namespace.c 57 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311
  1. /*
  2. * linux/fs/namespace.c
  3. *
  4. * (C) Copyright Al Viro 2000, 2001
  5. * Released under GPL v2.
  6. *
  7. * Based on code from fs/super.c, copyright Linus Torvalds and others.
  8. * Heavily rewritten.
  9. */
  10. #include <linux/syscalls.h>
  11. #include <linux/slab.h>
  12. #include <linux/sched.h>
  13. #include <linux/smp_lock.h>
  14. #include <linux/init.h>
  15. #include <linux/kernel.h>
  16. #include <linux/acct.h>
  17. #include <linux/capability.h>
  18. #include <linux/cpumask.h>
  19. #include <linux/module.h>
  20. #include <linux/sysfs.h>
  21. #include <linux/seq_file.h>
  22. #include <linux/mnt_namespace.h>
  23. #include <linux/namei.h>
  24. #include <linux/security.h>
  25. #include <linux/mount.h>
  26. #include <linux/ramfs.h>
  27. #include <linux/log2.h>
  28. #include <linux/idr.h>
  29. #include <linux/fs_struct.h>
  30. #include <asm/uaccess.h>
  31. #include <asm/unistd.h>
  32. #include "pnode.h"
  33. #include "internal.h"
  34. #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
  35. #define HASH_SIZE (1UL << HASH_SHIFT)
  36. /* spinlock for vfsmount related operations, inplace of dcache_lock */
  37. __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
  38. static int event;
  39. static DEFINE_IDA(mnt_id_ida);
  40. static DEFINE_IDA(mnt_group_ida);
  41. static struct list_head *mount_hashtable __read_mostly;
  42. static struct kmem_cache *mnt_cache __read_mostly;
  43. static struct rw_semaphore namespace_sem;
  44. /* /sys/fs */
  45. struct kobject *fs_kobj;
  46. EXPORT_SYMBOL_GPL(fs_kobj);
  47. static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
  48. {
  49. unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  50. tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  51. tmp = tmp + (tmp >> HASH_SHIFT);
  52. return tmp & (HASH_SIZE - 1);
  53. }
  54. #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
  55. /* allocation is serialized by namespace_sem */
  56. static int mnt_alloc_id(struct vfsmount *mnt)
  57. {
  58. int res;
  59. retry:
  60. ida_pre_get(&mnt_id_ida, GFP_KERNEL);
  61. spin_lock(&vfsmount_lock);
  62. res = ida_get_new(&mnt_id_ida, &mnt->mnt_id);
  63. spin_unlock(&vfsmount_lock);
  64. if (res == -EAGAIN)
  65. goto retry;
  66. return res;
  67. }
  68. static void mnt_free_id(struct vfsmount *mnt)
  69. {
  70. spin_lock(&vfsmount_lock);
  71. ida_remove(&mnt_id_ida, mnt->mnt_id);
  72. spin_unlock(&vfsmount_lock);
  73. }
  74. /*
  75. * Allocate a new peer group ID
  76. *
  77. * mnt_group_ida is protected by namespace_sem
  78. */
  79. static int mnt_alloc_group_id(struct vfsmount *mnt)
  80. {
  81. if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
  82. return -ENOMEM;
  83. return ida_get_new_above(&mnt_group_ida, 1, &mnt->mnt_group_id);
  84. }
  85. /*
  86. * Release a peer group ID
  87. */
  88. void mnt_release_group_id(struct vfsmount *mnt)
  89. {
  90. ida_remove(&mnt_group_ida, mnt->mnt_group_id);
  91. mnt->mnt_group_id = 0;
  92. }
  93. struct vfsmount *alloc_vfsmnt(const char *name)
  94. {
  95. struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
  96. if (mnt) {
  97. int err;
  98. err = mnt_alloc_id(mnt);
  99. if (err)
  100. goto out_free_cache;
  101. if (name) {
  102. mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
  103. if (!mnt->mnt_devname)
  104. goto out_free_id;
  105. }
  106. atomic_set(&mnt->mnt_count, 1);
  107. INIT_LIST_HEAD(&mnt->mnt_hash);
  108. INIT_LIST_HEAD(&mnt->mnt_child);
  109. INIT_LIST_HEAD(&mnt->mnt_mounts);
  110. INIT_LIST_HEAD(&mnt->mnt_list);
  111. INIT_LIST_HEAD(&mnt->mnt_expire);
  112. INIT_LIST_HEAD(&mnt->mnt_share);
  113. INIT_LIST_HEAD(&mnt->mnt_slave_list);
  114. INIT_LIST_HEAD(&mnt->mnt_slave);
  115. atomic_set(&mnt->__mnt_writers, 0);
  116. }
  117. return mnt;
  118. out_free_id:
  119. mnt_free_id(mnt);
  120. out_free_cache:
  121. kmem_cache_free(mnt_cache, mnt);
  122. return NULL;
  123. }
  124. /*
  125. * Most r/o checks on a fs are for operations that take
  126. * discrete amounts of time, like a write() or unlink().
  127. * We must keep track of when those operations start
  128. * (for permission checks) and when they end, so that
  129. * we can determine when writes are able to occur to
  130. * a filesystem.
  131. */
  132. /*
  133. * __mnt_is_readonly: check whether a mount is read-only
  134. * @mnt: the mount to check for its write status
  135. *
  136. * This shouldn't be used directly ouside of the VFS.
  137. * It does not guarantee that the filesystem will stay
  138. * r/w, just that it is right *now*. This can not and
  139. * should not be used in place of IS_RDONLY(inode).
  140. * mnt_want/drop_write() will _keep_ the filesystem
  141. * r/w.
  142. */
  143. int __mnt_is_readonly(struct vfsmount *mnt)
  144. {
  145. if (mnt->mnt_flags & MNT_READONLY)
  146. return 1;
  147. if (mnt->mnt_sb->s_flags & MS_RDONLY)
  148. return 1;
  149. return 0;
  150. }
  151. EXPORT_SYMBOL_GPL(__mnt_is_readonly);
  152. struct mnt_writer {
  153. /*
  154. * If holding multiple instances of this lock, they
  155. * must be ordered by cpu number.
  156. */
  157. spinlock_t lock;
  158. struct lock_class_key lock_class; /* compiles out with !lockdep */
  159. unsigned long count;
  160. struct vfsmount *mnt;
  161. } ____cacheline_aligned_in_smp;
  162. static DEFINE_PER_CPU(struct mnt_writer, mnt_writers);
  163. static int __init init_mnt_writers(void)
  164. {
  165. int cpu;
  166. for_each_possible_cpu(cpu) {
  167. struct mnt_writer *writer = &per_cpu(mnt_writers, cpu);
  168. spin_lock_init(&writer->lock);
  169. lockdep_set_class(&writer->lock, &writer->lock_class);
  170. writer->count = 0;
  171. }
  172. return 0;
  173. }
  174. fs_initcall(init_mnt_writers);
  175. static void unlock_mnt_writers(void)
  176. {
  177. int cpu;
  178. struct mnt_writer *cpu_writer;
  179. for_each_possible_cpu(cpu) {
  180. cpu_writer = &per_cpu(mnt_writers, cpu);
  181. spin_unlock(&cpu_writer->lock);
  182. }
  183. }
  184. static inline void __clear_mnt_count(struct mnt_writer *cpu_writer)
  185. {
  186. if (!cpu_writer->mnt)
  187. return;
  188. /*
  189. * This is in case anyone ever leaves an invalid,
  190. * old ->mnt and a count of 0.
  191. */
  192. if (!cpu_writer->count)
  193. return;
  194. atomic_add(cpu_writer->count, &cpu_writer->mnt->__mnt_writers);
  195. cpu_writer->count = 0;
  196. }
  197. /*
  198. * must hold cpu_writer->lock
  199. */
  200. static inline void use_cpu_writer_for_mount(struct mnt_writer *cpu_writer,
  201. struct vfsmount *mnt)
  202. {
  203. if (cpu_writer->mnt == mnt)
  204. return;
  205. __clear_mnt_count(cpu_writer);
  206. cpu_writer->mnt = mnt;
  207. }
  208. /*
  209. * Most r/o checks on a fs are for operations that take
  210. * discrete amounts of time, like a write() or unlink().
  211. * We must keep track of when those operations start
  212. * (for permission checks) and when they end, so that
  213. * we can determine when writes are able to occur to
  214. * a filesystem.
  215. */
  216. /**
  217. * mnt_want_write - get write access to a mount
  218. * @mnt: the mount on which to take a write
  219. *
  220. * This tells the low-level filesystem that a write is
  221. * about to be performed to it, and makes sure that
  222. * writes are allowed before returning success. When
  223. * the write operation is finished, mnt_drop_write()
  224. * must be called. This is effectively a refcount.
  225. */
  226. int mnt_want_write(struct vfsmount *mnt)
  227. {
  228. int ret = 0;
  229. struct mnt_writer *cpu_writer;
  230. cpu_writer = &get_cpu_var(mnt_writers);
  231. spin_lock(&cpu_writer->lock);
  232. if (__mnt_is_readonly(mnt)) {
  233. ret = -EROFS;
  234. goto out;
  235. }
  236. use_cpu_writer_for_mount(cpu_writer, mnt);
  237. cpu_writer->count++;
  238. out:
  239. spin_unlock(&cpu_writer->lock);
  240. put_cpu_var(mnt_writers);
  241. return ret;
  242. }
  243. EXPORT_SYMBOL_GPL(mnt_want_write);
  244. static void lock_mnt_writers(void)
  245. {
  246. int cpu;
  247. struct mnt_writer *cpu_writer;
  248. for_each_possible_cpu(cpu) {
  249. cpu_writer = &per_cpu(mnt_writers, cpu);
  250. spin_lock(&cpu_writer->lock);
  251. __clear_mnt_count(cpu_writer);
  252. cpu_writer->mnt = NULL;
  253. }
  254. }
  255. /*
  256. * These per-cpu write counts are not guaranteed to have
  257. * matched increments and decrements on any given cpu.
