spi_bfin5xx.c 38 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454
  1. /*
  2. * Blackfin On-Chip SPI Driver
  3. *
  4. * Copyright 2004-2007 Analog Devices Inc.
  5. *
  6. * Enter bugs at http://blackfin.uclinux.org/
  7. *
  8. * Licensed under the GPL-2 or later.
  9. */
  10. #include <linux/init.h>
  11. #include <linux/module.h>
  12. #include <linux/delay.h>
  13. #include <linux/device.h>
  14. #include <linux/io.h>
  15. #include <linux/ioport.h>
  16. #include <linux/irq.h>
  17. #include <linux/errno.h>
  18. #include <linux/interrupt.h>
  19. #include <linux/platform_device.h>
  20. #include <linux/dma-mapping.h>
  21. #include <linux/spi/spi.h>
  22. #include <linux/workqueue.h>
  23. #include <asm/dma.h>
  24. #include <asm/portmux.h>
  25. #include <asm/bfin5xx_spi.h>
  26. #include <asm/cacheflush.h>
  27. #define DRV_NAME "bfin-spi"
  28. #define DRV_AUTHOR "Bryan Wu, Luke Yang"
  29. #define DRV_DESC "Blackfin on-chip SPI Controller Driver"
  30. #define DRV_VERSION "1.0"
  31. MODULE_AUTHOR(DRV_AUTHOR);
  32. MODULE_DESCRIPTION(DRV_DESC);
  33. MODULE_LICENSE("GPL");
  34. #define START_STATE ((void *)0)
  35. #define RUNNING_STATE ((void *)1)
  36. #define DONE_STATE ((void *)2)
  37. #define ERROR_STATE ((void *)-1)
  38. #define QUEUE_RUNNING 0
  39. #define QUEUE_STOPPED 1
  40. /* Value to send if no TX value is supplied */
  41. #define SPI_IDLE_TXVAL 0x0000
  42. struct driver_data {
  43. /* Driver model hookup */
  44. struct platform_device *pdev;
  45. /* SPI framework hookup */
  46. struct spi_master *master;
  47. /* Regs base of SPI controller */
  48. void __iomem *regs_base;
  49. /* Pin request list */
  50. u16 *pin_req;
  51. /* BFIN hookup */
  52. struct bfin5xx_spi_master *master_info;
  53. /* Driver message queue */
  54. struct workqueue_struct *workqueue;
  55. struct work_struct pump_messages;
  56. spinlock_t lock;
  57. struct list_head queue;
  58. int busy;
  59. int run;
  60. /* Message Transfer pump */
  61. struct tasklet_struct pump_transfers;
  62. /* Current message transfer state info */
  63. struct spi_message *cur_msg;
  64. struct spi_transfer *cur_transfer;
  65. struct chip_data *cur_chip;
  66. size_t len_in_bytes;
  67. size_t len;
  68. void *tx;
  69. void *tx_end;
  70. void *rx;
  71. void *rx_end;
  72. /* DMA stuffs */
  73. int dma_channel;
  74. int dma_mapped;
  75. int dma_requested;
  76. dma_addr_t rx_dma;
  77. dma_addr_t tx_dma;
  78. size_t rx_map_len;
  79. size_t tx_map_len;
  80. u8 n_bytes;
  81. int cs_change;
  82. void (*write) (struct driver_data *);
  83. void (*read) (struct driver_data *);
  84. void (*duplex) (struct driver_data *);
  85. };
  86. struct chip_data {
  87. u16 ctl_reg;
  88. u16 baud;
  89. u16 flag;
  90. u8 chip_select_num;
  91. u8 n_bytes;
  92. u8 width; /* 0 or 1 */
  93. u8 enable_dma;
  94. u8 bits_per_word; /* 8 or 16 */
  95. u8 cs_change_per_word;
  96. u16 cs_chg_udelay; /* Some devices require > 255usec delay */
  97. u32 cs_gpio;
  98. u16 idle_tx_val;
  99. void (*write) (struct driver_data *);
  100. void (*read) (struct driver_data *);
  101. void (*duplex) (struct driver_data *);
  102. };
  103. #define DEFINE_SPI_REG(reg, off) \
  104. static inline u16 read_##reg(struct driver_data *drv_data) \
  105. { return bfin_read16(drv_data->regs_base + off); } \
  106. static inline void write_##reg(struct driver_data *drv_data, u16 v) \
  107. { bfin_write16(drv_data->regs_base + off, v); }
  108. DEFINE_SPI_REG(CTRL, 0x00)
  109. DEFINE_SPI_REG(FLAG, 0x04)
  110. DEFINE_SPI_REG(STAT, 0x08)
  111. DEFINE_SPI_REG(TDBR, 0x0C)
  112. DEFINE_SPI_REG(RDBR, 0x10)
  113. DEFINE_SPI_REG(BAUD, 0x14)
  114. DEFINE_SPI_REG(SHAW, 0x18)
  115. static void bfin_spi_enable(struct driver_data *drv_data)
  116. {
  117. u16 cr;
  118. cr = read_CTRL(drv_data);
  119. write_CTRL(drv_data, (cr | BIT_CTL_ENABLE));
  120. }
  121. static void bfin_spi_disable(struct driver_data *drv_data)
  122. {
  123. u16 cr;
  124. cr = read_CTRL(drv_data);
  125. write_CTRL(drv_data, (cr & (~BIT_CTL_ENABLE)));
  126. }
  127. /* Caculate the SPI_BAUD register value based on input HZ */
  128. static u16 hz_to_spi_baud(u32 speed_hz)
  129. {
  130. u_long sclk = get_sclk();
  131. u16 spi_baud = (sclk / (2 * speed_hz));
  132. if ((sclk % (2 * speed_hz)) > 0)
  133. spi_baud++;
  134. if (spi_baud < MIN_SPI_BAUD_VAL)
  135. spi_baud = MIN_SPI_BAUD_VAL;
  136. return spi_baud;
  137. }
  138. static int bfin_spi_flush(struct driver_data *drv_data)
  139. {
  140. unsigned long limit = loops_per_jiffy << 1;
  141. /* wait for stop and clear stat */
  142. while (!(read_STAT(drv_data) & BIT_STAT_SPIF) && limit--)
  143. cpu_relax();
  144. write_STAT(drv_data, BIT_STAT_CLR);
  145. return limit;
  146. }
  147. /* Chip select operation functions for cs_change flag */
  148. static void bfin_spi_cs_active(struct driver_data *drv_data, struct chip_data *chip)
  149. {
  150. if (likely(chip->chip_select_num)) {
  151. u16 flag = read_FLAG(drv_data);
  152. flag |= chip->flag;
  153. flag &= ~(chip->flag << 8);
  154. write_FLAG(drv_data, flag);
  155. } else {
  156. gpio_set_value(chip->cs_gpio, 0);
  157. }
  158. }
  159. static void bfin_spi_cs_deactive(struct driver_data *drv_data, struct chip_data *chip)
  160. {
  161. if (likely(chip->chip_select_num)) {
  162. u16 flag = read_FLAG(drv_data);
  163. flag &= ~chip->flag;
  164. flag |= (chip->flag << 8);
  165. write_FLAG(drv_data, flag);
  166. } else {
  167. gpio_set_value(chip->cs_gpio, 1);
  168. }
  169. /* Move delay here for consistency */
  170. if (chip->cs_chg_udelay)
  171. udelay(chip->cs_chg_udelay);
  172. }
  173. /* stop controller and re-config current chip*/
  174. static void bfin_spi_restore_state(struct driver_data *drv_data)
  175. {
  176. struct chip_data *chip = drv_data->cur_chip;
  177. /* Clear status and disable clock */
  178. write_STAT(drv_data, BIT_STAT_CLR);
  179. bfin_spi_disable(drv_data);
  180. dev_dbg(&drv_data->pdev->dev, "restoring spi ctl state\n");
  181. /* Load the registers */
  182. write_CTRL(drv_data, chip->ctl_reg);
  183. write_BAUD(drv_data, chip->baud);
  184. bfin_spi_enable(drv_data);
  185. bfin_spi_cs_active(drv_data, chip);
  186. }
  187. /* used to kick off transfer in rx mode and read unwanted RX data */
  188. static inline void bfin_spi_dummy_read(struct driver_data *drv_data)
  189. {
  190. (void) read_RDBR(drv_data);
  191. }
  192. static void bfin_spi_null_writer(struct driver_data *drv_data)
  193. {
  194. u8 n_bytes = drv_data->n_bytes;
  195. u16 tx_val = drv_data->cur_chip->idle_tx_val;
  196. /* clear RXS (we check for RXS inside the loop) */
  197. bfin_spi_dummy_read(drv_data);
  198. while (drv_data->tx < drv_data->tx_end) {
  199. write_TDBR(drv_data, tx_val);
  200. drv_data->tx += n_bytes;
  201. /* wait until transfer finished.
