rt2400pci.c 49 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699
  1. /*
  2. Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the
  14. Free Software Foundation, Inc.,
  15. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. /*
  18. Module: rt2400pci
  19. Abstract: rt2400pci device specific routines.
  20. Supported chipsets: RT2460.
  21. */
  22. #include <linux/delay.h>
  23. #include <linux/etherdevice.h>
  24. #include <linux/init.h>
  25. #include <linux/kernel.h>
  26. #include <linux/module.h>
  27. #include <linux/pci.h>
  28. #include <linux/eeprom_93cx6.h>
  29. #include "rt2x00.h"
  30. #include "rt2x00pci.h"
  31. #include "rt2400pci.h"
  32. /*
  33. * Register access.
  34. * All access to the CSR registers will go through the methods
  35. * rt2x00pci_register_read and rt2x00pci_register_write.
  36. * BBP and RF register require indirect register access,
  37. * and use the CSR registers BBPCSR and RFCSR to achieve this.
  38. * These indirect registers work with busy bits,
  39. * and we will try maximal REGISTER_BUSY_COUNT times to access
  40. * the register while taking a REGISTER_BUSY_DELAY us delay
  41. * between each attampt. When the busy bit is still set at that time,
  42. * the access attempt is considered to have failed,
  43. * and we will print an error.
  44. */
  45. #define WAIT_FOR_BBP(__dev, __reg) \
  46. rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
  47. #define WAIT_FOR_RF(__dev, __reg) \
  48. rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
  49. static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
  50. const unsigned int word, const u8 value)
  51. {
  52. u32 reg;
  53. mutex_lock(&rt2x00dev->csr_mutex);
  54. /*
  55. * Wait until the BBP becomes available, afterwards we
  56. * can safely write the new data into the register.
  57. */
  58. if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  59. reg = 0;
  60. rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
  61. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  62. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  63. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
  64. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  65. }
  66. mutex_unlock(&rt2x00dev->csr_mutex);
  67. }
  68. static void rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
  69. const unsigned int word, u8 *value)
  70. {
  71. u32 reg;
  72. mutex_lock(&rt2x00dev->csr_mutex);
  73. /*
  74. * Wait until the BBP becomes available, afterwards we
  75. * can safely write the read request into the register.
  76. * After the data has been written, we wait until hardware
  77. * returns the correct value, if at any time the register
  78. * doesn't become available in time, reg will be 0xffffffff
  79. * which means we return 0xff to the caller.
  80. */
  81. if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  82. reg = 0;
  83. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  84. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  85. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
  86. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  87. WAIT_FOR_BBP(rt2x00dev, &reg);
  88. }
  89. *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
  90. mutex_unlock(&rt2x00dev->csr_mutex);
  91. }
  92. static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
  93. const unsigned int word, const u32 value)
  94. {
  95. u32 reg;
  96. mutex_lock(&rt2x00dev->csr_mutex);
  97. /*
  98. * Wait until the RF becomes available, afterwards we
  99. * can safely write the new data into the register.
  100. */
  101. if (WAIT_FOR_RF(rt2x00dev, &reg)) {
  102. reg = 0;
  103. rt2x00_set_field32(&reg, RFCSR_VALUE, value);
  104. rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
  105. rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
  106. rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
  107. rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
  108. rt2x00_rf_write(rt2x00dev, word, value);
  109. }
  110. mutex_unlock(&rt2x00dev->csr_mutex);
  111. }
  112. static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  113. {
  114. struct rt2x00_dev *rt2x00dev = eeprom->data;
  115. u32 reg;
  116. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  117. eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
  118. eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
  119. eeprom->reg_data_clock =
  120. !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
  121. eeprom->reg_chip_select =
  122. !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
  123. }
  124. static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  125. {
  126. struct rt2x00_dev *rt2x00dev = eeprom->data;
  127. u32 reg = 0;
  128. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
  129. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
  130. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
  131. !!eeprom->reg_data_clock);
  132. rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
  133. !!eeprom->reg_chip_select);
  134. rt2x00pci_register_write(rt2x00dev, CSR21, reg);
  135. }
  136. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  137. static const struct rt2x00debug rt2400pci_rt2x00debug = {
  138. .owner = THIS_MODULE,
  139. .csr = {
  140. .read = rt2x00pci_register_read,
  141. .write = rt2x00pci_register_write,
  142. .flags = RT2X00DEBUGFS_OFFSET,
  143. .word_base = CSR_REG_BASE,
  144. .word_size = sizeof(u32),
  145. .word_count = CSR_REG_SIZE / sizeof(u32),
  146. },
  147. .eeprom = {
  148. .read = rt2x00_eeprom_read,
  149. .write = rt2x00_eeprom_write,
  150. .word_base = EEPROM_BASE,
  151. .word_size = sizeof(u16),
  152. .word_count = EEPROM_SIZE / sizeof(u16),
  153. },
  154. .bbp = {
  155. .read = rt2400pci_bbp_read,
  156. .write = rt2400pci_bbp_write,
  157. .word_base = BBP_BASE,
  158. .word_size = sizeof(u8),
  159. .word_count = BBP_SIZE / sizeof(u8),
  160. },
  161. .rf = {
  162. .read = rt2x00_rf_read,
  163. .write = rt2400pci_rf_write,
  164. .word_base = RF_BASE,
  165. .word_size = sizeof(u32),
  166. .word_count = RF_SIZE / sizeof(u32),
  167. },
  168. };
  169. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  170. #ifdef CONFIG_RT2X00_LIB_RFKILL
  171. static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
  172. {
  173. u32 reg;
  174. rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
  175. return rt2x00_get_field32(reg, GPIOCSR_BIT0);
  176. }
  177. #else
  178. #define rt2400pci_rfkill_poll NULL
  179. #endif /* CONFIG_RT2X00_LIB_RFKILL */
  180. #ifdef CONFIG_RT2X00_LIB_LEDS
  181. static void rt2400pci_brightness_set(struct led_classdev *led_cdev,
  182. enum led_brightness brightness)
  183. {
  184. struct rt2x00_led *led =
  185. container_of(led_cdev, struct rt2x00_led, led_dev);
