum));
  835. raw_sr->sr_sum = cpu_to_le32(crc);
  836. }
  837. static void nilfs_segctor_fill_in_checksums(struct nilfs_sc_info *sci,
  838. u32 seed)
  839. {
  840. struct nilfs_segment_buffer *segbuf;
  841. if (sci->sc_super_root)
  842. nilfs_fill_in_super_root_crc(sci->sc_super_root, seed);
  843. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  844. nilfs_segbuf_fill_in_segsum_crc(segbuf, seed);
  845. nilfs_segbuf_fill_in_data_crc(segbuf, seed);
  846. }
  847. }
  848. static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info *sci,
  849. struct the_nilfs *nilfs)
  850. {
  851. struct buffer_head *bh_sr = sci->sc_super_root;
  852. struct nilfs_super_root *raw_sr =
  853. (struct nilfs_super_root *)bh_sr->b_data;
  854. unsigned isz = nilfs->ns_inode_size;
  855. raw_sr->sr_bytes = cpu_to_le16(NILFS_SR_BYTES);
  856. raw_sr->sr_nongc_ctime
  857. = cpu_to_le64(nilfs_doing_gc() ?
  858. nilfs->ns_nongc_ctime : sci->sc_seg_ctime);
  859. raw_sr->sr_flags = 0;
  860. nilfs_mdt_write_inode_direct(
  861. nilfs_dat_inode(nilfs), bh_sr, NILFS_SR_DAT_OFFSET(isz));
  862. nilfs_mdt_write_inode_direct(
  863. nilfs->ns_cpfile, bh_sr, NILFS_SR_CPFILE_OFFSET(isz));
  864. nilfs_mdt_write_inode_direct(
  865. nilfs->ns_sufile, bh_sr, NILFS_SR_SUFILE_OFFSET(isz));
  866. }
  867. static void nilfs_redirty_inodes(struct list_head *head)
  868. {
  869. struct nilfs_inode_info *ii;
  870. list_for_each_entry(ii, head, i_dirty) {
  871. if (test_bit(NILFS_I_COLLECTED, &ii->i_state))
  872. clear_bit(NILFS_I_COLLECTED, &ii->i_state);
  873. }
  874. }
  875. static void nilfs_drop_collected_inodes(struct list_head *head)
  876. {
  877. struct nilfs_inode_info *ii;
  878. list_for_each_entry(ii, head, i_dirty) {
  879. if (!test_and_clear_bit(NILFS_I_COLLECTED, &ii->i_state))
  880. continue;
  881. clear_bit(NILFS_I_INODE_DIRTY, &ii->i_state);
  882. set_bit(NILFS_I_UPDATED, &ii->i_state);
  883. }
  884. }
  885. static void nilfs_segctor_cancel_free_segments(struct nilfs_sc_info *sci,
  886. struct inode *sufile)
  887. {
  888. struct list_head *head = &sci->sc_cleaning_segments;
  889. struct nilfs_segment_entry *ent;
  890. int err;
  891. list_for_each_entry(ent, head, list) {
  892. if (!(ent->flags & NILFS_SLH_FREED))
  893. break;
  894. err = nilfs_sufile_cancel_free(sufile, ent->segnum);
  895. WARN_ON(err); /* do not happen */
  896. ent->flags &= ~NILFS_SLH_FREED;
  897. }
  898. }
  899. static int nilfs_segctor_prepare_free_segments(struct nilfs_sc_info *sci,
  900. struct inode *sufile)
  901. {
  902. struct list_head *head = &sci->sc_cleaning_segments;
  903. struct nilfs_segment_entry *ent;
  904. int err;
  905. list_for_each_entry(ent, head, list) {
  906. err = nilfs_sufile_free(sufile, ent->segnum);
  907. if (unlikely(err))
  908. return err;
  909. ent->flags |= NILFS_SLH_FREED;
  910. }
  911. return 0;
  912. }
  913. static void nilfs_segctor_commit_free_segments(struct nilfs_sc_info *sci)
  914. {
  915. nilfs_dispose_segment_list(&sci->sc_cleaning_segments);
  916. }
  917. static int nilfs_segctor_apply_buffers(struct nilfs_sc_info *sci,
  918. struct inode *inode,
  919. struct list_head *listp,
  920. int (*collect)(struct nilfs_sc_info *,
  921. struct buffer_head *,
  922. struct inode *))
  923. {
  924. struct buffer_head *bh, *n;
  925. int err = 0;
  926. if (collect) {
  927. list_for_each_entry_safe(bh, n, listp, b_assoc_buffers) {
  928. list_del_init(&bh->b_assoc_buffers);
  929. err = collect(sci, bh, inode);
  930. brelse(bh);
  931. if (unlikely(err))
  932. goto dispose_buffers;
  933. }
  934. return 0;
  935. }
  936. dispose_buffers:
  937. while (!list_empty(listp)) {
  938. bh = list_entry(listp->next, struct buffer_head,
  939. b_assoc_buffers);
  940. list_del_init(&bh->b_assoc_buffers);
  941. brelse(bh);
  942. }
  943. return err;
  944. }
  945. static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info *sci)
  946. {
  947. /* Remaining number of blocks within segment buffer */
  948. return sci->sc_segbuf_nblocks -
  949. (sci->sc_nblk_this_inc + sci->sc_curseg->sb_sum.nblocks);
  950. }
  951. static int nilfs_segctor_scan_file(struct nilfs_sc_info *sci,
  952. struct inode *inode,
  953. struct nilfs_sc_operations *sc_ops)
  954. {
  955. LIST_HEAD(data_buffers);
  956. LIST_HEAD(node_buffers);
  957. int err;
  958. if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
  959. size_t n, rest = nilfs_segctor_buffer_rest(sci);
  960. n = nilfs_lookup_dirty_data_buffers(
  961. inode, &data_buffers, rest + 1, 0, LLONG_MAX);
  962. if (n > rest) {
  963. err = nilfs_segctor_apply_buffers(
  964. sci, inode, &data_buffers,
  965. sc_ops->collect_data);
  966. BUG_ON(!err); /* always receive -E2BIG or true error */
  967. goto break_or_fail;
  968. }
  969. }
  970. nilfs_lookup_dirty_node_buffers(inode, &node_buffers);
  971. if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
  972. err = nilfs_segctor_apply_buffers(
  973. sci, inode, &data_buffers, sc_ops->collect_data);
  974. if (unlikely(err)) {
  975. /* dispose node list */
  976. nilfs_segctor_apply_buffers(
  977. sci, inode, &node_buffers, NULL);
  978. goto break_or_fail;
  979. }
  980. sci->sc_stage.flags |= NILFS_CF_NODE;
  981. }
  982. /* Collect node */
  983. err = nilfs_segctor_apply_buffers(
  984. sci, inode, &node_buffers, sc_ops->collect_node);
  985. if (unlikely(err))
  986. goto break_or_fail;
  987. nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode)->i_bmap, &node_buffers);
  988. err = nilfs_segctor_apply_buffers(
  989. sci, inode, &node_buffers, sc_ops->collect_bmap);
  990. if (unlikely(err))
  991. goto break_or_fail;
  992. nilfs_segctor_end_finfo(sci, inode);
  993. sci->sc_stage.flags &= ~NILFS_CF_NODE;
  994. break_or_fail:
  995. return err;
  996. }
  997. static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info *sci,
  998. struct inode *inode)
  999. {
  1000. LIST_HEAD(data_buffers);
  1001. size_t n, rest = nilfs_segctor_buffer_rest(sci);
  1002. int err;
  1003. n = nilfs_lookup_dirty_data_buffers(inode, &data_buffers, rest + 1,
  1004. sci->sc_dsync_start,
  1005. sci->sc_dsync_end);
  1006. err = nilfs_segctor_apply_buffers(sci, inode, &data_buffers,
  1007. nilfs_collect_file_data);
  1008. if (!err) {
  1009. nilfs_segctor_end_finfo(sci, inode);
  1010. BUG_ON(n > rest);
  1011. /* always receive -E2BIG or true error if n > rest */
  1012. }
  1013. return err;
  1014. }
  1015. static int nilfs_segctor_collect_blocks(struct nilfs_sc_info *sci, int mode)
  1016. {
  1017. struct nilfs_sb_info *sbi = sci->sc_sbi;
  1018. struct the_nilfs *nilfs = sbi->s_nilfs;
  1019. struct list_head *head;
  1020. struct nilfs_inode_info *ii;
  1021. int err = 0;
  1022. switch (sci->sc_stage.scnt) {
  1023. case NILFS_ST_INIT:
  1024. /* Pre-processes */
  1025. sci->sc_stage.flags = 0;
  1026. if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) {