  202. checking SPIF or TXS may not guarantee transfer completion */
  203. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  204. cpu_relax();
  205. /* discard RX data and clear RXS */
  206. bfin_spi_dummy_read(drv_data);
  207. }
  208. }
  209. static void bfin_spi_null_reader(struct driver_data *drv_data)
  210. {
  211. u8 n_bytes = drv_data->n_bytes;
  212. u16 tx_val = drv_data->cur_chip->idle_tx_val;
  213. /* discard old RX data and clear RXS */
  214. bfin_spi_dummy_read(drv_data);
  215. while (drv_data->rx < drv_data->rx_end) {
  216. write_TDBR(drv_data, tx_val);
  217. drv_data->rx += n_bytes;
  218. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  219. cpu_relax();
  220. bfin_spi_dummy_read(drv_data);
  221. }
  222. }
  223. static void bfin_spi_u8_writer(struct driver_data *drv_data)
  224. {
  225. /* clear RXS (we check for RXS inside the loop) */
  226. bfin_spi_dummy_read(drv_data);
  227. while (drv_data->tx < drv_data->tx_end) {
  228. write_TDBR(drv_data, (*(u8 *) (drv_data->tx++)));
  229. /* wait until transfer finished.
  230. checking SPIF or TXS may not guarantee transfer completion */
  231. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  232. cpu_relax();
  233. /* discard RX data and clear RXS */
  234. bfin_spi_dummy_read(drv_data);
  235. }
  236. }
  237. static void bfin_spi_u8_cs_chg_writer(struct driver_data *drv_data)
  238. {
  239. struct chip_data *chip = drv_data->cur_chip;
  240. /* clear RXS (we check for RXS inside the loop) */
  241. bfin_spi_dummy_read(drv_data);
  242. while (drv_data->tx < drv_data->tx_end) {
  243. bfin_spi_cs_active(drv_data, chip);
  244. write_TDBR(drv_data, (*(u8 *) (drv_data->tx++)));
  245. /* make sure transfer finished before deactiving CS */
  246. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  247. cpu_relax();
  248. bfin_spi_dummy_read(drv_data);
  249. bfin_spi_cs_deactive(drv_data, chip);
  250. }
  251. }
  252. static void bfin_spi_u8_reader(struct driver_data *drv_data)
  253. {
  254. u16 tx_val = drv_data->cur_chip->idle_tx_val;
  255. /* discard old RX data and clear RXS */
  256. bfin_spi_dummy_read(drv_data);
  257. while (drv_data->rx < drv_data->rx_end) {
  258. write_TDBR(drv_data, tx_val);
  259. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  260. cpu_relax();
  261. *(u8 *) (drv_data->rx++) = read_RDBR(drv_data);
  262. }
  263. }
  264. static void bfin_spi_u8_cs_chg_reader(struct driver_data *drv_data)
  265. {
  266. struct chip_data *chip = drv_data->cur_chip;
  267. u16 tx_val = chip->idle_tx_val;
  268. /* discard old RX data and clear RXS */
  269. bfin_spi_dummy_read(drv_data);
  270. while (drv_data->rx < drv_data->rx_end) {
  271. bfin_spi_cs_active(drv_data, chip);
  272. write_TDBR(drv_data, tx_val);
  273. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  274. cpu_relax();
  275. *(u8 *) (drv_data->rx++) = read_RDBR(drv_data);
  276. bfin_spi_cs_deactive(drv_data, chip);
  277. }
  278. }
  279. static void bfin_spi_u8_duplex(struct driver_data *drv_data)
  280. {
  281. /* discard old RX data and clear RXS */
  282. bfin_spi_dummy_read(drv_data);
  283. while (drv_data->rx < drv_data->rx_end) {
  284. write_TDBR(drv_data, (*(u8 *) (drv_data->tx++)));
  285. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  286. cpu_relax();
  287. *(u8 *) (drv_data->rx++) = read_RDBR(drv_data);
  288. }
  289. }
  290. static void bfin_spi_u8_cs_chg_duplex(struct driver_data *drv_data)
  291. {
  292. struct chip_data *chip = drv_data->cur_chip;
  293. /* discard old RX data and clear RXS */
  294. bfin_spi_dummy_read(drv_data);
  295. while (drv_data->rx < drv_data->rx_end) {
  296. bfin_spi_cs_active(drv_data, chip);
  297. write_TDBR(drv_data, (*(u8 *) (drv_data->tx++)));
  298. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  299. cpu_relax();
  300. *(u8 *) (drv_data->rx++) = read_RDBR(drv_data);
  301. bfin_spi_cs_deactive(drv_data, chip);
  302. }
  303. }
  304. static void bfin_spi_u16_writer(struct driver_data *drv_data)
  305. {
  306. /* clear RXS (we check for RXS inside the loop) */
  307. bfin_spi_dummy_read(drv_data);
  308. while (drv_data->tx < drv_data->tx_end) {
  309. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  310. drv_data->tx += 2;
  311. /* wait until transfer finished.