  186. unsigned int enabled = brightness != LED_OFF;
  187. u32 reg;
  188. rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
  189. if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
  190. rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
  191. else if (led->type == LED_TYPE_ACTIVITY)
  192. rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
  193. rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
  194. }
  195. static int rt2400pci_blink_set(struct led_classdev *led_cdev,
  196. unsigned long *delay_on,
  197. unsigned long *delay_off)
  198. {
  199. struct rt2x00_led *led =
  200. container_of(led_cdev, struct rt2x00_led, led_dev);
  201. u32 reg;
  202. rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
  203. rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
  204. rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
  205. rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
  206. return 0;
  207. }
  208. static void rt2400pci_init_led(struct rt2x00_dev *rt2x00dev,
  209. struct rt2x00_led *led,
  210. enum led_type type)
  211. {
  212. led->rt2x00dev = rt2x00dev;
  213. led->type = type;
  214. led->led_dev.brightness_set = rt2400pci_brightness_set;
  215. led->led_dev.blink_set = rt2400pci_blink_set;
  216. led->flags = LED_INITIALIZED;
  217. }
  218. #endif /* CONFIG_RT2X00_LIB_LEDS */
  219. /*
  220. * Configuration handlers.
  221. */
  222. static void rt2400pci_config_filter(struct rt2x00_dev *rt2x00dev,
  223. const unsigned int filter_flags)
  224. {
  225. u32 reg;
  226. /*
  227. * Start configuration steps.
  228. * Note that the version error will always be dropped
  229. * since there is no filter for it at this time.
  230. */
  231. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  232. rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
  233. !(filter_flags & FIF_FCSFAIL));
  234. rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
  235. !(filter_flags & FIF_PLCPFAIL));
  236. rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
  237. !(filter_flags & FIF_CONTROL));
  238. rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
  239. !(filter_flags & FIF_PROMISC_IN_BSS));
  240. rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
  241. !(filter_flags & FIF_PROMISC_IN_BSS) &&
  242. !rt2x00dev->intf_ap_count);
  243. rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
  244. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  245. }
  246. static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
  247. struct rt2x00_intf *intf,
  248. struct rt2x00intf_conf *conf,
  249. const unsigned int flags)
  250. {
  251. unsigned int bcn_preload;
  252. u32 reg;
  253. if (flags & CONFIG_UPDATE_TYPE) {
  254. /*
  255. * Enable beacon config
  256. */
  257. bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
  258. rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
  259. rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
  260. rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
  261. /*
  262. * Enable synchronisation.
  263. */
  264. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  265. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
  266. rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
  267. rt2x00_set_field32(&reg, CSR14_TBCN, 1);
  268. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  269. }
  270. if (flags & CONFIG_UPDATE_MAC)
  271. rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
  272. conf->mac, sizeof(conf->mac));
  273. if (flags & CONFIG_UPDATE_BSSID)
  274. rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
  275. conf->bssid, sizeof(conf->bssid));
  276. }
  277. static void rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev,
  278. struct rt2x00lib_erp *erp)
  279. {
  280. int preamble_mask;
  281. u32 reg;
  282. /*
  283. * When short preamble is enabled, we should set bit 0x08
  284. */
  285. preamble_mask = erp->short_preamble << 3;
  286. rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
  287. rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT,
  288. erp->ack_timeout);
  289. rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME,
  290. erp->ack_consume_time);
  291. rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
  292. rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
  293. rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
  294. rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
  295. rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 10));
  296. rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
  297. rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
  298. rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
  299. rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
  300. rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 20));
  301. rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
  302. rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
  303. rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
  304. rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
  305. rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 55));
  306. rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
  307. rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
  308. rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
  309. rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
  310. rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 110));
  311. rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
  312. rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
  313. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  314. rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
  315. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  316. rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
  317. rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
  318. rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
  319. rt2x00pci_register_write(rt2x00dev, CSR18, reg);
  320. rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
  321. rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
  322. rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
  323. rt2x00pci_register_write(rt2x00dev, CSR19, reg);
  324. }
  325. static void rt2400pci_config_ant(struct rt2x00_dev *rt2x00dev,
  326. struct antenna_setup *ant)
  327. {
  328. u8 r1;
  329. u8 r4;
  330. /*
  331. * We should never come here because rt2x00lib is supposed
  332. * to catch this and send us the correct antenna explicitely.
  333. */
  334. BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
  335. ant->tx == ANTENNA_SW_DIVERSITY);
  336. rt2400pci_bbp_read(rt2x00dev, 4, &r4);
  337. rt2400pci_bbp_read(rt2x00dev, 1, &r1);
  338. /*
  339. * Configure the TX antenna.
