pxa2xx_spi.c 46 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751
  1. /*
  2. * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  17. */
  18. #include <linux/init.h>
  19. #include <linux/module.h>
  20. #include <linux/device.h>
  21. #include <linux/ioport.h>
  22. #include <linux/errno.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/dma-mapping.h>
  26. #include <linux/spi/spi.h>
  27. #include <linux/workqueue.h>
  28. #include <linux/delay.h>
  29. #include <linux/clk.h>
  30. #include <linux/gpio.h>
  31. #include <asm/io.h>
  32. #include <asm/irq.h>
  33. #include <asm/delay.h>
  34. #include <mach/dma.h>
  35. #include <mach/regs-ssp.h>
  36. #include <mach/ssp.h>
  37. #include <mach/pxa2xx_spi.h>
  38. MODULE_AUTHOR("Stephen Street");
  39. MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
  40. MODULE_LICENSE("GPL");
  41. MODULE_ALIAS("platform:pxa2xx-spi");
  42. #define MAX_BUSES 3
  43. #define RX_THRESH_DFLT 8
  44. #define TX_THRESH_DFLT 8
  45. #define TIMOUT_DFLT 1000
  46. #define DMA_INT_MASK (DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR)
  47. #define RESET_DMA_CHANNEL (DCSR_NODESC | DMA_INT_MASK)
  48. #define IS_DMA_ALIGNED(x) ((((u32)(x)) & 0x07) == 0)
  49. #define MAX_DMA_LEN 8191
  50. #define DMA_ALIGNMENT 8
  51. /*
  52. * for testing SSCR1 changes that require SSP restart, basically
  53. * everything except the service and interrupt enables, the pxa270 developer
  54. * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
  55. * list, but the PXA255 dev man says all bits without really meaning the
  56. * service and interrupt enables
  57. */
  58. #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  59. | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  60. | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  61. | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  62. | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
  63. | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  64. #define DEFINE_SSP_REG(reg, off) \
  65. static inline u32 read_##reg(void const __iomem *p) \
  66. { return __raw_readl(p + (off)); } \
  67. \
  68. static inline void write_##reg(u32 v, void __iomem *p) \
  69. { __raw_writel(v, p + (off)); }
  70. DEFINE_SSP_REG(SSCR0, 0x00)
  71. DEFINE_SSP_REG(SSCR1, 0x04)
  72. DEFINE_SSP_REG(SSSR, 0x08)
  73. DEFINE_SSP_REG(SSITR, 0x0c)
  74. DEFINE_SSP_REG(SSDR, 0x10)
  75. DEFINE_SSP_REG(SSTO, 0x28)
  76. DEFINE_SSP_REG(SSPSP, 0x2c)
  77. #define START_STATE ((void*)0)
  78. #define RUNNING_STATE ((void*)1)
  79. #define DONE_STATE ((void*)2)
  80. #define ERROR_STATE ((void*)-1)
  81. #define QUEUE_RUNNING 0
  82. #define QUEUE_STOPPED 1
  83. struct driver_data {
  84. /* Driver model hookup */
  85. struct platform_device *pdev;
  86. /* SSP Info */
  87. struct ssp_device *ssp;
  88. /* SPI framework hookup */
  89. enum pxa_ssp_type ssp_type;
  90. struct spi_master *master;
  91. /* PXA hookup */
  92. struct pxa2xx_spi_master *master_info;
  93. /* DMA setup stuff */
  94. int rx_channel;
  95. int tx_channel;
  96. u32 *null_dma_buf;
  97. /* SSP register addresses */
  98. void __iomem *ioaddr;
  99. u32 ssdr_physical;
  100. /* SSP masks*/
  101. u32 dma_cr1;
  102. u32 int_cr1;
  103. u32 clear_sr;
  104. u32 mask_sr;
  105. /* Driver message queue */
  106. struct workqueue_struct *workqueue;
  107. struct work_struct pump_messages;
  108. spinlock_t lock;
  109. struct list_head queue;
  110. int busy;
  111. int run;
  112. /* Message Transfer pump */
  113. struct tasklet_struct pump_transfers;
  114. /* Current message transfer state info */
  115. struct spi_message* cur_msg;
  116. struct spi_transfer* cur_transfer;
  117. struct chip_data *cur_chip;
  118. size_t len;
  119. void *tx;
  120. void *tx_end;
  121. void *rx;
  122. void *rx_end;
  123. int dma_mapped;
  124. dma_addr_t rx_dma;
  125. dma_addr_t tx_dma;
  126. size_t rx_map_len;
  127. size_t tx_map_len;
  128. u8 n_bytes;
  129. u32 dma_width;
  130. int (*write)(struct driver_data *drv_data);
  131. int (*read)(struct driver_data *drv_data);
  132. irqreturn_t (*transfer_handler)(struct driver_data *drv_data);
  133. void (*cs_control)(u32 command);
  134. };
  135. struct chip_data {
  136. u32 cr0;
  137. u32 cr1;
  138. u32 psp;
  139. u32 timeout;
  140. u8 n_bytes;
  141. u32 dma_width;
  142. u32 dma_burst_size;
  143. u32 threshold;
  144. u32 dma_threshold;
  145. u8 enable_dma;
  146. u8 bits_per_word;
  147. u32 speed_hz;
  148. int gpio_cs;
  149. int gpio_cs_inverted;
  150. int (*write)(struct driver_data *drv_data);
  151. int (*read)(struct driver_data *drv_data);
  152. void (*cs_control)(u32 command);
  153. };
  154. static void pump_messages(struct work_struct *work);
  155. static void cs_assert(struct driver_data *drv_data)
  156. {
  157. struct chip_data *chip = drv_data->cur_chip;
  158. if (chip->cs_control) {
  159. chip->cs_control(PXA2XX_CS_ASSERT);
  160. return;
  161. }
  162. if (gpio_is_valid(chip->gpio_cs))
  163. gpio_set_value(chip->gpio_cs, chip->gpio_cs_inverted);
  164. }
  165. static void cs_deassert(struct driver_data *drv_data)
  166. {
  167. struct chip_data *chip = drv_data->cur_chip;
  168. if (chip->cs_control) {
  169. chip->cs_control(PXA2XX_CS_DEASSERT);
  170. return;
  171. }
  172. if (gpio_is_valid(chip->gpio_cs))
  173. gpio_set_value(chip->gpio_cs, !chip->gpio_cs_inverted);
  174. }
  175. static int flush(struct driver_data *drv_data)
  176. {
  177. unsigned long limit = loops_per_jiffy << 1;
  178. void __iomem *reg = drv_data->ioaddr;
  179. do {
  180. while (read_SSSR(reg) & SSSR_RNE) {
  181. read_SSDR(reg);
  182. }
  183. } while ((read_SSSR(reg) & SSSR_BSY) && --limit);
  184. write_SSSR(SSSR_ROR, reg);
  185. return limit;
  186. }
  187. static int null_writer(struct driver_data *drv_data)
  188. {
  189. void __iomem *reg = drv_data->ioaddr;
  190. u8 n_bytes = drv_data->n_bytes;
  191. if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
  192. || (drv_data->tx == drv_data->tx_end))
  193. return 0;
  194. write_SSDR(0, reg);
  195. drv_data->tx += n_bytes;
  196. return 1;
  197. }
  198. static int null_reader(struct driver_data *drv_data)
  199. {
  200. void __iomem *reg = drv_data->ioaddr;
  201. u8 n_bytes = drv_data->n_bytes;