  1027. sci->sc_nblk_inc = 0;
  1028. sci->sc_curseg->sb_sum.flags = NILFS_SS_LOGBGN;
  1029. if (mode == SC_LSEG_DSYNC) {
  1030. sci->sc_stage.scnt = NILFS_ST_DSYNC;
  1031. goto dsync_mode;
  1032. }
  1033. }
  1034. sci->sc_stage.dirty_file_ptr = NULL;
  1035. sci->sc_stage.gc_inode_ptr = NULL;
  1036. if (mode == SC_FLUSH_DAT) {
  1037. sci->sc_stage.scnt = NILFS_ST_DAT;
  1038. goto dat_stage;
  1039. }
  1040. sci->sc_stage.scnt++; /* Fall through */
  1041. case NILFS_ST_GC:
  1042. if (nilfs_doing_gc()) {
  1043. head = &sci->sc_gc_inodes;
  1044. ii = list_prepare_entry(sci->sc_stage.gc_inode_ptr,
  1045. head, i_dirty);
  1046. list_for_each_entry_continue(ii, head, i_dirty) {
  1047. err = nilfs_segctor_scan_file(
  1048. sci, &ii->vfs_inode,
  1049. &nilfs_sc_file_ops);
  1050. if (unlikely(err)) {
  1051. sci->sc_stage.gc_inode_ptr = list_entry(
  1052. ii->i_dirty.prev,
  1053. struct nilfs_inode_info,
  1054. i_dirty);
  1055. goto break_or_fail;
  1056. }
  1057. set_bit(NILFS_I_COLLECTED, &ii->i_state);
  1058. }
  1059. sci->sc_stage.gc_inode_ptr = NULL;
  1060. }
  1061. sci->sc_stage.scnt++; /* Fall through */
  1062. case NILFS_ST_FILE:
  1063. head = &sci->sc_dirty_files;
  1064. ii = list_prepare_entry(sci->sc_stage.dirty_file_ptr, head,
  1065. i_dirty);
  1066. list_for_each_entry_continue(ii, head, i_dirty) {
  1067. clear_bit(NILFS_I_DIRTY, &ii->i_state);
  1068. err = nilfs_segctor_scan_file(sci, &ii->vfs_inode,
  1069. &nilfs_sc_file_ops);
  1070. if (unlikely(err)) {
  1071. sci->sc_stage.dirty_file_ptr =
  1072. list_entry(ii->i_dirty.prev,
  1073. struct nilfs_inode_info,
  1074. i_dirty);
  1075. goto break_or_fail;
  1076. }
  1077. /* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */
  1078. /* XXX: required ? */
  1079. }
  1080. sci->sc_stage.dirty_file_ptr = NULL;
  1081. if (mode == SC_FLUSH_FILE) {
  1082. sci->sc_stage.scnt = NILFS_ST_DONE;
  1083. return 0;
  1084. }
  1085. sci->sc_stage.scnt++;
  1086. sci->sc_stage.flags |= NILFS_CF_IFILE_STARTED;
  1087. /* Fall through */
  1088. case NILFS_ST_IFILE:
  1089. err = nilfs_segctor_scan_file(sci, sbi->s_ifile,
  1090. &nilfs_sc_file_ops);
  1091. if (unlikely(err))
  1092. break;
  1093. sci->sc_stage.scnt++;
  1094. /* Creating a checkpoint */
  1095. err = nilfs_segctor_create_checkpoint(sci);
  1096. if (unlikely(err))
  1097. break;
  1098. /* Fall through */
  1099. case NILFS_ST_CPFILE:
  1100. err = nilfs_segctor_scan_file(sci, nilfs->ns_cpfile,
  1101. &nilfs_sc_file_ops);
  1102. if (unlikely(err))
  1103. break;
  1104. sci->sc_stage.scnt++; /* Fall through */
  1105. case NILFS_ST_SUFILE:
  1106. err = nilfs_segctor_prepare_free_segments(sci,
  1107. nilfs->ns_sufile);
  1108. if (unlikely(err))
  1109. break;
  1110. err = nilfs_segctor_scan_file(sci, nilfs->ns_sufile,
  1111. &nilfs_sc_file_ops);
  1112. if (unlikely(err))
  1113. break;
  1114. sci->sc_stage.scnt++; /* Fall through */
  1115. case NILFS_ST_DAT:
  1116. dat_stage:
  1117. err = nilfs_segctor_scan_file(sci, nilfs_dat_inode(nilfs),
  1118. &nilfs_sc_dat_ops);
  1119. if (unlikely(err))
  1120. break;
  1121. if (mode == SC_FLUSH_DAT) {
  1122. sci->sc_stage.scnt = NILFS_ST_DONE;
  1123. return 0;
  1124. }
  1125. sci->sc_stage.scnt++; /* Fall through */
  1126. case NILFS_ST_SR:
  1127. if (mode == SC_LSEG_SR) {
  1128. /* Appending a super root */
  1129. err = nilfs_segctor_add_super_root(sci);
  1130. if (unlikely(err))
  1131. break;
  1132. }
  1133. /* End of a logical segment */
  1134. sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
  1135. sci->sc_stage.scnt = NILFS_ST_DONE;
  1136. return 0;
  1137. case NILFS_ST_DSYNC:
  1138. dsync_mode:
  1139. sci->sc_curseg->sb_sum.flags |= NILFS_SS_SYNDT;
  1140. ii = sci->sc_dsync_inode;
  1141. if (!test_bit(NILFS_I_BUSY, &ii->i_state))
  1142. break;
  1143. err = nilfs_segctor_scan_file_dsync(sci, &ii->vfs_inode);
  1144. if (unlikely(err))
  1145. break;
  1146. sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
  1147. sci->sc_stage.scnt = NILFS_ST_DONE;
  1148. return 0;
  1149. case NILFS_ST_DONE:
  1150. return 0;
  1151. default:
  1152. BUG();
  1153. }
  1154. break_or_fail:
  1155. return err;
  1156. }
  1157. static int nilfs_touch_segusage(struct inode *sufile, __u64 segnum)
  1158. {
  1159. struct buffer_head *bh_su;
  1160. struct nilfs_segment_usage *raw_su;
  1161. int err;
  1162. err = nilfs_sufile_get_segment_usage(sufile, segnum, &raw_su, &bh_su);
  1163. if (unlikely(err))
  1164. return err;
  1165. nilfs_mdt_mark_buffer_dirty(bh_su);
  1166. nilfs_mdt_mark_dirty(sufile);
  1167. nilfs_sufile_put_segment_usage(sufile, segnum, bh_su);
  1168. return 0;
  1169. }
  1170. static int nilfs_segctor_begin_construction(struct nilfs_sc_info *sci,
  1171. struct the_nilfs *nilfs)
  1172. {
  1173. struct nilfs_segment_buffer *segbuf, *n;
  1174. __u64 nextnum;
  1175. int err;
  1176. if (list_empty(&sci->sc_segbufs)) {
  1177. segbuf = nilfs_segbuf_new(sci->sc_super);
  1178. if (unlikely(!segbuf))
  1179. return -ENOMEM;
  1180. list_add(&segbuf->sb_list, &sci->sc_segbufs);
  1181. } else
  1182. segbuf = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
  1183. nilfs_segbuf_map(segbuf, nilfs->ns_segnum, nilfs->ns_pseg_offset,
  1184. nilfs);
  1185. if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
  1186. nilfs_shift_to_next_segment(nilfs);
  1187. nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 0, nilfs);
  1188. }
  1189. sci->sc_segbuf_nblocks = segbuf->sb_rest_blocks;
  1190. err = nilfs_touch_segusage(nilfs->ns_sufile, segbuf->sb_segnum);
  1191. if (unlikely(err))
  1192. return err;
  1193. if (nilfs->ns_segnum == nilfs->ns_nextnum) {
  1194. /* Start from the head of a new full segment */
  1195. err = nilfs_sufile_alloc(nilfs->ns_sufile, &nextnum);
  1196. if (unlikely(err))
  1197. return err;
  1198. } else
  1199. nextnum = nilfs->ns_nextnum;
  1200. segbuf->sb_sum.seg_seq = nilfs->ns_seg_seq;
  1201. nilfs_segbuf_set_next_segnum(segbuf, nextnum, nilfs);
  1202. /* truncating segment buffers */
  1203. list_for_each_entry_safe_continue(segbuf, n, &sci->sc_segbufs,
  1204. sb_list) {
  1205. list_del_init(&segbuf->sb_list);
  1206. nilfs_segbuf_free(segbuf);
  1207. }
  1208. return 0;
  1209. }
  1210. static int nilfs_segctor_extend_segments(struct nilfs_sc_info *sci,
  1211. struct the_nilfs *nilfs, int nadd)
  1212. {
  1213. struct nilfs_segment_buffer *segbuf, *prev, *n;
  1214. struct inode *sufile = nilfs->ns_sufile;
  1215. __u64 nextnextnum;
  1216. LIST_HEAD(list);
  1217. int err, ret, i;
  1218. prev = NILFS_LAST_SEGBUF(&sci->sc_segbufs);
  1219. /*
  1220. * Since the segment specified with nextnum might be allocated during
  1221. * the previous construction, the buffer including its segusage may
  1222. * not be dirty. The following call ensures that the buffer is dirty
  1223. * and will pin the buffer on memory until the sufile is written.
