btree.c 8.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350
  1. /*
  2. * linux/fs/hfs/btree.c
  3. *
  4. * Copyright (C) 2001
  5. * Brad Boyer (flar@allandria.com)
  6. * (C) 2003 Ardis Technologies <roman@ardistech.com>
  7. *
  8. * Handle opening/closing btree
  9. */
  10. #include <linux/pagemap.h>
  11. #include <linux/log2.h>
  12. #include "btree.h"
  13. /* Get a reference to a B*Tree and do some initial checks */
  14. struct hfs_btree *hfs_btree_open(struct super_block *sb, u32 id, btree_keycmp keycmp)
  15. {
  16. struct hfs_btree *tree;
  17. struct hfs_btree_header_rec *head;
  18. struct address_space *mapping;
  19. struct page *page;
  20. unsigned int size;
  21. tree = kzalloc(sizeof(*tree), GFP_KERNEL);
  22. if (!tree)
  23. return NULL;
  24. init_MUTEX(&tree->tree_lock);
  25. spin_lock_init(&tree->hash_lock);
  26. /* Set the correct compare function */
  27. tree->sb = sb;
  28. tree->cnid = id;
  29. tree->keycmp = keycmp;
  30. tree->inode = iget_locked(sb, id);
  31. if (!tree->inode)
  32. goto free_tree;
  33. BUG_ON(!(tree->inode->i_state & I_NEW));
  34. {
  35. struct hfs_mdb *mdb = HFS_SB(sb)->mdb;
  36. HFS_I(tree->inode)->flags = 0;
  37. mutex_init(&HFS_I(tree->inode)->extents_lock);
  38. switch (id) {
  39. case HFS_EXT_CNID:
  40. hfs_inode_read_fork(tree->inode, mdb->drXTExtRec, mdb->drXTFlSize,
  41. mdb->drXTFlSize, be32_to_cpu(mdb->drXTClpSiz));
  42. tree->inode->i_mapping->a_ops = &hfs_btree_aops;
  43. break;
  44. case HFS_CAT_CNID:
  45. hfs_inode_read_fork(tree->inode, mdb->drCTExtRec, mdb->drCTFlSize,
  46. mdb->drCTFlSize, be32_to_cpu(mdb->drCTClpSiz));
  47. tree->inode->i_mapping->a_ops = &hfs_btree_aops;
  48. break;
  49. default:
  50. BUG();
  51. }
  52. }
  53. unlock_new_inode(tree->inode);
  54. mapping = tree->inode->i_mapping;
  55. page = read_mapping_page(mapping, 0, NULL);
  56. if (IS_ERR(page))
  57. goto free_inode;
  58. /* Load the header */
  59. head = (struct hfs_btree_header_rec *)(kmap(page) + sizeof(struct hfs_bnode_desc));
  60. tree->root = be32_to_cpu(head->root);
  61. tree->leaf_count = be32_to_cpu(head->leaf_count);
  62. tree->leaf_head = be32_to_cpu(head->leaf_head);
  63. tree->leaf_tail = be32_to_cpu(head->leaf_tail);
  64. tree->node_count = be32_to_cpu(head->node_count);
  65. tree->free_nodes = be32_to_cpu(head->free_nodes);
  66. tree->attributes = be32_to_cpu(head->attributes);
  67. tree->node_size = be16_to_cpu(head->node_size);
  68. tree->max_key_len = be16_to_cpu(head->max_key_len);
  69. tree->depth = be16_to_cpu(head->depth);
  70. size = tree->node_size;
  71. if (!is_power_of_2(size))
  72. goto fail_page;
  73. if (!tree->node_count)
  74. goto fail_page;
  75. switch (id) {
  76. case HFS_EXT_CNID:
  77. if (tree->max_key_len != HFS_MAX_EXT_KEYLEN) {
  78. printk(KERN_ERR "hfs: invalid extent max_key_len %d\n",
  79. tree->max_key_len);
  80. goto fail_page;
  81. }
  82. break;
  83. case HFS_CAT_CNID:
  84. if (tree->max_key_len != HFS_MAX_CAT_KEYLEN) {
  85. printk(KERN_ERR "hfs: invalid catalog max_key_len %d\n",
  86. tree->max_key_len);
  87. goto fail_page;
  88. }
  89. break;
  90. default:
  91. BUG();
  92. }
  93. tree->node_size_shift = ffs(size) - 1;
  94. tree->pages_per_bnode = (tree->node_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
  95. kunmap(page);
  96. page_cache_release(page);
  97. return tree;