  312. checking SPIF or TXS may not guarantee transfer completion */
  313. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  314. cpu_relax();
  315. /* discard RX data and clear RXS */
  316. bfin_spi_dummy_read(drv_data);
  317. }
  318. }
  319. static void bfin_spi_u16_cs_chg_writer(struct driver_data *drv_data)
  320. {
  321. struct chip_data *chip = drv_data->cur_chip;
  322. /* clear RXS (we check for RXS inside the loop) */
  323. bfin_spi_dummy_read(drv_data);
  324. while (drv_data->tx < drv_data->tx_end) {
  325. bfin_spi_cs_active(drv_data, chip);
  326. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  327. drv_data->tx += 2;
  328. /* make sure transfer finished before deactiving CS */
  329. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  330. cpu_relax();
  331. bfin_spi_dummy_read(drv_data);
  332. bfin_spi_cs_deactive(drv_data, chip);
  333. }
  334. }
  335. static void bfin_spi_u16_reader(struct driver_data *drv_data)
  336. {
  337. u16 tx_val = drv_data->cur_chip->idle_tx_val;
  338. /* discard old RX data and clear RXS */
  339. bfin_spi_dummy_read(drv_data);
  340. while (drv_data->rx < drv_data->rx_end) {
  341. write_TDBR(drv_data, tx_val);
  342. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  343. cpu_relax();
  344. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  345. drv_data->rx += 2;
  346. }
  347. }
  348. static void bfin_spi_u16_cs_chg_reader(struct driver_data *drv_data)
  349. {
  350. struct chip_data *chip = drv_data->cur_chip;
  351. u16 tx_val = chip->idle_tx_val;
  352. /* discard old RX data and clear RXS */
  353. bfin_spi_dummy_read(drv_data);
  354. while (drv_data->rx < drv_data->rx_end) {
  355. bfin_spi_cs_active(drv_data, chip);
  356. write_TDBR(drv_data, tx_val);
  357. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  358. cpu_relax();
  359. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  360. drv_data->rx += 2;
  361. bfin_spi_cs_deactive(drv_data, chip);
  362. }
  363. }
  364. static void bfin_spi_u16_duplex(struct driver_data *drv_data)
  365. {
  366. /* discard old RX data and clear RXS */
  367. bfin_spi_dummy_read(drv_data);
  368. while (drv_data->rx < drv_data->rx_end) {
  369. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  370. drv_data->tx += 2;
  371. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  372. cpu_relax();
  373. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  374. drv_data->rx += 2;
  375. }
  376. }
  377. static void bfin_spi_u16_cs_chg_duplex(struct driver_data *drv_data)
  378. {
  379. struct chip_data *chip = drv_data->cur_chip;
  380. /* discard old RX data and clear RXS */
  381. bfin_spi_dummy_read(drv_data);
  382. while (drv_data->rx < drv_data->rx_end) {
  383. bfin_spi_cs_active(drv_data, chip);
  384. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  385. drv_data->tx += 2;
  386. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  387. cpu_relax();
  388. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  389. drv_data->rx += 2;
  390. bfin_spi_cs_deactive(drv_data, chip);
  391. }
  392. }
  393. /* test if ther is more transfer to be done */
  394. static void *bfin_spi_next_transfer(struct driver_data *drv_data)
  395. {
  396. struct spi_message *msg = drv_data->cur_msg;
  397. struct spi_transfer *trans = drv_data->cur_transfer;
  398. /* Move to next transfer */
  399. if (trans->transfer_list.next != &msg->transfers) {
  400. drv_data->cur_transfer =
  401. list_entry(trans->transfer_list.next,
  402. struct spi_transfer, transfer_list);
  403. return RUNNING_STATE;
  404. } else
  405. return DONE_STATE;
  406. }
  407. /*
  408. * caller already set message->status;
  409. * dma and pio irqs are blocked give finished message back
  410. */
  411. static void bfin_spi_giveback(struct driver_data *drv_data)
  412. {
  413. struct chip_data *chip = drv_data->cur_chip;
  414. struct spi_transfer *last_transfer;
  415. unsigned long flags;
  416. struct spi_message *msg;
  417. spin_lock_irqsave(&drv_data->lock, flags);
  418. msg = drv_data->cur_msg;
  419. drv_data->cur_msg = NULL;
  420. drv_data->cur_transfer = NULL;
  421. drv_data->cur_chip = NULL;
  422. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  423. spin_unlock_irqrestore(&drv_data->lock, flags);
  424. last_transfer = list_entry(msg->transfers.prev,
  425. struct spi_transfer, transfer_list);
  426. msg->state = NULL;
  427. if (!drv_data->cs_change)
  428. bfin_spi_cs_deactive(drv_data, chip);
  429. /* Not stop spi in autobuffer mode */
  430. if (drv_data->tx_dma != 0xFFFF)
  431. bfin_spi_disable(drv_data);
  432. if (msg->complete)
  433. msg->complete(msg->context);
  434. }
  435. static irqreturn_t bfin_spi_dma_irq_handler(int irq, void *dev_id)
  436. {
  437. struct driver_data *drv_data = dev_id;
  438. struct chip_data *chip = drv_data->cur_chip;
  439. struct spi_message *msg = drv_data->cur_msg;
  440. unsigned long timeout;
  441. unsigned short dmastat = get_dma_curr_irqstat(drv_data->dma_channel);
  442. u16 spistat = read_STAT(drv_data);
  443. dev_dbg(&drv_data->pdev->dev,
  444. "in dma_irq_handler dmastat:0x%x spistat:0x%x\n",
  445. dmastat, spistat);
  446. clear_dma_irqstat(drv_data->dma_channel);
  447. /* Wait for DMA to complete */
  448. while (get_dma_curr_irqstat(drv_data->dma_channel) & DMA_RUN)
  449. cpu_relax();
  450. /*
  451. * wait for the last transaction shifted out. HRM states:
  452. * at this point there may still be data in the SPI DMA FIFO waiting
  453. * to be transmitted ... software needs to poll TXS in the SPI_STAT
  454. * register until it goes low for 2 successive reads
  455. */
  456. if (drv_data->tx != NULL) {
  457. while ((read_STAT(drv_data) & TXS) ||
  458. (read_STAT(drv_data) & TXS))
  459. cpu_relax();
  460. }
  461. dev_dbg(&drv_data->pdev->dev,
  462. "in dma_irq_handler dmastat:0x%x spistat:0x%x\n",
  463. dmastat, read_STAT(drv_data));
  464. timeout = jiffies + HZ;
  465. while (!(read_STAT(drv_data) & SPIF))
  466. if (!time_before(jiffies, timeout)) {
  467. dev_warn(&drv_data->pdev->dev, "timeout waiting for SPIF");
  468. break;
  469. } else
  470. cpu_relax();
