super.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467
  1. /*
  2. * linux/fs/hfs/super.c
  3. *
  4. * Copyright (C) 1995-1997 Paul H. Hargrove
  5. * (C) 2003 Ardis Technologies <roman@ardistech.com>
  6. * This file may be distributed under the terms of the GNU General Public License.
  7. *
  8. * This file contains hfs_read_super(), some of the super_ops and
  9. * init_hfs_fs() and exit_hfs_fs(). The remaining super_ops are in
  10. * inode.c since they deal with inodes.
  11. *
  12. * Based on the minix file system code, (C) 1991, 1992 by Linus Torvalds
  13. */
  14. #include <linux/module.h>
  15. #include <linux/blkdev.h>
  16. #include <linux/mount.h>
  17. #include <linux/init.h>
  18. #include <linux/nls.h>
  19. #include <linux/parser.h>
  20. #include <linux/seq_file.h>
  21. #include <linux/vfs.h>
  22. #include "hfs_fs.h"
  23. #include "btree.h"
  24. static struct kmem_cache *hfs_inode_cachep;
  25. MODULE_LICENSE("GPL");
  26. /*
  27. * hfs_write_super()
  28. *
  29. * Description:
  30. * This function is called by the VFS only. When the filesystem
  31. * is mounted r/w it updates the MDB on disk.
  32. * Input Variable(s):
  33. * struct super_block *sb: Pointer to the hfs superblock
  34. * Output Variable(s):
  35. * NONE
  36. * Returns:
  37. * void
  38. * Preconditions:
  39. * 'sb' points to a "valid" (struct super_block).
  40. * Postconditions:
  41. * The MDB is marked 'unsuccessfully unmounted' by clearing bit 8 of drAtrb
  42. * (hfs_put_super() must set this flag!). Some MDB fields are updated
  43. * and the MDB buffer is written to disk by calling hfs_mdb_commit().
  44. */
  45. static void hfs_write_super(struct super_block *sb)
  46. {
  47. sb->s_dirt = 0;
  48. if (sb->s_flags & MS_RDONLY)
  49. return;
  50. /* sync everything to the buffers */
  51. hfs_mdb_commit(sb);
  52. }
  53. /*
  54. * hfs_put_super()
  55. *
  56. * This is the put_super() entry in the super_operations structure for
  57. * HFS filesystems. The purpose is to release the resources
  58. * associated with the superblock sb.
  59. */
  60. static void hfs_put_super(struct super_block *sb)
  61. {
  62. hfs_mdb_close(sb);
  63. /* release the MDB's resources */
  64. hfs_mdb_put(sb);
  65. }
  66. /*
  67. * hfs_statfs()
  68. *
  69. * This is the statfs() entry in the super_operations structure for
  70. * HFS filesystems. The purpose is to return various data about the
  71. * filesystem.
  72. *
  73. * changed f_files/f_ffree to reflect the fs_ablock/free_ablocks.
  74. */
  75. static int hfs_statfs(struct dentry *dentry, struct kstatfs *buf)
  76. {
  77. struct super_block *sb = dentry->d_sb;
  78. u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
  79. buf->f_type = HFS_SUPER_MAGIC;
  80. buf->f_bsize = sb->s_blocksize;
  81. buf->f_blocks = (u32)HFS_SB(sb)->fs_ablocks * HFS_SB(sb)->fs_div;
  82. buf->f_bfree = (u32)HFS_SB(sb)->free_ablocks * HFS_SB(sb)->fs_div;
  83. buf->f_bavail = buf->f_bfree;
  84. buf->f_files = HFS_SB(sb)->fs_ablocks;
  85. buf->f_ffree = HFS_SB(sb)->free_ablocks;
  86. buf->f_fsid.val[0] = (u32)id;
  87. buf->f_fsid.val[1] = (u32)(id >> 32);
  88. buf->f_namelen = HFS_NAMELEN;
  89. return 0;
  90. }
  91. static int hfs_remount(struct super_block *sb, int *flags, char *data)
  92. {
  93. *flags |= MS_NODIRATIME;
  94. if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
  95. return 0;
  96. if (!(*flags & MS_RDONLY)) {