  98. fail_page:
  99. page_cache_release(page);
  100. free_inode:
  101. tree->inode->i_mapping->a_ops = &hfs_aops;
  102. iput(tree->inode);
  103. free_tree:
  104. kfree(tree);
  105. return NULL;
  106. }
  107. /* Release resources used by a btree */
  108. void hfs_btree_close(struct hfs_btree *tree)
  109. {
  110. struct hfs_bnode *node;
  111. int i;
  112. if (!tree)
  113. return;
  114. for (i = 0; i < NODE_HASH_SIZE; i++) {
  115. while ((node = tree->node_hash[i])) {
  116. tree->node_hash[i] = node->next_hash;
  117. if (atomic_read(&node->refcnt))
  118. printk(KERN_ERR "hfs: node %d:%d still has %d user(s)!\n",
  119. node->tree->cnid, node->this, atomic_read(&node->refcnt));
  120. hfs_bnode_free(node);
  121. tree->node_hash_cnt--;
  122. }
  123. }
  124. iput(tree->inode);
  125. kfree(tree);
  126. }
  127. void hfs_btree_write(struct hfs_btree *tree)
  128. {
  129. struct hfs_btree_header_rec *head;
  130. struct hfs_bnode *node;
  131. struct page *page;
  132. node = hfs_bnode_find(tree, 0);
  133. if (IS_ERR(node))
  134. /* panic? */
  135. return;
  136. /* Load the header */
  137. page = node->page[0];
  138. head = (struct hfs_btree_header_rec *)(kmap(page) + sizeof(struct hfs_bnode_desc));
  139. head->root = cpu_to_be32(tree->root);
  140. head->leaf_count = cpu_to_be32(tree->leaf_count);
  141. head->leaf_head = cpu_to_be32(tree->leaf_head);
  142. head->leaf_tail = cpu_to_be32(tree->leaf_tail);
  143. head->node_count = cpu_to_be32(tree->node_count);
  144. head->free_nodes = cpu_to_be32(tree->free_nodes);
  145. head->attributes = cpu_to_be32(tree->attributes);
  146. head->depth = cpu_to_be16(tree->depth);
  147. kunmap(page);
  148. set_page_dirty(page);
  149. hfs_bnode_put(node);
  150. }
  151. static struct hfs_bnode *hfs_bmap_new_bmap(struct hfs_bnode *prev, u32 idx)
  152. {
  153. struct hfs_btree *tree = prev->tree;
  154. struct hfs_bnode *node;
  155. struct hfs_bnode_desc desc;
  156. __be32 cnid;
  157. node = hfs_bnode_create(tree, idx);
  158. if (IS_ERR(node))
  159. return node;
  160. if (!tree->free_nodes)
  161. panic("FIXME!!!");
  162. tree->free_nodes--;
  163. prev->next = idx;
  164. cnid = cpu_to_be32(idx);
  165. hfs_bnode_write(prev, &cnid, offsetof(struct hfs_bnode_desc, next), 4);
  166. node->type = HFS_NODE_MAP;
  167. node->num_recs = 1;
  168. hfs_bnode_clear(node, 0, tree->node_size);
  169. desc.next = 0;
  170. desc.prev = 0;
  171. desc.type = HFS_NODE_MAP;
  172. desc.height = 0;
  173. desc.num_recs = cpu_to_be16(1);
  174. desc.reserved = 0;
  175. hfs_bnode_write(node, &desc, 0, sizeof(desc));
  176. hfs_bnode_write_u16(node, 14, 0x8000);
  177. hfs_bnode_write_u16(node, tree->node_size - 2, 14);
  178. hfs_bnode_write_u16(node, tree->node_size - 4, tree->node_size - 6);
  179. return node;
  180. }
  181. struct hfs_bnode *hfs_bmap_alloc(struct hfs_btree *tree)
  182. {
  183. struct hfs_bnode *node, *next_node;
  184. struct page **pagep;
  185. u32 nidx, idx;
  186. unsigned off;
  187. u16 off16;
  188. u16 len;
  189. u8 *data, byte, m;
  190. int i;
  191. while (!tree->free_nodes) {
  192. struct inode *inode = tree->inode;
  193. u32 count;
  194. int res;
  195. res = hfs_extend_file(inode);
  196. if (res)
  197. return ERR_PTR(res);
  198. HFS_I(inode)->phys_size = inode->i_size =
  199. (loff_t)HFS_I(inode)->alloc_blocks *
  200. HFS_SB(tree->sb)->alloc_blksz;