  258. * A file open()ed for write on one cpu and close()d on
  259. * another cpu will imbalance this count. Make sure it
  260. * does not get too far out of whack.
  261. */
  262. static void handle_write_count_underflow(struct vfsmount *mnt)
  263. {
  264. if (atomic_read(&mnt->__mnt_writers) >=
  265. MNT_WRITER_UNDERFLOW_LIMIT)
  266. return;
  267. /*
  268. * It isn't necessary to hold all of the locks
  269. * at the same time, but doing it this way makes
  270. * us share a lot more code.
  271. */
  272. lock_mnt_writers();
  273. /*
  274. * vfsmount_lock is for mnt_flags.
  275. */
  276. spin_lock(&vfsmount_lock);
  277. /*
  278. * If coalescing the per-cpu writer counts did not
  279. * get us back to a positive writer count, we have
  280. * a bug.
  281. */
  282. if ((atomic_read(&mnt->__mnt_writers) < 0) &&
  283. !(mnt->mnt_flags & MNT_IMBALANCED_WRITE_COUNT)) {
  284. WARN(1, KERN_DEBUG "leak detected on mount(%p) writers "
  285. "count: %d\n",
  286. mnt, atomic_read(&mnt->__mnt_writers));
  287. /* use the flag to keep the dmesg spam down */
  288. mnt->mnt_flags |= MNT_IMBALANCED_WRITE_COUNT;
  289. }
  290. spin_unlock(&vfsmount_lock);
  291. unlock_mnt_writers();
  292. }
  293. /**
  294. * mnt_drop_write - give up write access to a mount
  295. * @mnt: the mount on which to give up write access
  296. *
  297. * Tells the low-level filesystem that we are done
  298. * performing writes to it. Must be matched with
  299. * mnt_want_write() call above.
  300. */
  301. void mnt_drop_write(struct vfsmount *mnt)
  302. {
  303. int must_check_underflow = 0;
  304. struct mnt_writer *cpu_writer;
  305. cpu_writer = &get_cpu_var(mnt_writers);
  306. spin_lock(&cpu_writer->lock);
  307. use_cpu_writer_for_mount(cpu_writer, mnt);
  308. if (cpu_writer->count > 0) {
  309. cpu_writer->count--;
  310. } else {
  311. must_check_underflow = 1;
  312. atomic_dec(&mnt->__mnt_writers);
  313. }
  314. spin_unlock(&cpu_writer->lock);
  315. /*
  316. * Logically, we could call this each time,
  317. * but the __mnt_writers cacheline tends to
  318. * be cold, and makes this expensive.
  319. */
  320. if (must_check_underflow)
  321. handle_write_count_underflow(mnt);
  322. /*
  323. * This could be done right after the spinlock
  324. * is taken because the spinlock keeps us on
  325. * the cpu, and disables preemption. However,
  326. * putting it here bounds the amount that
  327. * __mnt_writers can underflow. Without it,
  328. * we could theoretically wrap __mnt_writers.
  329. */
  330. put_cpu_var(mnt_writers);
  331. }
  332. EXPORT_SYMBOL_GPL(mnt_drop_write);
  333. static int mnt_make_readonly(struct vfsmount *mnt)
  334. {
  335. int ret = 0;
  336. lock_mnt_writers();
  337. /*
  338. * With all the locks held, this value is stable
  339. */
  340. if (atomic_read(&mnt->__mnt_writers) > 0) {
  341. ret = -EBUSY;
  342. goto out;
  343. }
  344. /*
  345. * nobody can do a successful mnt_want_write() with all
  346. * of the counts in MNT_DENIED_WRITE and the locks held.
  347. */
  348. spin_lock(&vfsmount_lock);
  349. if (!ret)
  350. mnt->mnt_flags |= MNT_READONLY;
  351. spin_unlock(&vfsmount_lock);
  352. out:
  353. unlock_mnt_writers();
  354. return ret;
  355. }
  356. static void __mnt_unmake_readonly(struct vfsmount *mnt)
  357. {
  358. spin_lock(&vfsmount_lock);
  359. mnt->mnt_flags &= ~MNT_READONLY;
  360. spin_unlock(&vfsmount_lock);
  361. }
  362. void simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
  363. {
  364. mnt->mnt_sb = sb;
  365. mnt->mnt_root = dget(sb->s_root);
  366. }
  367. EXPORT_SYMBOL(simple_set_mnt);
  368. void free_vfsmnt(struct vfsmount *mnt)
  369. {
  370. kfree(mnt->mnt_devname);
  371. mnt_free_id(mnt);
  372. kmem_cache_free(mnt_cache, mnt);
  373. }
  374. /*
  375. * find the first or last mount at @dentry on vfsmount @mnt depending on
  376. * @dir. If @dir is set return the first mount else return the last mount.
  377. */
  378. struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
  379. int dir)
  380. {
  381. struct list_head *head = mount_hashtable + hash(mnt, dentry);
  382. struct list_head *tmp = head;
  383. struct vfsmount *p, *found = NULL;
  384. for (;;) {
  385. tmp = dir ? tmp->next : tmp->prev;
  386. p = NULL;
  387. if (tmp == head)
  388. break;
  389. p = list_entry(tmp, struct vfsmount, mnt_hash);
  390. if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
  391. found = p;
  392. break;
  393. }
  394. }
  395. return found;
  396. }
  397. /*
  398. * lookup_mnt increments the ref count before returning
  399. * the vfsmount struct.
  400. */
  401. struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
  402. {
  403. struct vfsmount *child_mnt;
  404. spin_lock(&vfsmount_lock);
  405. if ((child_mnt = __lookup_mnt(mnt, dentry, 1)))
  406. mntget(child_mnt);
  407. spin_unlock(&vfsmount_lock);
  408. return child_mnt;
  409. }
  410. static inline int check_mnt(struct vfsmount *mnt)
  411. {
  412. return mnt->mnt_ns == current->nsproxy->mnt_ns;
  413. }
  414. static void touch_mnt_namespace(struct mnt_namespace *ns)
  415. {
  416. if (ns) {
  417. ns->event = ++event;
  418. wake_up_interruptible(&ns->poll);
  419. }
  420. }
  421. static void __touch_mnt_namespace(struct mnt_namespace *ns)
  422. {
  423. if (ns && ns->event != event) {
  424. ns->event = event;
  425. wake_up_interruptible(&ns->poll);
  426. }
  427. }
  428. static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
  429. {
  430. old_path->dentry = mnt->mnt_mountpoint;
  431. old_path->mnt = mnt->mnt_parent;
  432. mnt->mnt_parent = mnt;
  433. mnt->mnt_mountpoint = mnt->mnt_root;
  434. list_del_init(&mnt->mnt_child);
  435. list_del_init(&mnt->mnt_hash);
  436. old_path->dentry->d_mounted--;
  437. }
  438. void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
  439. struct vfsmount *child_mnt)
  440. {
  441. child_mnt->mnt_parent = mntget(mnt);
  442. child_mnt->mnt_mountpoint = dget(dentry);
  443. dentry->d_mounted++;
  444. }
  445. static void attach_mnt(struct vfsmount *mnt, struct path *path)
  446. {
  447. mnt_set_mountpoint(path->mnt, path->dentry, mnt);
  448. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  449. hash(path->mnt, path->dentry));
  450. list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
  451. }
  452. /*
  453. * the caller must hold vfsmount_lock
  454. */
  455. static void commit_tree(struct vfsmount *mnt)
  456. {
  457. struct vfsmount *parent = mnt->mnt_parent;
  458. struct vfsmount *m;
  459. LIST_HEAD(head);
  460. struct mnt_namespace *n = parent->mnt_ns;
  461. BUG_ON(parent == mnt);
  462. list_add_tail(&head, &mnt->mnt_list);
  463. list_for_each_entry(m, &head, mnt_list)
  464. m->mnt_ns = n;
  465. list_splice(&head, n->list.prev);
  466. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  467. hash(parent, mnt->mnt_mountpoint));
  468. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  469. touch_mnt_namespace(n);
  470. }
  471. static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
  472. {
  473. struct list_head *next = p->mnt_mounts.next;
  474. if (next == &p->mnt_mounts) {
  475. while (1) {
  476. if (p == root)
  477. return NULL;
  478. next = p->mnt_child.next;
  479. if (next != &p->mnt_parent->mnt_mounts)
  480. break;
  481. p = p->mnt_parent;
  482. }
  483. }
  484. return list_entry(next, struct vfsmount, mnt_child);
  485. }
  486. static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
  487. {
  488. struct list_head *prev = p->mnt_mounts.prev;
  489. while (prev != &p->mnt_mounts) {
  490. p = list_entry(prev, struct vfsmount, mnt_child);
  491. prev = p->mnt_mounts.prev;
  492. }
  493. return p;
  494. }
  495. static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
  496. int flag)
  497. {
  498. struct super_block *sb = old->mnt_sb;
  499. struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
  500. if (mnt) {
  501. if (flag & (CL_SLAVE | CL_PRIVATE))
  502. mnt->mnt_group_id = 0; /* not a peer of original */
  503. else
  504. mnt->mnt_group_id = old->mnt_group_id;
  505. if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
  506. int err = mnt_alloc_group_id(mnt);
  507. if (err)
  508. goto out_free;
  509. }
  510. mnt->mnt_flags = old->mnt_flags;
  511. atomic_inc(&sb->s_active);
  512. mnt->mnt_sb = sb;
  513. mnt->mnt_root = dget(root);
  514. mnt->mnt_mountpoint = mnt->mnt_root;
  515. mnt->mnt_parent = mnt;
  516. if (flag & CL_SLAVE) {
  517. list_add(&mnt->mnt_slave, &old->mnt_slave_list);
  518. mnt->mnt_master = old;
  519. CLEAR_MNT_SHARED(mnt);
  520. } else if (!(flag & CL_PRIVATE)) {
  521. if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
  522. list_add(&mnt->mnt_share, &old->mnt_share);
  523. if (IS_MNT_SLAVE(old))
  524. list_add(&mnt->mnt_slave, &old->mnt_slave);
  525. mnt->mnt_master = old->mnt_master;
  526. }
  527. if (flag & CL_MAKE_SHARED)
  528. set_mnt_shared(mnt);
  529. /* stick the duplicate mount on the same expiry list
  530. * as the original if that was on one */
  531. if (flag & CL_EXPIRE) {
  532. if (!list_empty(&old->mnt_expire))
  533. list_add(&mnt->mnt_expire, &old->mnt_expire);
  534. }
  535. }
  536. return mnt;
  537. out_free:
  538. free_vfsmnt(mnt);
  539. return NULL;
  540. }
  541. static inline void __mntput(struct vfsmount *mnt)
  542. {
  543. int cpu;
  544. struct super_block *sb = mnt->mnt_sb;
  545. /*
  546. * We don't have to hold all of the locks at the
  547. * same time here because we know that we're the
  548. * last reference to mnt and that no new writers
  549. * can come in.