  340. */
  341. switch (ant->tx) {
  342. case ANTENNA_HW_DIVERSITY:
  343. rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
  344. break;
  345. case ANTENNA_A:
  346. rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
  347. break;
  348. case ANTENNA_B:
  349. default:
  350. rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
  351. break;
  352. }
  353. /*
  354. * Configure the RX antenna.
  355. */
  356. switch (ant->rx) {
  357. case ANTENNA_HW_DIVERSITY:
  358. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
  359. break;
  360. case ANTENNA_A:
  361. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
  362. break;
  363. case ANTENNA_B:
  364. default:
  365. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
  366. break;
  367. }
  368. rt2400pci_bbp_write(rt2x00dev, 4, r4);
  369. rt2400pci_bbp_write(rt2x00dev, 1, r1);
  370. }
  371. static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
  372. struct rf_channel *rf)
  373. {
  374. /*
  375. * Switch on tuning bits.
  376. */
  377. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
  378. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
  379. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  380. rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
  381. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  382. /*
  383. * RF2420 chipset don't need any additional actions.
  384. */
  385. if (rt2x00_rf(&rt2x00dev->chip, RF2420))
  386. return;
  387. /*
  388. * For the RT2421 chipsets we need to write an invalid
  389. * reference clock rate to activate auto_tune.
  390. * After that we set the value back to the correct channel.
  391. */
  392. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  393. rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
  394. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  395. msleep(1);
  396. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  397. rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
  398. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  399. msleep(1);
  400. /*
  401. * Switch off tuning bits.
  402. */
  403. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
  404. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
  405. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  406. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  407. /*
  408. * Clear false CRC during channel switch.
  409. */
  410. rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
  411. }
  412. static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
  413. {
  414. rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
  415. }
  416. static void rt2400pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
  417. struct rt2x00lib_conf *libconf)
  418. {
  419. u32 reg;
  420. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  421. rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
  422. libconf->conf->long_frame_max_tx_count);
  423. rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
  424. libconf->conf->short_frame_max_tx_count);
  425. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  426. }
  427. static void rt2400pci_config_duration(struct rt2x00_dev *rt2x00dev,
  428. struct rt2x00lib_conf *libconf)
  429. {
  430. u32 reg;
  431. rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
  432. rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
  433. rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
  434. rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
  435. rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
  436. rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
  437. libconf->conf->beacon_int * 16);
  438. rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
  439. libconf->conf->beacon_int * 16);
  440. rt2x00pci_register_write(rt2x00dev, CSR12, reg);
  441. }
  442. static void rt2400pci_config_ps(struct rt2x00_dev *rt2x00dev,
  443. struct rt2x00lib_conf *libconf)
  444. {
  445. enum dev_state state =
  446. (libconf->conf->flags & IEEE80211_CONF_PS) ?
  447. STATE_SLEEP : STATE_AWAKE;
  448. u32 reg;
  449. if (state == STATE_SLEEP) {
  450. rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
  451. rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
  452. (libconf->conf->beacon_int - 20) * 16);
  453. rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
  454. libconf->conf->listen_interval - 1);
  455. /* We must first disable autowake before it can be enabled */
  456. rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
  457. rt2x00pci_register_write(rt2x00dev, CSR20, reg);
  458. rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
  459. rt2x00pci_register_write(rt2x00dev, CSR20, reg);
  460. }
  461. rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
  462. }
  463. static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
  464. struct rt2x00lib_conf *libconf,
  465. const unsigned int flags)
  466. {
  467. if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
  468. rt2400pci_config_channel(rt2x00dev, &libconf->rf);
  469. if (flags & IEEE80211_CONF_CHANGE_POWER)
  470. rt2400pci_config_txpower(rt2x00dev,
  471. libconf->conf->power_level);
  472. if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
  473. rt2400pci_config_retry_limit(rt2x00dev, libconf);
  474. if (flags & IEEE80211_CONF_CHANGE_BEACON_INTERVAL)
  475. rt2400pci_config_duration(rt2x00dev, libconf);
  476. if (flags & IEEE80211_CONF_CHANGE_PS)
  477. rt2400pci_config_ps(rt2x00dev, libconf);
  478. }
  479. static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
  480. const int cw_min, const int cw_max)
  481. {
  482. u32 reg;
  483. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  484. rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
  485. rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
  486. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  487. }
  488. /*
  489. * Link tuning
  490. */
  491. static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
  492. struct link_qual *qual)
  493. {
  494. u32 reg;
  495. u8 bbp;
  496. /*
  497. * Update FCS error count from register.
  498. */
  499. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  500. qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
  501. /*
  502. * Update False CCA count from register.
  503. */
  504. rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
  505. qual->false_cca = bbp;
  506. }
  507. static inline void rt2400pci_set_vgc(struct rt2x00_dev *rt2x00dev,
  508. struct link_qual *qual, u8 vgc_level)
  509. {
  510. rt2400pci_bbp_write(rt2x00dev, 13, vgc_level);
  511. qual->vgc_level = vgc_level;
  512. qual->vgc_level_reg = vgc_level;
  513. }
  514. static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
  515. struct link_qual *qual)
  516. {
  517. rt2400pci_set_vgc(rt2x00dev, qual, 0x08);
  518. }
  519. static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev,
  520. struct link_qual *qual, const u32 count)
  521. {
  522. /*
  523. * The link tuner should not run longer then 60 seconds,
  524. * and should run once every 2 seconds.