  471. if ((dmastat & DMA_ERR) && (spistat & RBSY)) {
  472. msg->state = ERROR_STATE;
  473. dev_err(&drv_data->pdev->dev, "dma receive: fifo/buffer overflow\n");
  474. } else {
  475. msg->actual_length += drv_data->len_in_bytes;
  476. if (drv_data->cs_change)
  477. bfin_spi_cs_deactive(drv_data, chip);
  478. /* Move to next transfer */
  479. msg->state = bfin_spi_next_transfer(drv_data);
  480. }
  481. /* Schedule transfer tasklet */
  482. tasklet_schedule(&drv_data->pump_transfers);
  483. /* free the irq handler before next transfer */
  484. dev_dbg(&drv_data->pdev->dev,
  485. "disable dma channel irq%d\n",
  486. drv_data->dma_channel);
  487. dma_disable_irq(drv_data->dma_channel);
  488. return IRQ_HANDLED;
  489. }
  490. static void bfin_spi_pump_transfers(unsigned long data)
  491. {
  492. struct driver_data *drv_data = (struct driver_data *)data;
  493. struct spi_message *message = NULL;
  494. struct spi_transfer *transfer = NULL;
  495. struct spi_transfer *previous = NULL;
  496. struct chip_data *chip = NULL;
  497. u8 width;
  498. u16 cr, dma_width, dma_config;
  499. u32 tranf_success = 1;
  500. u8 full_duplex = 0;
  501. /* Get current state information */
  502. message = drv_data->cur_msg;
  503. transfer = drv_data->cur_transfer;
  504. chip = drv_data->cur_chip;
  505. /*
  506. * if msg is error or done, report it back using complete() callback
  507. */
  508. /* Handle for abort */
  509. if (message->state == ERROR_STATE) {
  510. dev_dbg(&drv_data->pdev->dev, "transfer: we've hit an error\n");
  511. message->status = -EIO;
  512. bfin_spi_giveback(drv_data);
  513. return;
  514. }
  515. /* Handle end of message */
  516. if (message->state == DONE_STATE) {
  517. dev_dbg(&drv_data->pdev->dev, "transfer: all done!\n");
  518. message->status = 0;
  519. bfin_spi_giveback(drv_data);
  520. return;
  521. }
  522. /* Delay if requested at end of transfer */
  523. if (message->state == RUNNING_STATE) {
  524. dev_dbg(&drv_data->pdev->dev, "transfer: still running ...\n");
  525. previous = list_entry(transfer->transfer_list.prev,
  526. struct spi_transfer, transfer_list);
  527. if (previous->delay_usecs)
  528. udelay(previous->delay_usecs);
  529. }
  530. /* Setup the transfer state based on the type of transfer */
  531. if (bfin_spi_flush(drv_data) == 0) {
  532. dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
  533. message->status = -EIO;
  534. bfin_spi_giveback(drv_data);
  535. return;
  536. }
  537. if (transfer->len == 0) {
  538. /* Move to next transfer of this msg */
  539. message->state = bfin_spi_next_transfer(drv_data);
  540. /* Schedule next transfer tasklet */
  541. tasklet_schedule(&drv_data->pump_transfers);
  542. }
  543. if (transfer->tx_buf != NULL) {
  544. drv_data->tx = (void *)transfer->tx_buf;
  545. drv_data->tx_end = drv_data->tx + transfer->len;
  546. dev_dbg(&drv_data->pdev->dev, "tx_buf is %p, tx_end is %p\n",
  547. transfer->tx_buf, drv_data->tx_end);
  548. } else {
  549. drv_data->tx = NULL;
  550. }
  551. if (transfer->rx_buf != NULL) {
  552. full_duplex = transfer->tx_buf != NULL;
  553. drv_data->rx = transfer->rx_buf;
  554. drv_data->rx_end = drv_data->rx + transfer->len;
  555. dev_dbg(&drv_data->pdev->dev, "rx_buf is %p, rx_end is %p\n",
  556. transfer->rx_buf, drv_data->rx_end);
  557. } else {
  558. drv_data->rx = NULL;
  559. }
  560. drv_data->rx_dma = transfer->rx_dma;
  561. drv_data->tx_dma = transfer->tx_dma;
  562. drv_data->len_in_bytes = transfer->len;
  563. drv_data->cs_change = transfer->cs_change;
  564. /* Bits per word setup */
  565. switch (transfer->bits_per_word) {
  566. case 8:
  567. drv_data->n_bytes = 1;
  568. width = CFG_SPI_WORDSIZE8;
  569. drv_data->read = chip->cs_change_per_word ?
  570. bfin_spi_u8_cs_chg_reader : bfin_spi_u8_reader;
  571. drv_data->write = chip->cs_change_per_word ?
  572. bfin_spi_u8_cs_chg_writer : bfin_spi_u8_writer;
  573. drv_data->duplex = chip->cs_change_per_word ?
  574. bfin_spi_u8_cs_chg_duplex : bfin_spi_u8_duplex;
  575. break;
  576. case 16:
  577. drv_data->n_bytes = 2;
  578. width = CFG_SPI_WORDSIZE16;
  579. drv_data->read = chip->cs_change_per_word ?
  580. bfin_spi_u16_cs_chg_reader : bfin_spi_u16_reader;
  581. drv_data->write = chip->cs_change_per_word ?
  582. bfin_spi_u16_cs_chg_writer : bfin_spi_u16_writer;
  583. drv_data->duplex = chip->cs_change_per_word ?
  584. bfin_spi_u16_cs_chg_duplex : bfin_spi_u16_duplex;
  585. break;
  586. default:
  587. /* No change, the same as default setting */
  588. drv_data->n_bytes = chip->n_bytes;
  589. width = chip->width;
  590. drv_data->write = drv_data->tx ? chip->write : bfin_spi_null_writer;
  591. drv_data->read = drv_data->rx ? chip->read : bfin_spi_null_reader;
  592. drv_data->duplex = chip->duplex ? chip->duplex : bfin_spi_null_writer;
  593. break;
  594. }
  595. cr = (read_CTRL(drv_data) & (~BIT_CTL_TIMOD));
  596. cr |= (width << 8);
  597. write_CTRL(drv_data, cr);
  598. if (width == CFG_SPI_WORDSIZE16) {
  599. drv_data->len = (transfer->len) >> 1;
  600. } else {
  601. drv_data->len = transfer->len;
  602. }
  603. dev_dbg(&drv_data->pdev->dev,
  604. "transfer: drv_data->write is %p, chip->write is %p, null_wr is %p\n",
  605. drv_data->write, chip->write, bfin_spi_null_writer);
  606. /* speed and width has been set on per message */
  607. message->state = RUNNING_STATE;
  608. dma_config = 0;
  609. /* Speed setup (surely valid because already checked) */
  610. if (transfer->speed_hz)
  611. write_BAUD(drv_data, hz_to_spi_baud(transfer->speed_hz));
  612. else
  613. write_BAUD(drv_data, chip->baud);
  614. write_STAT(drv_data, BIT_STAT_CLR);
  615. cr = (read_CTRL(drv_data) & (~BIT_CTL_TIMOD));
  616. if (drv_data->cs_change)
  617. bfin_spi_cs_active(drv_data, chip);
  618. dev_dbg(&drv_data->pdev->dev,
  619. "now pumping a transfer: width is %d, len is %d\n",
  620. width, transfer->len);
  621. /*
  622. * Try to map dma buffer and do a dma transfer. If successful use,
  623. * different way to r/w according to the enable_dma settings and if
  624. * we are not doing a full duplex transfer (since the hardware does
  625. * not support full duplex DMA transfers).