  550. */
  551. for_each_possible_cpu(cpu) {
  552. struct mnt_writer *cpu_writer = &per_cpu(mnt_writers, cpu);
  553. spin_lock(&cpu_writer->lock);
  554. if (cpu_writer->mnt != mnt) {
  555. spin_unlock(&cpu_writer->lock);
  556. continue;
  557. }
  558. atomic_add(cpu_writer->count, &mnt->__mnt_writers);
  559. cpu_writer->count = 0;
  560. /*
  561. * Might as well do this so that no one
  562. * ever sees the pointer and expects
  563. * it to be valid.
  564. */
  565. cpu_writer->mnt = NULL;
  566. spin_unlock(&cpu_writer->lock);
  567. }
  568. /*
  569. * This probably indicates that somebody messed
  570. * up a mnt_want/drop_write() pair. If this
  571. * happens, the filesystem was probably unable
  572. * to make r/w->r/o transitions.
  573. */
  574. WARN_ON(atomic_read(&mnt->__mnt_writers));
  575. dput(mnt->mnt_root);
  576. free_vfsmnt(mnt);
  577. deactivate_super(sb);
  578. }
  579. void mntput_no_expire(struct vfsmount *mnt)
  580. {
  581. repeat:
  582. if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
  583. if (likely(!mnt->mnt_pinned)) {
  584. spin_unlock(&vfsmount_lock);
  585. __mntput(mnt);
  586. return;
  587. }
  588. atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
  589. mnt->mnt_pinned = 0;
  590. spin_unlock(&vfsmount_lock);
  591. acct_auto_close_mnt(mnt);
  592. security_sb_umount_close(mnt);
  593. goto repeat;
  594. }
  595. }
  596. EXPORT_SYMBOL(mntput_no_expire);
  597. void mnt_pin(struct vfsmount *mnt)
  598. {
  599. spin_lock(&vfsmount_lock);
  600. mnt->mnt_pinned++;
  601. spin_unlock(&vfsmount_lock);
  602. }
  603. EXPORT_SYMBOL(mnt_pin);
  604. void mnt_unpin(struct vfsmount *mnt)
  605. {
  606. spin_lock(&vfsmount_lock);
  607. if (mnt->mnt_pinned) {
  608. atomic_inc(&mnt->mnt_count);
  609. mnt->mnt_pinned--;
  610. }
  611. spin_unlock(&vfsmount_lock);
  612. }
  613. EXPORT_SYMBOL(mnt_unpin);
  614. static inline void mangle(struct seq_file *m, const char *s)
  615. {
  616. seq_escape(m, s, " \t\n\\");
  617. }
  618. /*
  619. * Simple .show_options callback for filesystems which don't want to
  620. * implement more complex mount option showing.
  621. *
  622. * See also save_mount_options().
  623. */
  624. int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
  625. {
  626. const char *options;
  627. rcu_read_lock();
  628. options = rcu_dereference(mnt->mnt_sb->s_options);
  629. if (options != NULL && options[0]) {
  630. seq_putc(m, ',');
  631. mangle(m, options);
  632. }
  633. rcu_read_unlock();
  634. return 0;
  635. }
  636. EXPORT_SYMBOL(generic_show_options);
  637. /*
  638. * If filesystem uses generic_show_options(), this function should be
  639. * called from the fill_super() callback.
  640. *
  641. * The .remount_fs callback usually needs to be handled in a special
  642. * way, to make sure, that previous options are not overwritten if the
  643. * remount fails.
  644. *
  645. * Also note, that if the filesystem's .remount_fs function doesn't
  646. * reset all options to their default value, but changes only newly
  647. * given options, then the displayed options will not reflect reality
  648. * any more.
  649. */
  650. void save_mount_options(struct super_block *sb, char *options)
  651. {
  652. BUG_ON(sb->s_options);
  653. rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
  654. }
  655. EXPORT_SYMBOL(save_mount_options);
  656. void replace_mount_options(struct super_block *sb, char *options)
  657. {
  658. char *old = sb->s_options;
  659. rcu_assign_pointer(sb->s_options, options);
  660. if (old) {
  661. synchronize_rcu();
  662. kfree(old);
  663. }
  664. }
  665. EXPORT_SYMBOL(replace_mount_options);
  666. #ifdef CONFIG_PROC_FS
  667. /* iterator */
  668. static void *m_start(struct seq_file *m, loff_t *pos)
  669. {
  670. struct proc_mounts *p = m->private;
  671. down_read(&namespace_sem);
  672. return seq_list_start(&p->ns->list, *pos);
  673. }
  674. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  675. {
  676. struct proc_mounts *p = m->private;
  677. return seq_list_next(v, &p->ns->list, pos);
  678. }
  679. static void m_stop(struct seq_file *m, void *v)
  680. {
  681. up_read(&namespace_sem);
  682. }
  683. struct proc_fs_info {
  684. int flag;
  685. const char *str;
  686. };
  687. static int show_sb_opts(struct seq_file *m, struct super_block *sb)
  688. {
  689. static const struct proc_fs_info fs_info[] = {
  690. { MS_SYNCHRONOUS, ",sync" },
  691. { MS_DIRSYNC, ",dirsync" },
  692. { MS_MANDLOCK, ",mand" },
  693. { 0, NULL }
  694. };
  695. const struct proc_fs_info *fs_infop;
  696. for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
  697. if (sb->s_flags & fs_infop->flag)
  698. seq_puts(m, fs_infop->str);
  699. }
  700. return security_sb_show_options(m, sb);
  701. }
  702. static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
  703. {
  704. static const struct proc_fs_info mnt_info[] = {
  705. { MNT_NOSUID, ",nosuid" },
  706. { MNT_NODEV, ",nodev" },
  707. { MNT_NOEXEC, ",noexec" },
  708. { MNT_NOATIME, ",noatime" },
  709. { MNT_NODIRATIME, ",nodiratime" },
  710. { MNT_RELATIME, ",relatime" },
  711. { MNT_STRICTATIME, ",strictatime" },
  712. { 0, NULL }
  713. };
  714. const struct proc_fs_info *fs_infop;
  715. for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
  716. if (mnt->mnt_flags & fs_infop->flag)
  717. seq_puts(m, fs_infop->str);
  718. }
  719. }
  720. static void show_type(struct seq_file *m, struct super_block *sb)
  721. {
  722. mangle(m, sb->s_type->name);
  723. if (sb->s_subtype && sb->s_subtype[0]) {
  724. seq_putc(m, '.');
  725. mangle(m, sb->s_subtype);
  726. }
  727. }
  728. static int show_vfsmnt(struct seq_file *m, void *v)
  729. {
  730. struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
  731. int err = 0;
  732. struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
  733. mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
  734. seq_putc(m, ' ');
  735. seq_path(m, &mnt_path, " \t\n\\");
  736. seq_putc(m, ' ');
  737. show_type(m, mnt->mnt_sb);
  738. seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
  739. err = show_sb_opts(m, mnt->mnt_sb);
  740. if (err)
  741. goto out;
  742. show_mnt_opts(m, mnt);
  743. if (mnt->mnt_sb->s_op->show_options)
  744. err = mnt->mnt_sb->s_op->show_options(m, mnt);
  745. seq_puts(m, " 0 0\n");
  746. out:
  747. return err;
  748. }
  749. const struct seq_operations mounts_op = {
  750. .start = m_start,
  751. .next = m_next,
  752. .stop = m_stop,
  753. .show = show_vfsmnt
  754. };
  755. static int show_mountinfo(struct seq_file *m, void *v)
  756. {
  757. struct proc_mounts *p = m->private;
  758. struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
  759. struct super_block *sb = mnt->mnt_sb;
  760. struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
  761. struct path root = p->root;
  762. int err = 0;
  763. seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
  764. MAJOR(sb->s_dev), MINOR(sb->s_dev));
  765. seq_dentry(m, mnt->mnt_root, " \t\n\\");
  766. seq_putc(m, ' ');
  767. seq_path_root(m, &mnt_path, &root, " \t\n\\");
  768. if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
  769. /*
  770. * Mountpoint is outside root, discard that one. Ugly,
  771. * but less so than trying to do that in iterator in a
  772. * race-free way (due to renames).
