direct.c 27 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003
  1. /*
  2. * linux/fs/nfs/direct.c
  3. *
  4. * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
  5. *
  6. * High-performance uncached I/O for the Linux NFS client
  7. *
  8. * There are important applications whose performance or correctness
  9. * depends on uncached access to file data. Database clusters
  10. * (multiple copies of the same instance running on separate hosts)
  11. * implement their own cache coherency protocol that subsumes file
  12. * system cache protocols. Applications that process datasets
  13. * considerably larger than the client's memory do not always benefit
  14. * from a local cache. A streaming video server, for instance, has no
  15. * need to cache the contents of a file.
  16. *
  17. * When an application requests uncached I/O, all read and write requests
  18. * are made directly to the server; data stored or fetched via these
  19. * requests is not cached in the Linux page cache. The client does not
  20. * correct unaligned requests from applications. All requested bytes are
  21. * held on permanent storage before a direct write system call returns to
  22. * an application.
  23. *
  24. * Solaris implements an uncached I/O facility called directio() that
  25. * is used for backups and sequential I/O to very large files. Solaris
  26. * also supports uncaching whole NFS partitions with "-o forcedirectio,"
  27. * an undocumented mount option.
  28. *
  29. * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
  30. * help from Andrew Morton.
  31. *
  32. * 18 Dec 2001 Initial implementation for 2.4 --cel
  33. * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
  34. * 08 Jun 2003 Port to 2.5 APIs --cel
  35. * 31 Mar 2004 Handle direct I/O without VFS support --cel
  36. * 15 Sep 2004 Parallel async reads --cel
  37. * 04 May 2005 support O_DIRECT with aio --cel
  38. *
  39. */
  40. #include <linux/errno.h>
  41. #include <linux/sched.h>
  42. #include <linux/kernel.h>
  43. #include <linux/file.h>
  44. #include <linux/pagemap.h>
  45. #include <linux/kref.h>
  46. #include <linux/nfs_fs.h>
  47. #include <linux/nfs_page.h>
  48. #include <linux/sunrpc/clnt.h>
  49. #include <asm/system.h>
  50. #include <asm/uaccess.h>
  51. #include <asm/atomic.h>
  52. #include "internal.h"
  53. #include "iostat.h"
  54. #define NFSDBG_FACILITY NFSDBG_VFS
  55. static struct kmem_cache *nfs_direct_cachep;
  56. /*
  57. * This represents a set of asynchronous requests that we're waiting on
  58. */
  59. struct nfs_direct_req {
  60. struct kref kref; /* release manager */
  61. /* I/O parameters */
  62. struct nfs_open_context *ctx; /* file open context info */
  63. struct kiocb * iocb; /* controlling i/o request */
  64. struct inode * inode; /* target file of i/o */
  65. /* completion state */
  66. atomic_t io_count; /* i/os we're waiting for */
  67. spinlock_t lock; /* protect completion state */
  68. ssize_t count, /* bytes actually processed */
  69. error; /* any reported error */
  70. struct completion completion; /* wait for i/o completion */
  71. /* commit state */
  72. struct list_head rewrite_list; /* saved nfs_write_data structs */
  73. struct nfs_write_data * commit_data; /* special write_data for commits */
  74. int flags;
  75. #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */
  76. #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */
  77. struct nfs_writeverf verf; /* unstable write verifier */
  78. };
  79. static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
  80. static const struct rpc_call_ops nfs_write_direct_ops;
  81. static inline void get_dreq(struct nfs_direct_req *dreq)
  82. {
  83. atomic_inc(&dreq->io_count);
  84. }
  85. static inline int put_dreq(struct nfs_direct_req *dreq)
  86. {
  87. return atomic_dec_and_test(&dreq->io_count);
  88. }
  89. /**
  90. * nfs_direct_IO - NFS address space operation for direct I/O
  91. * @rw: direction (read or write)
  92. * @iocb: target I/O control block
  93. * @iov: array of vectors that define I/O buffer
  94. * @pos: offset in file to begin the operation
  95. * @nr_segs: size of iovec array
  96. *
  97. * The presence of this routine in the address space ops vector means
  98. * the NFS client supports direct I/O. However, we shunt off direct
  99. * read and write requests before the VFS gets them, so this method
  100. * should never be called.