  202. while ((read_SSSR(reg) & SSSR_RNE)
  203. && (drv_data->rx < drv_data->rx_end)) {
  204. read_SSDR(reg);
  205. drv_data->rx += n_bytes;
  206. }
  207. return drv_data->rx == drv_data->rx_end;
  208. }
  209. static int u8_writer(struct driver_data *drv_data)
  210. {
  211. void __iomem *reg = drv_data->ioaddr;
  212. if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
  213. || (drv_data->tx == drv_data->tx_end))
  214. return 0;
  215. write_SSDR(*(u8 *)(drv_data->tx), reg);
  216. ++drv_data->tx;
  217. return 1;
  218. }
  219. static int u8_reader(struct driver_data *drv_data)
  220. {
  221. void __iomem *reg = drv_data->ioaddr;
  222. while ((read_SSSR(reg) & SSSR_RNE)
  223. && (drv_data->rx < drv_data->rx_end)) {
  224. *(u8 *)(drv_data->rx) = read_SSDR(reg);
  225. ++drv_data->rx;
  226. }
  227. return drv_data->rx == drv_data->rx_end;
  228. }
  229. static int u16_writer(struct driver_data *drv_data)
  230. {
  231. void __iomem *reg = drv_data->ioaddr;
  232. if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
  233. || (drv_data->tx == drv_data->tx_end))
  234. return 0;
  235. write_SSDR(*(u16 *)(drv_data->tx), reg);
  236. drv_data->tx += 2;
  237. return 1;
  238. }
  239. static int u16_reader(struct driver_data *drv_data)
  240. {
  241. void __iomem *reg = drv_data->ioaddr;
  242. while ((read_SSSR(reg) & SSSR_RNE)
  243. && (drv_data->rx < drv_data->rx_end)) {
  244. *(u16 *)(drv_data->rx) = read_SSDR(reg);
  245. drv_data->rx += 2;
  246. }
  247. return drv_data->rx == drv_data->rx_end;
  248. }
  249. static int u32_writer(struct driver_data *drv_data)
  250. {
  251. void __iomem *reg = drv_data->ioaddr;
  252. if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
  253. || (drv_data->tx == drv_data->tx_end))
  254. return 0;
  255. write_SSDR(*(u32 *)(drv_data->tx), reg);
  256. drv_data->tx += 4;
  257. return 1;
  258. }
  259. static int u32_reader(struct driver_data *drv_data)
  260. {
  261. void __iomem *reg = drv_data->ioaddr;
  262. while ((read_SSSR(reg) & SSSR_RNE)
  263. && (drv_data->rx < drv_data->rx_end)) {
  264. *(u32 *)(drv_data->rx) = read_SSDR(reg);
  265. drv_data->rx += 4;
  266. }
  267. return drv_data->rx == drv_data->rx_end;
  268. }
  269. static void *next_transfer(struct driver_data *drv_data)
  270. {
  271. struct spi_message *msg = drv_data->cur_msg;
  272. struct spi_transfer *trans = drv_data->cur_transfer;
  273. /* Move to next transfer */
  274. if (trans->transfer_list.next != &msg->transfers) {
  275. drv_data->cur_transfer =
  276. list_entry(trans->transfer_list.next,
  277. struct spi_transfer,
  278. transfer_list);
  279. return RUNNING_STATE;
  280. } else
  281. return DONE_STATE;
  282. }
  283. static int map_dma_buffers(struct driver_data *drv_data)
  284. {
  285. struct spi_message *msg = drv_data->cur_msg;
  286. struct device *dev = &msg->spi->dev;
  287. if (!drv_data->cur_chip->enable_dma)
  288. return 0;
  289. if (msg->is_dma_mapped)
  290. return drv_data->rx_dma && drv_data->tx_dma;
  291. if (!IS_DMA_ALIGNED(drv_data->rx) || !IS_DMA_ALIGNED(drv_data->tx))
  292. return 0;
  293. /* Modify setup if rx buffer is null */
  294. if (drv_data->rx == NULL) {
  295. *drv_data->null_dma_buf = 0;
  296. drv_data->rx = drv_data->null_dma_buf;
  297. drv_data->rx_map_len = 4;
  298. } else
  299. drv_data->rx_map_len = drv_data->len;
  300. /* Modify setup if tx buffer is null */
  301. if (drv_data->tx == NULL) {
  302. *drv_data->null_dma_buf = 0;
  303. drv_data->tx = drv_data->null_dma_buf;
  304. drv_data->tx_map_len = 4;
  305. } else
  306. drv_data->tx_map_len = drv_data->len;
  307. /* Stream map the tx buffer. Always do DMA_TO_DEVICE first
  308. * so we flush the cache *before* invalidating it, in case
  309. * the tx and rx buffers overlap.
  310. */
  311. drv_data->tx_dma = dma_map_single(dev, drv_data->tx,
  312. drv_data->tx_map_len, DMA_TO_DEVICE);
  313. if (dma_mapping_error(dev, drv_data->tx_dma))
  314. return 0;
  315. /* Stream map the rx buffer */
  316. drv_data->rx_dma = dma_map_single(dev, drv_data->rx,
  317. drv_data->rx_map_len, DMA_FROM_DEVICE);
  318. if (dma_mapping_error(dev, drv_data->rx_dma)) {
  319. dma_unmap_single(dev, drv_data->tx_dma,
  320. drv_data->tx_map_len, DMA_TO_DEVICE);
  321. return 0;
  322. }
  323. return 1;
  324. }
  325. static void unmap_dma_buffers(struct driver_data *drv_data)
  326. {
  327. struct device *dev;
  328. if (!drv_data->dma_mapped)
  329. return;
  330. if (!drv_data->cur_msg->is_dma_mapped) {
  331. dev = &drv_data->cur_msg->spi->dev;
  332. dma_unmap_single(dev, drv_data->rx_dma,
  333. drv_data->rx_map_len, DMA_FROM_DEVICE);
  334. dma_unmap_single(dev, drv_data->tx_dma,
  335. drv_data->tx_map_len, DMA_TO_DEVICE);
  336. }
  337. drv_data->dma_mapped = 0;
  338. }
  339. /* caller already set message->status; dma and pio irqs are blocked */
  340. static void giveback(struct driver_data *drv_data)
  341. {
  342. struct spi_transfer* last_transfer;
  343. unsigned long flags;
  344. struct spi_message *msg;
  345. spin_lock_irqsave(&drv_data->lock, flags);
  346. msg = drv_data->cur_msg;
  347. drv_data->cur_msg = NULL;
  348. drv_data->cur_transfer = NULL;
  349. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  350. spin_unlock_irqrestore(&drv_data->lock, flags);
  351. last_transfer = list_entry(msg->transfers.prev,
  352. struct spi_transfer,
  353. transfer_list);
  354. /* Delay if requested before any change in chip select */
  355. if (last_transfer->delay_usecs)
  356. udelay(last_transfer->delay_usecs);
  357. /* Drop chip select UNLESS cs_change is true or we are returning
  358. * a message with an error, or next message is for another chip
  359. */
  360. if (!last_transfer->cs_change)
  361. cs_deassert(drv_data);
  362. else {
  363. struct spi_message *next_msg;
  364. /* Holding of cs was hinted, but we need to make sure
  365. * the next message is for the same chip. Don't waste
  366. * time with the following tests unless this was hinted.
  367. *
  368. * We cannot postpone this until pump_messages, because
  369. * after calling msg->complete (below) the driver that
  370. * sent the current message could be unloaded, which
  371. * could invalidate the cs_control() callback...