  626. */
  627. if (!full_duplex && drv_data->cur_chip->enable_dma
  628. && drv_data->len > 6) {
  629. unsigned long dma_start_addr, flags;
  630. disable_dma(drv_data->dma_channel);
  631. clear_dma_irqstat(drv_data->dma_channel);
  632. /* config dma channel */
  633. dev_dbg(&drv_data->pdev->dev, "doing dma transfer\n");
  634. set_dma_x_count(drv_data->dma_channel, drv_data->len);
  635. if (width == CFG_SPI_WORDSIZE16) {
  636. set_dma_x_modify(drv_data->dma_channel, 2);
  637. dma_width = WDSIZE_16;
  638. } else {
  639. set_dma_x_modify(drv_data->dma_channel, 1);
  640. dma_width = WDSIZE_8;
  641. }
  642. /* poll for SPI completion before start */
  643. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  644. cpu_relax();
  645. /* dirty hack for autobuffer DMA mode */
  646. if (drv_data->tx_dma == 0xFFFF) {
  647. dev_dbg(&drv_data->pdev->dev,
  648. "doing autobuffer DMA out.\n");
  649. /* no irq in autobuffer mode */
  650. dma_config =
  651. (DMAFLOW_AUTO | RESTART | dma_width | DI_EN);
  652. set_dma_config(drv_data->dma_channel, dma_config);
  653. set_dma_start_addr(drv_data->dma_channel,
  654. (unsigned long)drv_data->tx);
  655. enable_dma(drv_data->dma_channel);
  656. /* start SPI transfer */
  657. write_CTRL(drv_data, cr | BIT_CTL_TIMOD_DMA_TX);
  658. /* just return here, there can only be one transfer
  659. * in this mode
  660. */
  661. message->status = 0;
  662. bfin_spi_giveback(drv_data);
  663. return;
  664. }
  665. /* In dma mode, rx or tx must be NULL in one transfer */
  666. dma_config = (RESTART | dma_width | DI_EN);
  667. if (drv_data->rx != NULL) {
  668. /* set transfer mode, and enable SPI */
  669. dev_dbg(&drv_data->pdev->dev, "doing DMA in to %p (size %zx)\n",
  670. drv_data->rx, drv_data->len_in_bytes);
  671. /* invalidate caches, if needed */
  672. if (bfin_addr_dcachable((unsigned long) drv_data->rx))
  673. invalidate_dcache_range((unsigned long) drv_data->rx,
  674. (unsigned long) (drv_data->rx +
  675. drv_data->len_in_bytes));
  676. dma_config |= WNR;
  677. dma_start_addr = (unsigned long)drv_data->rx;
  678. cr |= BIT_CTL_TIMOD_DMA_RX | BIT_CTL_SENDOPT;
  679. } else if (drv_data->tx != NULL) {
  680. dev_dbg(&drv_data->pdev->dev, "doing DMA out.\n");
  681. /* flush caches, if needed */
  682. if (bfin_addr_dcachable((unsigned long) drv_data->tx))
  683. flush_dcache_range((unsigned long) drv_data->tx,
  684. (unsigned long) (drv_data->tx +
  685. drv_data->len_in_bytes));
  686. dma_start_addr = (unsigned long)drv_data->tx;
  687. cr |= BIT_CTL_TIMOD_DMA_TX;
  688. } else
  689. BUG();
  690. /* oh man, here there be monsters ... and i dont mean the
  691. * fluffy cute ones from pixar, i mean the kind that'll eat
  692. * your data, kick your dog, and love it all. do *not* try
  693. * and change these lines unless you (1) heavily test DMA
  694. * with SPI flashes on a loaded system (e.g. ping floods),
  695. * (2) know just how broken the DMA engine interaction with
  696. * the SPI peripheral is, and (3) have someone else to blame
  697. * when you screw it all up anyways.
  698. */
  699. set_dma_start_addr(drv_data->dma_channel, dma_start_addr);
  700. set_dma_config(drv_data->dma_channel, dma_config);
  701. local_irq_save(flags);
  702. SSYNC();
  703. write_CTRL(drv_data, cr);
  704. enable_dma(drv_data->dma_channel);
  705. dma_enable_irq(drv_data->dma_channel);
  706. local_irq_restore(flags);
  707. } else {
  708. /* IO mode write then read */
  709. dev_dbg(&drv_data->pdev->dev, "doing IO transfer\n");
  710. /* we always use SPI_WRITE mode. SPI_READ mode
  711. seems to have problems with setting up the
  712. output value in TDBR prior to the transfer. */
  713. write_CTRL(drv_data, (cr | CFG_SPI_WRITE));
  714. if (full_duplex) {
  715. /* full duplex mode */
  716. BUG_ON((drv_data->tx_end - drv_data->tx) !=
  717. (drv_data->rx_end - drv_data->rx));
  718. dev_dbg(&drv_data->pdev->dev,
  719. "IO duplex: cr is 0x%x\n", cr);
  720. drv_data->duplex(drv_data);
  721. if (drv_data->tx != drv_data->tx_end)
  722. tranf_success = 0;
  723. } else if (drv_data->tx != NULL) {
  724. /* write only half duplex */
  725. dev_dbg(&drv_data->pdev->dev,
  726. "IO write: cr is 0x%x\n", cr);
  727. drv_data->write(drv_data);
  728. if (drv_data->tx != drv_data->tx_end)
  729. tranf_success = 0;
  730. } else if (drv_data->rx != NULL) {
  731. /* read only half duplex */
  732. dev_dbg(&drv_data->pdev->dev,
  733. "IO read: cr is 0x%x\n", cr);
  734. drv_data->read(drv_data);
  735. if (drv_data->rx != drv_data->rx_end)
  736. tranf_success = 0;
  737. }
  738. if (!tranf_success) {
  739. dev_dbg(&drv_data->pdev->dev,
  740. "IO write error!\n");
  741. message->state = ERROR_STATE;
  742. } else {
  743. /* Update total byte transfered */
  744. message->actual_length += drv_data->len_in_bytes;