  201. HFS_I(inode)->fs_blocks = inode->i_size >>
  202. tree->sb->s_blocksize_bits;
  203. inode_set_bytes(inode, inode->i_size);
  204. count = inode->i_size >> tree->node_size_shift;
  205. tree->free_nodes = count - tree->node_count;
  206. tree->node_count = count;
  207. }
  208. nidx = 0;
  209. node = hfs_bnode_find(tree, nidx);
  210. if (IS_ERR(node))
  211. return node;
  212. len = hfs_brec_lenoff(node, 2, &off16);
  213. off = off16;
  214. off += node->page_offset;
  215. pagep = node->page + (off >> PAGE_CACHE_SHIFT);
  216. data = kmap(*pagep);
  217. off &= ~PAGE_CACHE_MASK;
  218. idx = 0;
  219. for (;;) {
  220. while (len) {
  221. byte = data[off];
  222. if (byte != 0xff) {
  223. for (m = 0x80, i = 0; i < 8; m >>= 1, i++) {
  224. if (!(byte & m)) {
  225. idx += i;
  226. data[off] |= m;
  227. set_page_dirty(*pagep);
  228. kunmap(*pagep);
  229. tree->free_nodes--;
  230. mark_inode_dirty(tree->inode);
  231. hfs_bnode_put(node);
  232. return hfs_bnode_create(tree, idx);
  233. }
  234. }
  235. }
  236. if (++off >= PAGE_CACHE_SIZE) {
  237. kunmap(*pagep);
  238. data = kmap(*++pagep);
  239. off = 0;
  240. }
  241. idx += 8;
  242. len--;
  243. }
  244. kunmap(*pagep);
  245. nidx = node->next;
  246. if (!nidx) {
  247. printk(KERN_DEBUG "hfs: create new bmap node...\n");
  248. next_node = hfs_bmap_new_bmap(node, idx);
  249. } else
  250. next_node = hfs_bnode_find(tree, nidx);
  251. hfs_bnode_put(node);
  252. if (IS_ERR(next_node))
  253. return next_node;
  254. node = next_node;
  255. len = hfs_brec_lenoff(node, 0, &off16);
  256. off = off16;
  257. off += node->page_offset;
  258. pagep = node->page + (off >> PAGE_CACHE_SHIFT);
  259. data = kmap(*pagep);
  260. off &= ~PAGE_CACHE_MASK;
  261. }
  262. }
  263. void hfs_bmap_free(struct hfs_bnode *node)
  264. {
  265. struct hfs_btree *tree;
  266. struct page *page;
  267. u16 off, len;
  268. u32 nidx;
  269. u8 *data, byte, m;
  270. dprint(DBG_BNODE_MOD, "btree_free_node: %u\n", node->this);
  271. tree = node->tree;
  272. nidx = node->this;
  273. node = hfs_bnode_find(tree, 0);
  274. if (IS_ERR(node))
  275. return;
  276. len = hfs_brec_lenoff(node, 2, &off);
  277. while (nidx >= len * 8) {
  278. u32 i;
  279. nidx -= len * 8;
  280. i = node->next;
  281. hfs_bnode_put(node);
  282. if (!i) {
  283. /* panic */;
  284. printk(KERN_CRIT "hfs: unable to free bnode %u. bmap not found!\n", node->this);
  285. return;
  286. }
  287. node = hfs_bnode_find(tree, i);
  288. if (IS_ERR(node))
  289. return;
  290. if (node->type != HFS_NODE_MAP) {
  291. /* panic */;
  292. printk(KERN_CRIT "hfs: invalid bmap found! (%u,%d)\n", node->this, node->type);
  293. hfs_bnode_put(node);
  294. return;
  295. }
  296. len = hfs_brec_lenoff(node, 0, &off);
  297. }
  298. off += node->page_offset + nidx / 8;
  299. page = node->page[off >> PAGE_CACHE_SHIFT];
  300. data = kmap(page);
  301. off &= ~PAGE_CACHE_MASK;
  302. m = 1 << (~nidx & 7);
  303. byte = data[off];
  304. if (!(byte & m)) {
  305. printk(KERN_CRIT "hfs: trying to free free bnode %u(%d)\n", node->this, node->type);
  306. kunmap(page);
  307. hfs_bnode_put(node);
  308. return;
  309. }
  310. data[off] = byte & ~m;
  311. set_page_dirty(page);
  312. kunmap(page);
  313. hfs_bnode_put(node);
  314. tree->free_nodes++;
  315. mark_inode_dirty(tree->inode);
  316. }