  773. */
  774. return SEQ_SKIP;
  775. }
  776. seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
  777. show_mnt_opts(m, mnt);
  778. /* Tagged fields ("foo:X" or "bar") */
  779. if (IS_MNT_SHARED(mnt))
  780. seq_printf(m, " shared:%i", mnt->mnt_group_id);
  781. if (IS_MNT_SLAVE(mnt)) {
  782. int master = mnt->mnt_master->mnt_group_id;
  783. int dom = get_dominating_id(mnt, &p->root);
  784. seq_printf(m, " master:%i", master);
  785. if (dom && dom != master)
  786. seq_printf(m, " propagate_from:%i", dom);
  787. }
  788. if (IS_MNT_UNBINDABLE(mnt))
  789. seq_puts(m, " unbindable");
  790. /* Filesystem specific data */
  791. seq_puts(m, " - ");
  792. show_type(m, sb);
  793. seq_putc(m, ' ');
  794. mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
  795. seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
  796. err = show_sb_opts(m, sb);
  797. if (err)
  798. goto out;
  799. if (sb->s_op->show_options)
  800. err = sb->s_op->show_options(m, mnt);
  801. seq_putc(m, '\n');
  802. out:
  803. return err;
  804. }
  805. const struct seq_operations mountinfo_op = {
  806. .start = m_start,
  807. .next = m_next,
  808. .stop = m_stop,
  809. .show = show_mountinfo,
  810. };
  811. static int show_vfsstat(struct seq_file *m, void *v)
  812. {
  813. struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
  814. struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
  815. int err = 0;
  816. /* device */
  817. if (mnt->mnt_devname) {
  818. seq_puts(m, "device ");
  819. mangle(m, mnt->mnt_devname);
  820. } else
  821. seq_puts(m, "no device");
  822. /* mount point */
  823. seq_puts(m, " mounted on ");
  824. seq_path(m, &mnt_path, " \t\n\\");
  825. seq_putc(m, ' ');
  826. /* file system type */
  827. seq_puts(m, "with fstype ");
  828. show_type(m, mnt->mnt_sb);
  829. /* optional statistics */
  830. if (mnt->mnt_sb->s_op->show_stats) {
  831. seq_putc(m, ' ');
  832. err = mnt->mnt_sb->s_op->show_stats(m, mnt);
  833. }
  834. seq_putc(m, '\n');
  835. return err;
  836. }
  837. const struct seq_operations mountstats_op = {
  838. .start = m_start,
  839. .next = m_next,
  840. .stop = m_stop,
  841. .show = show_vfsstat,
  842. };
  843. #endif /* CONFIG_PROC_FS */
  844. /**
  845. * may_umount_tree - check if a mount tree is busy
  846. * @mnt: root of mount tree
  847. *
  848. * This is called to check if a tree of mounts has any
  849. * open files, pwds, chroots or sub mounts that are
  850. * busy.
  851. */
  852. int may_umount_tree(struct vfsmount *mnt)
  853. {
  854. int actual_refs = 0;
  855. int minimum_refs = 0;
  856. struct vfsmount *p;
  857. spin_lock(&vfsmount_lock);
  858. for (p = mnt; p; p = next_mnt(p, mnt)) {
  859. actual_refs += atomic_read(&p->mnt_count);
  860. minimum_refs += 2;
  861. }
  862. spin_unlock(&vfsmount_lock);
  863. if (actual_refs > minimum_refs)
  864. return 0;
  865. return 1;
  866. }
  867. EXPORT_SYMBOL(may_umount_tree);
  868. /**
  869. * may_umount - check if a mount point is busy
  870. * @mnt: root of mount
  871. *
  872. * This is called to check if a mount point has any
  873. * open files, pwds, chroots or sub mounts. If the
  874. * mount has sub mounts this will return busy
  875. * regardless of whether the sub mounts are busy.
  876. *
  877. * Doesn't take quota and stuff into account. IOW, in some cases it will
  878. * give false negatives. The main reason why it's here is that we need
  879. * a non-destructive way to look for easily umountable filesystems.
  880. */
  881. int may_umount(struct vfsmount *mnt)
  882. {
  883. int ret = 1;
  884. spin_lock(&vfsmount_lock);
  885. if (propagate_mount_busy(mnt, 2))
  886. ret = 0;
  887. spin_unlock(&vfsmount_lock);
  888. return ret;
  889. }
  890. EXPORT_SYMBOL(may_umount);
  891. void release_mounts(struct list_head *head)
  892. {
  893. struct vfsmount *mnt;
  894. while (!list_empty(head)) {
  895. mnt = list_first_entry(head, struct vfsmount, mnt_hash);
  896. list_del_init(&mnt->mnt_hash);
  897. if (mnt->mnt_parent != mnt) {
  898. struct dentry *dentry;
  899. struct vfsmount *m;
  900. spin_lock(&vfsmount_lock);
  901. dentry = mnt->mnt_mountpoint;
  902. m = mnt->mnt_parent;
  903. mnt->mnt_mountpoint = mnt->mnt_root;
  904. mnt->mnt_parent = mnt;
  905. m->mnt_ghosts--;
  906. spin_unlock(&vfsmount_lock);
  907. dput(dentry);
  908. mntput(m);
  909. }
  910. mntput(mnt);
  911. }
  912. }
  913. void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
  914. {
  915. struct vfsmount *p;
  916. for (p = mnt; p; p = next_mnt(p, mnt))
  917. list_move(&p->mnt_hash, kill);
  918. if (propagate)
  919. propagate_umount(kill);
  920. list_for_each_entry(p, kill, mnt_hash) {
  921. list_del_init(&p->mnt_expire);
  922. list_del_init(&p->mnt_list);
  923. __touch_mnt_namespace(p->mnt_ns);
  924. p->mnt_ns = NULL;
  925. list_del_init(&p->mnt_child);
  926. if (p->mnt_parent != p) {
  927. p->mnt_parent->mnt_ghosts++;
  928. p->mnt_mountpoint->d_mounted--;
  929. }
  930. change_mnt_propagation(p, MS_PRIVATE);
  931. }
  932. }
  933. static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
  934. static int do_umount(struct vfsmount *mnt, int flags)
  935. {
  936. struct super_block *sb = mnt->mnt_sb;
  937. int retval;
  938. LIST_HEAD(umount_list);
  939. retval = security_sb_umount(mnt, flags);
  940. if (retval)
  941. return retval;
  942. /*
  943. * Allow userspace to request a mountpoint be expired rather than
  944. * unmounting unconditionally. Unmount only happens if:
  945. * (1) the mark is already set (the mark is cleared by mntput())
  946. * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
  947. */
  948. if (flags & MNT_EXPIRE) {
  949. if (mnt == current->fs->root.mnt ||
  950. flags & (MNT_FORCE | MNT_DETACH))
  951. return -EINVAL;
  952. if (atomic_read(&mnt->mnt_count) != 2)
  953. return -EBUSY;
  954. if (!xchg(&mnt->mnt_expiry_mark, 1))
  955. return -EAGAIN;
  956. }
  957. /*
  958. * If we may have to abort operations to get out of this
  959. * mount, and they will themselves hold resources we must
  960. * allow the fs to do things. In the Unix tradition of
  961. * 'Gee thats tricky lets do it in userspace' the umount_begin
  962. * might fail to complete on the first run through as other tasks
  963. * must return, and the like. Thats for the mount program to worry
  964. * about for the moment.
  965. */
  966. if (flags & MNT_FORCE && sb->s_op->umount_begin) {
  967. sb->s_op->umount_begin(sb);
  968. }
  969. /*
  970. * No sense to grab the lock for this test, but test itself looks
  971. * somewhat bogus. Suggestions for better replacement?
  972. * Ho-hum... In principle, we might treat that as umount + switch
  973. * to rootfs. GC would eventually take care of the old vfsmount.
  974. * Actually it makes sense, especially if rootfs would contain a
  975. * /reboot - static binary that would close all descriptors and
  976. * call reboot(9). Then init(8) could umount root and exec /reboot.
  977. */
  978. if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
  979. /*
  980. * Special case for "unmounting" root ...
  981. * we just try to remount it readonly.
  982. */
  983. down_write(&sb->s_umount);
  984. if (!(sb->s_flags & MS_RDONLY)) {
  985. lock_kernel();
  986. retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
  987. unlock_kernel();
  988. }
  989. up_write(&sb->s_umount);
  990. return retval;
  991. }
  992. down_write(&namespace_sem);
  993. spin_lock(&vfsmount_lock);
  994. event++;
  995. if (!(flags & MNT_DETACH))
  996. shrink_submounts(mnt, &umount_list);
  997. retval = -EBUSY;
  998. if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
  999. if (!list_empty(&mnt->mnt_list))
  1000. umount_tree(mnt, 1, &umount_list);
  1001. retval = 0;
  1002. }
  1003. spin_unlock(&vfsmount_lock);
  1004. if (retval)
  1005. security_sb_umount_busy(mnt);
  1006. up_write(&namespace_sem);
  1007. release_mounts(&umount_list);
  1008. return retval;
  1009. }
  1010. /*
  1011. * Now umount can handle mount points as well as block devices.
  1012. * This is important for filesystems which use unnamed block devices.
  1013. *
  1014. * We now support a flag for forced unmount like the other 'big iron'
  1015. * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
  1016. */
  1017. SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
  1018. {
  1019. struct path path;
  1020. int retval;
  1021. retval = user_path(name, &path);
  1022. if (retval)
  1023. goto out;
  1024. retval = -EINVAL;
  1025. if (path.dentry != path.mnt->mnt_root)
  1026. goto dput_and_out;
  1027. if (!check_mnt(path.mnt))
  1028. goto dput_and_out;
  1029. retval = -EPERM;
  1030. if (!capable(CAP_SYS_ADMIN))
  1031. goto dput_and_out;
  1032. retval = do_umount(path.mnt, flags);
  1033. dput_and_out:
  1034. /* we mustn't call path_put() as that would clear mnt_expiry_mark */
  1035. dput(path.dentry);
  1036. mntput_no_expire(path.mnt);
  1037. out:
  1038. return retval;
  1039. }
  1040. #ifdef __ARCH_WANT_SYS_OLDUMOUNT
  1041. /*
  1042. * The 2.0 compatible umount. No flags.