  525. */
  526. if (count > 60 || !(count & 1))
  527. return;
  528. /*
  529. * Base r13 link tuning on the false cca count.
  530. */
  531. if ((qual->false_cca > 512) && (qual->vgc_level < 0x20))
  532. rt2400pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
  533. else if ((qual->false_cca < 100) && (qual->vgc_level > 0x08))
  534. rt2400pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
  535. }
  536. /*
  537. * Initialization functions.
  538. */
  539. static bool rt2400pci_get_entry_state(struct queue_entry *entry)
  540. {
  541. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  542. u32 word;
  543. if (entry->queue->qid == QID_RX) {
  544. rt2x00_desc_read(entry_priv->desc, 0, &word);
  545. return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
  546. } else {
  547. rt2x00_desc_read(entry_priv->desc, 0, &word);
  548. return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  549. rt2x00_get_field32(word, TXD_W0_VALID));
  550. }
  551. }
  552. static void rt2400pci_clear_entry(struct queue_entry *entry)
  553. {
  554. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  555. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  556. u32 word;
  557. if (entry->queue->qid == QID_RX) {
  558. rt2x00_desc_read(entry_priv->desc, 2, &word);
  559. rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH, entry->skb->len);
  560. rt2x00_desc_write(entry_priv->desc, 2, word);
  561. rt2x00_desc_read(entry_priv->desc, 1, &word);
  562. rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
  563. rt2x00_desc_write(entry_priv->desc, 1, word);
  564. rt2x00_desc_read(entry_priv->desc, 0, &word);
  565. rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
  566. rt2x00_desc_write(entry_priv->desc, 0, word);
  567. } else {
  568. rt2x00_desc_read(entry_priv->desc, 0, &word);
  569. rt2x00_set_field32(&word, TXD_W0_VALID, 0);
  570. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
  571. rt2x00_desc_write(entry_priv->desc, 0, word);
  572. }
  573. }
  574. static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
  575. {
  576. struct queue_entry_priv_pci *entry_priv;
  577. u32 reg;
  578. /*
  579. * Initialize registers.
  580. */
  581. rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
  582. rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
  583. rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
  584. rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
  585. rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
  586. rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
  587. entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
  588. rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
  589. rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
  590. entry_priv->desc_dma);
  591. rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
  592. entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
  593. rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
  594. rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
  595. entry_priv->desc_dma);
  596. rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
  597. entry_priv = rt2x00dev->bcn[1].entries[0].priv_data;
  598. rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
  599. rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
  600. entry_priv->desc_dma);
  601. rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
  602. entry_priv = rt2x00dev->bcn[0].entries[0].priv_data;
  603. rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
  604. rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
  605. entry_priv->desc_dma);
  606. rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
  607. rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
  608. rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
  609. rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
  610. rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
  611. entry_priv = rt2x00dev->rx->entries[0].priv_data;
  612. rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
  613. rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
  614. entry_priv->desc_dma);
  615. rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
  616. return 0;
  617. }
  618. static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
  619. {
  620. u32 reg;
  621. rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
  622. rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
  623. rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00023f20);
  624. rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
  625. rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
  626. rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
  627. rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
  628. rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
  629. rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
  630. rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
  631. rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
  632. (rt2x00dev->rx->data_size / 128));
  633. rt2x00pci_register_write(rt2x00dev, CSR9, reg);
  634. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  635. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
  636. rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
  637. rt2x00_set_field32(&reg, CSR14_TBCN, 0);
  638. rt2x00_set_field32(&reg, CSR14_TCFP, 0);
  639. rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
  640. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  641. rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
  642. rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
  643. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  644. rt2x00pci_register_write(rt2x00dev, CNT3, 0x3f080000);
  645. rt2x00pci_register_read(rt2x00dev, ARCSR0, &reg);
  646. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
  647. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
  648. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
  649. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
  650. rt2x00pci_register_write(rt2x00dev, ARCSR0, reg);
  651. rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
  652. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
  653. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
  654. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
  655. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
  656. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
  657. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
  658. rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
  659. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
  660. if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
  661. return -EBUSY;
  662. rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00217223);
  663. rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
  664. rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
  665. rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
  666. rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
  667. rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
  668. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
  669. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
  670. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
  671. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
  672. rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
  673. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  674. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
  675. rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
  676. rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
  677. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  678. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  679. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
  680. rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
  681. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  682. /*
  683. * We must clear the FCS and FIFO error count.
  684. * These registers are cleared on read,
  685. * so we may pass a useless variable to store the value.
  686. */
  687. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  688. rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
  689. return 0;
  690. }
  691. static int rt2400pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
  692. {
  693. unsigned int i;
  694. u8 value;
  695. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  696. rt2400pci_bbp_read(rt2x00dev, 0, &value);
  697. if ((value != 0xff) && (value != 0x00))
  698. return 0;
  699. udelay(REGISTER_BUSY_DELAY);
  700. }
  701. ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
  702. return -EACCES;
  703. }
  704. static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
  705. {
  706. unsigned int i;
  707. u16 eeprom;
  708. u8 reg_id;
  709. u8 value;
  710. if (unlikely(rt2400pci_wait_bbp_ready(rt2x00dev)))
  711. return -EACCES;
  712. rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
  713. rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
  714. rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
  715. rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
  716. rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
  717. rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
  718. rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
  719. rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
  720. rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
  721. rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
  722. rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
  723. rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
  724. rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
  725. rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
  726. for (i = 0; i < EEPROM_BBP_SIZE; i++) {
  727. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
  728. if (eeprom != 0xffff && eeprom != 0x0000) {
  729. reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
  730. value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
  731. rt2400pci_bbp_write(rt2x00dev, reg_id, value);
  732. }
  733. }
  734. return 0;
  735. }
  736. /*
  737. * Device state switch handlers.