  101. */
  102. ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
  103. {
  104. dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n",
  105. iocb->ki_filp->f_path.dentry->d_name.name,
  106. (long long) pos, nr_segs);
  107. return -EINVAL;
  108. }
  109. static void nfs_direct_dirty_pages(struct page **pages, unsigned int pgbase, size_t count)
  110. {
  111. unsigned int npages;
  112. unsigned int i;
  113. if (count == 0)
  114. return;
  115. pages += (pgbase >> PAGE_SHIFT);
  116. npages = (count + (pgbase & ~PAGE_MASK) + PAGE_SIZE - 1) >> PAGE_SHIFT;
  117. for (i = 0; i < npages; i++) {
  118. struct page *page = pages[i];
  119. if (!PageCompound(page))
  120. set_page_dirty(page);
  121. }
  122. }
  123. static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
  124. {
  125. unsigned int i;
  126. for (i = 0; i < npages; i++)
  127. page_cache_release(pages[i]);
  128. }
  129. static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
  130. {
  131. struct nfs_direct_req *dreq;
  132. dreq = kmem_cache_alloc(nfs_direct_cachep, GFP_KERNEL);
  133. if (!dreq)
  134. return NULL;
  135. kref_init(&dreq->kref);
  136. kref_get(&dreq->kref);
  137. init_completion(&dreq->completion);
  138. INIT_LIST_HEAD(&dreq->rewrite_list);
  139. dreq->iocb = NULL;
  140. dreq->ctx = NULL;
  141. spin_lock_init(&dreq->lock);
  142. atomic_set(&dreq->io_count, 0);
  143. dreq->count = 0;
  144. dreq->error = 0;
  145. dreq->flags = 0;
  146. return dreq;
  147. }
  148. static void nfs_direct_req_free(struct kref *kref)
  149. {
  150. struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
  151. if (dreq->ctx != NULL)
  152. put_nfs_open_context(dreq->ctx);
  153. kmem_cache_free(nfs_direct_cachep, dreq);
  154. }
  155. static void nfs_direct_req_release(struct nfs_direct_req *dreq)
  156. {
  157. kref_put(&dreq->kref, nfs_direct_req_free);
  158. }
  159. /*
  160. * Collects and returns the final error value/byte-count.
  161. */
  162. static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
  163. {
  164. ssize_t result = -EIOCBQUEUED;
  165. /* Async requests don't wait here */
  166. if (dreq->iocb)
  167. goto out;
  168. result = wait_for_completion_killable(&dreq->completion);
  169. if (!result)
  170. result = dreq->error;
  171. if (!result)
  172. result = dreq->count;
  173. out:
  174. return (ssize_t) result;
  175. }
  176. /*
  177. * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust
  178. * the iocb is still valid here if this is a synchronous request.
  179. */
  180. static void nfs_direct_complete(struct nfs_direct_req *dreq)
  181. {
  182. if (dreq->iocb) {
  183. long res = (long) dreq->error;
  184. if (!res)
  185. res = (long) dreq->count;
  186. aio_complete(dreq->iocb, res, 0);
  187. }
  188. complete_all(&dreq->completion);
  189. nfs_direct_req_release(dreq);
  190. }
  191. /*
  192. * We must hold a reference to all the pages in this direct read request
  193. * until the RPCs complete. This could be long *after* we are woken up in
  194. * nfs_direct_wait (for instance, if someone hits ^C on a slow server).
  195. */
  196. static void nfs_direct_read_result(struct rpc_task *task, void *calldata)
  197. {
  198. struct nfs_read_data *data = calldata;
  199. nfs_readpage_result(task, data);
  200. }
  201. static void nfs_direct_read_release(void *calldata)
  202. {
  203. struct nfs_read_data *data = calldata;
  204. struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
  205. int status = data->task.tk_status;
  206. spin_lock(&dreq->lock);
  207. if (unlikely(status < 0)) {
  208. dreq->error = status;
  209. spin_unlock(&dreq->lock);
  210. } else {
  211. dreq->count += data->res.count;
  212. spin_unlock(&dreq->lock);
  213. nfs_direct_dirty_pages(data->pagevec,
  214. data->args.pgbase,
  215. data->res.count);
  216. }
  217. nfs_direct_release_pages(data->pagevec, data->npages);
  218. if (put_dreq(dreq))
  219. nfs_direct_complete(dreq);
  220. nfs_readdata_release(calldata);
  221. }
  222. static const struct rpc_call_ops nfs_read_direct_ops = {
  223. .rpc_call_done = nfs_direct_read_result,
  224. .rpc_release = nfs_direct_read_release,
  225. };
  226. /*
  227. * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
  228. * operation. If nfs_readdata_alloc() or get_user_pages() fails,
  229. * bail and stop sending more reads. Read length accounting is
  230. * handled automatically by nfs_direct_read_result(). Otherwise, if
  231. * no requests have been sent, just return an error.