  1224. */
  1225. err = nilfs_touch_segusage(sufile, prev->sb_nextnum);
  1226. if (unlikely(err))
  1227. return err;
  1228. for (i = 0; i < nadd; i++) {
  1229. /* extend segment info */
  1230. err = -ENOMEM;
  1231. segbuf = nilfs_segbuf_new(sci->sc_super);
  1232. if (unlikely(!segbuf))
  1233. goto failed;
  1234. /* map this buffer to region of segment on-disk */
  1235. nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
  1236. sci->sc_segbuf_nblocks += segbuf->sb_rest_blocks;
  1237. /* allocate the next next full segment */
  1238. err = nilfs_sufile_alloc(sufile, &nextnextnum);
  1239. if (unlikely(err))
  1240. goto failed_segbuf;
  1241. segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq + 1;
  1242. nilfs_segbuf_set_next_segnum(segbuf, nextnextnum, nilfs);
  1243. list_add_tail(&segbuf->sb_list, &list);
  1244. prev = segbuf;
  1245. }
  1246. list_splice(&list, sci->sc_segbufs.prev);
  1247. return 0;
  1248. failed_segbuf:
  1249. nilfs_segbuf_free(segbuf);
  1250. failed:
  1251. list_for_each_entry_safe(segbuf, n, &list, sb_list) {
  1252. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1253. WARN_ON(ret); /* never fails */
  1254. list_del_init(&segbuf->sb_list);
  1255. nilfs_segbuf_free(segbuf);
  1256. }
  1257. return err;
  1258. }
  1259. static void nilfs_segctor_free_incomplete_segments(struct nilfs_sc_info *sci,
  1260. struct the_nilfs *nilfs)
  1261. {
  1262. struct nilfs_segment_buffer *segbuf;
  1263. int ret, done = 0;
  1264. segbuf = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
  1265. if (nilfs->ns_nextnum != segbuf->sb_nextnum) {
  1266. ret = nilfs_sufile_free(nilfs->ns_sufile, segbuf->sb_nextnum);
  1267. WARN_ON(ret); /* never fails */
  1268. }
  1269. if (segbuf->sb_io_error) {
  1270. /* Case 1: The first segment failed */
  1271. if (segbuf->sb_pseg_start != segbuf->sb_fseg_start)
  1272. /* Case 1a: Partial segment appended into an existing
  1273. segment */
  1274. nilfs_terminate_segment(nilfs, segbuf->sb_fseg_start,
  1275. segbuf->sb_fseg_end);
  1276. else /* Case 1b: New full segment */
  1277. set_nilfs_discontinued(nilfs);
  1278. done++;
  1279. }
  1280. list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) {
  1281. ret = nilfs_sufile_free(nilfs->ns_sufile, segbuf->sb_nextnum);
  1282. WARN_ON(ret); /* never fails */
  1283. if (!done && segbuf->sb_io_error) {
  1284. if (segbuf->sb_segnum != nilfs->ns_nextnum)
  1285. /* Case 2: extended segment (!= next) failed */
  1286. nilfs_sufile_set_error(nilfs->ns_sufile,
  1287. segbuf->sb_segnum);
  1288. done++;
  1289. }
  1290. }
  1291. }
  1292. static void nilfs_segctor_clear_segment_buffers(struct nilfs_sc_info *sci)
  1293. {
  1294. struct nilfs_segment_buffer *segbuf;
  1295. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list)
  1296. nilfs_segbuf_clear(segbuf);
  1297. sci->sc_super_root = NULL;
  1298. }
  1299. static void nilfs_segctor_destroy_segment_buffers(struct nilfs_sc_info *sci)
  1300. {
  1301. struct nilfs_segment_buffer *segbuf;
  1302. while (!list_empty(&sci->sc_segbufs)) {
  1303. segbuf = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
  1304. list_del_init(&segbuf->sb_list);
  1305. nilfs_segbuf_free(segbuf);
  1306. }
  1307. /* sci->sc_curseg = NULL; */
  1308. }
  1309. static void nilfs_segctor_end_construction(struct nilfs_sc_info *sci,
  1310. struct the_nilfs *nilfs, int err)
  1311. {
  1312. if (unlikely(err)) {
  1313. nilfs_segctor_free_incomplete_segments(sci, nilfs);
  1314. nilfs_segctor_cancel_free_segments(sci, nilfs->ns_sufile);
  1315. }
  1316. nilfs_segctor_clear_segment_buffers(sci);
  1317. }
  1318. static void nilfs_segctor_update_segusage(struct nilfs_sc_info *sci,
  1319. struct inode *sufile)
  1320. {
  1321. struct nilfs_segment_buffer *segbuf;
  1322. struct buffer_head *bh_su;
  1323. struct nilfs_segment_usage *raw_su;
  1324. unsigned long live_blocks;
  1325. int ret;
  1326. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1327. ret = nilfs_sufile_get_segment_usage(sufile, segbuf->sb_segnum,
  1328. &raw_su, &bh_su);
  1329. WARN_ON(ret); /* always succeed because bh_su is dirty */
  1330. live_blocks = segbuf->sb_sum.nblocks +
  1331. (segbuf->sb_pseg_start - segbuf->sb_fseg_start);
  1332. raw_su->su_lastmod = cpu_to_le64(sci->sc_seg_ctime);
  1333. raw_su->su_nblocks = cpu_to_le32(live_blocks);
  1334. nilfs_sufile_put_segment_usage(sufile, segbuf->sb_segnum,
  1335. bh_su);
  1336. }
  1337. }
  1338. static void nilfs_segctor_cancel_segusage(struct nilfs_sc_info *sci,
  1339. struct inode *sufile)
  1340. {
  1341. struct nilfs_segment_buffer *segbuf;
  1342. struct buffer_head *bh_su;
  1343. struct nilfs_segment_usage *raw_su;
  1344. int ret;
  1345. segbuf = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
  1346. ret = nilfs_sufile_get_segment_usage(sufile, segbuf->sb_segnum,
  1347. &raw_su, &bh_su);
  1348. WARN_ON(ret); /* always succeed because bh_su is dirty */
  1349. raw_su->su_nblocks = cpu_to_le32(segbuf->sb_pseg_start -
  1350. segbuf->sb_fseg_start);
  1351. nilfs_sufile_put_segment_usage(sufile, segbuf->sb_segnum, bh_su);
  1352. list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) {
  1353. ret = nilfs_sufile_get_segment_usage(sufile, segbuf->sb_segnum,
  1354. &raw_su, &bh_su);
  1355. WARN_ON(ret); /* always succeed */
  1356. raw_su->su_nblocks = 0;
  1357. nilfs_sufile_put_segment_usage(sufile, segbuf->sb_segnum,
  1358. bh_su);
  1359. }
  1360. }
  1361. static void nilfs_segctor_truncate_segments(struct nilfs_sc_info *sci,
  1362. struct nilfs_segment_buffer *last,
  1363. struct inode *sufile)
  1364. {
  1365. struct nilfs_segment_buffer *segbuf = last, *n;
  1366. int ret;
  1367. list_for_each_entry_safe_continue(segbuf, n, &sci->sc_segbufs,
  1368. sb_list) {
  1369. list_del_init(&segbuf->sb_list);
  1370. sci->sc_segbuf_nblocks -= segbuf->sb_rest_blocks;
  1371. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1372. WARN_ON(ret);
  1373. nilfs_segbuf_free(segbuf);
  1374. }
  1375. }
  1376. static int nilfs_segctor_collect(struct nilfs_sc_info *sci,
  1377. struct the_nilfs *nilfs, int mode)
  1378. {
  1379. struct nilfs_cstage prev_stage = sci->sc_stage;
  1380. int err, nadd = 1;
  1381. /* Collection retry loop */
  1382. for (;;) {
  1383. sci->sc_super_root = NULL;
  1384. sci->sc_nblk_this_inc = 0;
  1385. sci->sc_curseg = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
  1386. err = nilfs_segctor_reset_segment_buffer(sci);
  1387. if (unlikely(err))
  1388. goto failed;
  1389. err = nilfs_segctor_collect_blocks(sci, mode);
  1390. sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
  1391. if (!err)
  1392. break;
  1393. if (unlikely(err != -E2BIG))
  1394. goto failed;
  1395. /* The current segment is filled up */
  1396. if (mode != SC_LSEG_SR || sci->sc_stage.scnt < NILFS_ST_CPFILE)
  1397. break;
  1398. nilfs_segctor_cancel_free_segments(sci, nilfs->ns_sufile);
  1399. nilfs_segctor_clear_segment_buffers(sci);
  1400. err = nilfs_segctor_extend_segments(sci, nilfs, nadd);
  1401. if (unlikely(err))
  1402. return err;
  1403. nadd = min_t(int, nadd << 1, SC_MAX_SEGDELTA);
  1404. sci->sc_stage = prev_stage;
  1405. }
  1406. nilfs_segctor_truncate_segments(sci, sci->sc_curseg, nilfs->ns_sufile);
  1407. return 0;
  1408. failed:
  1409. return err;
  1410. }
  1411. static void nilfs_list_replace_buffer(struct buffer_head *old_bh,
  1412. struct buffer_head *new_bh)
  1413. {
  1414. BUG_ON(!list_empty(&new_bh->b_assoc_buffers));
  1415. list_replace_init(&old_bh->b_assoc_buffers, &new_bh->b_assoc_buffers);
  1416. /* The caller must release old_bh */
  1417. }
  1418. static int
  1419. nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info *sci,
  1420. struct nilfs_segment_buffer *segbuf,
  1421. int mode)
  1422. {
  1423. struct inode *inode = NULL;
  1424. sector_t blocknr;
  1425. unsigned long nfinfo = segbuf->sb_sum.nfinfo;
  1426. unsigned long nblocks = 0, ndatablk = 0;
  1427. struct nilfs_sc_operations *sc_op = NULL;
  1428. struct nilfs_segsum_pointer ssp;
  1429. struct nilfs_finfo *finfo = NULL;
  1430. union nilfs_binfo binfo;
  1431. struct buffer_head *bh, *bh_org;
  1432. ino_t ino = 0;
  1433. int err = 0;
  1434. if (!nfinfo)
  1435. goto out;
  1436. blocknr = segbuf->sb_pseg_start + segbuf->sb_sum.nsumblk;
  1437. ssp.bh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
  1438. ssp.offset = sizeof(struct nilfs_segment_summary);
  1439. list_for_each_entry(bh, &segbuf->sb_payload_buffers, b_assoc_buffers) {
  1440. if (bh == sci->sc_super_root)
  1441. break;
  1442. if (!finfo) {
  1443. finfo = nilfs_segctor_map_segsum_entry(
  1444. sci, &ssp, sizeof(*finfo));
  1445. ino = le64_to_cpu(finfo->fi_ino);
  1446. nblocks = le32_to_cpu(finfo->fi_nblocks);
  1447. ndatablk = le32_to_cpu(finfo->fi_ndatablk);
  1448. if (buffer_nilfs_node(bh))
  1449. inode = NILFS_BTNC_I(bh->b_page->mapping);
  1450. else
  1451. inode = NILFS_AS_I(bh->b_page->mapping);
  1452. if (mode == SC_LSEG_DSYNC)
  1453. sc_op = &nilfs_sc_dsync_ops;
  1454. else if (ino == NILFS_DAT_INO)
  1455. sc_op = &nilfs_sc_dat_ops;
  1456. else /* file blocks */
  1457. sc_op = &nilfs_sc_file_ops;
  1458. }
  1459. bh_org = bh;
  1460. get_bh(bh_org);
  1461. err = nilfs_bmap_assign(NILFS_I(inode)->i_bmap, &bh, blocknr,
  1462. &binfo);
  1463. if (bh != bh_org)
  1464. nilfs_list_replace_buffer(bh_org, bh);
  1465. brelse(bh_org);
  1466. if (unlikely(err))
  1467. goto failed_bmap;
  1468. if (ndatablk > 0)
  1469. sc_op->write_data_binfo(sci, &ssp, &binfo);
  1470. else
  1471. sc_op->write_node_binfo(sci, &ssp, &binfo);
  1472. blocknr++;
  1473. if (--nblocks == 0) {
  1474. finfo = NULL;