  745. /* Move to next transfer of this msg */
  746. message->state = bfin_spi_next_transfer(drv_data);
  747. if (drv_data->cs_change)
  748. bfin_spi_cs_deactive(drv_data, chip);
  749. }
  750. /* Schedule next transfer tasklet */
  751. tasklet_schedule(&drv_data->pump_transfers);
  752. }
  753. }
  754. /* pop a msg from queue and kick off real transfer */
  755. static void bfin_spi_pump_messages(struct work_struct *work)
  756. {
  757. struct driver_data *drv_data;
  758. unsigned long flags;
  759. drv_data = container_of(work, struct driver_data, pump_messages);
  760. /* Lock queue and check for queue work */
  761. spin_lock_irqsave(&drv_data->lock, flags);
  762. if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) {
  763. /* pumper kicked off but no work to do */
  764. drv_data->busy = 0;
  765. spin_unlock_irqrestore(&drv_data->lock, flags);
  766. return;
  767. }
  768. /* Make sure we are not already running a message */
  769. if (drv_data->cur_msg) {
  770. spin_unlock_irqrestore(&drv_data->lock, flags);
  771. return;
  772. }
  773. /* Extract head of queue */
  774. drv_data->cur_msg = list_entry(drv_data->queue.next,
  775. struct spi_message, queue);
  776. /* Setup the SSP using the per chip configuration */
  777. drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
  778. bfin_spi_restore_state(drv_data);
  779. list_del_init(&drv_data->cur_msg->queue);
  780. /* Initial message state */
  781. drv_data->cur_msg->state = START_STATE;
  782. drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
  783. struct spi_transfer, transfer_list);
  784. dev_dbg(&drv_data->pdev->dev, "got a message to pump, "
  785. "state is set to: baud %d, flag 0x%x, ctl 0x%x\n",
  786. drv_data->cur_chip->baud, drv_data->cur_chip->flag,
  787. drv_data->cur_chip->ctl_reg);
  788. dev_dbg(&drv_data->pdev->dev,
  789. "the first transfer len is %d\n",
  790. drv_data->cur_transfer->len);
  791. /* Mark as busy and launch transfers */
  792. tasklet_schedule(&drv_data->pump_transfers);
  793. drv_data->busy = 1;
  794. spin_unlock_irqrestore(&drv_data->lock, flags);
  795. }
  796. /*
  797. * got a msg to transfer, queue it in drv_data->queue.
  798. * And kick off message pumper
  799. */
  800. static int bfin_spi_transfer(struct spi_device *spi, struct spi_message *msg)
  801. {
  802. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  803. unsigned long flags;
  804. spin_lock_irqsave(&drv_data->lock, flags);
  805. if (drv_data->run == QUEUE_STOPPED) {
  806. spin_unlock_irqrestore(&drv_data->lock, flags);
  807. return -ESHUTDOWN;
  808. }
  809. msg->actual_length = 0;
  810. msg->status = -EINPROGRESS;
  811. msg->state = START_STATE;
  812. dev_dbg(&spi->dev, "adding an msg in transfer() \n");
  813. list_add_tail(&msg->queue, &drv_data->queue);
  814. if (drv_data->run == QUEUE_RUNNING && !drv_data->busy)
  815. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  816. spin_unlock_irqrestore(&drv_data->lock, flags);
  817. return 0;
  818. }
  819. #define MAX_SPI_SSEL 7
  820. static u16 ssel[][MAX_SPI_SSEL] = {
  821. {P_SPI0_SSEL1, P_SPI0_SSEL2, P_SPI0_SSEL3,
  822. P_SPI0_SSEL4, P_SPI0_SSEL5,
  823. P_SPI0_SSEL6, P_SPI0_SSEL7},
  824. {P_SPI1_SSEL1, P_SPI1_SSEL2, P_SPI1_SSEL3,
  825. P_SPI1_SSEL4, P_SPI1_SSEL5,
  826. P_SPI1_SSEL6, P_SPI1_SSEL7},
  827. {P_SPI2_SSEL1, P_SPI2_SSEL2, P_SPI2_SSEL3,
  828. P_SPI2_SSEL4, P_SPI2_SSEL5,
  829. P_SPI2_SSEL6, P_SPI2_SSEL7},
  830. };
  831. /* first setup for new devices */
  832. static int bfin_spi_setup(struct spi_device *spi)
  833. {
  834. struct bfin5xx_spi_chip *chip_info = NULL;
  835. struct chip_data *chip;
  836. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  837. int ret;
  838. /* Abort device setup if requested features are not supported */
  839. if (spi->mode & ~(SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST)) {
  840. dev_err(&spi->dev, "requested mode not fully supported\n");
  841. return -EINVAL;
  842. }
  843. /* Zero (the default) here means 8 bits */
  844. if (!spi->bits_per_word)
  845. spi->bits_per_word = 8;
  846. if (spi->bits_per_word != 8 && spi->bits_per_word != 16)
  847. return -EINVAL;
  848. /* Only alloc (or use chip_info) on first setup */
  849. chip = spi_get_ctldata(spi);
  850. if (chip == NULL) {
  851. chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
  852. if (!chip)
  853. return -ENOMEM;
  854. chip->enable_dma = 0;
  855. chip_info = spi->controller_data;
  856. }
  857. /* chip_info isn't always needed */
  858. if (chip_info) {
  859. /* Make sure people stop trying to set fields via ctl_reg
  860. * when they should actually be using common SPI framework.
  861. * Currently we let through: WOM EMISO PSSE GM SZ TIMOD.
  862. * Not sure if a user actually needs/uses any of these,
  863. * but let's assume (for now) they do.