  232. */
  233. static ssize_t nfs_direct_read_schedule_segment(struct nfs_direct_req *dreq,
  234. const struct iovec *iov,
  235. loff_t pos)
  236. {
  237. struct nfs_open_context *ctx = dreq->ctx;
  238. struct inode *inode = ctx->path.dentry->d_inode;
  239. unsigned long user_addr = (unsigned long)iov->iov_base;
  240. size_t count = iov->iov_len;
  241. size_t rsize = NFS_SERVER(inode)->rsize;
  242. struct rpc_task *task;
  243. struct rpc_message msg = {
  244. .rpc_cred = ctx->cred,
  245. };
  246. struct rpc_task_setup task_setup_data = {
  247. .rpc_client = NFS_CLIENT(inode),
  248. .rpc_message = &msg,
  249. .callback_ops = &nfs_read_direct_ops,
  250. .workqueue = nfsiod_workqueue,
  251. .flags = RPC_TASK_ASYNC,
  252. };
  253. unsigned int pgbase;
  254. int result;
  255. ssize_t started = 0;
  256. do {
  257. struct nfs_read_data *data;
  258. size_t bytes;
  259. pgbase = user_addr & ~PAGE_MASK;
  260. bytes = min(rsize,count);
  261. result = -ENOMEM;
  262. data = nfs_readdata_alloc(nfs_page_array_len(pgbase, bytes));
  263. if (unlikely(!data))
  264. break;
  265. down_read(&current->mm->mmap_sem);
  266. result = get_user_pages(current, current->mm, user_addr,
  267. data->npages, 1, 0, data->pagevec, NULL);
  268. up_read(&current->mm->mmap_sem);
  269. if (result < 0) {
  270. nfs_readdata_release(data);
  271. break;
  272. }
  273. if ((unsigned)result < data->npages) {
  274. bytes = result * PAGE_SIZE;
  275. if (bytes <= pgbase) {
  276. nfs_direct_release_pages(data->pagevec, result);
  277. nfs_readdata_release(data);
  278. break;
  279. }
  280. bytes -= pgbase;
  281. data->npages = result;
  282. }
  283. get_dreq(dreq);
  284. data->req = (struct nfs_page *) dreq;
  285. data->inode = inode;
  286. data->cred = msg.rpc_cred;
  287. data->args.fh = NFS_FH(inode);
  288. data->args.context = get_nfs_open_context(ctx);
  289. data->args.offset = pos;
  290. data->args.pgbase = pgbase;
  291. data->args.pages = data->pagevec;
  292. data->args.count = bytes;
  293. data->res.fattr = &data->fattr;
  294. data->res.eof = 0;
  295. data->res.count = bytes;
  296. msg.rpc_argp = &data->args;
  297. msg.rpc_resp = &data->res;
  298. task_setup_data.task = &data->task;
  299. task_setup_data.callback_data = data;
  300. NFS_PROTO(inode)->read_setup(data, &msg);
  301. task = rpc_run_task(&task_setup_data);
  302. if (IS_ERR(task))
  303. break;
  304. rpc_put_task(task);
  305. dprintk("NFS: %5u initiated direct read call "
  306. "(req %s/%Ld, %zu bytes @ offset %Lu)\n",
  307. data->task.tk_pid,
  308. inode->i_sb->s_id,
  309. (long long)NFS_FILEID(inode),
  310. bytes,
  311. (unsigned long long)data->args.offset);
  312. started += bytes;
  313. user_addr += bytes;
  314. pos += bytes;
  315. /* FIXME: Remove this unnecessary math from final patch */
  316. pgbase += bytes;
  317. pgbase &= ~PAGE_MASK;
  318. BUG_ON(pgbase != (user_addr & ~PAGE_MASK));
  319. count -= bytes;
  320. } while (count != 0);
  321. if (started)
  322. return started;
  323. return result < 0 ? (ssize_t) result : -EFAULT;
  324. }
  325. static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