  372. */
  373. /* get a pointer to the next message, if any */
  374. spin_lock_irqsave(&drv_data->lock, flags);
  375. if (list_empty(&drv_data->queue))
  376. next_msg = NULL;
  377. else
  378. next_msg = list_entry(drv_data->queue.next,
  379. struct spi_message, queue);
  380. spin_unlock_irqrestore(&drv_data->lock, flags);
  381. /* see if the next and current messages point
  382. * to the same chip
  383. */
  384. if (next_msg && next_msg->spi != msg->spi)
  385. next_msg = NULL;
  386. if (!next_msg || msg->state == ERROR_STATE)
  387. cs_deassert(drv_data);
  388. }
  389. msg->state = NULL;
  390. if (msg->complete)
  391. msg->complete(msg->context);
  392. drv_data->cur_chip = NULL;
  393. }
  394. static int wait_ssp_rx_stall(void const __iomem *ioaddr)
  395. {
  396. unsigned long limit = loops_per_jiffy << 1;
  397. while ((read_SSSR(ioaddr) & SSSR_BSY) && --limit)
  398. cpu_relax();
  399. return limit;
  400. }
  401. static int wait_dma_channel_stop(int channel)
  402. {
  403. unsigned long limit = loops_per_jiffy << 1;
  404. while (!(DCSR(channel) & DCSR_STOPSTATE) && --limit)
  405. cpu_relax();
  406. return limit;
  407. }
  408. static void dma_error_stop(struct driver_data *drv_data, const char *msg)
  409. {
  410. void __iomem *reg = drv_data->ioaddr;
  411. /* Stop and reset */
  412. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  413. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  414. write_SSSR(drv_data->clear_sr, reg);
  415. write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
  416. if (drv_data->ssp_type != PXA25x_SSP)
  417. write_SSTO(0, reg);
  418. flush(drv_data);
  419. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  420. unmap_dma_buffers(drv_data);
  421. dev_err(&drv_data->pdev->dev, "%s\n", msg);
  422. drv_data->cur_msg->state = ERROR_STATE;
  423. tasklet_schedule(&drv_data->pump_transfers);
  424. }
  425. static void dma_transfer_complete(struct driver_data *drv_data)
  426. {
  427. void __iomem *reg = drv_data->ioaddr;
  428. struct spi_message *msg = drv_data->cur_msg;
  429. /* Clear and disable interrupts on SSP and DMA channels*/
  430. write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
  431. write_SSSR(drv_data->clear_sr, reg);
  432. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  433. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  434. if (wait_dma_channel_stop(drv_data->rx_channel) == 0)
  435. dev_err(&drv_data->pdev->dev,
  436. "dma_handler: dma rx channel stop failed\n");
  437. if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
  438. dev_err(&drv_data->pdev->dev,
  439. "dma_transfer: ssp rx stall failed\n");
  440. unmap_dma_buffers(drv_data);
  441. /* update the buffer pointer for the amount completed in dma */
  442. drv_data->rx += drv_data->len -
  443. (DCMD(drv_data->rx_channel) & DCMD_LENGTH);
  444. /* read trailing data from fifo, it does not matter how many
  445. * bytes are in the fifo just read until buffer is full
  446. * or fifo is empty, which ever occurs first */
  447. drv_data->read(drv_data);
  448. /* return count of what was actually read */
  449. msg->actual_length += drv_data->len -
  450. (drv_data->rx_end - drv_data->rx);
  451. /* Transfer delays and chip select release are
  452. * handled in pump_transfers or giveback
  453. */
  454. /* Move to next transfer */
  455. msg->state = next_transfer(drv_data);
  456. /* Schedule transfer tasklet */
  457. tasklet_schedule(&drv_data->pump_transfers);
  458. }
  459. static void dma_handler(int channel, void *data)
  460. {
  461. struct driver_data *drv_data = data;
  462. u32 irq_status = DCSR(channel) & DMA_INT_MASK;
  463. if (irq_status & DCSR_BUSERR) {
  464. if (channel == drv_data->tx_channel)
  465. dma_error_stop(drv_data,
  466. "dma_handler: "
  467. "bad bus address on tx channel");
  468. else
  469. dma_error_stop(drv_data,
  470. "dma_handler: "
  471. "bad bus address on rx channel");
  472. return;
  473. }
  474. /* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */
  475. if ((channel == drv_data->tx_channel)
  476. && (irq_status & DCSR_ENDINTR)
  477. && (drv_data->ssp_type == PXA25x_SSP)) {
  478. /* Wait for rx to stall */
  479. if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
  480. dev_err(&drv_data->pdev->dev,
  481. "dma_handler: ssp rx stall failed\n");
  482. /* finish this transfer, start the next */
  483. dma_transfer_complete(drv_data);
  484. }
  485. }
  486. static irqreturn_t dma_transfer(struct driver_data *drv_data)
  487. {
  488. u32 irq_status;
  489. void __iomem *reg = drv_data->ioaddr;
  490. irq_status = read_SSSR(reg) & drv_data->mask_sr;
  491. if (irq_status & SSSR_ROR) {
  492. dma_error_stop(drv_data, "dma_transfer: fifo overrun");
  493. return IRQ_HANDLED;
  494. }
  495. /* Check for false positive timeout */
  496. if ((irq_status & SSSR_TINT)
  497. && (DCSR(drv_data->tx_channel) & DCSR_RUN)) {
  498. write_SSSR(SSSR_TINT, reg);
  499. return IRQ_HANDLED;
  500. }
  501. if (irq_status & SSSR_TINT || drv_data->rx == drv_data->rx_end) {
  502. /* Clear and disable timeout interrupt, do the rest in
  503. * dma_transfer_complete */
  504. if (drv_data->ssp_type != PXA25x_SSP)
  505. write_SSTO(0, reg);
  506. /* finish this transfer, start the next */
  507. dma_transfer_complete(drv_data);
  508. return IRQ_HANDLED;
  509. }
  510. /* Opps problem detected */
  511. return IRQ_NONE;
  512. }
  513. static void int_error_stop(struct driver_data *drv_data, const char* msg)
  514. {
  515. void __iomem *reg = drv_data->ioaddr;
  516. /* Stop and reset SSP */
  517. write_SSSR(drv_data->clear_sr, reg);
  518. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  519. if (drv_data->ssp_type != PXA25x_SSP)
  520. write_SSTO(0, reg);
  521. flush(drv_data);
  522. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  523. dev_err(&drv_data->pdev->dev, "%s\n", msg);
  524. drv_data->cur_msg->state = ERROR_STATE;
  525. tasklet_schedule(&drv_data->pump_transfers);
  526. }
  527. static void int_transfer_complete(struct driver_data *drv_data)
  528. {
  529. void __iomem *reg = drv_data->ioaddr;
  530. /* Stop SSP */
  531. write_SSSR(drv_data->clear_sr, reg);
  532. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  533. if (drv_data->ssp_type != PXA25x_SSP)
  534. write_SSTO(0, reg);
  535. /* Update total byte transfered return count actual bytes read */
  536. drv_data->cur_msg->actual_length += drv_data->len -
  537. (drv_data->rx_end - drv_data->rx);
  538. /* Transfer delays and chip select release are
  539. * handled in pump_transfers or giveback
  540. */
  541. /* Move to next transfer */
  542. drv_data->cur_msg->state = next_transfer(drv_data);
  543. /* Schedule transfer tasklet */
  544. tasklet_schedule(&drv_data->pump_transfers);
  545. }
  546. static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
  547. {
  548. void __iomem *reg = drv_data->ioaddr;
  549. u32 irq_mask = (read_SSCR1(reg) & SSCR1_TIE) ?