  738. */
  739. static void rt2400pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
  740. enum dev_state state)
  741. {
  742. u32 reg;
  743. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  744. rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
  745. (state == STATE_RADIO_RX_OFF) ||
  746. (state == STATE_RADIO_RX_OFF_LINK));
  747. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  748. }
  749. static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  750. enum dev_state state)
  751. {
  752. int mask = (state == STATE_RADIO_IRQ_OFF);
  753. u32 reg;
  754. /*
  755. * When interrupts are being enabled, the interrupt registers
  756. * should clear the register to assure a clean state.
  757. */
  758. if (state == STATE_RADIO_IRQ_ON) {
  759. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  760. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  761. }
  762. /*
  763. * Only toggle the interrupts bits we are going to use.
  764. * Non-checked interrupt bits are disabled by default.
  765. */
  766. rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
  767. rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
  768. rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
  769. rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
  770. rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
  771. rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
  772. rt2x00pci_register_write(rt2x00dev, CSR8, reg);
  773. }
  774. static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  775. {
  776. /*
  777. * Initialize all registers.
  778. */
  779. if (unlikely(rt2400pci_init_queues(rt2x00dev) ||
  780. rt2400pci_init_registers(rt2x00dev) ||
  781. rt2400pci_init_bbp(rt2x00dev)))
  782. return -EIO;
  783. return 0;
  784. }
  785. static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  786. {
  787. /*
  788. * Disable power
  789. */
  790. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
  791. }
  792. static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
  793. enum dev_state state)
  794. {
  795. u32 reg;
  796. unsigned int i;
  797. char put_to_sleep;
  798. char bbp_state;
  799. char rf_state;
  800. put_to_sleep = (state != STATE_AWAKE);
  801. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
  802. rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
  803. rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
  804. rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
  805. rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
  806. rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
  807. /*
  808. * Device is not guaranteed to be in the requested state yet.
  809. * We must wait until the register indicates that the
  810. * device has entered the correct state.
  811. */
  812. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  813. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
  814. bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
  815. rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
  816. if (bbp_state == state && rf_state == state)
  817. return 0;
  818. msleep(10);
  819. }
  820. return -EBUSY;
  821. }
  822. static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  823. enum dev_state state)
  824. {
  825. int retval = 0;
  826. switch (state) {
  827. case STATE_RADIO_ON:
  828. retval = rt2400pci_enable_radio(rt2x00dev);
  829. break;
  830. case STATE_RADIO_OFF:
  831. rt2400pci_disable_radio(rt2x00dev);
  832. break;
  833. case STATE_RADIO_RX_ON:
  834. case STATE_RADIO_RX_ON_LINK:
  835. case STATE_RADIO_RX_OFF:
  836. case STATE_RADIO_RX_OFF_LINK:
  837. rt2400pci_toggle_rx(rt2x00dev, state);
  838. break;
  839. case STATE_RADIO_IRQ_ON:
  840. case STATE_RADIO_IRQ_OFF:
  841. rt2400pci_toggle_irq(rt2x00dev, state);
  842. break;
  843. case STATE_DEEP_SLEEP:
  844. case STATE_SLEEP:
  845. case STATE_STANDBY:
  846. case STATE_AWAKE:
  847. retval = rt2400pci_set_state(rt2x00dev, state);
  848. break;
  849. default:
  850. retval = -ENOTSUPP;
  851. break;
  852. }
  853. if (unlikely(retval))
  854. ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
  855. state, retval);
  856. return retval;
  857. }
  858. /*
  859. * TX descriptor initialization
  860. */
  861. static void rt2400pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
  862. struct sk_buff *skb,
  863. struct txentry_desc *txdesc)
  864. {
  865. struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
  866. struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
  867. __le32 *txd = skbdesc->desc;
  868. u32 word;
  869. /*
  870. * Start writing the descriptor words.
  871. */
  872. rt2x00_desc_read(entry_priv->desc, 1, &word);
  873. rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
  874. rt2x00_desc_write(entry_priv->desc, 1, word);
  875. rt2x00_desc_read(txd, 2, &word);
  876. rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH, skb->len);
  877. rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, skb->len);
  878. rt2x00_desc_write(txd, 2, word);
  879. rt2x00_desc_read(txd, 3, &word);
  880. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
  881. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
  882. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
  883. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
  884. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
  885. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
  886. rt2x00_desc_write(txd, 3, word);
  887. rt2x00_desc_read(txd, 4, &word);
  888. rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW, txdesc->length_low);
  889. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
  890. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
  891. rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH, txdesc->length_high);
  892. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
  893. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
  894. rt2x00_desc_write(txd, 4, word);
  895. rt2x00_desc_read(txd, 0, &word);
  896. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
  897. rt2x00_set_field32(&word, TXD_W0_VALID, 1);
  898. rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
  899. test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  900. rt2x00_set_field32(&word, TXD_W0_ACK,
  901. test_bit(ENTRY_TXD_ACK, &txdesc->flags));
  902. rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
  903. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
  904. rt2x00_set_field32(&word, TXD_W0_RTS,
  905. test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
  906. rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
  907. rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
  908. test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
  909. rt2x00_desc_write(txd, 0, word);
  910. }
  911. /*
  912. * TX data initialization
  913. */
  914. static void rt2400pci_write_beacon(struct queue_entry *entry)
  915. {
  916. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  917. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  918. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  919. u32 word;
  920. u32 reg;
  921. /*
  922. * Disable beaconing while we are reloading the beacon data,
  923. * otherwise we might be sending out invalid data.