  864. */
  865. if (chip_info->ctl_reg & (SPE|MSTR|CPOL|CPHA|LSBF|SIZE)) {
  866. dev_err(&spi->dev, "do not set bits in ctl_reg "
  867. "that the SPI framework manages\n");
  868. return -EINVAL;
  869. }
  870. chip->enable_dma = chip_info->enable_dma != 0
  871. && drv_data->master_info->enable_dma;
  872. chip->ctl_reg = chip_info->ctl_reg;
  873. chip->bits_per_word = chip_info->bits_per_word;
  874. chip->cs_change_per_word = chip_info->cs_change_per_word;
  875. chip->cs_chg_udelay = chip_info->cs_chg_udelay;
  876. chip->cs_gpio = chip_info->cs_gpio;
  877. chip->idle_tx_val = chip_info->idle_tx_val;
  878. }
  879. /* translate common spi framework into our register */
  880. if (spi->mode & SPI_CPOL)
  881. chip->ctl_reg |= CPOL;
  882. if (spi->mode & SPI_CPHA)
  883. chip->ctl_reg |= CPHA;
  884. if (spi->mode & SPI_LSB_FIRST)
  885. chip->ctl_reg |= LSBF;
  886. /* we dont support running in slave mode (yet?) */
  887. chip->ctl_reg |= MSTR;
  888. /*
  889. * if any one SPI chip is registered and wants DMA, request the
  890. * DMA channel for it
  891. */
  892. if (chip->enable_dma && !drv_data->dma_requested) {
  893. /* register dma irq handler */
  894. if (request_dma(drv_data->dma_channel, "BFIN_SPI_DMA") < 0) {
  895. dev_dbg(&spi->dev,
  896. "Unable to request BlackFin SPI DMA channel\n");
  897. return -ENODEV;
  898. }
  899. if (set_dma_callback(drv_data->dma_channel,
  900. bfin_spi_dma_irq_handler, drv_data) < 0) {
  901. dev_dbg(&spi->dev, "Unable to set dma callback\n");
  902. return -EPERM;
  903. }
  904. dma_disable_irq(drv_data->dma_channel);
  905. drv_data->dma_requested = 1;
  906. }
  907. /*
  908. * Notice: for blackfin, the speed_hz is the value of register
  909. * SPI_BAUD, not the real baudrate
  910. */
  911. chip->baud = hz_to_spi_baud(spi->max_speed_hz);
  912. chip->flag = 1 << (spi->chip_select);
  913. chip->chip_select_num = spi->chip_select;
  914. if (chip->chip_select_num == 0) {
  915. ret = gpio_request(chip->cs_gpio, spi->modalias);
  916. if (ret) {
  917. if (drv_data->dma_requested)
  918. free_dma(drv_data->dma_channel);
  919. return ret;
  920. }
  921. gpio_direction_output(chip->cs_gpio, 1);
  922. }
  923. switch (chip->bits_per_word) {
  924. case 8:
  925. chip->n_bytes = 1;
  926. chip->width = CFG_SPI_WORDSIZE8;
  927. chip->read = chip->cs_change_per_word ?
  928. bfin_spi_u8_cs_chg_reader : bfin_spi_u8_reader;
  929. chip->write = chip->cs_change_per_word ?
  930. bfin_spi_u8_cs_chg_writer : bfin_spi_u8_writer;
  931. chip->duplex = chip->cs_change_per_word ?
  932. bfin_spi_u8_cs_chg_duplex : bfin_spi_u8_duplex;
  933. break;
  934. case 16:
  935. chip->n_bytes = 2;
  936. chip->width = CFG_SPI_WORDSIZE16;
  937. chip->read = chip->cs_change_per_word ?
  938. bfin_spi_u16_cs_chg_reader : bfin_spi_u16_reader;
  939. chip->write = chip->cs_change_per_word ?
  940. bfin_spi_u16_cs_chg_writer : bfin_spi_u16_writer;
  941. chip->duplex = chip->cs_change_per_word ?
  942. bfin_spi_u16_cs_chg_duplex : bfin_spi_u16_duplex;
  943. break;
  944. default:
  945. dev_err(&spi->dev, "%d bits_per_word is not supported\n",
  946. chip->bits_per_word);
  947. if (chip_info)
  948. kfree(chip);
  949. return -ENODEV;
  950. }
  951. dev_dbg(&spi->dev, "setup spi chip %s, width is %d, dma is %d\n",
  952. spi->modalias, chip->width, chip->enable_dma);
  953. dev_dbg(&spi->dev, "ctl_reg is 0x%x, flag_reg is 0x%x\n",
  954. chip->ctl_reg, chip->flag);
  955. spi_set_ctldata(spi, chip);
  956. dev_dbg(&spi->dev, "chip select number is %d\n", chip->chip_select_num);
  957. if ((chip->chip_select_num > 0)
  958. && (chip->chip_select_num <= spi->master->num_chipselect))
  959. peripheral_request(ssel[spi->master->bus_num]
  960. [chip->chip_select_num-1], spi->modalias);
  961. bfin_spi_cs_deactive(drv_data, chip);
  962. return 0;
  963. }
  964. /*
  965. * callback for spi framework.
  966. * clean driver specific data
  967. */
  968. static void bfin_spi_cleanup(struct spi_device *spi)
  969. {
  970. struct chip_data *chip = spi_get_ctldata(spi);
  971. if (!chip)
  972. return;
  973. if ((chip->chip_select_num > 0)
  974. && (chip->chip_select_num <= spi->master->num_chipselect))
  975. peripheral_free(ssel[spi->master->bus_num]
  976. [chip->chip_select_num-1]);
  977. if (chip->chip_select_num == 0)
  978. gpio_free(chip->cs_gpio);
  979. kfree(chip);
  980. }
  981. static inline int bfin_spi_init_queue(struct driver_data *drv_data)
  982. {
  983. INIT_LIST_HEAD(&drv_data->queue);
  984. spin_lock_init(&drv_data->lock);
  985. drv_data->run = QUEUE_STOPPED;
  986. drv_data->busy = 0;
  987. /* init transfer tasklet */
  988. tasklet_init(&drv_data->pump_transfers,
  989. bfin_spi_pump_transfers, (unsigned long)drv_data);
  990. /* init messages workqueue */
  991. INIT_WORK(&drv_data->pump_messages, bfin_spi_pump_messages);
  992. drv_data->workqueue = create_singlethread_workqueue(
  993. dev_name(drv_data->master->dev.parent));
  994. if (drv_data->workqueue == NULL)
  995. return -EBUSY;
  996. return 0;
  997. }
  998. static inline int bfin_spi_start_queue(struct driver_data *drv_data)
  999. {
  1000. unsigned long flags;
  1001. spin_lock_irqsave(&drv_data->lock, flags);
  1002. if (drv_data->run == QUEUE_RUNNING || drv_data->busy) {
  1003. spin_unlock_irqrestore(&drv_data->lock, flags);
  1004. return -EBUSY;
  1005. }
  1006. drv_data->run = QUEUE_RUNNING;
  1007. drv_data->cur_msg = NULL;
  1008. drv_data->cur_transfer = NULL;
  1009. drv_data->cur_chip = NULL;
  1010. spin_unlock_irqrestore(&drv_data->lock, flags);
  1011. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  1012. return 0;
  1013. }
  1014. static inline int bfin_spi_stop_queue(struct driver_data *drv_data)
  1015. {
  1016. unsigned long flags;
  1017. unsigned limit = 500;
  1018. int status = 0;
  1019. spin_lock_irqsave(&drv_data->lock, flags);
  1020. /*
  1021. * This is a bit lame, but is optimized for the common execution path.