  326. const struct iovec *iov,
  327. unsigned long nr_segs,
  328. loff_t pos)
  329. {
  330. ssize_t result = -EINVAL;
  331. size_t requested_bytes = 0;
  332. unsigned long seg;
  333. get_dreq(dreq);
  334. for (seg = 0; seg < nr_segs; seg++) {
  335. const struct iovec *vec = &iov[seg];
  336. result = nfs_direct_read_schedule_segment(dreq, vec, pos);
  337. if (result < 0)
  338. break;
  339. requested_bytes += result;
  340. if ((size_t)result < vec->iov_len)
  341. break;
  342. pos += vec->iov_len;
  343. }
  344. if (put_dreq(dreq))
  345. nfs_direct_complete(dreq);
  346. if (requested_bytes != 0)
  347. return 0;
  348. if (result < 0)
  349. return result;
  350. return -EIO;
  351. }
  352. static ssize_t nfs_direct_read(struct kiocb *iocb, const struct iovec *iov,
  353. unsigned long nr_segs, loff_t pos)
  354. {
  355. ssize_t result = 0;
  356. struct inode *inode = iocb->ki_filp->f_mapping->host;
  357. struct nfs_direct_req *dreq;
  358. dreq = nfs_direct_req_alloc();
  359. if (!dreq)
  360. return -ENOMEM;
  361. dreq->inode = inode;
  362. dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
  363. if (!is_sync_kiocb(iocb))
  364. dreq->iocb = iocb;
  365. result = nfs_direct_read_schedule_iovec(dreq, iov, nr_segs, pos);
  366. if (!result)
  367. result = nfs_direct_wait(dreq);
  368. nfs_direct_req_release(dreq);
  369. return result;
  370. }
  371. static void nfs_direct_free_writedata(struct nfs_direct_req *dreq)
  372. {
  373. while (!list_empty(&dreq->rewrite_list)) {
  374. struct nfs_write_data *data = list_entry(dreq->rewrite_list.next, struct nfs_write_data, pages);
  375. list_del(&data->pages);
  376. nfs_direct_release_pages(data->pagevec, data->npages);
  377. nfs_writedata_release(data);
  378. }
  379. }
  380. #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
  381. static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
  382. {
  383. struct inode *inode = dreq->inode;
  384. struct list_head *p;
  385. struct nfs_write_data *data;
  386. struct rpc_task *task;
  387. struct rpc_message msg = {
  388. .rpc_cred = dreq->ctx->cred,
  389. };
  390. struct rpc_task_setup task_setup_data = {
  391. .rpc_client = NFS_CLIENT(inode),
  392. .callback_ops = &nfs_write_direct_ops,
  393. .workqueue = nfsiod_workqueue,
  394. .flags = RPC_TASK_ASYNC,
  395. };
  396. dreq->count = 0;
  397. get_dreq(dreq);
  398. list_for_each(p, &dreq->rewrite_list) {
  399. data = list_entry(p, struct nfs_write_data, pages);
  400. get_dreq(dreq);
  401. /* Use stable writes */
  402. data->args.stable = NFS_FILE_SYNC;
  403. /*
  404. * Reset data->res.
  405. */
  406. nfs_fattr_init(&data->fattr);
  407. data->res.count = data->args.count;
  408. memset(&data->verf, 0, sizeof(data->verf));
  409. /*
  410. * Reuse data->task; data->args should not have changed
  411. * since the original request was sent.
  412. */
  413. task_setup_data.task = &data->task;
  414. task_setup_data.callback_data = data;
  415. msg.rpc_argp = &data->args;
  416. msg.rpc_resp = &data->res;
  417. NFS_PROTO(inode)->write_setup(data, &msg);
  418. /*
  419. * We're called via an RPC callback, so BKL is already held.