  97. if (!(HFS_SB(sb)->mdb->drAtrb & cpu_to_be16(HFS_SB_ATTRIB_UNMNT))) {
  98. printk(KERN_WARNING "hfs: filesystem was not cleanly unmounted, "
  99. "running fsck.hfs is recommended. leaving read-only.\n");
  100. sb->s_flags |= MS_RDONLY;
  101. *flags |= MS_RDONLY;
  102. } else if (HFS_SB(sb)->mdb->drAtrb & cpu_to_be16(HFS_SB_ATTRIB_SLOCK)) {
  103. printk(KERN_WARNING "hfs: filesystem is marked locked, leaving read-only.\n");
  104. sb->s_flags |= MS_RDONLY;
  105. *flags |= MS_RDONLY;
  106. }
  107. }
  108. return 0;
  109. }
  110. static int hfs_show_options(struct seq_file *seq, struct vfsmount *mnt)
  111. {
  112. struct hfs_sb_info *sbi = HFS_SB(mnt->mnt_sb);
  113. if (sbi->s_creator != cpu_to_be32(0x3f3f3f3f))
  114. seq_printf(seq, ",creator=%.4s", (char *)&sbi->s_creator);
  115. if (sbi->s_type != cpu_to_be32(0x3f3f3f3f))
  116. seq_printf(seq, ",type=%.4s", (char *)&sbi->s_type);
  117. seq_printf(seq, ",uid=%u,gid=%u", sbi->s_uid, sbi->s_gid);
  118. if (sbi->s_file_umask != 0133)
  119. seq_printf(seq, ",file_umask=%o", sbi->s_file_umask);
  120. if (sbi->s_dir_umask != 0022)
  121. seq_printf(seq, ",dir_umask=%o", sbi->s_dir_umask);
  122. if (sbi->part >= 0)
  123. seq_printf(seq, ",part=%u", sbi->part);
  124. if (sbi->session >= 0)
  125. seq_printf(seq, ",session=%u", sbi->session);
  126. if (sbi->nls_disk)
  127. seq_printf(seq, ",codepage=%s", sbi->nls_disk->charset);
  128. if (sbi->nls_io)
  129. seq_printf(seq, ",iocharset=%s", sbi->nls_io->charset);
  130. if (sbi->s_quiet)
  131. seq_printf(seq, ",quiet");
  132. return 0;
  133. }
  134. static struct inode *hfs_alloc_inode(struct super_block *sb)
  135. {
  136. struct hfs_inode_info *i;
  137. i = kmem_cache_alloc(hfs_inode_cachep, GFP_KERNEL);
  138. return i ? &i->vfs_inode : NULL;
  139. }
  140. static void hfs_destroy_inode(struct inode *inode)
  141. {
  142. kmem_cache_free(hfs_inode_cachep, HFS_I(inode));
  143. }
  144. static const struct super_operations hfs_super_operations = {
  145. .alloc_inode = hfs_alloc_inode,
  146. .destroy_inode = hfs_destroy_inode,
  147. .write_inode = hfs_write_inode,
  148. .clear_inode = hfs_clear_inode,
  149. .put_super = hfs_put_super,
  150. .write_super = hfs_write_super,
  151. .statfs = hfs_statfs,
  152. .remount_fs = hfs_remount,
  153. .show_options = hfs_show_options,
  154. };
  155. enum {
  156. opt_uid, opt_gid, opt_umask, opt_file_umask, opt_dir_umask,
  157. opt_part, opt_session, opt_type, opt_creator, opt_quiet,
  158. opt_codepage, opt_iocharset,
  159. opt_err
  160. };
  161. static const match_table_t tokens = {
  162. { opt_uid, "uid=%u" },
  163. { opt_gid, "gid=%u" },
  164. { opt_umask, "umask=%o" },
  165. { opt_file_umask, "file_umask=%o" },
  166. { opt_dir_umask, "dir_umask=%o" },
  167. { opt_part, "part=%u" },
  168. { opt_session, "session=%u" },
  169. { opt_type, "type=%s" },
  170. { opt_creator, "creator=%s" },
  171. { opt_quiet, "quiet" },
  172. { opt_codepage, "codepage=%s" },
  173. { opt_iocharset, "iocharset=%s" },
  174. { opt_err, NULL }
  175. };
  176. static inline int match_fourchar(substring_t *arg, u32 *result)
  177. {
  178. if (arg->to - arg->from != 4)
  179. return -EINVAL;
  180. memcpy(result, arg->from, 4);
  181. return 0;
  182. }
  183. /*
  184. * parse_options()
  185. *
  186. * adapted from linux/fs/msdos/inode.c written 1992,93 by Werner Almesberger
  187. * This function is called by hfs_read_super() to parse the mount options.