  1475. if (--nfinfo == 0)
  1476. break;
  1477. } else if (ndatablk > 0)
  1478. ndatablk--;
  1479. }
  1480. out:
  1481. return 0;
  1482. failed_bmap:
  1483. err = nilfs_handle_bmap_error(err, __func__, inode, sci->sc_super);
  1484. return err;
  1485. }
  1486. static int nilfs_segctor_assign(struct nilfs_sc_info *sci, int mode)
  1487. {
  1488. struct nilfs_segment_buffer *segbuf;
  1489. int err;
  1490. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1491. err = nilfs_segctor_update_payload_blocknr(sci, segbuf, mode);
  1492. if (unlikely(err))
  1493. return err;
  1494. nilfs_segbuf_fill_in_segsum(segbuf);
  1495. }
  1496. return 0;
  1497. }
  1498. static int
  1499. nilfs_copy_replace_page_buffers(struct page *page, struct list_head *out)
  1500. {
  1501. struct page *clone_page;
  1502. struct buffer_head *bh, *head, *bh2;
  1503. void *kaddr;
  1504. bh = head = page_buffers(page);
  1505. clone_page = nilfs_alloc_private_page(bh->b_bdev, bh->b_size, 0);
  1506. if (unlikely(!clone_page))
  1507. return -ENOMEM;
  1508. bh2 = page_buffers(clone_page);
  1509. kaddr = kmap_atomic(page, KM_USER0);
  1510. do {
  1511. if (list_empty(&bh->b_assoc_buffers))
  1512. continue;
  1513. get_bh(bh2);
  1514. page_cache_get(clone_page); /* for each bh */
  1515. memcpy(bh2->b_data, kaddr + bh_offset(bh), bh2->b_size);
  1516. bh2->b_blocknr = bh->b_blocknr;
  1517. list_replace(&bh->b_assoc_buffers, &bh2->b_assoc_buffers);
  1518. list_add_tail(&bh->b_assoc_buffers, out);
  1519. } while (bh = bh->b_this_page, bh2 = bh2->b_this_page, bh != head);
  1520. kunmap_atomic(kaddr, KM_USER0);
  1521. if (!TestSetPageWriteback(clone_page))
  1522. inc_zone_page_state(clone_page, NR_WRITEBACK);
  1523. unlock_page(clone_page);
  1524. return 0;
  1525. }
  1526. static int nilfs_test_page_to_be_frozen(struct page *page)
  1527. {
  1528. struct address_space *mapping = page->mapping;
  1529. if (!mapping || !mapping->host || S_ISDIR(mapping->host->i_mode))
  1530. return 0;
  1531. if (page_mapped(page)) {
  1532. ClearPageChecked(page);
  1533. return 1;
  1534. }
  1535. return PageChecked(page);
  1536. }
  1537. static int nilfs_begin_page_io(struct page *page, struct list_head *out)
  1538. {
  1539. if (!page || PageWriteback(page))
  1540. /* For split b-tree node pages, this function may be called
  1541. twice. We ignore the 2nd or later calls by this check. */
  1542. return 0;
  1543. lock_page(page);
  1544. clear_page_dirty_for_io(page);
  1545. set_page_writeback(page);
  1546. unlock_page(page);
  1547. if (nilfs_test_page_to_be_frozen(page)) {
  1548. int err = nilfs_copy_replace_page_buffers(page, out);
  1549. if (unlikely(err))
  1550. return err;
  1551. }
  1552. return 0;
  1553. }
  1554. static int nilfs_segctor_prepare_write(struct nilfs_sc_info *sci,
  1555. struct page **failed_page)
  1556. {
  1557. struct nilfs_segment_buffer *segbuf;
  1558. struct page *bd_page = NULL, *fs_page = NULL;
  1559. struct list_head *list = &sci->sc_copied_buffers;
  1560. int err;
  1561. *failed_page = NULL;
  1562. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1563. struct buffer_head *bh;
  1564. list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
  1565. b_assoc_buffers) {
  1566. if (bh->b_page != bd_page) {
  1567. if (bd_page) {
  1568. lock_page(bd_page);
  1569. clear_page_dirty_for_io(bd_page);
  1570. set_page_writeback(bd_page);
  1571. unlock_page(bd_page);
  1572. }
  1573. bd_page = bh->b_page;
  1574. }
  1575. }
  1576. list_for_each_entry(bh, &segbuf->sb_payload_buffers,
  1577. b_assoc_buffers) {
  1578. if (bh == sci->sc_super_root) {
  1579. if (bh->b_page != bd_page) {
  1580. lock_page(bd_page);
  1581. clear_page_dirty_for_io(bd_page);
  1582. set_page_writeback(bd_page);
  1583. unlock_page(bd_page);
  1584. bd_page = bh->b_page;
  1585. }
  1586. break;
  1587. }
  1588. if (bh->b_page != fs_page) {
  1589. err = nilfs_begin_page_io(fs_page, list);
  1590. if (unlikely(err)) {
  1591. *failed_page = fs_page;
  1592. goto out;
  1593. }
  1594. fs_page = bh->b_page;
  1595. }
  1596. }
  1597. }
  1598. if (bd_page) {
  1599. lock_page(bd_page);
  1600. clear_page_dirty_for_io(bd_page);
  1601. set_page_writeback(bd_page);
  1602. unlock_page(bd_page);
  1603. }
  1604. err = nilfs_begin_page_io(fs_page, list);
  1605. if (unlikely(err))
  1606. *failed_page = fs_page;
  1607. out:
  1608. return err;
  1609. }
  1610. static int nilfs_segctor_write(struct nilfs_sc_info *sci,
  1611. struct backing_dev_info *bdi)
  1612. {
  1613. struct nilfs_segment_buffer *segbuf;
  1614. struct nilfs_write_info wi;
  1615. int err, res;
  1616. wi.sb = sci->sc_super;
  1617. wi.bh_sr = sci->sc_super_root;
  1618. wi.bdi = bdi;
  1619. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1620. nilfs_segbuf_prepare_write(segbuf, &wi);
  1621. err = nilfs_segbuf_write(segbuf, &wi);
  1622. res = nilfs_segbuf_wait(segbuf, &wi);
  1623. err = unlikely(err) ? : res;
  1624. if (unlikely(err))
  1625. return err;
  1626. }
  1627. return 0;
  1628. }
  1629. static int nilfs_page_has_uncleared_buffer(struct page *page)
  1630. {
  1631. struct buffer_head *head, *bh;
  1632. head = bh = page_buffers(page);
  1633. do {
  1634. if (buffer_dirty(bh) && !list_empty(&bh->b_assoc_buffers))
  1635. return 1;
  1636. bh = bh->b_this_page;
  1637. } while (bh != head);
  1638. return 0;
  1639. }
  1640. static void __nilfs_end_page_io(struct page *page, int err)
  1641. {
  1642. if (!err) {
  1643. if (!nilfs_page_buffers_clean(page))
  1644. __set_page_dirty_nobuffers(page);
  1645. ClearPageError(page);
  1646. } else {
  1647. __set_page_dirty_nobuffers(page);
  1648. SetPageError(page);
  1649. }
  1650. if (buffer_nilfs_allocated(page_buffers(page))) {
  1651. if (TestClearPageWriteback(page))
  1652. dec_zone_page_state(page, NR_WRITEBACK);
  1653. } else
  1654. end_page_writeback(page);
  1655. }
  1656. static void nilfs_end_page_io(struct page *page, int err)
  1657. {
  1658. if (!page)
  1659. return;
  1660. if (buffer_nilfs_node(page_buffers(page)) &&
  1661. nilfs_page_has_uncleared_buffer(page))
  1662. /* For b-tree node pages, this function may be called twice
  1663. or more because they might be split in a segment.
  1664. This check assures that cleanup has been done for all
  1665. buffers in a split btnode page. */
  1666. return;
  1667. __nilfs_end_page_io(page, err);
  1668. }
  1669. static void nilfs_clear_copied_buffers(struct list_head *list, int err)
  1670. {
  1671. struct buffer_head *bh, *head;
  1672. struct page *page;
  1673. while (!list_empty(list)) {
  1674. bh = list_entry(list->next, struct buffer_head,
  1675. b_assoc_buffers);
  1676. page = bh->b_page;
  1677. page_cache_get(page);
  1678. head = bh = page_buffers(page);
  1679. do {
  1680. if (!list_empty(&bh->b_assoc_buffers)) {
  1681. list_del_init(&bh->b_assoc_buffers);
  1682. if (!err) {
  1683. set_buffer_uptodate(bh);
  1684. clear_buffer_dirty(bh);
  1685. clear_buffer_nilfs_volatile(bh);
  1686. }
  1687. brelse(bh); /* for b_assoc_buffers */
  1688. }
  1689. } while ((bh = bh->b_this_page) != head);
  1690. __nilfs_end_page_io(page, err);
  1691. page_cache_release(page);
  1692. }
  1693. }
  1694. static void nilfs_segctor_abort_write(struct nilfs_sc_info *sci,
  1695. struct page *failed_page, int err)
  1696. {
  1697. struct nilfs_segment_buffer *segbuf;
  1698. struct page *bd_page = NULL, *fs_page = NULL;
  1699. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1700. struct buffer_head *bh;
  1701. list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
  1702. b_assoc_buffers) {
  1703. if (bh->b_page != bd_page) {
  1704. if (bd_page)
  1705. end_page_writeback(bd_page);
  1706. bd_page = bh->b_page;
  1707. }
  1708. }
  1709. list_for_each_entry(bh, &segbuf->sb_payload_buffers,
  1710. b_assoc_buffers) {
  1711. if (bh == sci->sc_super_root) {
  1712. if (bh->b_page != bd_page) {
  1713. end_page_writeback(bd_page);
  1714. bd_page = bh->b_page;
  1715. }
  1716. break;
  1717. }
  1718. if (bh->b_page != fs_page) {
  1719. nilfs_end_page_io(fs_page, err);
  1720. if (unlikely(fs_page == failed_page))
  1721. goto done;
  1722. fs_page = bh->b_page;
  1723. }
  1724. }
  1725. }
  1726. if (bd_page)
  1727. end_page_writeback(bd_page);
  1728. nilfs_end_page_io(fs_page, err);
  1729. done:
  1730. nilfs_clear_copied_buffers(&sci->sc_copied_buffers, err);
  1731. }
  1732. static void nilfs_set_next_segment(struct the_nilfs *nilfs,
  1733. struct nilfs_segment_buffer *segbuf)
  1734. {
  1735. nilfs->ns_segnum = segbuf->sb_segnum;
  1736. nilfs->ns_nextnum = segbuf->sb_nextnum;
  1737. nilfs->ns_pseg_offset = segbuf->sb_pseg_start - segbuf->sb_fseg_start
  1738. + segbuf->sb_sum.nblocks;
  1739. nilfs->ns_seg_seq = segbuf->sb_sum.seg_seq;
  1740. nilfs->ns_ctime = segbuf->sb_sum.ctime;
  1741. }
  1742. static void nilfs_segctor_complete_write(struct nilfs_sc_info *sci)
  1743. {
  1744. struct nilfs_segment_buffer *segbuf;
  1745. struct page *bd_page = NULL, *fs_page = NULL;
  1746. struct nilfs_sb_info *sbi = sci->sc_sbi;
  1747. struct the_nilfs *nilfs = sbi->s_nilfs;
  1748. int update_sr = (sci->sc_super_root != NULL);
  1749. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1750. struct buffer_head *bh;
  1751. list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
  1752. b_assoc_buffers) {
  1753. set_buffer_uptodate(bh);
  1754. clear_buffer_dirty(bh);
  1755. if (bh->b_page != bd_page) {
  1756. if (bd_page)
  1757. end_page_writeback(bd_page);
  1758. bd_page = bh->b_page;
  1759. }
  1760. }
  1761. /*
  1762. * We assume that the buffers which belong to the same page
  1763. * continue over the buffer list.