  1043. */
  1044. SYSCALL_DEFINE1(oldumount, char __user *, name)
  1045. {
  1046. return sys_umount(name, 0);
  1047. }
  1048. #endif
  1049. static int mount_is_safe(struct path *path)
  1050. {
  1051. if (capable(CAP_SYS_ADMIN))
  1052. return 0;
  1053. return -EPERM;
  1054. #ifdef notyet
  1055. if (S_ISLNK(path->dentry->d_inode->i_mode))
  1056. return -EPERM;
  1057. if (path->dentry->d_inode->i_mode & S_ISVTX) {
  1058. if (current_uid() != path->dentry->d_inode->i_uid)
  1059. return -EPERM;
  1060. }
  1061. if (inode_permission(path->dentry->d_inode, MAY_WRITE))
  1062. return -EPERM;
  1063. return 0;
  1064. #endif
  1065. }
  1066. struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
  1067. int flag)
  1068. {
  1069. struct vfsmount *res, *p, *q, *r, *s;
  1070. struct path path;
  1071. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
  1072. return NULL;
  1073. res = q = clone_mnt(mnt, dentry, flag);
  1074. if (!q)
  1075. goto Enomem;
  1076. q->mnt_mountpoint = mnt->mnt_mountpoint;
  1077. p = mnt;
  1078. list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
  1079. if (!is_subdir(r->mnt_mountpoint, dentry))
  1080. continue;
  1081. for (s = r; s; s = next_mnt(s, r)) {
  1082. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
  1083. s = skip_mnt_tree(s);
  1084. continue;
  1085. }
  1086. while (p != s->mnt_parent) {
  1087. p = p->mnt_parent;
  1088. q = q->mnt_parent;
  1089. }
  1090. p = s;
  1091. path.mnt = q;
  1092. path.dentry = p->mnt_mountpoint;
  1093. q = clone_mnt(p, p->mnt_root, flag);
  1094. if (!q)
  1095. goto Enomem;
  1096. spin_lock(&vfsmount_lock);
  1097. list_add_tail(&q->mnt_list, &res->mnt_list);
  1098. attach_mnt(q, &path);
  1099. spin_unlock(&vfsmount_lock);
  1100. }
  1101. }
  1102. return res;
  1103. Enomem:
  1104. if (res) {
  1105. LIST_HEAD(umount_list);
  1106. spin_lock(&vfsmount_lock);
  1107. umount_tree(res, 0, &umount_list);
  1108. spin_unlock(&vfsmount_lock);
  1109. release_mounts(&umount_list);
  1110. }
  1111. return NULL;
  1112. }
  1113. struct vfsmount *collect_mounts(struct vfsmount *mnt, struct dentry *dentry)
  1114. {
  1115. struct vfsmount *tree;
  1116. down_write(&namespace_sem);
  1117. tree = copy_tree(mnt, dentry, CL_COPY_ALL | CL_PRIVATE);
  1118. up_write(&namespace_sem);
  1119. return tree;
  1120. }
  1121. void drop_collected_mounts(struct vfsmount *mnt)
  1122. {
  1123. LIST_HEAD(umount_list);
  1124. down_write(&namespace_sem);
  1125. spin_lock(&vfsmount_lock);
  1126. umount_tree(mnt, 0, &umount_list);
  1127. spin_unlock(&vfsmount_lock);
  1128. up_write(&namespace_sem);
  1129. release_mounts(&umount_list);
  1130. }
  1131. static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
  1132. {
  1133. struct vfsmount *p;
  1134. for (p = mnt; p != end; p = next_mnt(p, mnt)) {
  1135. if (p->mnt_group_id && !IS_MNT_SHARED(p))
  1136. mnt_release_group_id(p);
  1137. }
  1138. }
  1139. static int invent_group_ids(struct vfsmount *mnt, bool recurse)
  1140. {
  1141. struct vfsmount *p;
  1142. for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
  1143. if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
  1144. int err = mnt_alloc_group_id(p);
  1145. if (err) {
  1146. cleanup_group_ids(mnt, p);
  1147. return err;
  1148. }
  1149. }
  1150. }
  1151. return 0;
  1152. }
  1153. /*
  1154. * @source_mnt : mount tree to be attached
  1155. * @nd : place the mount tree @source_mnt is attached
  1156. * @parent_nd : if non-null, detach the source_mnt from its parent and
  1157. * store the parent mount and mountpoint dentry.
  1158. * (done when source_mnt is moved)
  1159. *
  1160. * NOTE: in the table below explains the semantics when a source mount
  1161. * of a given type is attached to a destination mount of a given type.
  1162. * ---------------------------------------------------------------------------
  1163. * | BIND MOUNT OPERATION |
  1164. * |**************************************************************************
  1165. * | source-->| shared | private | slave | unbindable |
  1166. * | dest | | | | |
  1167. * | | | | | | |
  1168. * | v | | | | |
  1169. * |**************************************************************************
  1170. * | shared | shared (++) | shared (+) | shared(+++)| invalid |
  1171. * | | | | | |
  1172. * |non-shared| shared (+) | private | slave (*) | invalid |
  1173. * ***************************************************************************
  1174. * A bind operation clones the source mount and mounts the clone on the
  1175. * destination mount.
  1176. *
  1177. * (++) the cloned mount is propagated to all the mounts in the propagation
  1178. * tree of the destination mount and the cloned mount is added to
  1179. * the peer group of the source mount.
  1180. * (+) the cloned mount is created under the destination mount and is marked
  1181. * as shared. The cloned mount is added to the peer group of the source
  1182. * mount.
  1183. * (+++) the mount is propagated to all the mounts in the propagation tree
  1184. * of the destination mount and the cloned mount is made slave
  1185. * of the same master as that of the source mount. The cloned mount
  1186. * is marked as 'shared and slave'.
  1187. * (*) the cloned mount is made a slave of the same master as that of the
  1188. * source mount.
  1189. *
  1190. * ---------------------------------------------------------------------------
  1191. * | MOVE MOUNT OPERATION |
  1192. * |**************************************************************************
  1193. * | source-->| shared | private | slave | unbindable |
  1194. * | dest | | | | |
  1195. * | | | | | | |
  1196. * | v | | | | |
  1197. * |**************************************************************************
  1198. * | shared | shared (+) | shared (+) | shared(+++) | invalid |
  1199. * | | | | | |
  1200. * |non-shared| shared (+*) | private | slave (*) | unbindable |
  1201. * ***************************************************************************
  1202. *
  1203. * (+) the mount is moved to the destination. And is then propagated to
  1204. * all the mounts in the propagation tree of the destination mount.
  1205. * (+*) the mount is moved to the destination.
  1206. * (+++) the mount is moved to the destination and is then propagated to
  1207. * all the mounts belonging to the destination mount's propagation tree.
  1208. * the mount is marked as 'shared and slave'.
  1209. * (*) the mount continues to be a slave at the new location.
  1210. *
  1211. * if the source mount is a tree, the operations explained above is
  1212. * applied to each mount in the tree.
  1213. * Must be called without spinlocks held, since this function can sleep
  1214. * in allocations.
  1215. */
  1216. static int attach_recursive_mnt(struct vfsmount *source_mnt,
  1217. struct path *path, struct path *parent_path)
  1218. {
  1219. LIST_HEAD(tree_list);
  1220. struct vfsmount *dest_mnt = path->mnt;
  1221. struct dentry *dest_dentry = path->dentry;
  1222. struct vfsmount *child, *p;
  1223. int err;
  1224. if (IS_MNT_SHARED(dest_mnt)) {
  1225. err = invent_group_ids(source_mnt, true);
  1226. if (err)
  1227. goto out;
  1228. }
  1229. err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
  1230. if (err)
  1231. goto out_cleanup_ids;
  1232. if (IS_MNT_SHARED(dest_mnt)) {
  1233. for (p = source_mnt; p; p = next_mnt(p, source_mnt))
  1234. set_mnt_shared(p);
  1235. }
  1236. spin_lock(&vfsmount_lock);
  1237. if (parent_path) {
  1238. detach_mnt(source_mnt, parent_path);
  1239. attach_mnt(source_mnt, path);
  1240. touch_mnt_namespace(parent_path->mnt->mnt_ns);
  1241. } else {
  1242. mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
  1243. commit_tree(source_mnt);
  1244. }
  1245. list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
  1246. list_del_init(&child->mnt_hash);
  1247. commit_tree(child);
  1248. }
  1249. spin_unlock(&vfsmount_lock);
  1250. return 0;
  1251. out_cleanup_ids:
  1252. if (IS_MNT_SHARED(dest_mnt))
  1253. cleanup_group_ids(source_mnt, NULL);
  1254. out:
  1255. return err;
  1256. }
  1257. static int graft_tree(struct vfsmount *mnt, struct path *path)
  1258. {
  1259. int err;
  1260. if (mnt->mnt_sb->s_flags & MS_NOUSER)
  1261. return -EINVAL;
  1262. if (S_ISDIR(path->dentry->d_inode->i_mode) !=
  1263. S_ISDIR(mnt->mnt_root->d_inode->i_mode))
  1264. return -ENOTDIR;
  1265. err = -ENOENT;
  1266. mutex_lock(&path->dentry->d_inode->i_mutex);
  1267. if (IS_DEADDIR(path->dentry->d_inode))
  1268. goto out_unlock;
  1269. err = security_sb_check_sb(mnt, path);
  1270. if (err)
  1271. goto out_unlock;
  1272. err = -ENOENT;
  1273. if (IS_ROOT(path->dentry) || !d_unhashed(path->dentry))
  1274. err = attach_recursive_mnt(mnt, path, NULL);
  1275. out_unlock:
  1276. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1277. if (!err)
  1278. security_sb_post_addmount(mnt, path);
  1279. return err;
  1280. }
  1281. /*
  1282. * recursively change the type of the mountpoint.