  550. drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
  551. u32 irq_status = read_SSSR(reg) & irq_mask;
  552. if (irq_status & SSSR_ROR) {
  553. int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
  554. return IRQ_HANDLED;
  555. }
  556. if (irq_status & SSSR_TINT) {
  557. write_SSSR(SSSR_TINT, reg);
  558. if (drv_data->read(drv_data)) {
  559. int_transfer_complete(drv_data);
  560. return IRQ_HANDLED;
  561. }
  562. }
  563. /* Drain rx fifo, Fill tx fifo and prevent overruns */
  564. do {
  565. if (drv_data->read(drv_data)) {
  566. int_transfer_complete(drv_data);
  567. return IRQ_HANDLED;
  568. }
  569. } while (drv_data->write(drv_data));
  570. if (drv_data->read(drv_data)) {
  571. int_transfer_complete(drv_data);
  572. return IRQ_HANDLED;
  573. }
  574. if (drv_data->tx == drv_data->tx_end) {
  575. write_SSCR1(read_SSCR1(reg) & ~SSCR1_TIE, reg);
  576. /* PXA25x_SSP has no timeout, read trailing bytes */
  577. if (drv_data->ssp_type == PXA25x_SSP) {
  578. if (!wait_ssp_rx_stall(reg))
  579. {
  580. int_error_stop(drv_data, "interrupt_transfer: "
  581. "rx stall failed");
  582. return IRQ_HANDLED;
  583. }
  584. if (!drv_data->read(drv_data))
  585. {
  586. int_error_stop(drv_data,
  587. "interrupt_transfer: "
  588. "trailing byte read failed");
  589. return IRQ_HANDLED;
  590. }
  591. int_transfer_complete(drv_data);
  592. }
  593. }
  594. /* We did something */
  595. return IRQ_HANDLED;
  596. }
  597. static irqreturn_t ssp_int(int irq, void *dev_id)
  598. {
  599. struct driver_data *drv_data = dev_id;
  600. void __iomem *reg = drv_data->ioaddr;
  601. if (!drv_data->cur_msg) {
  602. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  603. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  604. if (drv_data->ssp_type != PXA25x_SSP)
  605. write_SSTO(0, reg);
  606. write_SSSR(drv_data->clear_sr, reg);
  607. dev_err(&drv_data->pdev->dev, "bad message state "
  608. "in interrupt handler\n");
  609. /* Never fail */
  610. return IRQ_HANDLED;
  611. }
  612. return drv_data->transfer_handler(drv_data);
  613. }
  614. static int set_dma_burst_and_threshold(struct chip_data *chip,
  615. struct spi_device *spi,
  616. u8 bits_per_word, u32 *burst_code,
  617. u32 *threshold)
  618. {
  619. struct pxa2xx_spi_chip *chip_info =
  620. (struct pxa2xx_spi_chip *)spi->controller_data;
  621. int bytes_per_word;
  622. int burst_bytes;
  623. int thresh_words;
  624. int req_burst_size;
  625. int retval = 0;
  626. /* Set the threshold (in registers) to equal the same amount of data
  627. * as represented by burst size (in bytes). The computation below
  628. * is (burst_size rounded up to nearest 8 byte, word or long word)
  629. * divided by (bytes/register); the tx threshold is the inverse of
  630. * the rx, so that there will always be enough data in the rx fifo
  631. * to satisfy a burst, and there will always be enough space in the
  632. * tx fifo to accept a burst (a tx burst will overwrite the fifo if
  633. * there is not enough space), there must always remain enough empty
  634. * space in the rx fifo for any data loaded to the tx fifo.
  635. * Whenever burst_size (in bytes) equals bits/word, the fifo threshold
  636. * will be 8, or half the fifo;
  637. * The threshold can only be set to 2, 4 or 8, but not 16, because
  638. * to burst 16 to the tx fifo, the fifo would have to be empty;
  639. * however, the minimum fifo trigger level is 1, and the tx will
  640. * request service when the fifo is at this level, with only 15 spaces.
  641. */
  642. /* find bytes/word */
  643. if (bits_per_word <= 8)
  644. bytes_per_word = 1;
  645. else if (bits_per_word <= 16)
  646. bytes_per_word = 2;
  647. else
  648. bytes_per_word = 4;
  649. /* use struct pxa2xx_spi_chip->dma_burst_size if available */
  650. if (chip_info)
  651. req_burst_size = chip_info->dma_burst_size;
  652. else {
  653. switch (chip->dma_burst_size) {
  654. default:
  655. /* if the default burst size is not set,
  656. * do it now */
  657. chip->dma_burst_size = DCMD_BURST8;
  658. case DCMD_BURST8:
  659. req_burst_size = 8;
  660. break;
  661. case DCMD_BURST16:
  662. req_burst_size = 16;
  663. break;
  664. case DCMD_BURST32:
  665. req_burst_size = 32;
  666. break;
  667. }
  668. }
  669. if (req_burst_size <= 8) {
  670. *burst_code = DCMD_BURST8;
  671. burst_bytes = 8;
  672. } else if (req_burst_size <= 16) {
  673. if (bytes_per_word == 1) {
  674. /* don't burst more than 1/2 the fifo */
  675. *burst_code = DCMD_BURST8;
  676. burst_bytes = 8;
  677. retval = 1;
  678. } else {
  679. *burst_code = DCMD_BURST16;
  680. burst_bytes = 16;
  681. }
  682. } else {
  683. if (bytes_per_word == 1) {
  684. /* don't burst more than 1/2 the fifo */
  685. *burst_code = DCMD_BURST8;
  686. burst_bytes = 8;
  687. retval = 1;
  688. } else if (bytes_per_word == 2) {
  689. /* don't burst more than 1/2 the fifo */
  690. *burst_code = DCMD_BURST16;
  691. burst_bytes = 16;
  692. retval = 1;
  693. } else {
  694. *burst_code = DCMD_BURST32;
  695. burst_bytes = 32;
  696. }
  697. }
  698. thresh_words = burst_bytes / bytes_per_word;
  699. /* thresh_words will be between 2 and 8 */
  700. *threshold = (SSCR1_RxTresh(thresh_words) & SSCR1_RFT)
  701. | (SSCR1_TxTresh(16-thresh_words) & SSCR1_TFT);
  702. return retval;
  703. }
  704. static unsigned int ssp_get_clk_div(struct ssp_device *ssp, int rate)
  705. {
  706. unsigned long ssp_clk = clk_get_rate(ssp->clk);
  707. if (ssp->type == PXA25x_SSP)
  708. return ((ssp_clk / (2 * rate) - 1) & 0xff) << 8;
  709. else
  710. return ((ssp_clk / rate - 1) & 0xfff) << 8;
  711. }
  712. static void pump_transfers(unsigned long data)
  713. {
  714. struct driver_data *drv_data = (struct driver_data *)data;
  715. struct spi_message *message = NULL;
  716. struct spi_transfer *transfer = NULL;
  717. struct spi_transfer *previous = NULL;
  718. struct chip_data *chip = NULL;
  719. struct ssp_device *ssp = drv_data->ssp;
  720. void __iomem *reg = drv_data->ioaddr;
  721. u32 clk_div = 0;
  722. u8 bits = 0;
  723. u32 speed = 0;
  724. u32 cr0;
  725. u32 cr1;
  726. u32 dma_thresh = drv_data->cur_chip->dma_threshold;
  727. u32 dma_burst = drv_data->cur_chip->dma_burst_size;
  728. /* Get current state information */
  729. message = drv_data->cur_msg;
  730. transfer = drv_data->cur_transfer;
  731. chip = drv_data->cur_chip;
  732. /* Handle for abort */
  733. if (message->state == ERROR_STATE) {
  734. message->status = -EIO;
  735. giveback(drv_data);
  736. return;
  737. }
  738. /* Handle end of message */
  739. if (message->state == DONE_STATE) {
  740. message->status = 0;
  741. giveback(drv_data);
  742. return;
  743. }
  744. /* Delay if requested at end of transfer before CS change */
  745. if (message->state == RUNNING_STATE) {
  746. previous = list_entry(transfer->transfer_list.prev,
  747. struct spi_transfer,
  748. transfer_list);
  749. if (previous->delay_usecs)
  750. udelay(previous->delay_usecs);
  751. /* Drop chip select only if cs_change is requested */
  752. if (previous->cs_change)
  753. cs_deassert(drv_data);
  754. }
  755. /* Check for transfers that need multiple DMA segments */
  756. if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
  757. /* reject already-mapped transfers; PIO won't always work */
  758. if (message->is_dma_mapped
  759. || transfer->rx_dma || transfer->tx_dma) {
  760. dev_err(&drv_data->pdev->dev,
  761. "pump_transfers: mapped transfer length "
  762. "of %u is greater than %d\n",
  763. transfer->len, MAX_DMA_LEN);
  764. message->status = -EINVAL;
  765. giveback(drv_data);
  766. return;
  767. }
  768. /* warn ... we force this to PIO mode */
  769. if (printk_ratelimit())
  770. dev_warn(&message->spi->dev, "pump_transfers: "
  771. "DMA disabled for transfer length %ld "
  772. "greater than %d\n",
  773. (long)drv_data->len, MAX_DMA_LEN);
  774. }
  775. /* Setup the transfer state based on the type of transfer */
  776. if (flush(drv_data) == 0) {
  777. dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
  778. message->status = -EIO;
  779. giveback(drv_data);
  780. return;
  781. }
  782. drv_data->n_bytes = chip->n_bytes;
  783. drv_data->dma_width = chip->dma_width;
  784. drv_data->tx = (void *)transfer->tx_buf;
  785. drv_data->tx_end = drv_data->tx + transfer->len;
  786. drv_data->rx = transfer->rx_buf;
  787. drv_data->rx_end = drv_data->rx + transfer->len;
  788. drv_data->rx_dma = transfer->rx_dma;
  789. drv_data->tx_dma = transfer->tx_dma;
  790. drv_data->len = transfer->len & DCMD_LENGTH;
  791. drv_data->write = drv_data->tx ? chip->write : null_writer;
  792. drv_data->read = drv_data->rx ? chip->read : null_reader;
  793. /* Change speed and bit per word on a per transfer */
  794. cr0 = chip->cr0;
  795. if (transfer->speed_hz || transfer->bits_per_word) {
  796. bits = chip->bits_per_word;
  797. speed = chip->speed_hz;
  798. if (transfer->speed_hz)
  799. speed = transfer->speed_hz;
  800. if (transfer->bits_per_word)
  801. bits = transfer->bits_per_word;
  802. clk_div = ssp_get_clk_div(ssp, speed);
  803. if (bits <= 8) {
  804. drv_data->n_bytes = 1;
  805. drv_data->dma_width = DCMD_WIDTH1;
  806. drv_data->read = drv_data->read != null_reader ?