  1764. * Under this assumption, the last BHs of pages is
  1765. * identifiable by the discontinuity of bh->b_page
  1766. * (page != fs_page).
  1767. *
  1768. * For B-tree node blocks, however, this assumption is not
  1769. * guaranteed. The cleanup code of B-tree node pages needs
  1770. * special care.
  1771. */
  1772. list_for_each_entry(bh, &segbuf->sb_payload_buffers,
  1773. b_assoc_buffers) {
  1774. set_buffer_uptodate(bh);
  1775. clear_buffer_dirty(bh);
  1776. clear_buffer_nilfs_volatile(bh);
  1777. if (bh == sci->sc_super_root) {
  1778. if (bh->b_page != bd_page) {
  1779. end_page_writeback(bd_page);
  1780. bd_page = bh->b_page;
  1781. }
  1782. break;
  1783. }
  1784. if (bh->b_page != fs_page) {
  1785. nilfs_end_page_io(fs_page, 0);
  1786. fs_page = bh->b_page;
  1787. }
  1788. }
  1789. if (!NILFS_SEG_SIMPLEX(&segbuf->sb_sum)) {
  1790. if (NILFS_SEG_LOGBGN(&segbuf->sb_sum)) {
  1791. set_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
  1792. sci->sc_lseg_stime = jiffies;
  1793. }
  1794. if (NILFS_SEG_LOGEND(&segbuf->sb_sum))
  1795. clear_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
  1796. }
  1797. }
  1798. /*
  1799. * Since pages may continue over multiple segment buffers,
  1800. * end of the last page must be checked outside of the loop.
  1801. */
  1802. if (bd_page)
  1803. end_page_writeback(bd_page);
  1804. nilfs_end_page_io(fs_page, 0);
  1805. nilfs_clear_copied_buffers(&sci->sc_copied_buffers, 0);
  1806. nilfs_drop_collected_inodes(&sci->sc_dirty_files);
  1807. if (nilfs_doing_gc()) {
  1808. nilfs_drop_collected_inodes(&sci->sc_gc_inodes);
  1809. if (update_sr)
  1810. nilfs_commit_gcdat_inode(nilfs);
  1811. } else
  1812. nilfs->ns_nongc_ctime = sci->sc_seg_ctime;
  1813. sci->sc_nblk_inc += sci->sc_nblk_this_inc;
  1814. segbuf = NILFS_LAST_SEGBUF(&sci->sc_segbufs);
  1815. nilfs_set_next_segment(nilfs, segbuf);
  1816. if (update_sr) {
  1817. nilfs_set_last_segment(nilfs, segbuf->sb_pseg_start,
  1818. segbuf->sb_sum.seg_seq, nilfs->ns_cno++);
  1819. sbi->s_super->s_dirt = 1;
  1820. clear_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
  1821. clear_bit(NILFS_SC_DIRTY, &sci->sc_flags);
  1822. set_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
  1823. } else
  1824. clear_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
  1825. }
  1826. static int nilfs_segctor_check_in_files(struct nilfs_sc_info *sci,
  1827. struct nilfs_sb_info *sbi)
  1828. {
  1829. struct nilfs_inode_info *ii, *n;
  1830. __u64 cno = sbi->s_nilfs->ns_cno;
  1831. spin_lock(&sbi->s_inode_lock);
  1832. retry:
  1833. list_for_each_entry_safe(ii, n, &sbi->s_dirty_files, i_dirty) {
  1834. if (!ii->i_bh) {
  1835. struct buffer_head *ibh;
  1836. int err;
  1837. spin_unlock(&sbi->s_inode_lock);
  1838. err = nilfs_ifile_get_inode_block(
  1839. sbi->s_ifile, ii->vfs_inode.i_ino, &ibh);
  1840. if (unlikely(err)) {
  1841. nilfs_warning(sbi->s_super, __func__,
  1842. "failed to get inode block.\n");
  1843. return err;
  1844. }
  1845. nilfs_mdt_mark_buffer_dirty(ibh);
  1846. nilfs_mdt_mark_dirty(sbi->s_ifile);
  1847. spin_lock(&sbi->s_inode_lock);
  1848. if (likely(!ii->i_bh))
  1849. ii->i_bh = ibh;
  1850. else
  1851. brelse(ibh);
  1852. goto retry;
  1853. }
  1854. ii->i_cno = cno;
  1855. clear_bit(NILFS_I_QUEUED, &ii->i_state);
  1856. set_bit(NILFS_I_BUSY, &ii->i_state);
  1857. list_del(&ii->i_dirty);
  1858. list_add_tail(&ii->i_dirty, &sci->sc_dirty_files);
  1859. }
  1860. spin_unlock(&sbi->s_inode_lock);
  1861. NILFS_I(sbi->s_ifile)->i_cno = cno;
  1862. return 0;
  1863. }
  1864. static void nilfs_segctor_check_out_files(struct nilfs_sc_info *sci,
  1865. struct nilfs_sb_info *sbi)
  1866. {
  1867. struct nilfs_transaction_info *ti = current->journal_info;
  1868. struct nilfs_inode_info *ii, *n;
  1869. __u64 cno = sbi->s_nilfs->ns_cno;
  1870. spin_lock(&sbi->s_inode_lock);
  1871. list_for_each_entry_safe(ii, n, &sci->sc_dirty_files, i_dirty) {
  1872. if (!test_and_clear_bit(NILFS_I_UPDATED, &ii->i_state) ||
  1873. test_bit(NILFS_I_DIRTY, &ii->i_state)) {
  1874. /* The current checkpoint number (=nilfs->ns_cno) is
  1875. changed between check-in and check-out only if the
  1876. super root is written out. So, we can update i_cno
  1877. for the inodes that remain in the dirty list. */
  1878. ii->i_cno = cno;
  1879. continue;
  1880. }
  1881. clear_bit(NILFS_I_BUSY, &ii->i_state);
  1882. brelse(ii->i_bh);
  1883. ii->i_bh = NULL;
  1884. list_del(&ii->i_dirty);
  1885. list_add_tail(&ii->i_dirty, &ti->ti_garbage);
  1886. }
  1887. spin_unlock(&sbi->s_inode_lock);
  1888. }
  1889. /*
  1890. * Main procedure of segment constructor
  1891. */
  1892. static int nilfs_segctor_do_construct(struct nilfs_sc_info *sci, int mode)
  1893. {
  1894. struct nilfs_sb_info *sbi = sci->sc_sbi;
  1895. struct the_nilfs *nilfs = sbi->s_nilfs;
  1896. struct page *failed_page;
  1897. int err, has_sr = 0;
  1898. sci->sc_stage.scnt = NILFS_ST_INIT;
  1899. err = nilfs_segctor_check_in_files(sci, sbi);
  1900. if (unlikely(err))
  1901. goto out;
  1902. if (nilfs_test_metadata_dirty(sbi))
  1903. set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
  1904. if (nilfs_segctor_clean(sci))
  1905. goto out;
  1906. do {
  1907. sci->sc_stage.flags &= ~NILFS_CF_HISTORY_MASK;
  1908. err = nilfs_segctor_begin_construction(sci, nilfs);
  1909. if (unlikely(err))
  1910. goto out;
  1911. /* Update time stamp */
  1912. sci->sc_seg_ctime = get_seconds();
  1913. err = nilfs_segctor_collect(sci, nilfs, mode);
  1914. if (unlikely(err))
  1915. goto failed;
  1916. has_sr = (sci->sc_super_root != NULL);
  1917. /* Avoid empty segment */
  1918. if (sci->sc_stage.scnt == NILFS_ST_DONE &&
  1919. NILFS_SEG_EMPTY(&sci->sc_curseg->sb_sum)) {
  1920. nilfs_segctor_end_construction(sci, nilfs, 1);
  1921. goto out;
  1922. }
  1923. err = nilfs_segctor_assign(sci, mode);
  1924. if (unlikely(err))
  1925. goto failed;
  1926. if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
  1927. nilfs_segctor_fill_in_file_bmap(sci, sbi->s_ifile);
  1928. if (has_sr) {
  1929. err = nilfs_segctor_fill_in_checkpoint(sci);
  1930. if (unlikely(err))
  1931. goto failed_to_make_up;
  1932. nilfs_segctor_fill_in_super_root(sci, nilfs);
  1933. }
  1934. nilfs_segctor_update_segusage(sci, nilfs->ns_sufile);
  1935. /* Write partial segments */
  1936. err = nilfs_segctor_prepare_write(sci, &failed_page);
  1937. if (unlikely(err))
  1938. goto failed_to_write;
  1939. nilfs_segctor_fill_in_checksums(sci, nilfs->ns_crc_seed);
  1940. err = nilfs_segctor_write(sci, nilfs->ns_bdi);
  1941. if (unlikely(err))
  1942. goto failed_to_write;
  1943. nilfs_segctor_complete_write(sci);
  1944. /* Commit segments */
  1945. if (has_sr) {
  1946. nilfs_segctor_commit_free_segments(sci);
  1947. nilfs_segctor_clear_metadata_dirty(sci);
  1948. }
  1949. nilfs_segctor_end_construction(sci, nilfs, 0);
  1950. } while (sci->sc_stage.scnt != NILFS_ST_DONE);
  1951. out:
  1952. nilfs_segctor_destroy_segment_buffers(sci);
  1953. nilfs_segctor_check_out_files(sci, sbi);
  1954. return err;
  1955. failed_to_write:
  1956. nilfs_segctor_abort_write(sci, failed_page, err);
  1957. nilfs_segctor_cancel_segusage(sci, nilfs->ns_sufile);
  1958. failed_to_make_up:
  1959. if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
  1960. nilfs_redirty_inodes(&sci->sc_dirty_files);
  1961. failed:
  1962. if (nilfs_doing_gc())
  1963. nilfs_redirty_inodes(&sci->sc_gc_inodes);
  1964. nilfs_segctor_end_construction(sci, nilfs, err);
  1965. goto out;
  1966. }
  1967. /**
  1968. * nilfs_secgtor_start_timer - set timer of background write
  1969. * @sci: nilfs_sc_info
  1970. *
  1971. * If the timer has already been set, it ignores the new request.