  188. */
  189. static int parse_options(char *options, struct hfs_sb_info *hsb)
  190. {
  191. char *p;
  192. substring_t args[MAX_OPT_ARGS];
  193. int tmp, token;
  194. /* initialize the sb with defaults */
  195. hsb->s_uid = current_uid();
  196. hsb->s_gid = current_gid();
  197. hsb->s_file_umask = 0133;
  198. hsb->s_dir_umask = 0022;
  199. hsb->s_type = hsb->s_creator = cpu_to_be32(0x3f3f3f3f); /* == '????' */
  200. hsb->s_quiet = 0;
  201. hsb->part = -1;
  202. hsb->session = -1;
  203. if (!options)
  204. return 1;
  205. while ((p = strsep(&options, ",")) != NULL) {
  206. if (!*p)
  207. continue;
  208. token = match_token(p, tokens, args);
  209. switch (token) {
  210. case opt_uid:
  211. if (match_int(&args[0], &tmp)) {
  212. printk(KERN_ERR "hfs: uid requires an argument\n");
  213. return 0;
  214. }
  215. hsb->s_uid = (uid_t)tmp;
  216. break;
  217. case opt_gid:
  218. if (match_int(&args[0], &tmp)) {
  219. printk(KERN_ERR "hfs: gid requires an argument\n");
  220. return 0;
  221. }
  222. hsb->s_gid = (gid_t)tmp;
  223. break;
  224. case opt_umask:
  225. if (match_octal(&args[0], &tmp)) {
  226. printk(KERN_ERR "hfs: umask requires a value\n");
  227. return 0;
  228. }
  229. hsb->s_file_umask = (umode_t)tmp;
  230. hsb->s_dir_umask = (umode_t)tmp;
  231. break;
  232. case opt_file_umask:
  233. if (match_octal(&args[0], &tmp)) {
  234. printk(KERN_ERR "hfs: file_umask requires a value\n");
  235. return 0;
  236. }
  237. hsb->s_file_umask = (umode_t)tmp;
  238. break;
  239. case opt_dir_umask:
  240. if (match_octal(&args[0], &tmp)) {
  241. printk(KERN_ERR "hfs: dir_umask requires a value\n");
  242. return 0;
  243. }
  244. hsb->s_dir_umask = (umode_t)tmp;
  245. break;
  246. case opt_part:
  247. if (match_int(&args[0], &hsb->part)) {
  248. printk(KERN_ERR "hfs: part requires an argument\n");
  249. return 0;
  250. }
  251. break;
  252. case opt_session:
  253. if (match_int(&args[0], &hsb->session)) {
  254. printk(KERN_ERR "hfs: session requires an argument\n");
  255. return 0;
  256. }
  257. break;
  258. case opt_type:
  259. if (match_fourchar(&args[0], &hsb->s_type)) {
  260. printk(KERN_ERR "hfs: type requires a 4 character value\n");
  261. return 0;
  262. }
  263. break;
  264. case opt_creator:
  265. if (match_fourchar(&args[0], &hsb->s_creator)) {
  266. printk(KERN_ERR "hfs: creator requires a 4 character value\n");
  267. return 0;
  268. }
  269. break;
  270. case opt_quiet:
  271. hsb->s_quiet = 1;
  272. break;
  273. case opt_codepage:
  274. if (hsb->nls_disk) {
  275. printk(KERN_ERR "hfs: unable to change codepage\n");
  276. return 0;
  277. }
  278. p = match_strdup(&args[0]);
  279. if (p)
  280. hsb->nls_disk = load_nls(p);
  281. if (!hsb->nls_disk) {
  282. printk(KERN_ERR "hfs: unable to load codepage \"%s\"\n", p);
  283. kfree(p);
  284. return 0;
  285. }
  286. kfree(p);
  287. break;
  288. case opt_iocharset:
  289. if (hsb->nls_io) {
  290. printk(KERN_ERR "hfs: unable to change iocharset\n");
  291. return 0;
  292. }
  293. p = match_strdup(&args[0]);
  294. if (p)
  295. hsb->nls_io = load_nls(p);
  296. if (!hsb->nls_io) {
  297. printk(KERN_ERR "hfs: unable to load iocharset \"%s\"\n", p);
  298. kfree(p);
  299. return 0;
  300. }
  301. kfree(p);
  302. break;
  303. default:
  304. return 0;
  305. }
  306. }
  307. if (hsb->nls_disk && !hsb->nls_io) {
  308. hsb->nls_io = load_nls_default();
  309. if (!hsb->nls_io) {
  310. printk(KERN_ERR "hfs: unable to load default iocharset\n");
  311. return 0;
  312. }
  313. }
  314. hsb->s_dir_umask &= 0777;
  315. hsb->s_file_umask &= 0577;
  316. return 1;
  317. }
  318. /*
  319. * hfs_read_super()
  320. *
  321. * This is the function that is responsible for mounting an HFS
  322. * filesystem. It performs all the tasks necessary to get enough data
  323. * from the disk to read the root inode. This includes parsing the
  324. * mount options, dealing with Macintosh partitions, reading the
  325. * superblock and the allocation bitmap blocks, calling
  326. * hfs_btree_init() to get the necessary data about the extents and
  327. * catalog B-trees and, finally, reading the root inode into memory.