  1283. */
  1284. static int do_change_type(struct path *path, int flag)
  1285. {
  1286. struct vfsmount *m, *mnt = path->mnt;
  1287. int recurse = flag & MS_REC;
  1288. int type = flag & ~MS_REC;
  1289. int err = 0;
  1290. if (!capable(CAP_SYS_ADMIN))
  1291. return -EPERM;
  1292. if (path->dentry != path->mnt->mnt_root)
  1293. return -EINVAL;
  1294. down_write(&namespace_sem);
  1295. if (type == MS_SHARED) {
  1296. err = invent_group_ids(mnt, recurse);
  1297. if (err)
  1298. goto out_unlock;
  1299. }
  1300. spin_lock(&vfsmount_lock);
  1301. for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
  1302. change_mnt_propagation(m, type);
  1303. spin_unlock(&vfsmount_lock);
  1304. out_unlock:
  1305. up_write(&namespace_sem);
  1306. return err;
  1307. }
  1308. /*
  1309. * do loopback mount.
  1310. */
  1311. static int do_loopback(struct path *path, char *old_name,
  1312. int recurse)
  1313. {
  1314. struct path old_path;
  1315. struct vfsmount *mnt = NULL;
  1316. int err = mount_is_safe(path);
  1317. if (err)
  1318. return err;
  1319. if (!old_name || !*old_name)
  1320. return -EINVAL;
  1321. err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
  1322. if (err)
  1323. return err;
  1324. down_write(&namespace_sem);
  1325. err = -EINVAL;
  1326. if (IS_MNT_UNBINDABLE(old_path.mnt))
  1327. goto out;
  1328. if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
  1329. goto out;
  1330. err = -ENOMEM;
  1331. if (recurse)
  1332. mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
  1333. else
  1334. mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
  1335. if (!mnt)
  1336. goto out;
  1337. err = graft_tree(mnt, path);
  1338. if (err) {
  1339. LIST_HEAD(umount_list);
  1340. spin_lock(&vfsmount_lock);
  1341. umount_tree(mnt, 0, &umount_list);
  1342. spin_unlock(&vfsmount_lock);
  1343. release_mounts(&umount_list);
  1344. }
  1345. out:
  1346. up_write(&namespace_sem);
  1347. path_put(&old_path);
  1348. return err;
  1349. }
  1350. static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
  1351. {
  1352. int error = 0;
  1353. int readonly_request = 0;
  1354. if (ms_flags & MS_RDONLY)
  1355. readonly_request = 1;
  1356. if (readonly_request == __mnt_is_readonly(mnt))
  1357. return 0;
  1358. if (readonly_request)
  1359. error = mnt_make_readonly(mnt);
  1360. else
  1361. __mnt_unmake_readonly(mnt);
  1362. return error;
  1363. }
  1364. /*
  1365. * change filesystem flags. dir should be a physical root of filesystem.
  1366. * If you've mounted a non-root directory somewhere and want to do remount
  1367. * on it - tough luck.
  1368. */
  1369. static int do_remount(struct path *path, int flags, int mnt_flags,
  1370. void *data)
  1371. {
  1372. int err;
  1373. struct super_block *sb = path->mnt->mnt_sb;
  1374. if (!capable(CAP_SYS_ADMIN))
  1375. return -EPERM;
  1376. if (!check_mnt(path->mnt))
  1377. return -EINVAL;
  1378. if (path->dentry != path->mnt->mnt_root)
  1379. return -EINVAL;
  1380. down_write(&sb->s_umount);
  1381. if (flags & MS_BIND)
  1382. err = change_mount_flags(path->mnt, flags);
  1383. else
  1384. err = do_remount_sb(sb, flags, data, 0);
  1385. if (!err)
  1386. path->mnt->mnt_flags = mnt_flags;
  1387. up_write(&sb->s_umount);
  1388. if (!err) {
  1389. security_sb_post_remount(path->mnt, flags, data);
  1390. spin_lock(&vfsmount_lock);
  1391. touch_mnt_namespace(path->mnt->mnt_ns);
  1392. spin_unlock(&vfsmount_lock);
  1393. }
  1394. return err;
  1395. }
  1396. static inline int tree_contains_unbindable(struct vfsmount *mnt)
  1397. {
  1398. struct vfsmount *p;
  1399. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1400. if (IS_MNT_UNBINDABLE(p))
  1401. return 1;
  1402. }
  1403. return 0;
  1404. }
  1405. static int do_move_mount(struct path *path, char *old_name)
  1406. {
  1407. struct path old_path, parent_path;
  1408. struct vfsmount *p;
  1409. int err = 0;
  1410. if (!capable(CAP_SYS_ADMIN))
  1411. return -EPERM;
  1412. if (!old_name || !*old_name)
  1413. return -EINVAL;
  1414. err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
  1415. if (err)
  1416. return err;
  1417. down_write(&namespace_sem);
  1418. while (d_mountpoint(path->dentry) &&
  1419. follow_down(&path->mnt, &path->dentry))
  1420. ;
  1421. err = -EINVAL;
  1422. if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
  1423. goto out;
  1424. err = -ENOENT;
  1425. mutex_lock(&path->dentry->d_inode->i_mutex);
  1426. if (IS_DEADDIR(path->dentry->d_inode))
  1427. goto out1;
  1428. if (!IS_ROOT(path->dentry) && d_unhashed(path->dentry))
  1429. goto out1;
  1430. err = -EINVAL;
  1431. if (old_path.dentry != old_path.mnt->mnt_root)
  1432. goto out1;
  1433. if (old_path.mnt == old_path.mnt->mnt_parent)
  1434. goto out1;
  1435. if (S_ISDIR(path->dentry->d_inode->i_mode) !=
  1436. S_ISDIR(old_path.dentry->d_inode->i_mode))
  1437. goto out1;
  1438. /*
  1439. * Don't move a mount residing in a shared parent.
  1440. */
  1441. if (old_path.mnt->mnt_parent &&
  1442. IS_MNT_SHARED(old_path.mnt->mnt_parent))
  1443. goto out1;
  1444. /*
  1445. * Don't move a mount tree containing unbindable mounts to a destination
  1446. * mount which is shared.
  1447. */
  1448. if (IS_MNT_SHARED(path->mnt) &&
  1449. tree_contains_unbindable(old_path.mnt))
  1450. goto out1;
  1451. err = -ELOOP;
  1452. for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent)
  1453. if (p == old_path.mnt)
  1454. goto out1;
  1455. err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
  1456. if (err)
  1457. goto out1;
  1458. /* if the mount is moved, it should no longer be expire
  1459. * automatically */
  1460. list_del_init(&old_path.mnt->mnt_expire);
  1461. out1:
  1462. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1463. out:
  1464. up_write(&namespace_sem);
  1465. if (!err)
  1466. path_put(&parent_path);
  1467. path_put(&old_path);
  1468. return err;
  1469. }
  1470. /*
  1471. * create a new mount for userspace and request it to be added into the
  1472. * namespace's tree
  1473. */
  1474. static int do_new_mount(struct path *path, char *type, int flags,
  1475. int mnt_flags, char *name, void *data)
  1476. {
  1477. struct vfsmount *mnt;
  1478. if (!type || !memchr(type, 0, PAGE_SIZE))
  1479. return -EINVAL;
  1480. /* we need capabilities... */
  1481. if (!capable(CAP_SYS_ADMIN))
  1482. return -EPERM;
  1483. mnt = do_kern_mount(type, flags, name, data);
  1484. if (IS_ERR(mnt))
  1485. return PTR_ERR(mnt);
  1486. return do_add_mount(mnt, path, mnt_flags, NULL);
  1487. }
  1488. /*
  1489. * add a mount into a namespace's mount tree
  1490. * - provide the option of adding the new mount to an expiration list
  1491. */
  1492. int do_add_mount(struct vfsmount *newmnt, struct path *path,
  1493. int mnt_flags, struct list_head *fslist)
  1494. {
  1495. int err;
  1496. down_write(&namespace_sem);
  1497. /* Something was mounted here while we slept */
  1498. while (d_mountpoint(path->dentry) &&
  1499. follow_down(&path->mnt, &path->dentry))
  1500. ;
  1501. err = -EINVAL;
  1502. if (!check_mnt(path->mnt))
  1503. goto unlock;
  1504. /* Refuse the same filesystem on the same mount point */
  1505. err = -EBUSY;
  1506. if (path->mnt->mnt_sb == newmnt->mnt_sb &&
  1507. path->mnt->mnt_root == path->dentry)
  1508. goto unlock;
  1509. err = -EINVAL;
  1510. if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
  1511. goto unlock;
  1512. newmnt->mnt_flags = mnt_flags;
  1513. if ((err = graft_tree(newmnt, path)))
  1514. goto unlock;
  1515. if (fslist) /* add to the specified expiration list */
  1516. list_add_tail(&newmnt->mnt_expire, fslist);
  1517. up_write(&namespace_sem);
  1518. return 0;
  1519. unlock:
  1520. up_write(&namespace_sem);
  1521. mntput(newmnt);
  1522. return err;
  1523. }
  1524. EXPORT_SYMBOL_GPL(do_add_mount);
  1525. /*
  1526. * process a list of expirable mountpoints with the intent of discarding any
  1527. * mountpoints that aren't in use and haven't been touched since last we came
  1528. * here
  1529. */
  1530. void mark_mounts_for_expiry(struct list_head *mounts)
  1531. {
  1532. struct vfsmount *mnt, *next;
  1533. LIST_HEAD(graveyard);
  1534. LIST_HEAD(umounts);
  1535. if (list_empty(mounts))
  1536. return;
  1537. down_write(&namespace_sem);
  1538. spin_lock(&vfsmount_lock);
  1539. /* extract from the expiration list every vfsmount that matches the
  1540. * following criteria:
  1541. * - only referenced by its parent vfsmount
  1542. * - still marked for expiry (marked on the last call here; marks are
  1543. * cleared by mntput())
  1544. */
  1545. list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
  1546. if (!xchg(&mnt->mnt_expiry_mark, 1) ||
  1547. propagate_mount_busy(mnt, 1))
  1548. continue;
  1549. list_move(&mnt->mnt_expire, &graveyard);
  1550. }
  1551. while (!list_empty(&graveyard)) {
  1552. mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
  1553. touch_mnt_namespace(mnt->mnt_ns);
  1554. umount_tree(mnt, 1, &umounts);
  1555. }
  1556. spin_unlock(&vfsmount_lock);
  1557. up_write(&namespace_sem);
  1558. release_mounts(&umounts);
  1559. }
  1560. EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
  1561. /*
  1562. * Ripoff of 'select_parent()'
  1563. *
  1564. * search the list of submounts for a given mountpoint, and move any
  1565. * shrinkable submounts to the 'graveyard' list.