  924. */
  925. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  926. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
  927. rt2x00_set_field32(&reg, CSR14_TBCN, 0);
  928. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  929. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  930. /*
  931. * Replace rt2x00lib allocated descriptor with the
  932. * pointer to the _real_ hardware descriptor.
  933. * After that, map the beacon to DMA and update the
  934. * descriptor.
  935. */
  936. memcpy(entry_priv->desc, skbdesc->desc, skbdesc->desc_len);
  937. skbdesc->desc = entry_priv->desc;
  938. rt2x00queue_map_txskb(rt2x00dev, entry->skb);
  939. rt2x00_desc_read(entry_priv->desc, 1, &word);
  940. rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
  941. rt2x00_desc_write(entry_priv->desc, 1, word);
  942. }
  943. static void rt2400pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
  944. const enum data_queue_qid queue)
  945. {
  946. u32 reg;
  947. if (queue == QID_BEACON) {
  948. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  949. if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
  950. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
  951. rt2x00_set_field32(&reg, CSR14_TBCN, 1);
  952. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
  953. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  954. }
  955. return;
  956. }
  957. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  958. rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, (queue == QID_AC_BE));
  959. rt2x00_set_field32(&reg, TXCSR0_KICK_TX, (queue == QID_AC_BK));
  960. rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, (queue == QID_ATIM));
  961. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  962. }
  963. static void rt2400pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
  964. const enum data_queue_qid qid)
  965. {
  966. u32 reg;
  967. if (qid == QID_BEACON) {
  968. rt2x00pci_register_write(rt2x00dev, CSR14, 0);
  969. } else {
  970. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  971. rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
  972. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  973. }
  974. }
  975. /*
  976. * RX control handlers
  977. */
  978. static void rt2400pci_fill_rxdone(struct queue_entry *entry,
  979. struct rxdone_entry_desc *rxdesc)
  980. {
  981. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  982. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  983. u32 word0;
  984. u32 word2;
  985. u32 word3;
  986. u32 word4;
  987. u64 tsf;
  988. u32 rx_low;
  989. u32 rx_high;
  990. rt2x00_desc_read(entry_priv->desc, 0, &word0);
  991. rt2x00_desc_read(entry_priv->desc, 2, &word2);
  992. rt2x00_desc_read(entry_priv->desc, 3, &word3);
  993. rt2x00_desc_read(entry_priv->desc, 4, &word4);
  994. if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
  995. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  996. if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
  997. rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
  998. /*
  999. * We only get the lower 32bits from the timestamp,
  1000. * to get the full 64bits we must complement it with
  1001. * the timestamp from get_tsf().
  1002. * Note that when a wraparound of the lower 32bits
  1003. * has occurred between the frame arrival and the get_tsf()
  1004. * call, we must decrease the higher 32bits with 1 to get
  1005. * to correct value.
  1006. */
  1007. tsf = rt2x00dev->ops->hw->get_tsf(rt2x00dev->hw);
  1008. rx_low = rt2x00_get_field32(word4, RXD_W4_RX_END_TIME);
  1009. rx_high = upper_32_bits(tsf);
  1010. if ((u32)tsf <= rx_low)
  1011. rx_high--;
  1012. /*
  1013. * Obtain the status about this packet.
  1014. * The signal is the PLCP value, and needs to be stripped
  1015. * of the preamble bit (0x08).
  1016. */
  1017. rxdesc->timestamp = ((u64)rx_high << 32) | rx_low;
  1018. rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08;
  1019. rxdesc->rssi = rt2x00_get_field32(word2, RXD_W3_RSSI) -
  1020. entry->queue->rt2x00dev->rssi_offset;
  1021. rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
  1022. rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
  1023. if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
  1024. rxdesc->dev_flags |= RXDONE_MY_BSS;
  1025. }
  1026. /*
  1027. * Interrupt functions.
  1028. */
  1029. static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
  1030. const enum data_queue_qid queue_idx)
  1031. {
  1032. struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
  1033. struct queue_entry_priv_pci *entry_priv;
  1034. struct queue_entry *entry;
  1035. struct txdone_entry_desc txdesc;
  1036. u32 word;
  1037. while (!rt2x00queue_empty(queue)) {
  1038. entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  1039. entry_priv = entry->priv_data;
  1040. rt2x00_desc_read(entry_priv->desc, 0, &word);
  1041. if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  1042. !rt2x00_get_field32(word, TXD_W0_VALID))
  1043. break;
  1044. /*
  1045. * Obtain the status about this packet.