  1972. * This function MUST be called within a section locking the segment
  1973. * semaphore.
  1974. */
  1975. static void nilfs_segctor_start_timer(struct nilfs_sc_info *sci)
  1976. {
  1977. spin_lock(&sci->sc_state_lock);
  1978. if (sci->sc_timer && !(sci->sc_state & NILFS_SEGCTOR_COMMIT)) {
  1979. sci->sc_timer->expires = jiffies + sci->sc_interval;
  1980. add_timer(sci->sc_timer);
  1981. sci->sc_state |= NILFS_SEGCTOR_COMMIT;
  1982. }
  1983. spin_unlock(&sci->sc_state_lock);
  1984. }
  1985. static void nilfs_segctor_do_flush(struct nilfs_sc_info *sci, int bn)
  1986. {
  1987. spin_lock(&sci->sc_state_lock);
  1988. if (!(sci->sc_flush_request & (1 << bn))) {
  1989. unsigned long prev_req = sci->sc_flush_request;
  1990. sci->sc_flush_request |= (1 << bn);
  1991. if (!prev_req)
  1992. wake_up(&sci->sc_wait_daemon);
  1993. }
  1994. spin_unlock(&sci->sc_state_lock);
  1995. }
  1996. /**
  1997. * nilfs_flush_segment - trigger a segment construction for resource control
  1998. * @sb: super block
  1999. * @ino: inode number of the file to be flushed out.
  2000. */
  2001. void nilfs_flush_segment(struct super_block *sb, ino_t ino)
  2002. {
  2003. struct nilfs_sb_info *sbi = NILFS_SB(sb);
  2004. struct nilfs_sc_info *sci = NILFS_SC(sbi);
  2005. if (!sci || nilfs_doing_construction())
  2006. return;
  2007. nilfs_segctor_do_flush(sci, NILFS_MDT_INODE(sb, ino) ? ino : 0);
  2008. /* assign bit 0 to data files */
  2009. }
  2010. int nilfs_segctor_add_segments_to_be_freed(struct nilfs_sc_info *sci,
  2011. __u64 *segnum, size_t nsegs)
  2012. {
  2013. struct nilfs_segment_entry *ent;
  2014. struct the_nilfs *nilfs = sci->sc_sbi->s_nilfs;
  2015. struct inode *sufile = nilfs->ns_sufile;
  2016. LIST_HEAD(list);
  2017. __u64 *pnum;
  2018. size_t i;
  2019. int err;
  2020. for (pnum = segnum, i = 0; i < nsegs; pnum++, i++) {
  2021. ent = nilfs_alloc_segment_entry(*pnum);
  2022. if (unlikely(!ent)) {
  2023. err = -ENOMEM;
  2024. goto failed;
  2025. }
  2026. list_add_tail(&ent->list, &list);
  2027. err = nilfs_open_segment_entry(ent, sufile);
  2028. if (unlikely(err))
  2029. goto failed;
  2030. if (unlikely(!nilfs_segment_usage_dirty(ent->raw_su)))
  2031. printk(KERN_WARNING "NILFS: unused segment is "
  2032. "requested to be cleaned (segnum=%llu)\n",
  2033. (unsigned long long)ent->segnum);
  2034. nilfs_close_segment_entry(ent, sufile);
  2035. }
  2036. list_splice(&list, sci->sc_cleaning_segments.prev);
  2037. return 0;
  2038. failed:
  2039. nilfs_dispose_segment_list(&list);
  2040. return err;
  2041. }
  2042. void nilfs_segctor_clear_segments_to_be_freed(struct nilfs_sc_info *sci)
  2043. {
  2044. nilfs_dispose_segment_list(&sci->sc_cleaning_segments);
  2045. }
  2046. struct nilfs_segctor_wait_request {
  2047. wait_queue_t wq;
  2048. __u32 seq;
  2049. int err;
  2050. atomic_t done;
  2051. };
  2052. static int nilfs_segctor_sync(struct nilfs_sc_info *sci)
  2053. {
  2054. struct nilfs_segctor_wait_request wait_req;
  2055. int err = 0;
  2056. spin_lock(&sci->sc_state_lock);
  2057. init_wait(&wait_req.wq);
  2058. wait_req.err = 0;
  2059. atomic_set(&wait_req.done, 0);
  2060. wait_req.seq = ++sci->sc_seq_request;
  2061. spin_unlock(&sci->sc_state_lock);
  2062. init_waitqueue_entry(&wait_req.wq, current);
  2063. add_wait_queue(&sci->sc_wait_request, &wait_req.wq);
  2064. set_current_state(TASK_INTERRUPTIBLE);
  2065. wake_up(&sci->sc_wait_daemon);
  2066. for (;;) {
  2067. if (atomic_read(&wait_req.done)) {
  2068. err = wait_req.err;
  2069. break;
  2070. }
  2071. if (!signal_pending(current)) {
  2072. schedule();
  2073. continue;
  2074. }
  2075. err = -ERESTARTSYS;
  2076. break;
  2077. }
  2078. finish_wait(&sci->sc_wait_request, &wait_req.wq);
  2079. return err;
  2080. }
  2081. static void nilfs_segctor_wakeup(struct nilfs_sc_info *sci, int err)
  2082. {
  2083. struct nilfs_segctor_wait_request *wrq, *n;
  2084. unsigned long flags;
  2085. spin_lock_irqsave(&sci->sc_wait_request.lock, flags);
  2086. list_for_each_entry_safe(wrq, n, &sci->sc_wait_request.task_list,
  2087. wq.task_list) {
  2088. if (!atomic_read(&wrq->done) &&
  2089. nilfs_cnt32_ge(sci->sc_seq_done, wrq->seq)) {
  2090. wrq->err = err;
  2091. atomic_set(&wrq->done, 1);
  2092. }
  2093. if (atomic_read(&wrq->done)) {
  2094. wrq->wq.func(&wrq->wq,
  2095. TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  2096. 0, NULL);
  2097. }
  2098. }
  2099. spin_unlock_irqrestore(&sci->sc_wait_request.lock, flags);
  2100. }
  2101. /**
  2102. * nilfs_construct_segment - construct a logical segment
  2103. * @sb: super block
  2104. *
  2105. * Return Value: On success, 0 is retured. On errors, one of the following
  2106. * negative error code is returned.
  2107. *
  2108. * %-EROFS - Read only filesystem.
  2109. *
  2110. * %-EIO - I/O error
  2111. *
  2112. * %-ENOSPC - No space left on device (only in a panic state).
  2113. *
  2114. * %-ERESTARTSYS - Interrupted.
  2115. *
  2116. * %-ENOMEM - Insufficient memory available.
  2117. */
  2118. int nilfs_construct_segment(struct super_block *sb)
  2119. {
  2120. struct nilfs_sb_info *sbi = NILFS_SB(sb);
  2121. struct nilfs_sc_info *sci = NILFS_SC(sbi);
  2122. struct nilfs_transaction_info *ti;
  2123. int err;
  2124. if (!sci)
  2125. return -EROFS;
  2126. /* A call inside transactions causes a deadlock. */
  2127. BUG_ON((ti = current->journal_info) && ti->ti_magic == NILFS_TI_MAGIC);
  2128. err = nilfs_segctor_sync(sci);
  2129. return err;
  2130. }
  2131. /**
  2132. * nilfs_construct_dsync_segment - construct a data-only logical segment
  2133. * @sb: super block
  2134. * @inode: inode whose data blocks should be written out
  2135. * @start: start byte offset
  2136. * @end: end byte offset (inclusive)
  2137. *
  2138. * Return Value: On success, 0 is retured. On errors, one of the following
  2139. * negative error code is returned.
  2140. *
  2141. * %-EROFS - Read only filesystem.
  2142. *
  2143. * %-EIO - I/O error
  2144. *
  2145. * %-ENOSPC - No space left on device (only in a panic state).
  2146. *
  2147. * %-ERESTARTSYS - Interrupted.
  2148. *
  2149. * %-ENOMEM - Insufficient memory available.