  1566. */
  1567. static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
  1568. {
  1569. struct vfsmount *this_parent = parent;
  1570. struct list_head *next;
  1571. int found = 0;
  1572. repeat:
  1573. next = this_parent->mnt_mounts.next;
  1574. resume:
  1575. while (next != &this_parent->mnt_mounts) {
  1576. struct list_head *tmp = next;
  1577. struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
  1578. next = tmp->next;
  1579. if (!(mnt->mnt_flags & MNT_SHRINKABLE))
  1580. continue;
  1581. /*
  1582. * Descend a level if the d_mounts list is non-empty.
  1583. */
  1584. if (!list_empty(&mnt->mnt_mounts)) {
  1585. this_parent = mnt;
  1586. goto repeat;
  1587. }
  1588. if (!propagate_mount_busy(mnt, 1)) {
  1589. list_move_tail(&mnt->mnt_expire, graveyard);
  1590. found++;
  1591. }
  1592. }
  1593. /*
  1594. * All done at this level ... ascend and resume the search
  1595. */
  1596. if (this_parent != parent) {
  1597. next = this_parent->mnt_child.next;
  1598. this_parent = this_parent->mnt_parent;
  1599. goto resume;
  1600. }
  1601. return found;
  1602. }
  1603. /*
  1604. * process a list of expirable mountpoints with the intent of discarding any
  1605. * submounts of a specific parent mountpoint
  1606. */
  1607. static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
  1608. {
  1609. LIST_HEAD(graveyard);
  1610. struct vfsmount *m;
  1611. /* extract submounts of 'mountpoint' from the expiration list */
  1612. while (select_submounts(mnt, &graveyard)) {
  1613. while (!list_empty(&graveyard)) {
  1614. m = list_first_entry(&graveyard, struct vfsmount,
  1615. mnt_expire);
  1616. touch_mnt_namespace(m->mnt_ns);
  1617. umount_tree(m, 1, umounts);
  1618. }
  1619. }
  1620. }
  1621. /*
  1622. * Some copy_from_user() implementations do not return the exact number of
  1623. * bytes remaining to copy on a fault. But copy_mount_options() requires that.
  1624. * Note that this function differs from copy_from_user() in that it will oops
  1625. * on bad values of `to', rather than returning a short copy.
  1626. */
  1627. static long exact_copy_from_user(void *to, const void __user * from,
  1628. unsigned long n)
  1629. {
  1630. char *t = to;
  1631. const char __user *f = from;
  1632. char c;
  1633. if (!access_ok(VERIFY_READ, from, n))
  1634. return n;
  1635. while (n) {
  1636. if (__get_user(c, f)) {
  1637. memset(t, 0, n);
  1638. break;
  1639. }
  1640. *t++ = c;
  1641. f++;
  1642. n--;
  1643. }
  1644. return n;
  1645. }
  1646. int copy_mount_options(const void __user * data, unsigned long *where)
  1647. {
  1648. int i;
  1649. unsigned long page;
  1650. unsigned long size;
  1651. *where = 0;
  1652. if (!data)
  1653. return 0;
  1654. if (!(page = __get_free_page(GFP_KERNEL)))
  1655. return -ENOMEM;
  1656. /* We only care that *some* data at the address the user
  1657. * gave us is valid. Just in case, we'll zero
  1658. * the remainder of the page.
  1659. */
  1660. /* copy_from_user cannot cross TASK_SIZE ! */
  1661. size = TASK_SIZE - (unsigned long)data;
  1662. if (size > PAGE_SIZE)
  1663. size = PAGE_SIZE;
  1664. i = size - exact_copy_from_user((void *)page, data, size);
  1665. if (!i) {
  1666. free_page(page);
  1667. return -EFAULT;
  1668. }
  1669. if (i != PAGE_SIZE)
  1670. memset((char *)page + i, 0, PAGE_SIZE - i);
  1671. *where = page;
  1672. return 0;
  1673. }
  1674. /*
  1675. * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
  1676. * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
  1677. *
  1678. * data is a (void *) that can point to any structure up to
  1679. * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
  1680. * information (or be NULL).
  1681. *
  1682. * Pre-0.97 versions of mount() didn't have a flags word.
  1683. * When the flags word was introduced its top half was required
  1684. * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
  1685. * Therefore, if this magic number is present, it carries no information
  1686. * and must be discarded.
  1687. */
  1688. long do_mount(char *dev_name, char *dir_name, char *type_page,
  1689. unsigned long flags, void *data_page)
  1690. {
  1691. struct path path;
  1692. int retval = 0;
  1693. int mnt_flags = 0;
  1694. /* Discard magic */
  1695. if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
  1696. flags &= ~MS_MGC_MSK;
  1697. /* Basic sanity checks */
  1698. if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
  1699. return -EINVAL;
  1700. if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
  1701. return -EINVAL;
  1702. if (data_page)
  1703. ((char *)data_page)[PAGE_SIZE - 1] = 0;
  1704. /* Default to relatime unless overriden */
  1705. if (!(flags & MS_NOATIME))
  1706. mnt_flags |= MNT_RELATIME;
  1707. /* Separate the per-mountpoint flags */
  1708. if (flags & MS_NOSUID)
  1709. mnt_flags |= MNT_NOSUID;
  1710. if (flags & MS_NODEV)
  1711. mnt_flags |= MNT_NODEV;
  1712. if (flags & MS_NOEXEC)
  1713. mnt_flags |= MNT_NOEXEC;
  1714. if (flags & MS_NOATIME)
  1715. mnt_flags |= MNT_NOATIME;
  1716. if (flags & MS_NODIRATIME)
  1717. mnt_flags |= MNT_NODIRATIME;
  1718. if (flags & MS_STRICTATIME)
  1719. mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
  1720. if (flags & MS_RDONLY)
  1721. mnt_flags |= MNT_READONLY;
  1722. flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
  1723. MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
  1724. MS_STRICTATIME);
  1725. /* ... and get the mountpoint */
  1726. retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
  1727. if (retval)
  1728. return retval;
  1729. retval = security_sb_mount(dev_name, &path,
  1730. type_page, flags, data_page);
  1731. if (retval)
  1732. goto dput_out;
  1733. if (flags & MS_REMOUNT)
  1734. retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
  1735. data_page);
  1736. else if (flags & MS_BIND)
  1737. retval = do_loopback(&path, dev_name, flags & MS_REC);
  1738. else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1739. retval = do_change_type(&path, flags);
  1740. else if (flags & MS_MOVE)
  1741. retval = do_move_mount(&path, dev_name);
  1742. else
  1743. retval = do_new_mount(&path, type_page, flags, mnt_flags,
  1744. dev_name, data_page);
  1745. dput_out:
  1746. path_put(&path);
  1747. return retval;
  1748. }
  1749. /*
  1750. * Allocate a new namespace structure and populate it with contents
  1751. * copied from the namespace of the passed in task structure.
  1752. */
  1753. static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
  1754. struct fs_struct *fs)
  1755. {
  1756. struct mnt_namespace *new_ns;
  1757. struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
  1758. struct vfsmount *p, *q;
  1759. new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
  1760. if (!new_ns)
  1761. return ERR_PTR(-ENOMEM);
  1762. atomic_set(&new_ns->count, 1);
  1763. INIT_LIST_HEAD(&new_ns->list);
  1764. init_waitqueue_head(&new_ns->poll);
  1765. new_ns->event = 0;
  1766. down_write(&namespace_sem);
  1767. /* First pass: copy the tree topology */
  1768. new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
  1769. CL_COPY_ALL | CL_EXPIRE);
  1770. if (!new_ns->root) {
  1771. up_write(&namespace_sem);
  1772. kfree(new_ns);
  1773. return ERR_PTR(-ENOMEM);
  1774. }
  1775. spin_lock(&vfsmount_lock);
  1776. list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
  1777. spin_unlock(&vfsmount_lock);
  1778. /*
  1779. * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
  1780. * as belonging to new namespace. We have already acquired a private
  1781. * fs_struct, so tsk->fs->lock is not needed.