  1046. */
  1047. txdesc.flags = 0;
  1048. switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
  1049. case 0: /* Success */
  1050. case 1: /* Success with retry */
  1051. __set_bit(TXDONE_SUCCESS, &txdesc.flags);
  1052. break;
  1053. case 2: /* Failure, excessive retries */
  1054. __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
  1055. /* Don't break, this is a failed frame! */
  1056. default: /* Failure */
  1057. __set_bit(TXDONE_FAILURE, &txdesc.flags);
  1058. }
  1059. txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
  1060. rt2x00lib_txdone(entry, &txdesc);
  1061. }
  1062. }
  1063. static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
  1064. {
  1065. struct rt2x00_dev *rt2x00dev = dev_instance;
  1066. u32 reg;
  1067. /*
  1068. * Get the interrupt sources & saved to local variable.
  1069. * Write register value back to clear pending interrupts.
  1070. */
  1071. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  1072. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  1073. if (!reg)
  1074. return IRQ_NONE;
  1075. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  1076. return IRQ_HANDLED;
  1077. /*
  1078. * Handle interrupts, walk through all bits
  1079. * and run the tasks, the bits are checked in order of
  1080. * priority.
  1081. */
  1082. /*
  1083. * 1 - Beacon timer expired interrupt.
  1084. */
  1085. if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
  1086. rt2x00lib_beacondone(rt2x00dev);
  1087. /*
  1088. * 2 - Rx ring done interrupt.
  1089. */
  1090. if (rt2x00_get_field32(reg, CSR7_RXDONE))
  1091. rt2x00pci_rxdone(rt2x00dev);
  1092. /*
  1093. * 3 - Atim ring transmit done interrupt.
  1094. */
  1095. if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
  1096. rt2400pci_txdone(rt2x00dev, QID_ATIM);
  1097. /*
  1098. * 4 - Priority ring transmit done interrupt.
  1099. */
  1100. if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
  1101. rt2400pci_txdone(rt2x00dev, QID_AC_BE);
  1102. /*
  1103. * 5 - Tx ring transmit done interrupt.
  1104. */
  1105. if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
  1106. rt2400pci_txdone(rt2x00dev, QID_AC_BK);
  1107. return IRQ_HANDLED;
  1108. }
  1109. /*
  1110. * Device probe functions.
  1111. */
  1112. static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  1113. {
  1114. struct eeprom_93cx6 eeprom;
  1115. u32 reg;
  1116. u16 word;
  1117. u8 *mac;
  1118. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  1119. eeprom.data = rt2x00dev;
  1120. eeprom.register_read = rt2400pci_eepromregister_read;
  1121. eeprom.register_write = rt2400pci_eepromregister_write;
  1122. eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
  1123. PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
  1124. eeprom.reg_data_in = 0;
  1125. eeprom.reg_data_out = 0;
  1126. eeprom.reg_data_clock = 0;
  1127. eeprom.reg_chip_select = 0;
  1128. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  1129. EEPROM_SIZE / sizeof(u16));
  1130. /*
  1131. * Start validation of the data that has been read.
  1132. */
  1133. mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
  1134. if (!is_valid_ether_addr(mac)) {
  1135. random_ether_addr(mac);
  1136. EEPROM(rt2x00dev, "MAC: %pM\n", mac);
  1137. }
  1138. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
  1139. if (word == 0xffff) {
  1140. ERROR(rt2x00dev, "Invalid EEPROM data detected.\n");
  1141. return -EINVAL;
  1142. }
  1143. return 0;
  1144. }
  1145. static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
  1146. {
  1147. u32 reg;
  1148. u16 value;
  1149. u16 eeprom;
  1150. /*
  1151. * Read EEPROM word for configuration.
  1152. */
  1153. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
  1154. /*
  1155. * Identify RF chipset.
  1156. */
  1157. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
  1158. rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
  1159. rt2x00_set_chip(rt2x00dev, RT2460, value, reg);
  1160. if (!rt2x00_rf(&rt2x00dev->chip, RF2420) &&
  1161. !rt2x00_rf(&rt2x00dev->chip, RF2421)) {
  1162. ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
  1163. return -ENODEV;
  1164. }
  1165. /*
  1166. * Identify default antenna configuration.
  1167. */
  1168. rt2x00dev->default_ant.tx =
  1169. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
  1170. rt2x00dev->default_ant.rx =
  1171. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
  1172. /*
  1173. * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
  1174. * I am not 100% sure about this, but the legacy drivers do not
  1175. * indicate antenna swapping in software is required when
  1176. * diversity is enabled.
  1177. */
  1178. if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
  1179. rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
  1180. if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
  1181. rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
  1182. /*
  1183. * Store led mode, for correct led behaviour.
  1184. */
  1185. #ifdef CONFIG_RT2X00_LIB_LEDS
  1186. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
  1187. rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
  1188. if (value == LED_MODE_TXRX_ACTIVITY ||
  1189. value == LED_MODE_DEFAULT ||
  1190. value == LED_MODE_ASUS)
  1191. rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
  1192. LED_TYPE_ACTIVITY);
  1193. #endif /* CONFIG_RT2X00_LIB_LEDS */
  1194. /*
  1195. * Detect if this device has an hardware controlled radio.
  1196. */
  1197. #ifdef CONFIG_RT2X00_LIB_RFKILL
  1198. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
  1199. __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
  1200. #endif /* CONFIG_RT2X00_LIB_RFKILL */
  1201. /*
  1202. * Check if the BBP tuning should be enabled.