  807. u8_reader : null_reader;
  808. drv_data->write = drv_data->write != null_writer ?
  809. u8_writer : null_writer;
  810. } else if (bits <= 16) {
  811. drv_data->n_bytes = 2;
  812. drv_data->dma_width = DCMD_WIDTH2;
  813. drv_data->read = drv_data->read != null_reader ?
  814. u16_reader : null_reader;
  815. drv_data->write = drv_data->write != null_writer ?
  816. u16_writer : null_writer;
  817. } else if (bits <= 32) {
  818. drv_data->n_bytes = 4;
  819. drv_data->dma_width = DCMD_WIDTH4;
  820. drv_data->read = drv_data->read != null_reader ?
  821. u32_reader : null_reader;
  822. drv_data->write = drv_data->write != null_writer ?
  823. u32_writer : null_writer;
  824. }
  825. /* if bits/word is changed in dma mode, then must check the
  826. * thresholds and burst also */
  827. if (chip->enable_dma) {
  828. if (set_dma_burst_and_threshold(chip, message->spi,
  829. bits, &dma_burst,
  830. &dma_thresh))
  831. if (printk_ratelimit())
  832. dev_warn(&message->spi->dev,
  833. "pump_transfers: "
  834. "DMA burst size reduced to "
  835. "match bits_per_word\n");
  836. }
  837. cr0 = clk_div
  838. | SSCR0_Motorola
  839. | SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
  840. | SSCR0_SSE
  841. | (bits > 16 ? SSCR0_EDSS : 0);
  842. }
  843. message->state = RUNNING_STATE;
  844. /* Try to map dma buffer and do a dma transfer if successful, but
  845. * only if the length is non-zero and less than MAX_DMA_LEN.
  846. *
  847. * Zero-length non-descriptor DMA is illegal on PXA2xx; force use
  848. * of PIO instead. Care is needed above because the transfer may
  849. * have have been passed with buffers that are already dma mapped.
  850. * A zero-length transfer in PIO mode will not try to write/read
  851. * to/from the buffers
  852. *
  853. * REVISIT large transfers are exactly where we most want to be
  854. * using DMA. If this happens much, split those transfers into
  855. * multiple DMA segments rather than forcing PIO.
  856. */
  857. drv_data->dma_mapped = 0;
  858. if (drv_data->len > 0 && drv_data->len <= MAX_DMA_LEN)
  859. drv_data->dma_mapped = map_dma_buffers(drv_data);
  860. if (drv_data->dma_mapped) {
  861. /* Ensure we have the correct interrupt handler */
  862. drv_data->transfer_handler = dma_transfer;
  863. /* Setup rx DMA Channel */
  864. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  865. DSADR(drv_data->rx_channel) = drv_data->ssdr_physical;
  866. DTADR(drv_data->rx_channel) = drv_data->rx_dma;
  867. if (drv_data->rx == drv_data->null_dma_buf)
  868. /* No target address increment */
  869. DCMD(drv_data->rx_channel) = DCMD_FLOWSRC
  870. | drv_data->dma_width
  871. | dma_burst
  872. | drv_data->len;
  873. else
  874. DCMD(drv_data->rx_channel) = DCMD_INCTRGADDR
  875. | DCMD_FLOWSRC
  876. | drv_data->dma_width
  877. | dma_burst
  878. | drv_data->len;
  879. /* Setup tx DMA Channel */
  880. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  881. DSADR(drv_data->tx_channel) = drv_data->tx_dma;
  882. DTADR(drv_data->tx_channel) = drv_data->ssdr_physical;
  883. if (drv_data->tx == drv_data->null_dma_buf)
  884. /* No source address increment */
  885. DCMD(drv_data->tx_channel) = DCMD_FLOWTRG
  886. | drv_data->dma_width
  887. | dma_burst
  888. | drv_data->len;
  889. else
  890. DCMD(drv_data->tx_channel) = DCMD_INCSRCADDR
  891. | DCMD_FLOWTRG
  892. | drv_data->dma_width
  893. | dma_burst
  894. | drv_data->len;
  895. /* Enable dma end irqs on SSP to detect end of transfer */
  896. if (drv_data->ssp_type == PXA25x_SSP)
  897. DCMD(drv_data->tx_channel) |= DCMD_ENDIRQEN;
  898. /* Clear status and start DMA engine */
  899. cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
  900. write_SSSR(drv_data->clear_sr, reg);
  901. DCSR(drv_data->rx_channel) |= DCSR_RUN;
  902. DCSR(drv_data->tx_channel) |= DCSR_RUN;
  903. } else {
  904. /* Ensure we have the correct interrupt handler */
  905. drv_data->transfer_handler = interrupt_transfer;
  906. /* Clear status */
  907. cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
  908. write_SSSR(drv_data->clear_sr, reg);
  909. }
  910. /* see if we need to reload the config registers */
  911. if ((read_SSCR0(reg) != cr0)
  912. || (read_SSCR1(reg) & SSCR1_CHANGE_MASK) !=
  913. (cr1 & SSCR1_CHANGE_MASK)) {
  914. /* stop the SSP, and update the other bits */
  915. write_SSCR0(cr0 & ~SSCR0_SSE, reg);
  916. if (drv_data->ssp_type != PXA25x_SSP)
  917. write_SSTO(chip->timeout, reg);
  918. /* first set CR1 without interrupt and service enables */
  919. write_SSCR1(cr1 & SSCR1_CHANGE_MASK, reg);
  920. /* restart the SSP */
  921. write_SSCR0(cr0, reg);
  922. } else {
  923. if (drv_data->ssp_type != PXA25x_SSP)
  924. write_SSTO(chip->timeout, reg);
  925. }
  926. cs_assert(drv_data);
  927. /* after chip select, release the data by enabling service
  928. * requests and interrupts, without changing any mode bits */
  929. write_SSCR1(cr1, reg);
  930. }
  931. static void pump_messages(struct work_struct *work)
  932. {
  933. struct driver_data *drv_data =
  934. container_of(work, struct driver_data, pump_messages);
  935. unsigned long flags;
  936. /* Lock queue and check for queue work */
  937. spin_lock_irqsave(&drv_data->lock, flags);
  938. if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) {
  939. drv_data->busy = 0;
  940. spin_unlock_irqrestore(&drv_data->lock, flags);
  941. return;
  942. }
  943. /* Make sure we are not already running a message */
  944. if (drv_data->cur_msg) {
  945. spin_unlock_irqrestore(&drv_data->lock, flags);
  946. return;
  947. }
  948. /* Extract head of queue */
  949. drv_data->cur_msg = list_entry(drv_data->queue.next,
  950. struct spi_message, queue);