  420. */
  421. task = rpc_run_task(&task_setup_data);
  422. if (!IS_ERR(task))
  423. rpc_put_task(task);
  424. dprintk("NFS: %5u rescheduled direct write call (req %s/%Ld, %u bytes @ offset %Lu)\n",
  425. data->task.tk_pid,
  426. inode->i_sb->s_id,
  427. (long long)NFS_FILEID(inode),
  428. data->args.count,
  429. (unsigned long long)data->args.offset);
  430. }
  431. if (put_dreq(dreq))
  432. nfs_direct_write_complete(dreq, inode);
  433. }
  434. static void nfs_direct_commit_result(struct rpc_task *task, void *calldata)
  435. {
  436. struct nfs_write_data *data = calldata;
  437. /* Call the NFS version-specific code */
  438. NFS_PROTO(data->inode)->commit_done(task, data);
  439. }
  440. static void nfs_direct_commit_release(void *calldata)
  441. {
  442. struct nfs_write_data *data = calldata;
  443. struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
  444. int status = data->task.tk_status;
  445. if (status < 0) {
  446. dprintk("NFS: %5u commit failed with error %d.\n",
  447. data->task.tk_pid, status);
  448. dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
  449. } else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) {
  450. dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
  451. dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
  452. }
  453. dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
  454. nfs_direct_write_complete(dreq, data->inode);
  455. nfs_commitdata_release(calldata);
  456. }
  457. static const struct rpc_call_ops nfs_commit_direct_ops = {
  458. .rpc_call_done = nfs_direct_commit_result,
  459. .rpc_release = nfs_direct_commit_release,
  460. };
  461. static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
  462. {
  463. struct nfs_write_data *data = dreq->commit_data;
  464. struct rpc_task *task;
  465. struct rpc_message msg = {
  466. .rpc_argp = &data->args,
  467. .rpc_resp = &data->res,
  468. .rpc_cred = dreq->ctx->cred,
  469. };
  470. struct rpc_task_setup task_setup_data = {
  471. .task = &data->task,
  472. .rpc_client = NFS_CLIENT(dreq->inode),
  473. .rpc_message = &msg,
  474. .callback_ops = &nfs_commit_direct_ops,
  475. .callback_data = data,
  476. .workqueue = nfsiod_workqueue,
  477. .flags = RPC_TASK_ASYNC,
  478. };
  479. data->inode = dreq->inode;
  480. data->cred = msg.rpc_cred;
  481. data->args.fh = NFS_FH(data->inode);
  482. data->args.offset = 0;
  483. data->args.count = 0;
  484. data->args.context = get_nfs_open_context(dreq->ctx);
  485. data->res.count = 0;
  486. data->res.fattr = &data->fattr;
  487. data->res.verf = &data->verf;
  488. NFS_PROTO(data->inode)->commit_setup(data, &msg);
  489. /* Note: task.tk_ops->rpc_release will free dreq->commit_data */
  490. dreq->commit_data = NULL;
  491. dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
  492. task = rpc_run_task(&task_setup_data);
  493. if (!IS_ERR(task))
  494. rpc_put_task(task);
  495. }
  496. static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
  497. {
  498. int flags = dreq->flags;
  499. dreq->flags = 0;
  500. switch (flags) {
  501. case NFS_ODIRECT_DO_COMMIT:
  502. nfs_direct_commit_schedule(dreq);
  503. break;
  504. case NFS_ODIRECT_RESCHED_WRITES:
  505. nfs_direct_write_reschedule(dreq);
  506. break;
  507. default:
  508. if (dreq->commit_data != NULL)
  509. nfs_commit_free(dreq->commit_data);
  510. nfs_direct_free_writedata(dreq);
  511. nfs_zap_mapping(inode, inode->i_mapping);
  512. nfs_direct_complete(dreq);
  513. }
  514. }
  515. static void nfs_alloc_commit_data(struct nfs_direct_req *dreq)
  516. {
  517. dreq->commit_data = nfs_commitdata_alloc();
  518. if (dreq->commit_data != NULL)
  519. dreq->commit_data->req = (struct nfs_page *) dreq;
  520. }
  521. #else
  522. static inline void nfs_alloc_commit_data(struct nfs_direct_req *dreq)
  523. {
  524. dreq->commit_data = NULL;
  525. }
  526. static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
  527. {
  528. nfs_direct_free_writedata(dreq);
  529. nfs_zap_mapping(inode, inode->i_mapping);
  530. nfs_direct_complete(dreq);
  531. }
  532. #endif
  533. static void nfs_direct_write_result(struct rpc_task *task, void *calldata)
  534. {
  535. struct nfs_write_data *data = calldata;
  536. if (nfs_writeback_done(task, data) != 0)
  537. return;
  538. }
  539. /*
  540. * NB: Return the value of the first error return code. Subsequent
  541. * errors after the first one are ignored.