  1782. */
  1783. p = mnt_ns->root;
  1784. q = new_ns->root;
  1785. while (p) {
  1786. q->mnt_ns = new_ns;
  1787. if (fs) {
  1788. if (p == fs->root.mnt) {
  1789. rootmnt = p;
  1790. fs->root.mnt = mntget(q);
  1791. }
  1792. if (p == fs->pwd.mnt) {
  1793. pwdmnt = p;
  1794. fs->pwd.mnt = mntget(q);
  1795. }
  1796. }
  1797. p = next_mnt(p, mnt_ns->root);
  1798. q = next_mnt(q, new_ns->root);
  1799. }
  1800. up_write(&namespace_sem);
  1801. if (rootmnt)
  1802. mntput(rootmnt);
  1803. if (pwdmnt)
  1804. mntput(pwdmnt);
  1805. return new_ns;
  1806. }
  1807. struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
  1808. struct fs_struct *new_fs)
  1809. {
  1810. struct mnt_namespace *new_ns;
  1811. BUG_ON(!ns);
  1812. get_mnt_ns(ns);
  1813. if (!(flags & CLONE_NEWNS))
  1814. return ns;
  1815. new_ns = dup_mnt_ns(ns, new_fs);
  1816. put_mnt_ns(ns);
  1817. return new_ns;
  1818. }
  1819. SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
  1820. char __user *, type, unsigned long, flags, void __user *, data)
  1821. {
  1822. int retval;
  1823. unsigned long data_page;
  1824. unsigned long type_page;
  1825. unsigned long dev_page;
  1826. char *dir_page;
  1827. retval = copy_mount_options(type, &type_page);
  1828. if (retval < 0)
  1829. return retval;
  1830. dir_page = getname(dir_name);
  1831. retval = PTR_ERR(dir_page);
  1832. if (IS_ERR(dir_page))
  1833. goto out1;
  1834. retval = copy_mount_options(dev_name, &dev_page);
  1835. if (retval < 0)
  1836. goto out2;
  1837. retval = copy_mount_options(data, &data_page);
  1838. if (retval < 0)
  1839. goto out3;
  1840. lock_kernel();
  1841. retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
  1842. flags, (void *)data_page);
  1843. unlock_kernel();
  1844. free_page(data_page);
  1845. out3:
  1846. free_page(dev_page);
  1847. out2:
  1848. putname(dir_page);
  1849. out1:
  1850. free_page(type_page);
  1851. return retval;
  1852. }
  1853. /*
  1854. * pivot_root Semantics:
  1855. * Moves the root file system of the current process to the directory put_old,
  1856. * makes new_root as the new root file system of the current process, and sets
  1857. * root/cwd of all processes which had them on the current root to new_root.
  1858. *
  1859. * Restrictions:
  1860. * The new_root and put_old must be directories, and must not be on the
  1861. * same file system as the current process root. The put_old must be
  1862. * underneath new_root, i.e. adding a non-zero number of /.. to the string
  1863. * pointed to by put_old must yield the same directory as new_root. No other
  1864. * file system may be mounted on put_old. After all, new_root is a mountpoint.
  1865. *
  1866. * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
  1867. * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
  1868. * in this situation.
  1869. *
  1870. * Notes:
  1871. * - we don't move root/cwd if they are not at the root (reason: if something
  1872. * cared enough to change them, it's probably wrong to force them elsewhere)
  1873. * - it's okay to pick a root that isn't the root of a file system, e.g.
  1874. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
  1875. * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
  1876. * first.
  1877. */
  1878. SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
  1879. const char __user *, put_old)
  1880. {
  1881. struct vfsmount *tmp;
  1882. struct path new, old, parent_path, root_parent, root;
  1883. int error;
  1884. if (!capable(CAP_SYS_ADMIN))
  1885. return -EPERM;
  1886. error = user_path_dir(new_root, &new);
  1887. if (error)
  1888. goto out0;
  1889. error = -EINVAL;
  1890. if (!check_mnt(new.mnt))
  1891. goto out1;
  1892. error = user_path_dir(put_old, &old);
  1893. if (error)
  1894. goto out1;
  1895. error = security_sb_pivotroot(&old, &new);
  1896. if (error) {
  1897. path_put(&old);
  1898. goto out1;
  1899. }
  1900. read_lock(&current->fs->lock);
  1901. root = current->fs->root;
  1902. path_get(&current->fs->root);
  1903. read_unlock(&current->fs->lock);
  1904. down_write(&namespace_sem);
  1905. mutex_lock(&old.dentry->d_inode->i_mutex);
  1906. error = -EINVAL;
  1907. if (IS_MNT_SHARED(old.mnt) ||
  1908. IS_MNT_SHARED(new.mnt->mnt_parent) ||
  1909. IS_MNT_SHARED(root.mnt->mnt_parent))
  1910. goto out2;
  1911. if (!check_mnt(root.mnt))
  1912. goto out2;
  1913. error = -ENOENT;
  1914. if (IS_DEADDIR(new.dentry->d_inode))
  1915. goto out2;
  1916. if (d_unhashed(new.dentry) && !IS_ROOT(new.dentry))
  1917. goto out2;
  1918. if (d_unhashed(old.dentry) && !IS_ROOT(old.dentry))
  1919. goto out2;
  1920. error = -EBUSY;
  1921. if (new.mnt == root.mnt ||
  1922. old.mnt == root.mnt)
  1923. goto out2; /* loop, on the same file system */
  1924. error = -EINVAL;
  1925. if (root.mnt->mnt_root != root.dentry)
  1926. goto out2; /* not a mountpoint */
  1927. if (root.mnt->mnt_parent == root.mnt)
  1928. goto out2; /* not attached */
  1929. if (new.mnt->mnt_root != new.dentry)
  1930. goto out2; /* not a mountpoint */
  1931. if (new.mnt->mnt_parent == new.mnt)
  1932. goto out2; /* not attached */
  1933. /* make sure we can reach put_old from new_root */
  1934. tmp = old.mnt;
  1935. spin_lock(&vfsmount_lock);
  1936. if (tmp != new.mnt) {
  1937. for (;;) {
  1938. if (tmp->mnt_parent == tmp)
  1939. goto out3; /* already mounted on put_old */
  1940. if (tmp->mnt_parent == new.mnt)
  1941. break;
  1942. tmp = tmp->mnt_parent;
  1943. }
  1944. if (!is_subdir(tmp->mnt_mountpoint, new.dentry))
  1945. goto out3;
  1946. } else if (!is_subdir(old.dentry, new.dentry))
  1947. goto out3;
  1948. detach_mnt(new.mnt, &parent_path);
  1949. detach_mnt(root.mnt, &root_parent);
  1950. /* mount old root on put_old */
  1951. attach_mnt(root.mnt, &old);
  1952. /* mount new_root on / */
  1953. attach_mnt(new.mnt, &root_parent);
  1954. touch_mnt_namespace(current->nsproxy->mnt_ns);
  1955. spin_unlock(&vfsmount_lock);
  1956. chroot_fs_refs(&root, &new);
  1957. security_sb_post_pivotroot(&root, &new);
  1958. error = 0;
  1959. path_put(&root_parent);
  1960. path_put(&parent_path);
  1961. out2:
  1962. mutex_unlock(&old.dentry->d_inode->i_mutex);
  1963. up_write(&namespace_sem);
  1964. path_put(&root);
  1965. path_put(&old);
  1966. out1:
  1967. path_put(&new);
  1968. out0:
  1969. return error;
  1970. out3:
  1971. spin_unlock(&vfsmount_lock);
  1972. goto out2;
  1973. }
  1974. static void __init init_mount_tree(void)
  1975. {
  1976. struct vfsmount *mnt;
  1977. struct mnt_namespace *ns;
  1978. struct path root;
  1979. mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
  1980. if (IS_ERR(mnt))
  1981. panic("Can't create rootfs");
  1982. ns = kmalloc(sizeof(*ns), GFP_KERNEL);
  1983. if (!ns)
  1984. panic("Can't allocate initial namespace");
  1985. atomic_set(&ns->count, 1);
  1986. INIT_LIST_HEAD(&ns->list);
  1987. init_waitqueue_head(&ns->poll);
  1988. ns->event = 0;
  1989. list_add(&mnt->mnt_list, &ns->list);
  1990. ns->root = mnt;
  1991. mnt->mnt_ns = ns;
  1992. init_task.nsproxy->mnt_ns = ns;
  1993. get_mnt_ns(ns);
  1994. root.mnt = ns->root;
  1995. root.dentry = ns->root->mnt_root;
  1996. set_fs_pwd(current->fs, &root);
  1997. set_fs_root(current->fs, &root);
  1998. }
  1999. void __init mnt_init(void)
  2000. {
  2001. unsigned u;
  2002. int err;
  2003. init_rwsem(&namespace_sem);
  2004. mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
  2005. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2006. mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
  2007. if (!mount_hashtable)
  2008. panic("Failed to allocate mount hash table\n");
  2009. printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
  2010. for (u = 0; u < HASH_SIZE; u++)
  2011. INIT_LIST_HEAD(&mount_hashtable[u]);
  2012. err = sysfs_init();
  2013. if (err)
  2014. printk(KERN_WARNING "%s: sysfs_init error: %d\n",
  2015. __func__, err);
  2016. fs_kobj = kobject_create_and_add("fs", NULL);
  2017. if (!fs_kobj)
  2018. printk(KERN_WARNING "%s: kobj create error\n", __func__);
  2019. init_rootfs();
  2020. init_mount_tree();
  2021. }
  2022. void __put_mnt_ns(struct mnt_namespace *ns)
  2023. {
  2024. struct vfsmount *root = ns->root;
  2025. LIST_HEAD(umount_list);
  2026. ns->root = NULL;
  2027. spin_unlock(&vfsmount_lock);
  2028. down_write(&namespace_sem);
  2029. spin_lock(&vfsmount_lock);
  2030. umount_tree(root, 0, &umount_list);
  2031. spin_unlock(&vfsmount_lock);
  2032. up_write(&namespace_sem);
  2033. release_mounts(&umount_list);
  2034. kfree(ns);
  2035. }