  951. list_del_init(&drv_data->cur_msg->queue);
  952. /* Initial message state*/
  953. drv_data->cur_msg->state = START_STATE;
  954. drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
  955. struct spi_transfer,
  956. transfer_list);
  957. /* prepare to setup the SSP, in pump_transfers, using the per
  958. * chip configuration */
  959. drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
  960. /* Mark as busy and launch transfers */
  961. tasklet_schedule(&drv_data->pump_transfers);
  962. drv_data->busy = 1;
  963. spin_unlock_irqrestore(&drv_data->lock, flags);
  964. }
  965. static int transfer(struct spi_device *spi, struct spi_message *msg)
  966. {
  967. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  968. unsigned long flags;
  969. spin_lock_irqsave(&drv_data->lock, flags);
  970. if (drv_data->run == QUEUE_STOPPED) {
  971. spin_unlock_irqrestore(&drv_data->lock, flags);
  972. return -ESHUTDOWN;
  973. }
  974. msg->actual_length = 0;
  975. msg->status = -EINPROGRESS;
  976. msg->state = START_STATE;
  977. list_add_tail(&msg->queue, &drv_data->queue);
  978. if (drv_data->run == QUEUE_RUNNING && !drv_data->busy)
  979. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  980. spin_unlock_irqrestore(&drv_data->lock, flags);
  981. return 0;
  982. }
  983. /* the spi->mode bits understood by this driver: */
  984. #define MODEBITS (SPI_CPOL | SPI_CPHA)
  985. static int setup_cs(struct spi_device *spi, struct chip_data *chip,
  986. struct pxa2xx_spi_chip *chip_info)
  987. {
  988. int err = 0;
  989. if (chip == NULL || chip_info == NULL)
  990. return 0;
  991. /* NOTE: setup() can be called multiple times, possibly with
  992. * different chip_info, release previously requested GPIO
  993. */
  994. if (gpio_is_valid(chip->gpio_cs))
  995. gpio_free(chip->gpio_cs);
  996. /* If (*cs_control) is provided, ignore GPIO chip select */
  997. if (chip_info->cs_control) {
  998. chip->cs_control = chip_info->cs_control;
  999. return 0;
  1000. }
  1001. if (gpio_is_valid(chip_info->gpio_cs)) {
  1002. err = gpio_request(chip_info->gpio_cs, "SPI_CS");
  1003. if (err) {
  1004. dev_err(&spi->dev, "failed to request chip select "
  1005. "GPIO%d\n", chip_info->gpio_cs);
  1006. return err;
  1007. }
  1008. chip->gpio_cs = chip_info->gpio_cs;
  1009. chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
  1010. err = gpio_direction_output(chip->gpio_cs,
  1011. !chip->gpio_cs_inverted);
  1012. }
  1013. return err;
  1014. }
  1015. static int setup(struct spi_device *spi)
  1016. {
  1017. struct pxa2xx_spi_chip *chip_info = NULL;
  1018. struct chip_data *chip;
  1019. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  1020. struct ssp_device *ssp = drv_data->ssp;
  1021. unsigned int clk_div;
  1022. uint tx_thres = TX_THRESH_DFLT;
  1023. uint rx_thres = RX_THRESH_DFLT;
  1024. if (!spi->bits_per_word)
  1025. spi->bits_per_word = 8;
  1026. if (drv_data->ssp_type != PXA25x_SSP
  1027. && (spi->bits_per_word < 4 || spi->bits_per_word > 32)) {
  1028. dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
  1029. "b/w not 4-32 for type non-PXA25x_SSP\n",
  1030. drv_data->ssp_type, spi->bits_per_word);
  1031. return -EINVAL;
  1032. }
  1033. else if (drv_data->ssp_type == PXA25x_SSP
  1034. && (spi->bits_per_word < 4
  1035. || spi->bits_per_word > 16)) {
  1036. dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
  1037. "b/w not 4-16 for type PXA25x_SSP\n",
  1038. drv_data->ssp_type, spi->bits_per_word);
  1039. return -EINVAL;
  1040. }
  1041. if (spi->mode & ~MODEBITS) {
  1042. dev_dbg(&spi->dev, "setup: unsupported mode bits %x\n",
  1043. spi->mode & ~MODEBITS);
  1044. return -EINVAL;
  1045. }
  1046. /* Only alloc on first setup */
  1047. chip = spi_get_ctldata(spi);
  1048. if (!chip) {
  1049. chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
  1050. if (!chip) {
  1051. dev_err(&spi->dev,
  1052. "failed setup: can't allocate chip data\n");
  1053. return -ENOMEM;
  1054. }
  1055. chip->gpio_cs = -1;
  1056. chip->enable_dma = 0;
  1057. chip->timeout = TIMOUT_DFLT;
  1058. chip->dma_burst_size = drv_data->master_info->enable_dma ?
  1059. DCMD_BURST8 : 0;
  1060. }
  1061. /* protocol drivers may change the chip settings, so...
  1062. * if chip_info exists, use it */
  1063. chip_info = spi->controller_data;
  1064. /* chip_info isn't always needed */
  1065. chip->cr1 = 0;
  1066. if (chip_info) {
  1067. if (chip_info->timeout)
  1068. chip->timeout = chip_info->timeout;
  1069. if (chip_info->tx_threshold)
  1070. tx_thres = chip_info->tx_threshold;
  1071. if (chip_info->rx_threshold)
  1072. rx_thres = chip_info->rx_threshold;
  1073. chip->enable_dma = drv_data->master_info->enable_dma;
  1074. chip->dma_threshold = 0;
  1075. if (chip_info->enable_loopback)
  1076. chip->cr1 = SSCR1_LBM;
  1077. }
  1078. chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
  1079. (SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
  1080. /* set dma burst and threshold outside of chip_info path so that if
  1081. * chip_info goes away after setting chip->enable_dma, the
  1082. * burst and threshold can still respond to changes in bits_per_word */
  1083. if (chip->enable_dma) {
  1084. /* set up legal burst and threshold for dma */
  1085. if (set_dma_burst_and_threshold(chip, spi, spi->bits_per_word,
  1086. &chip->dma_burst_size,
  1087. &chip->dma_threshold)) {
  1088. dev_warn(&spi->dev, "in setup: DMA burst size reduced "
  1089. "to match bits_per_word\n");
  1090. }
  1091. }
  1092. clk_div = ssp_get_clk_div(ssp, spi->max_speed_hz);
  1093. chip->speed_hz = spi->max_speed_hz;
  1094. chip->cr0 = clk_div
  1095. | SSCR0_Motorola
  1096. | SSCR0_DataSize(spi->bits_per_word > 16 ?