  542. */
  543. static void nfs_direct_write_release(void *calldata)
  544. {
  545. struct nfs_write_data *data = calldata;
  546. struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
  547. int status = data->task.tk_status;
  548. spin_lock(&dreq->lock);
  549. if (unlikely(status < 0)) {
  550. /* An error has occurred, so we should not commit */
  551. dreq->flags = 0;
  552. dreq->error = status;
  553. }
  554. if (unlikely(dreq->error != 0))
  555. goto out_unlock;
  556. dreq->count += data->res.count;
  557. if (data->res.verf->committed != NFS_FILE_SYNC) {
  558. switch (dreq->flags) {
  559. case 0:
  560. memcpy(&dreq->verf, &data->verf, sizeof(dreq->verf));
  561. dreq->flags = NFS_ODIRECT_DO_COMMIT;
  562. break;
  563. case NFS_ODIRECT_DO_COMMIT:
  564. if (memcmp(&dreq->verf, &data->verf, sizeof(dreq->verf))) {
  565. dprintk("NFS: %5u write verify failed\n", data->task.tk_pid);
  566. dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
  567. }
  568. }
  569. }
  570. out_unlock:
  571. spin_unlock(&dreq->lock);
  572. if (put_dreq(dreq))
  573. nfs_direct_write_complete(dreq, data->inode);
  574. }
  575. static const struct rpc_call_ops nfs_write_direct_ops = {
  576. .rpc_call_done = nfs_direct_write_result,
  577. .rpc_release = nfs_direct_write_release,
  578. };
  579. /*
  580. * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
  581. * operation. If nfs_writedata_alloc() or get_user_pages() fails,
  582. * bail and stop sending more writes. Write length accounting is
  583. * handled automatically by nfs_direct_write_result(). Otherwise, if
  584. * no requests have been sent, just return an error.
  585. */
  586. static ssize_t nfs_direct_write_schedule_segment(struct nfs_direct_req *dreq,
  587. const struct iovec *iov,
  588. loff_t pos, int sync)
  589. {
  590. struct nfs_open_context *ctx = dreq->ctx;
  591. struct inode *inode = ctx->path.dentry->d_inode;
  592. unsigned long user_addr = (unsigned long)iov->iov_base;
  593. size_t count = iov->iov_len;
  594. struct rpc_task *task;
  595. struct rpc_message msg = {
  596. .rpc_cred = ctx->cred,
  597. };
  598. struct rpc_task_setup task_setup_data = {
  599. .rpc_client = NFS_CLIENT(inode),
  600. .rpc_message = &msg,
  601. .callback_ops = &nfs_write_direct_ops,
  602. .workqueue = nfsiod_workqueue,
  603. .flags = RPC_TASK_ASYNC,
  604. };
  605. size_t wsize = NFS_SERVER(inode)->wsize;
  606. unsigned int pgbase;
  607. int result;
  608. ssize_t started = 0;
  609. do {
  610. struct nfs_write_data *data;
  611. size_t bytes;
  612. pgbase = user_addr & ~PAGE_MASK;
  613. bytes = min(wsize,count);
  614. result = -ENOMEM;
  615. data = nfs_writedata_alloc(nfs_page_array_len(pgbase, bytes));
  616. if (unlikely(!data))
  617. break;
  618. down_read(&current->mm->mmap_sem);
  619. result = get_user_pages(current, current->mm, user_addr,
  620. data->npages, 0, 0, data->pagevec, NULL);
  621. up_read(&current->mm->mmap_sem);
  622. if (result < 0) {
  623. nfs_writedata_release(data);
  624. break;
  625. }
  626. if ((unsigned)result < data->npages) {
  627. bytes = result * PAGE_SIZE;
  628. if (bytes <= pgbase) {
  629. nfs_direct_release_pages(data->pagevec, result);
  630. nfs_writedata_release(data);
  631. break;
  632. }
  633. bytes -= pgbase;
  634. data->npages = result;
  635. }
  636. get_dreq(dreq);
  637. list_move_tail(&data->pages, &dreq->rewrite_list);
  638. data->req = (struct nfs_page *) dreq;
  639. data->inode = inode;
  640. data->cred = msg.rpc_cred;
  641. data->args.fh = NFS_FH(inode);
  642. data->args.context = get_nfs_open_context(ctx);
  643. data->args.offset = pos;
  644. data->args.pgbase = pgbase;
  645. data->args.pages = data->pagevec;