  328. */
  329. static int hfs_fill_super(struct super_block *sb, void *data, int silent)
  330. {
  331. struct hfs_sb_info *sbi;
  332. struct hfs_find_data fd;
  333. hfs_cat_rec rec;
  334. struct inode *root_inode;
  335. int res;
  336. sbi = kzalloc(sizeof(struct hfs_sb_info), GFP_KERNEL);
  337. if (!sbi)
  338. return -ENOMEM;
  339. sb->s_fs_info = sbi;
  340. INIT_HLIST_HEAD(&sbi->rsrc_inodes);
  341. res = -EINVAL;
  342. if (!parse_options((char *)data, sbi)) {
  343. printk(KERN_ERR "hfs: unable to parse mount options.\n");
  344. goto bail;
  345. }
  346. sb->s_op = &hfs_super_operations;
  347. sb->s_flags |= MS_NODIRATIME;
  348. mutex_init(&sbi->bitmap_lock);
  349. res = hfs_mdb_get(sb);
  350. if (res) {
  351. if (!silent)
  352. printk(KERN_WARNING "hfs: can't find a HFS filesystem on dev %s.\n",
  353. hfs_mdb_name(sb));
  354. res = -EINVAL;
  355. goto bail;
  356. }
  357. /* try to get the root inode */
  358. hfs_find_init(HFS_SB(sb)->cat_tree, &fd);
  359. res = hfs_cat_find_brec(sb, HFS_ROOT_CNID, &fd);
  360. if (!res)
  361. hfs_bnode_read(fd.bnode, &rec, fd.entryoffset, fd.entrylength);
  362. if (res) {
  363. hfs_find_exit(&fd);
  364. goto bail_no_root;
  365. }
  366. res = -EINVAL;
  367. root_inode = hfs_iget(sb, &fd.search_key->cat, &rec);
  368. hfs_find_exit(&fd);
  369. if (!root_inode)
  370. goto bail_no_root;
  371. res = -ENOMEM;
  372. sb->s_root = d_alloc_root(root_inode);
  373. if (!sb->s_root)
  374. goto bail_iput;
  375. sb->s_root->d_op = &hfs_dentry_operations;
  376. /* everything's okay */
  377. return 0;
  378. bail_iput:
  379. iput(root_inode);
  380. bail_no_root:
  381. printk(KERN_ERR "hfs: get root inode failed.\n");
  382. bail:
  383. hfs_mdb_put(sb);
  384. return res;
  385. }
  386. static int hfs_get_sb(struct file_system_type *fs_type,
  387. int flags, const char *dev_name, void *data,
  388. struct vfsmount *mnt)
  389. {
  390. return get_sb_bdev(fs_type, flags, dev_name, data, hfs_fill_super, mnt);
  391. }
  392. static struct file_system_type hfs_fs_type = {
  393. .owner = THIS_MODULE,
  394. .name = "hfs",
  395. .get_sb = hfs_get_sb,
  396. .kill_sb = kill_block_super,
  397. .fs_flags = FS_REQUIRES_DEV,
  398. };
  399. static void hfs_init_once(void *p)
  400. {
  401. struct hfs_inode_info *i = p;
  402. inode_init_once(&i->vfs_inode);
  403. }
  404. static int __init init_hfs_fs(void)
  405. {
  406. int err;
  407. hfs_inode_cachep = kmem_cache_create("hfs_inode_cache",
  408. sizeof(struct hfs_inode_info), 0, SLAB_HWCACHE_ALIGN,
  409. hfs_init_once);
  410. if (!hfs_inode_cachep)
  411. return -ENOMEM;
  412. err = register_filesystem(&hfs_fs_type);
  413. if (err)
  414. kmem_cache_destroy(hfs_inode_cachep);
  415. return err;
  416. }
  417. static void __exit exit_hfs_fs(void)
  418. {
  419. unregister_filesystem(&hfs_fs_type);
  420. kmem_cache_destroy(hfs_inode_cachep);
  421. }
  422. module_init(init_hfs_fs)
  423. module_exit(exit_hfs_fs)