  1097. spi->bits_per_word - 16 : spi->bits_per_word)
  1098. | SSCR0_SSE
  1099. | (spi->bits_per_word > 16 ? SSCR0_EDSS : 0);
  1100. chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
  1101. chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
  1102. | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
  1103. /* NOTE: PXA25x_SSP _could_ use external clocking ... */
  1104. if (drv_data->ssp_type != PXA25x_SSP)
  1105. dev_dbg(&spi->dev, "%d bits/word, %ld Hz, mode %d, %s\n",
  1106. spi->bits_per_word,
  1107. clk_get_rate(ssp->clk)
  1108. / (1 + ((chip->cr0 & SSCR0_SCR) >> 8)),
  1109. spi->mode & 0x3,
  1110. chip->enable_dma ? "DMA" : "PIO");
  1111. else
  1112. dev_dbg(&spi->dev, "%d bits/word, %ld Hz, mode %d, %s\n",
  1113. spi->bits_per_word,
  1114. clk_get_rate(ssp->clk) / 2
  1115. / (1 + ((chip->cr0 & SSCR0_SCR) >> 8)),
  1116. spi->mode & 0x3,
  1117. chip->enable_dma ? "DMA" : "PIO");
  1118. if (spi->bits_per_word <= 8) {
  1119. chip->n_bytes = 1;
  1120. chip->dma_width = DCMD_WIDTH1;
  1121. chip->read = u8_reader;
  1122. chip->write = u8_writer;
  1123. } else if (spi->bits_per_word <= 16) {
  1124. chip->n_bytes = 2;
  1125. chip->dma_width = DCMD_WIDTH2;
  1126. chip->read = u16_reader;
  1127. chip->write = u16_writer;
  1128. } else if (spi->bits_per_word <= 32) {
  1129. chip->cr0 |= SSCR0_EDSS;
  1130. chip->n_bytes = 4;
  1131. chip->dma_width = DCMD_WIDTH4;
  1132. chip->read = u32_reader;
  1133. chip->write = u32_writer;
  1134. } else {
  1135. dev_err(&spi->dev, "invalid wordsize\n");
  1136. return -ENODEV;
  1137. }
  1138. chip->bits_per_word = spi->bits_per_word;
  1139. spi_set_ctldata(spi, chip);
  1140. return setup_cs(spi, chip, chip_info);
  1141. }
  1142. static void cleanup(struct spi_device *spi)
  1143. {
  1144. struct chip_data *chip = spi_get_ctldata(spi);
  1145. if (!chip)
  1146. return;
  1147. if (gpio_is_valid(chip->gpio_cs))
  1148. gpio_free(chip->gpio_cs);
  1149. kfree(chip);
  1150. }
  1151. static int __init init_queue(struct driver_data *drv_data)
  1152. {
  1153. INIT_LIST_HEAD(&drv_data->queue);
  1154. spin_lock_init(&drv_data->lock);
  1155. drv_data->run = QUEUE_STOPPED;
  1156. drv_data->busy = 0;
  1157. tasklet_init(&drv_data->pump_transfers,
  1158. pump_transfers, (unsigned long)drv_data);
  1159. INIT_WORK(&drv_data->pump_messages, pump_messages);
  1160. drv_data->workqueue = create_singlethread_workqueue(
  1161. dev_name(drv_data->master->dev.parent));
  1162. if (drv_data->workqueue == NULL)
  1163. return -EBUSY;
  1164. return 0;
  1165. }
  1166. static int start_queue(struct driver_data *drv_data)
  1167. {
  1168. unsigned long flags;
  1169. spin_lock_irqsave(&drv_data->lock, flags);
  1170. if (drv_data->run == QUEUE_RUNNING || drv_data->busy) {
  1171. spin_unlock_irqrestore(&drv_data->lock, flags);
  1172. return -EBUSY;
  1173. }
  1174. drv_data->run = QUEUE_RUNNING;
  1175. drv_data->cur_msg = NULL;
  1176. drv_data->cur_transfer = NULL;
  1177. drv_data->cur_chip = NULL;
  1178. spin_unlock_irqrestore(&drv_data->lock, flags);
  1179. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  1180. return 0;
  1181. }
  1182. static int stop_queue(struct driver_data *drv_data)
  1183. {
  1184. unsigned long flags;
  1185. unsigned limit = 500;
  1186. int status = 0;
  1187. spin_lock_irqsave(&drv_data->lock, flags);
  1188. /* This is a bit lame, but is optimized for the common execution path.
  1189. * A wait_queue on the drv_data->busy could be used, but then the common
  1190. * execution path (pump_messages) would be required to call wake_up or
  1191. * friends on every SPI message. Do this instead */
  1192. drv_data->run = QUEUE_STOPPED;
  1193. while (!list_empty(&drv_data->queue) && drv_data->busy && limit--) {
  1194. spin_unlock_irqrestore(&drv_data->lock, flags);
  1195. msleep(10);
  1196. spin_lock_irqsave(&drv_data->lock, flags);
  1197. }
  1198. if (!list_empty(&drv_data->queue) || drv_data->busy)
  1199. status = -EBUSY;
  1200. spin_unlock_irqrestore(&drv_data->lock, flags);
  1201. return status;
  1202. }
  1203. static int destroy_queue(struct driver_data *drv_data)
  1204. {
  1205. int status;
  1206. status = stop_queue(drv_data);
  1207. /* we are unloading the module or failing to load (only two calls
  1208. * to this routine), and neither call can handle a return value.
  1209. * However, destroy_workqueue calls flush_workqueue, and that will
  1210. * block until all work is done. If the reason that stop_queue
  1211. * timed out is that the work will never finish, then it does no
  1212. * good to call destroy_workqueue, so return anyway. */
  1213. if (status != 0)
  1214. return status;
  1215. destroy_workqueue(drv_data->workqueue);
  1216. return 0;
  1217. }
  1218. static int __init pxa2xx_spi_probe(struct platform_device *pdev)
  1219. {
  1220. struct device *dev = &pdev->dev;
  1221. struct pxa2xx_spi_master *platform_info;
  1222. struct spi_master *master;
  1223. struct driver_data *drv_data;
  1224. struct ssp_device *ssp;
  1225. int status;
  1226. platform_info = dev->platform_data;
  1227. ssp = ssp_request(pdev->id, pdev->name);
  1228. if (ssp == NULL) {
  1229. dev_err(&pdev->dev, "failed to request SSP%d\n", pdev->id);
  1230. return -ENODEV;
  1231. }
  1232. /* Allocate master with space for drv_data and null dma buffer */
  1233. master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
  1234. if (!master) {
  1235. dev_err(&pdev->dev, "cannot alloc spi_master\n");
  1236. ssp_free(ssp);
  1237. return -ENOMEM;
  1238. }
  1239. drv_data = spi_master_get_devdata(master);
  1240. drv_data->master = master;
  1241. drv_data->master_info = platform_info;
  1242. drv_data->pdev = pdev;
  1243. drv_data->ssp = ssp;
  1244. master->bus_num = pdev->id;
  1245. master->num_chipselect = platform_info->num_chipselect;
  1246. master->dma_alignment = DMA_ALIGNMENT;
  1247. master->cleanup = cleanup;
  1248. master->setup = setup;
  1249. master->transfer = transfer;
  1250. drv_data->ssp_type = ssp->type;
  1251. drv_data->null_dma_buf = (u32 *)ALIGN((u32)(drv_data +
  1252. sizeof(struct driver_data)), 8);
  1253. drv_data->ioaddr = ssp->mmio_base;
  1254. drv_data->ssdr_physical = ssp->phys_base + SSDR;
  1255. if (ssp->type == PXA25x_SSP) {
  1256. drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
  1257. drv_data->dma_cr1 = 0;
  1258. drv_data->clear_sr = SSSR_ROR;
  1259. drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
  1260. } else {
  1261. drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
  1262. drv_data->dma_cr1 = SSCR1_TSRE | SSCR1_RSRE | SSCR1_TINTE;
  1263. drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
  1264. drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