  646. data->args.count = bytes;
  647. data->args.stable = sync;
  648. data->res.fattr = &data->fattr;
  649. data->res.count = bytes;
  650. data->res.verf = &data->verf;
  651. task_setup_data.task = &data->task;
  652. task_setup_data.callback_data = data;
  653. msg.rpc_argp = &data->args;
  654. msg.rpc_resp = &data->res;
  655. NFS_PROTO(inode)->write_setup(data, &msg);
  656. task = rpc_run_task(&task_setup_data);
  657. if (IS_ERR(task))
  658. break;
  659. rpc_put_task(task);
  660. dprintk("NFS: %5u initiated direct write call "
  661. "(req %s/%Ld, %zu bytes @ offset %Lu)\n",
  662. data->task.tk_pid,
  663. inode->i_sb->s_id,
  664. (long long)NFS_FILEID(inode),
  665. bytes,
  666. (unsigned long long)data->args.offset);
  667. started += bytes;
  668. user_addr += bytes;
  669. pos += bytes;
  670. /* FIXME: Remove this useless math from the final patch */
  671. pgbase += bytes;
  672. pgbase &= ~PAGE_MASK;
  673. BUG_ON(pgbase != (user_addr & ~PAGE_MASK));
  674. count -= bytes;
  675. } while (count != 0);
  676. if (started)
  677. return started;
  678. return result < 0 ? (ssize_t) result : -EFAULT;
  679. }
  680. static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
  681. const struct iovec *iov,
  682. unsigned long nr_segs,
  683. loff_t pos, int sync)
  684. {
  685. ssize_t result = 0;
  686. size_t requested_bytes = 0;
  687. unsigned long seg;
  688. get_dreq(dreq);
  689. for (seg = 0; seg < nr_segs; seg++) {
  690. const struct iovec *vec = &iov[seg];
  691. result = nfs_direct_write_schedule_segment(dreq, vec,
  692. pos, sync);
  693. if (result < 0)
  694. break;
  695. requested_bytes += result;
  696. if ((size_t)result < vec->iov_len)
  697. break;
  698. pos += vec->iov_len;
  699. }
  700. if (put_dreq(dreq))
  701. nfs_direct_write_complete(dreq, dreq->inode);
  702. if (requested_bytes != 0)
  703. return 0;
  704. if (result < 0)
  705. return result;
  706. return -EIO;
  707. }
  708. static ssize_t nfs_direct_write(struct kiocb *iocb, const struct iovec *iov,
  709. unsigned long nr_segs, loff_t pos,
  710. size_t count)
  711. {
  712. ssize_t result = 0;
  713. struct inode *inode = iocb->ki_filp->f_mapping->host;
  714. struct nfs_direct_req *dreq;
  715. size_t wsize = NFS_SERVER(inode)->wsize;
  716. int sync = NFS_UNSTABLE;
  717. dreq = nfs_direct_req_alloc();
  718. if (!dreq)
  719. return -ENOMEM;
  720. nfs_alloc_commit_data(dreq);
  721. if (dreq->commit_data == NULL || count < wsize)
  722. sync = NFS_FILE_SYNC;
  723. dreq->inode = inode;
  724. dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
  725. if (!is_sync_kiocb(iocb))
  726. dreq->iocb = iocb;
  727. result = nfs_direct_write_schedule_iovec(dreq, iov, nr_segs, pos, sync);
  728. if (!result)
  729. result = nfs_direct_wait(dreq);
  730. nfs_direct_req_release(dreq);
  731. return result;
  732. }
  733. /**
  734. * nfs_file_direct_read - file direct read operation for NFS files
  735. * @iocb: target I/O control block
  736. * @iov: vector of user buffers into which to read data
  737. * @nr_segs: size of iov vector
  738. * @pos: byte offset in file where reading starts
  739. *
  740. * We use this function for direct reads instead of calling
  741. * generic_file_aio_read() in order to avoid gfar's check to see if
  742. * the request starts before the end of the file. For that check
  743. * to work, we must generate a GETATTR before each direct read, and
  744. * even then there is a window between the GETATTR and the subsequent
  745. * READ where the file size could change. Our preference is simply
  746. * to do all reads the application wants, and the server will take
  747. * care of managing the end of file boundary.