  1022. * A wait_queue on the drv_data->busy could be used, but then the common
  1023. * execution path (pump_messages) would be required to call wake_up or
  1024. * friends on every SPI message. Do this instead
  1025. */
  1026. drv_data->run = QUEUE_STOPPED;
  1027. while (!list_empty(&drv_data->queue) && drv_data->busy && limit--) {
  1028. spin_unlock_irqrestore(&drv_data->lock, flags);
  1029. msleep(10);
  1030. spin_lock_irqsave(&drv_data->lock, flags);
  1031. }
  1032. if (!list_empty(&drv_data->queue) || drv_data->busy)
  1033. status = -EBUSY;
  1034. spin_unlock_irqrestore(&drv_data->lock, flags);
  1035. return status;
  1036. }
  1037. static inline int bfin_spi_destroy_queue(struct driver_data *drv_data)
  1038. {
  1039. int status;
  1040. status = bfin_spi_stop_queue(drv_data);
  1041. if (status != 0)
  1042. return status;
  1043. destroy_workqueue(drv_data->workqueue);
  1044. return 0;
  1045. }
  1046. static int __init bfin_spi_probe(struct platform_device *pdev)
  1047. {
  1048. struct device *dev = &pdev->dev;
  1049. struct bfin5xx_spi_master *platform_info;
  1050. struct spi_master *master;
  1051. struct driver_data *drv_data = 0;
  1052. struct resource *res;
  1053. int status = 0;
  1054. platform_info = dev->platform_data;
  1055. /* Allocate master with space for drv_data */
  1056. master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
  1057. if (!master) {
  1058. dev_err(&pdev->dev, "can not alloc spi_master\n");
  1059. return -ENOMEM;
  1060. }
  1061. drv_data = spi_master_get_devdata(master);
  1062. drv_data->master = master;
  1063. drv_data->master_info = platform_info;
  1064. drv_data->pdev = pdev;
  1065. drv_data->pin_req = platform_info->pin_req;
  1066. master->bus_num = pdev->id;
  1067. master->num_chipselect = platform_info->num_chipselect;
  1068. master->cleanup = bfin_spi_cleanup;
  1069. master->setup = bfin_spi_setup;
  1070. master->transfer = bfin_spi_transfer;
  1071. /* Find and map our resources */
  1072. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1073. if (res == NULL) {
  1074. dev_err(dev, "Cannot get IORESOURCE_MEM\n");
  1075. status = -ENOENT;
  1076. goto out_error_get_res;
  1077. }
  1078. drv_data->regs_base = ioremap(res->start, (res->end - res->start + 1));
  1079. if (drv_data->regs_base == NULL) {
  1080. dev_err(dev, "Cannot map IO\n");
  1081. status = -ENXIO;
  1082. goto out_error_ioremap;
  1083. }
  1084. drv_data->dma_channel = platform_get_irq(pdev, 0);
  1085. if (drv_data->dma_channel < 0) {
  1086. dev_err(dev, "No DMA channel specified\n");
  1087. status = -ENOENT;
  1088. goto out_error_no_dma_ch;
  1089. }
  1090. /* Initial and start queue */
  1091. status = bfin_spi_init_queue(drv_data);
  1092. if (status != 0) {
  1093. dev_err(dev, "problem initializing queue\n");
  1094. goto out_error_queue_alloc;
  1095. }
  1096. status = bfin_spi_start_queue(drv_data);
  1097. if (status != 0) {
  1098. dev_err(dev, "problem starting queue\n");
  1099. goto out_error_queue_alloc;
  1100. }
  1101. status = peripheral_request_list(drv_data->pin_req, DRV_NAME);
  1102. if (status != 0) {
  1103. dev_err(&pdev->dev, ": Requesting Peripherals failed\n");
  1104. goto out_error_queue_alloc;
  1105. }
  1106. /* Register with the SPI framework */
  1107. platform_set_drvdata(pdev, drv_data);
  1108. status = spi_register_master(master);
  1109. if (status != 0) {
  1110. dev_err(dev, "problem registering spi master\n");
  1111. goto out_error_queue_alloc;
  1112. }
  1113. dev_info(dev, "%s, Version %s, regs_base@%p, dma channel@%d\n",
  1114. DRV_DESC, DRV_VERSION, drv_data->regs_base,
  1115. drv_data->dma_channel);
  1116. return status;
  1117. out_error_queue_alloc:
  1118. bfin_spi_destroy_queue(drv_data);
  1119. out_error_no_dma_ch:
  1120. iounmap((void *) drv_data->regs_base);
  1121. out_error_ioremap:
  1122. out_error_get_res:
  1123. spi_master_put(master);
  1124. return status;
  1125. }
  1126. /* stop hardware and remove the driver */
  1127. static int __devexit bfin_spi_remove(struct platform_device *pdev)
  1128. {
  1129. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1130. int status = 0;
  1131. if (!drv_data)
  1132. return 0;
  1133. /* Remove the queue */
  1134. status = bfin_spi_destroy_queue(drv_data);
  1135. if (status != 0)
  1136. return status;
  1137. /* Disable the SSP at the peripheral and SOC level */
  1138. bfin_spi_disable(drv_data);
  1139. /* Release DMA */
  1140. if (drv_data->master_info->enable_dma) {
  1141. if (dma_channel_active(drv_data->dma_channel))
  1142. free_dma(drv_data->dma_channel);
  1143. }
  1144. /* Disconnect from the SPI framework */
  1145. spi_unregister_master(drv_data->master);
  1146. peripheral_free_list(drv_data->pin_req);
  1147. /* Prevent double remove */
  1148. platform_set_drvdata(pdev, NULL);
  1149. return 0;
  1150. }
  1151. #ifdef CONFIG_PM
  1152. static int bfin_spi_suspend(struct platform_device *pdev, pm_message_t state)
  1153. {
  1154. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1155. int status = 0;
  1156. status = bfin_spi_stop_queue(drv_data);
  1157. if (status != 0)
  1158. return status;
  1159. /* stop hardware */
  1160. bfin_spi_disable(drv_data);
  1161. return 0;
  1162. }
  1163. static int bfin_spi_resume(struct platform_device *pdev)
  1164. {
  1165. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1166. int status = 0;
  1167. /* Enable the SPI interface */
  1168. bfin_spi_enable(drv_data);
  1169. /* Start the queue running */
  1170. status = bfin_spi_start_queue(drv_data);
  1171. if (status != 0) {
  1172. dev_err(&pdev->dev, "problem starting queue (%d)\n", status);
  1173. return status;
  1174. }
  1175. return 0;
  1176. }
  1177. #else
  1178. #define bfin_spi_suspend NULL
  1179. #define bfin_spi_resume NULL
  1180. #endif /* CONFIG_PM */
  1181. MODULE_ALIAS("platform:bfin-spi");
  1182. static struct platform_driver bfin_spi_driver = {
  1183. .driver = {
  1184. .name = DRV_NAME,
  1185. .owner = THIS_MODULE,
  1186. },
  1187. .suspend = bfin_spi_suspend,
  1188. .resume = bfin_spi_resume,
  1189. .remove = __devexit_p(bfin_spi_remove),
  1190. };
  1191. static int __init bfin_spi_init(void)
  1192. {
  1193. return platform_driver_probe(&bfin_spi_driver, bfin_spi_probe);
  1194. }
  1195. module_init(bfin_spi_init);
  1196. static void __exit bfin_spi_exit(void)
  1197. {
  1198. platform_driver_unregister(&bfin_spi_driver);
  1199. }
  1200. module_exit(bfin_spi_exit);