  1265. }
  1266. status = request_irq(ssp->irq, ssp_int, 0, dev_name(dev), drv_data);
  1267. if (status < 0) {
  1268. dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
  1269. goto out_error_master_alloc;
  1270. }
  1271. /* Setup DMA if requested */
  1272. drv_data->tx_channel = -1;
  1273. drv_data->rx_channel = -1;
  1274. if (platform_info->enable_dma) {
  1275. /* Get two DMA channels (rx and tx) */
  1276. drv_data->rx_channel = pxa_request_dma("pxa2xx_spi_ssp_rx",
  1277. DMA_PRIO_HIGH,
  1278. dma_handler,
  1279. drv_data);
  1280. if (drv_data->rx_channel < 0) {
  1281. dev_err(dev, "problem (%d) requesting rx channel\n",
  1282. drv_data->rx_channel);
  1283. status = -ENODEV;
  1284. goto out_error_irq_alloc;
  1285. }
  1286. drv_data->tx_channel = pxa_request_dma("pxa2xx_spi_ssp_tx",
  1287. DMA_PRIO_MEDIUM,
  1288. dma_handler,
  1289. drv_data);
  1290. if (drv_data->tx_channel < 0) {
  1291. dev_err(dev, "problem (%d) requesting tx channel\n",
  1292. drv_data->tx_channel);
  1293. status = -ENODEV;
  1294. goto out_error_dma_alloc;
  1295. }
  1296. DRCMR(ssp->drcmr_rx) = DRCMR_MAPVLD | drv_data->rx_channel;
  1297. DRCMR(ssp->drcmr_tx) = DRCMR_MAPVLD | drv_data->tx_channel;
  1298. }
  1299. /* Enable SOC clock */
  1300. clk_enable(ssp->clk);
  1301. /* Load default SSP configuration */
  1302. write_SSCR0(0, drv_data->ioaddr);
  1303. write_SSCR1(SSCR1_RxTresh(RX_THRESH_DFLT) |
  1304. SSCR1_TxTresh(TX_THRESH_DFLT),
  1305. drv_data->ioaddr);
  1306. write_SSCR0(SSCR0_SerClkDiv(2)
  1307. | SSCR0_Motorola
  1308. | SSCR0_DataSize(8),
  1309. drv_data->ioaddr);
  1310. if (drv_data->ssp_type != PXA25x_SSP)
  1311. write_SSTO(0, drv_data->ioaddr);
  1312. write_SSPSP(0, drv_data->ioaddr);
  1313. /* Initial and start queue */
  1314. status = init_queue(drv_data);
  1315. if (status != 0) {
  1316. dev_err(&pdev->dev, "problem initializing queue\n");
  1317. goto out_error_clock_enabled;
  1318. }
  1319. status = start_queue(drv_data);
  1320. if (status != 0) {
  1321. dev_err(&pdev->dev, "problem starting queue\n");
  1322. goto out_error_clock_enabled;
  1323. }
  1324. /* Register with the SPI framework */
  1325. platform_set_drvdata(pdev, drv_data);
  1326. status = spi_register_master(master);
  1327. if (status != 0) {
  1328. dev_err(&pdev->dev, "problem registering spi master\n");
  1329. goto out_error_queue_alloc;
  1330. }
  1331. return status;
  1332. out_error_queue_alloc:
  1333. destroy_queue(drv_data);
  1334. out_error_clock_enabled:
  1335. clk_disable(ssp->clk);
  1336. out_error_dma_alloc:
  1337. if (drv_data->tx_channel != -1)
  1338. pxa_free_dma(drv_data->tx_channel);
  1339. if (drv_data->rx_channel != -1)
  1340. pxa_free_dma(drv_data->rx_channel);
  1341. out_error_irq_alloc:
  1342. free_irq(ssp->irq, drv_data);
  1343. out_error_master_alloc:
  1344. spi_master_put(master);
  1345. ssp_free(ssp);
  1346. return status;
  1347. }
  1348. static int pxa2xx_spi_remove(struct platform_device *pdev)
  1349. {
  1350. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1351. struct ssp_device *ssp;
  1352. int status = 0;
  1353. if (!drv_data)
  1354. return 0;
  1355. ssp = drv_data->ssp;
  1356. /* Remove the queue */
  1357. status = destroy_queue(drv_data);
  1358. if (status != 0)
  1359. /* the kernel does not check the return status of this
  1360. * this routine (mod->exit, within the kernel). Therefore
  1361. * nothing is gained by returning from here, the module is
  1362. * going away regardless, and we should not leave any more
  1363. * resources allocated than necessary. We cannot free the
  1364. * message memory in drv_data->queue, but we can release the
  1365. * resources below. I think the kernel should honor -EBUSY
  1366. * returns but... */
  1367. dev_err(&pdev->dev, "pxa2xx_spi_remove: workqueue will not "
  1368. "complete, message memory not freed\n");
  1369. /* Disable the SSP at the peripheral and SOC level */
  1370. write_SSCR0(0, drv_data->ioaddr);
  1371. clk_disable(ssp->clk);
  1372. /* Release DMA */
  1373. if (drv_data->master_info->enable_dma) {
  1374. DRCMR(ssp->drcmr_rx) = 0;
  1375. DRCMR(ssp->drcmr_tx) = 0;
  1376. pxa_free_dma(drv_data->tx_channel);
  1377. pxa_free_dma(drv_data->rx_channel);
  1378. }
  1379. /* Release IRQ */
  1380. free_irq(ssp->irq, drv_data);
  1381. /* Release SSP */
  1382. ssp_free(ssp);
  1383. /* Disconnect from the SPI framework */
  1384. spi_unregister_master(drv_data->master);
  1385. /* Prevent double remove */
  1386. platform_set_drvdata(pdev, NULL);
  1387. return 0;
  1388. }
  1389. static void pxa2xx_spi_shutdown(struct platform_device *pdev)
  1390. {
  1391. int status = 0;
  1392. if ((status = pxa2xx_spi_remove(pdev)) != 0)
  1393. dev_err(&pdev->dev, "shutdown failed with %d\n", status);
  1394. }
  1395. #ifdef CONFIG_PM
  1396. static int pxa2xx_spi_suspend(struct platform_device *pdev, pm_message_t state)
  1397. {
  1398. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1399. struct ssp_device *ssp = drv_data->ssp;
  1400. int status = 0;
  1401. status = stop_queue(drv_data);
  1402. if (status != 0)
  1403. return status;
  1404. write_SSCR0(0, drv_data->ioaddr);
  1405. clk_disable(ssp->clk);
  1406. return 0;
  1407. }
  1408. static int pxa2xx_spi_resume(struct platform_device *pdev)
  1409. {
  1410. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1411. struct ssp_device *ssp = drv_data->ssp;
  1412. int status = 0;
  1413. if (drv_data->rx_channel != -1)
  1414. DRCMR(drv_data->ssp->drcmr_rx) =
  1415. DRCMR_MAPVLD | drv_data->rx_channel;
  1416. if (drv_data->tx_channel != -1)
  1417. DRCMR(drv_data->ssp->drcmr_tx) =
  1418. DRCMR_MAPVLD | drv_data->tx_channel;
  1419. /* Enable the SSP clock */
  1420. clk_enable(ssp->clk);
  1421. /* Start the queue running */
  1422. status = start_queue(drv_data);
  1423. if (status != 0) {
  1424. dev_err(&pdev->dev, "problem starting queue (%d)\n", status);
  1425. return status;
  1426. }
  1427. return 0;
  1428. }
  1429. #else
  1430. #define pxa2xx_spi_suspend NULL
  1431. #define pxa2xx_spi_resume NULL
  1432. #endif /* CONFIG_PM */
  1433. static struct platform_driver driver = {
  1434. .driver = {
  1435. .name = "pxa2xx-spi",
  1436. .owner = THIS_MODULE,
  1437. },
  1438. .remove = pxa2xx_spi_remove,
  1439. .shutdown = pxa2xx_spi_shutdown,
  1440. .suspend = pxa2xx_spi_suspend,
  1441. .resume = pxa2xx_spi_resume,
  1442. };
  1443. static int __init pxa2xx_spi_init(void)
  1444. {
  1445. return platform_driver_probe(&driver, pxa2xx_spi_probe);
  1446. }
  1447. module_init(pxa2xx_spi_init);
  1448. static void __exit pxa2xx_spi_exit(void)
  1449. {
  1450. platform_driver_unregister(&driver);
  1451. }
  1452. module_exit(pxa2xx_spi_exit);