  748. *
  749. * This function also eliminates unnecessarily updating the file's
  750. * atime locally, as the NFS server sets the file's atime, and this
  751. * client must read the updated atime from the server back into its
  752. * cache.
  753. */
  754. ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov,
  755. unsigned long nr_segs, loff_t pos)
  756. {
  757. ssize_t retval = -EINVAL;
  758. struct file *file = iocb->ki_filp;
  759. struct address_space *mapping = file->f_mapping;
  760. size_t count;
  761. count = iov_length(iov, nr_segs);
  762. nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
  763. dfprintk(FILE, "NFS: direct read(%s/%s, %zd@%Ld)\n",
  764. file->f_path.dentry->d_parent->d_name.name,
  765. file->f_path.dentry->d_name.name,
  766. count, (long long) pos);
  767. retval = 0;
  768. if (!count)
  769. goto out;
  770. retval = nfs_sync_mapping(mapping);
  771. if (retval)
  772. goto out;
  773. retval = nfs_direct_read(iocb, iov, nr_segs, pos);
  774. if (retval > 0)
  775. iocb->ki_pos = pos + retval;
  776. out:
  777. return retval;
  778. }
  779. /**
  780. * nfs_file_direct_write - file direct write operation for NFS files
  781. * @iocb: target I/O control block
  782. * @iov: vector of user buffers from which to write data
  783. * @nr_segs: size of iov vector
  784. * @pos: byte offset in file where writing starts
  785. *
  786. * We use this function for direct writes instead of calling
  787. * generic_file_aio_write() in order to avoid taking the inode
  788. * semaphore and updating the i_size. The NFS server will set
  789. * the new i_size and this client must read the updated size
  790. * back into its cache. We let the server do generic write
  791. * parameter checking and report problems.
  792. *
  793. * We also avoid an unnecessary invocation of generic_osync_inode(),
  794. * as it is fairly meaningless to sync the metadata of an NFS file.
  795. *
  796. * We eliminate local atime updates, see direct read above.
  797. *
  798. * We avoid unnecessary page cache invalidations for normal cached
  799. * readers of this file.
  800. *
  801. * Note that O_APPEND is not supported for NFS direct writes, as there
  802. * is no atomic O_APPEND write facility in the NFS protocol.
  803. */
  804. ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
  805. unsigned long nr_segs, loff_t pos)
  806. {
  807. ssize_t retval = -EINVAL;
  808. struct file *file = iocb->ki_filp;
  809. struct address_space *mapping = file->f_mapping;
  810. size_t count;
  811. count = iov_length(iov, nr_segs);
  812. nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
  813. dfprintk(FILE, "NFS: direct write(%s/%s, %zd@%Ld)\n",
  814. file->f_path.dentry->d_parent->d_name.name,
  815. file->f_path.dentry->d_name.name,
  816. count, (long long) pos);
  817. retval = generic_write_checks(file, &pos, &count, 0);
  818. if (retval)
  819. goto out;
  820. retval = -EINVAL;
  821. if ((ssize_t) count < 0)
  822. goto out;
  823. retval = 0;
  824. if (!count)
  825. goto out;
  826. retval = nfs_sync_mapping(mapping);
  827. if (retval)
  828. goto out;
  829. retval = nfs_direct_write(iocb, iov, nr_segs, pos, count);
  830. if (retval > 0)
  831. iocb->ki_pos = pos + retval;
  832. out:
  833. return retval;
  834. }
  835. /**
  836. * nfs_init_directcache - create a slab cache for nfs_direct_req structures
  837. *
  838. */
  839. int __init nfs_init_directcache(void)
  840. {
  841. nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
  842. sizeof(struct nfs_direct_req),
  843. 0, (SLAB_RECLAIM_ACCOUNT|
  844. SLAB_MEM_SPREAD),
  845. NULL);
  846. if (nfs_direct_cachep == NULL)
  847. return -ENOMEM;
  848. return 0;
  849. }
  850. /**
  851. * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
  852. *
  853. */
  854. void nfs_destroy_directcache(void)
  855. {
  856. kmem_cache_destroy(nfs_direct_cachep);
  857. }