  2150. */
  2151. int nilfs_construct_dsync_segment(struct super_block *sb, struct inode *inode,
  2152. loff_t start, loff_t end)
  2153. {
  2154. struct nilfs_sb_info *sbi = NILFS_SB(sb);
  2155. struct nilfs_sc_info *sci = NILFS_SC(sbi);
  2156. struct nilfs_inode_info *ii;
  2157. struct nilfs_transaction_info ti;
  2158. int err = 0;
  2159. if (!sci)
  2160. return -EROFS;
  2161. nilfs_transaction_lock(sbi, &ti, 0);
  2162. ii = NILFS_I(inode);
  2163. if (test_bit(NILFS_I_INODE_DIRTY, &ii->i_state) ||
  2164. nilfs_test_opt(sbi, STRICT_ORDER) ||
  2165. test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
  2166. nilfs_discontinued(sbi->s_nilfs)) {
  2167. nilfs_transaction_unlock(sbi);
  2168. err = nilfs_segctor_sync(sci);
  2169. return err;
  2170. }
  2171. spin_lock(&sbi->s_inode_lock);
  2172. if (!test_bit(NILFS_I_QUEUED, &ii->i_state) &&
  2173. !test_bit(NILFS_I_BUSY, &ii->i_state)) {
  2174. spin_unlock(&sbi->s_inode_lock);
  2175. nilfs_transaction_unlock(sbi);
  2176. return 0;
  2177. }
  2178. spin_unlock(&sbi->s_inode_lock);
  2179. sci->sc_dsync_inode = ii;
  2180. sci->sc_dsync_start = start;
  2181. sci->sc_dsync_end = end;
  2182. err = nilfs_segctor_do_construct(sci, SC_LSEG_DSYNC);
  2183. nilfs_transaction_unlock(sbi);
  2184. return err;
  2185. }
  2186. struct nilfs_segctor_req {
  2187. int mode;
  2188. __u32 seq_accepted;
  2189. int sc_err; /* construction failure */
  2190. int sb_err; /* super block writeback failure */
  2191. };
  2192. #define FLUSH_FILE_BIT (0x1) /* data file only */
  2193. #define FLUSH_DAT_BIT (1 << NILFS_DAT_INO) /* DAT only */
  2194. static void nilfs_segctor_accept(struct nilfs_sc_info *sci,
  2195. struct nilfs_segctor_req *req)
  2196. {
  2197. req->sc_err = req->sb_err = 0;
  2198. spin_lock(&sci->sc_state_lock);
  2199. req->seq_accepted = sci->sc_seq_request;
  2200. spin_unlock(&sci->sc_state_lock);
  2201. if (sci->sc_timer)
  2202. del_timer_sync(sci->sc_timer);
  2203. }
  2204. static void nilfs_segctor_notify(struct nilfs_sc_info *sci,
  2205. struct nilfs_segctor_req *req)
  2206. {
  2207. /* Clear requests (even when the construction failed) */
  2208. spin_lock(&sci->sc_state_lock);
  2209. sci->sc_state &= ~NILFS_SEGCTOR_COMMIT;
  2210. if (req->mode == SC_LSEG_SR) {
  2211. sci->sc_seq_done = req->seq_accepted;
  2212. nilfs_segctor_wakeup(sci, req->sc_err ? : req->sb_err);
  2213. sci->sc_flush_request = 0;
  2214. } else if (req->mode == SC_FLUSH_FILE)
  2215. sci->sc_flush_request &= ~FLUSH_FILE_BIT;
  2216. else if (req->mode == SC_FLUSH_DAT)
  2217. sci->sc_flush_request &= ~FLUSH_DAT_BIT;
  2218. spin_unlock(&sci->sc_state_lock);
  2219. }
  2220. static int nilfs_segctor_construct(struct nilfs_sc_info *sci,
  2221. struct nilfs_segctor_req *req)
  2222. {
  2223. struct nilfs_sb_info *sbi = sci->sc_sbi;
  2224. struct the_nilfs *nilfs = sbi->s_nilfs;
  2225. int err = 0;
  2226. if (nilfs_discontinued(nilfs))
  2227. req->mode = SC_LSEG_SR;
  2228. if (!nilfs_segctor_confirm(sci)) {
  2229. err = nilfs_segctor_do_construct(sci, req->mode);
  2230. req->sc_err = err;
  2231. }
  2232. if (likely(!err)) {
  2233. if (req->mode != SC_FLUSH_DAT)
  2234. atomic_set(&nilfs->ns_ndirtyblks, 0);
  2235. if (test_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags) &&
  2236. nilfs_discontinued(nilfs)) {
  2237. down_write(&nilfs->ns_sem);
  2238. req->sb_err = nilfs_commit_super(sbi, 0);
  2239. up_write(&nilfs->ns_sem);
  2240. }
  2241. }
  2242. return err;
  2243. }
  2244. static void nilfs_construction_timeout(unsigned long data)
  2245. {
  2246. struct task_struct *p = (struct task_struct *)data;
  2247. wake_up_process(p);
  2248. }
  2249. static void
  2250. nilfs_remove_written_gcinodes(struct the_nilfs *nilfs, struct list_head *head)
  2251. {
  2252. struct nilfs_inode_info *ii, *n;
  2253. list_for_each_entry_safe(ii, n, head, i_dirty) {
  2254. if (!test_bit(NILFS_I_UPDATED, &ii->i_state))
  2255. continue;
  2256. hlist_del_init(&ii->vfs_inode.i_hash);
  2257. list_del_init(&ii->i_dirty);
  2258. nilfs_clear_gcinode(&ii->vfs_inode);
  2259. }
  2260. }
  2261. int nilfs_clean_segments(struct super_block *sb, struct nilfs_argv *argv,
  2262. void **kbufs)
  2263. {
  2264. struct nilfs_sb_info *sbi = NILFS_SB(sb);
  2265. struct nilfs_sc_info *sci = NILFS_SC(sbi);
  2266. struct the_nilfs *nilfs = sbi->s_nilfs;
  2267. struct nilfs_transaction_info ti;
  2268. struct nilfs_segctor_req req = { .mode = SC_LSEG_SR };
  2269. int err;
  2270. if (unlikely(!sci))
  2271. return -EROFS;
  2272. nilfs_transaction_lock(sbi, &ti, 1);
  2273. err = nilfs_init_gcdat_inode(nilfs);
  2274. if (unlikely(err))
  2275. goto out_unlock;
  2276. err = nilfs_ioctl_prepare_clean_segments(nilfs, argv, kbufs);
  2277. if (unlikely(err))
  2278. goto out_unlock;
  2279. list_splice_init(&nilfs->ns_gc_inodes, sci->sc_gc_inodes.prev);
  2280. for (;;) {
  2281. nilfs_segctor_accept(sci, &req);
  2282. err = nilfs_segctor_construct(sci, &req);
  2283. nilfs_remove_written_gcinodes(nilfs, &sci->sc_gc_inodes);
  2284. nilfs_segctor_notify(sci, &req);
  2285. if (likely(!err))
  2286. break;
  2287. nilfs_warning(sb, __func__,
  2288. "segment construction failed. (err=%d)", err);
  2289. set_current_state(TASK_INTERRUPTIBLE);
  2290. schedule_timeout(sci->sc_interval);
  2291. }
  2292. out_unlock:
  2293. nilfs_clear_gcdat_inode(nilfs);
  2294. nilfs_transaction_unlock(sbi);
  2295. return err;
  2296. }
  2297. static void nilfs_segctor_thread_construct(struct nilfs_sc_info *sci, int mode)
  2298. {
  2299. struct nilfs_sb_info *sbi = sci->sc_sbi;
  2300. struct nilfs_transaction_info ti;
  2301. struct nilfs_segctor_req req = { .mode = mode };
  2302. nilfs_transaction_lock(sbi, &ti, 0);
  2303. nilfs_segctor_accept(sci, &req);
  2304. nilfs_segctor_construct(sci, &req);
  2305. nilfs_segctor_notify(sci, &req);
  2306. /*
  2307. * Unclosed segment should be retried. We do this using sc_timer.
  2308. * Timeout of sc_timer will invoke complete construction which leads
  2309. * to close the current logical segment.
  2310. */
  2311. if (test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags))
  2312. nilfs_segctor_start_timer(sci);
  2313. nilfs_transaction_unlock(sbi);
  2314. }
  2315. static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *sci)
  2316. {
  2317. int mode = 0;
  2318. int err;
  2319. spin_lock(&sci->sc_state_lock);
  2320. mode = (sci->sc_flush_request & FLUSH_DAT_BIT) ?
  2321. SC_FLUSH_DAT : SC_FLUSH_FILE;
  2322. spin_unlock(&sci->sc_state_lock);
  2323. if (mode) {
  2324. err = nilfs_segctor_do_construct(sci, mode);
  2325. spin_lock(&sci->sc_state_lock);
  2326. sci->sc_flush_request &= (mode == SC_FLUSH_FILE) ?
  2327. ~FLUSH_FILE_BIT : ~FLUSH_DAT_BIT;
  2328. spin_unlock(&sci->sc_state_lock);
  2329. }
  2330. clear_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
  2331. }
  2332. static int nilfs_segctor_flush_mode(struct nilfs_sc_info *sci)
  2333. {
  2334. if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
  2335. time_before(jiffies, sci->sc_lseg_stime + sci->sc_mjcp_freq)) {
  2336. if (!(sci->sc_flush_request & ~FLUSH_FILE_BIT))
  2337. return SC_FLUSH_FILE;
  2338. else if (!(sci->sc_flush_request & ~FLUSH_DAT_BIT))
  2339. return SC_FLUSH_DAT;
  2340. }
  2341. return SC_LSEG_SR;
  2342. }
  2343. /**
  2344. * nilfs_segctor_thread - main loop of the segment constructor thread.
  2345. * @arg: pointer to a struct nilfs_sc_info.
  2346. *
  2347. * nilfs_segctor_thread() initializes a timer and serves as a daemon
  2348. * to execute segment constructions.
  2349. */
  2350. static int nilfs_segctor_thread(void *arg)
  2351. {
  2352. struct nilfs_sc_info *sci = (struct nilfs_sc_info *)arg;
  2353. struct timer_list timer;
  2354. int timeout = 0;
  2355. init_timer(&timer);
  2356. timer.data = (unsigned long)current;
  2357. timer.function = nilfs_construction_timeout;
  2358. sci->sc_timer = &timer;
  2359. /* start sync. */
  2360. sci->sc_task = current;
  2361. wake_up(&sci->sc_wait_task); /* for nilfs_segctor_start_thread() */
  2362. printk(KERN_INFO
  2363. "segctord starting. Construction interval = %lu seconds, "
  2364. "CP frequency < %lu seconds\n",
  2365. sci->sc_interval / HZ, sci->sc_mjcp_freq / HZ);
  2366. spin_lock(&sci->sc_state_lock);
  2367. loop:
  2368. for (;;) {
  2369. int mode;
  2370. if (sci->sc_state & NILFS_SEGCTOR_QUIT)
  2371. goto end_thread;
  2372. if (timeout || sci->sc_seq_request != sci->sc_seq_done)
  2373. mode = SC_LSEG_SR;
  2374. else if (!sci->sc_flush_request)
  2375. break;
  2376. else
  2377. mode = nilfs_segctor_flush_mode(sci);
  2378. spin_unlock(&sci->sc_state_lock);
  2379. nilfs_segctor_thread_construct(sci, mode);
  2380. spin_lock(&sci->sc_state_lock);
  2381. timeout = 0;
  2382. }
  2383. if (freezing(current)) {
  2384. spin_unlock(&sci->sc_state_lock);
  2385. refrigerator();
  2386. spin_lock(&sci->sc_state_lock);
  2387. } else {
  2388. DEFINE_WAIT(wait);
  2389. int should_sleep = 1;
  2390. prepare_to_wait(&sci->sc_wait_daemon, &wait,
  2391. TASK_INTERRUPTIBLE);
  2392. if (sci->sc_seq_request != sci->sc_seq_done)
  2393. should_sleep = 0;
  2394. else if (sci->sc_flush_request)
  2395. should_sleep = 0;
  2396. else if (sci->sc_state & NILFS_SEGCTOR_COMMIT)
  2397. should_sleep = time_before(jiffies,
  2398. sci->sc_timer->expires);
  2399. if (should_sleep) {
  2400. spin_unlock(&sci->sc_state_lock);
  2401. schedule();
  2402. spin_lock(&sci->sc_state_lock);
  2403. }
  2404. finish_wait(&sci->sc_wait_daemon, &wait);
  2405. timeout = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
  2406. time_after_eq(jiffies, sci->sc_timer->expires));
  2407. }
  2408. goto loop;
  2409. end_thread:
  2410. spin_unlock(&sci->sc_state_lock);
  2411. del_timer_sync(sci->sc_timer);
  2412. sci->sc_timer = NULL;
  2413. /* end sync. */
  2414. sci->sc_task = NULL;
  2415. wake_up(&sci->sc_wait_task); /* for nilfs_segctor_kill_thread() */
  2416. return 0;
  2417. }
  2418. static int nilfs_segctor_start_thread(struct nilfs_sc_info *sci)
  2419. {
  2420. struct task_struct *t;
  2421. t = kthread_run(nilfs_segctor_thread, sci, "segctord");
  2422. if (IS_ERR(t)) {
  2423. int err = PTR_ERR(t);
  2424. printk(KERN_ERR "NILFS: error %d creating segctord thread\n",
  2425. err);
  2426. return err;
  2427. }
  2428. wait_event(sci->sc_wait_task, sci->sc_task != NULL);
  2429. return 0;
  2430. }
  2431. static void nilfs_segctor_kill_thread(struct nilfs_sc_info *sci)
  2432. {
  2433. sci->sc_state |= NILFS_SEGCTOR_QUIT;
  2434. while (sci->sc_task) {
  2435. wake_up(&sci->sc_wait_daemon);
  2436. spin_unlock(&sci->sc_state_lock);
  2437. wait_event(sci->sc_wait_task, sci->sc_task == NULL);
  2438. spin_lock(&sci->sc_state_lock);
  2439. }
  2440. }
  2441. static int nilfs_segctor_init(struct nilfs_sc_info *sci)
  2442. {
  2443. sci->sc_seq_done = sci->sc_seq_request;
  2444. return nilfs_segctor_start_thread(sci);
  2445. }
  2446. /*
  2447. * Setup & clean-up functions
  2448. */
  2449. static struct nilfs_sc_info *nilfs_segctor_new(struct nilfs_sb_info *sbi)
  2450. {
  2451. struct nilfs_sc_info *sci;
  2452. sci = kzalloc(sizeof(*sci), GFP_KERNEL);
  2453. if (!sci)
  2454. return NULL;
  2455. sci->sc_sbi = sbi;
  2456. sci->sc_super = sbi->s_super;
  2457. init_waitqueue_head(&sci->sc_wait_request);
  2458. init_waitqueue_head(&sci->sc_wait_daemon);
  2459. init_waitqueue_head(&sci->sc_wait_task);
  2460. spin_lock_init(&sci->sc_state_lock);
  2461. INIT_LIST_HEAD(&sci->sc_dirty_files);
  2462. INIT_LIST_HEAD(&sci->sc_segbufs);
  2463. INIT_LIST_HEAD(&sci->sc_gc_inodes);
  2464. INIT_LIST_HEAD(&sci->sc_cleaning_segments);
  2465. INIT_LIST_HEAD(&sci->sc_copied_buffers);
  2466. sci->sc_interval = HZ * NILFS_SC_DEFAULT_TIMEOUT;
  2467. sci->sc_mjcp_freq = HZ * NILFS_SC_DEFAULT_SR_FREQ;
  2468. sci->sc_watermark = NILFS_SC_DEFAULT_WATERMARK;
  2469. if (sbi->s_interval)
  2470. sci->sc_interval = sbi->s_interval;
  2471. if (sbi->s_watermark)
  2472. sci->sc_watermark = sbi->s_watermark;
  2473. return sci;
  2474. }
  2475. static void nilfs_segctor_write_out(struct nilfs_sc_info *sci)
  2476. {
  2477. int ret, retrycount = NILFS_SC_CLEANUP_RETRY;
  2478. /* The segctord thread was stopped and its timer was removed.
  2479. But some tasks remain. */
  2480. do {
  2481. struct nilfs_sb_info *sbi = sci->sc_sbi;
  2482. struct nilfs_transaction_info ti;
  2483. struct nilfs_segctor_req req = { .mode = SC_LSEG_SR };
  2484. nilfs_transaction_lock(sbi, &ti, 0);
  2485. nilfs_segctor_accept(sci, &req);
  2486. ret = nilfs_segctor_construct(sci, &req);
  2487. nilfs_segctor_notify(sci, &req);
  2488. nilfs_transaction_unlock(sbi);
  2489. } while (ret && retrycount-- > 0);
  2490. }
  2491. /**
  2492. * nilfs_segctor_destroy - destroy the segment constructor.
  2493. * @sci: nilfs_sc_info
  2494. *
  2495. * nilfs_segctor_destroy() kills the segctord thread and frees
  2496. * the nilfs_sc_info struct.
  2497. * Caller must hold the segment semaphore.
  2498. */
  2499. static void nilfs_segctor_destroy(struct nilfs_sc_info *sci)
  2500. {
  2501. struct nilfs_sb_info *sbi = sci->sc_sbi;
  2502. int flag;
  2503. up_write(&sbi->s_nilfs->ns_segctor_sem);
  2504. spin_lock(&sci->sc_state_lock);
  2505. nilfs_segctor_kill_thread(sci);
  2506. flag = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) || sci->sc_flush_request
  2507. || sci->sc_seq_request != sci->sc_seq_done);
  2508. spin_unlock(&sci->sc_state_lock);
  2509. if (flag || nilfs_segctor_confirm(sci))
  2510. nilfs_segctor_write_out(sci);
  2511. WARN_ON(!list_empty(&sci->sc_copied_buffers));
  2512. if (!list_empty(&sci->sc_dirty_files)) {
  2513. nilfs_warning(sbi->s_super, __func__,
  2514. "dirty file(s) after the final construction\n");
  2515. nilfs_dispose_list(sbi, &sci->sc_dirty_files, 1);
  2516. }
  2517. if (!list_empty(&sci->sc_cleaning_segments))
  2518. nilfs_dispose_segment_list(&sci->sc_cleaning_segments);
  2519. WARN_ON(!list_empty(&sci->sc_segbufs));
  2520. down_write(&sbi->s_nilfs->ns_segctor_sem);
  2521. kfree(sci);
  2522. }
  2523. /**
  2524. * nilfs_attach_segment_constructor - attach a segment constructor
  2525. * @sbi: nilfs_sb_info
  2526. *
  2527. * nilfs_attach_segment_constructor() allocates a struct nilfs_sc_info,
  2528. * initilizes it, and starts the segment constructor.
  2529. *
  2530. * Return Value: On success, 0 is returned. On error, one of the following
  2531. * negative error code is returned.
  2532. *
  2533. * %-ENOMEM - Insufficient memory available.
  2534. */
  2535. int nilfs_attach_segment_constructor(struct nilfs_sb_info *sbi)
  2536. {
  2537. struct the_nilfs *nilfs = sbi->s_nilfs;
  2538. int err;
  2539. /* Each field of nilfs_segctor is cleared through the initialization
  2540. of super-block info */
  2541. sbi->s_sc_info = nilfs_segctor_new(sbi);
  2542. if (!sbi->s_sc_info)
  2543. return -ENOMEM;
  2544. nilfs_attach_writer(nilfs, sbi);
  2545. err = nilfs_segctor_init(NILFS_SC(sbi));
  2546. if (err) {
  2547. nilfs_detach_writer(nilfs, sbi);
  2548. kfree(sbi->s_sc_info);
  2549. sbi->s_sc_info = NULL;
  2550. }
  2551. return err;
  2552. }
  2553. /**
  2554. * nilfs_detach_segment_constructor - destroy the segment constructor
  2555. * @sbi: nilfs_sb_info
  2556. *
  2557. * nilfs_detach_segment_constructor() kills the segment constructor daemon,
  2558. * frees the struct nilfs_sc_info, and destroy the dirty file list.
  2559. */
  2560. void nilfs_detach_segment_constructor(struct nilfs_sb_info *sbi)
  2561. {
  2562. struct the_nilfs *nilfs = sbi->s_nilfs;
  2563. LIST_HEAD(garbage_list);
  2564. down_write(&nilfs->ns_segctor_sem);
  2565. if (NILFS_SC(sbi)) {
  2566. nilfs_segctor_destroy(NILFS_SC(sbi));
  2567. sbi->s_sc_info = NULL;
  2568. }
  2569. /* Force to free the list of dirty files */
  2570. spin_lock(&sbi->s_inode_lock);
  2571. if (!list_empty(&sbi->s_dirty_files)) {
  2572. list_splice_init(&sbi->s_dirty_files, &garbage_list);
  2573. nilfs_warning(sbi->s_super, __func__,
  2574. "Non empty dirty list after the last "
  2575. "segment construction\n");
  2576. }
  2577. spin_unlock(&sbi->s_inode_lock);
  2578. up_write(&nilfs->ns_segctor_sem);
  2579. nilfs_dispose_list(sbi, &garbage_list, 1);
  2580. nilfs_detach_writer(nilfs, sbi);
  2581. }