  1203. */
  1204. if (!rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
  1205. __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
  1206. return 0;
  1207. }
  1208. /*
  1209. * RF value list for RF2420 & RF2421
  1210. * Supports: 2.4 GHz
  1211. */
  1212. static const struct rf_channel rf_vals_b[] = {
  1213. { 1, 0x00022058, 0x000c1fda, 0x00000101, 0 },
  1214. { 2, 0x00022058, 0x000c1fee, 0x00000101, 0 },
  1215. { 3, 0x00022058, 0x000c2002, 0x00000101, 0 },
  1216. { 4, 0x00022058, 0x000c2016, 0x00000101, 0 },
  1217. { 5, 0x00022058, 0x000c202a, 0x00000101, 0 },
  1218. { 6, 0x00022058, 0x000c203e, 0x00000101, 0 },
  1219. { 7, 0x00022058, 0x000c2052, 0x00000101, 0 },
  1220. { 8, 0x00022058, 0x000c2066, 0x00000101, 0 },
  1221. { 9, 0x00022058, 0x000c207a, 0x00000101, 0 },
  1222. { 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
  1223. { 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
  1224. { 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
  1225. { 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
  1226. { 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
  1227. };
  1228. static int rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
  1229. {
  1230. struct hw_mode_spec *spec = &rt2x00dev->spec;
  1231. struct channel_info *info;
  1232. char *tx_power;
  1233. unsigned int i;
  1234. /*
  1235. * Initialize all hw fields.
  1236. */
  1237. rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
  1238. IEEE80211_HW_SIGNAL_DBM |
  1239. IEEE80211_HW_SUPPORTS_PS |
  1240. IEEE80211_HW_PS_NULLFUNC_STACK;
  1241. rt2x00dev->hw->extra_tx_headroom = 0;
  1242. SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
  1243. SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
  1244. rt2x00_eeprom_addr(rt2x00dev,
  1245. EEPROM_MAC_ADDR_0));
  1246. /*
  1247. * Initialize hw_mode information.
  1248. */
  1249. spec->supported_bands = SUPPORT_BAND_2GHZ;
  1250. spec->supported_rates = SUPPORT_RATE_CCK;
  1251. spec->num_channels = ARRAY_SIZE(rf_vals_b);
  1252. spec->channels = rf_vals_b;
  1253. /*
  1254. * Create channel information array
  1255. */
  1256. info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
  1257. if (!info)
  1258. return -ENOMEM;
  1259. spec->channels_info = info;
  1260. tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
  1261. for (i = 0; i < 14; i++)
  1262. info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
  1263. return 0;
  1264. }
  1265. static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  1266. {
  1267. int retval;
  1268. /*
  1269. * Allocate eeprom data.
  1270. */
  1271. retval = rt2400pci_validate_eeprom(rt2x00dev);
  1272. if (retval)
  1273. return retval;
  1274. retval = rt2400pci_init_eeprom(rt2x00dev);
  1275. if (retval)
  1276. return retval;
  1277. /*
  1278. * Initialize hw specifications.
  1279. */
  1280. retval = rt2400pci_probe_hw_mode(rt2x00dev);
  1281. if (retval)
  1282. return retval;
  1283. /*
  1284. * This device requires the atim queue and DMA-mapped skbs.
  1285. */
  1286. __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
  1287. __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
  1288. /*
  1289. * Set the rssi offset.
  1290. */
  1291. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  1292. return 0;
  1293. }
  1294. /*
  1295. * IEEE80211 stack callback functions.
  1296. */
  1297. static int rt2400pci_conf_tx(struct ieee80211_hw *hw, u16 queue,
  1298. const struct ieee80211_tx_queue_params *params)
  1299. {
  1300. struct rt2x00_dev *rt2x00dev = hw->priv;
  1301. /*
  1302. * We don't support variating cw_min and cw_max variables
  1303. * per queue. So by default we only configure the TX queue,
  1304. * and ignore all other configurations.
  1305. */
  1306. if (queue != 0)
  1307. return -EINVAL;
  1308. if (rt2x00mac_conf_tx(hw, queue, params))
  1309. return -EINVAL;
  1310. /*
  1311. * Write configuration to register.
  1312. */
  1313. rt2400pci_config_cw(rt2x00dev,
  1314. rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
  1315. return 0;
  1316. }
  1317. static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw)
  1318. {
  1319. struct rt2x00_dev *rt2x00dev = hw->priv;
  1320. u64 tsf;
  1321. u32 reg;
  1322. rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
  1323. tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
  1324. rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
  1325. tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
  1326. return tsf;
  1327. }
  1328. static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
  1329. {
  1330. struct rt2x00_dev *rt2x00dev = hw->priv;
  1331. u32 reg;
  1332. rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
  1333. return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
  1334. }
  1335. static const struct ieee80211_ops rt2400pci_mac80211_ops = {
  1336. .tx = rt2x00mac_tx,
  1337. .start = rt2x00mac_start,
  1338. .stop = rt2x00mac_stop,
  1339. .add_interface = rt2x00mac_add_interface,
  1340. .remove_interface = rt2x00mac_remove_interface,
  1341. .config = rt2x00mac_config,
  1342. .config_interface = rt2x00mac_config_interface,
  1343. .configure_filter = rt2x00mac_configure_filter,
  1344. .get_stats = rt2x00mac_get_stats,
  1345. .bss_info_changed = rt2x00mac_bss_info_changed,
  1346. .conf_tx = rt2400pci_conf_tx,
  1347. .get_tx_stats = rt2x00mac_get_tx_stats,
  1348. .get_tsf = rt2400pci_get_tsf,
  1349. .tx_last_beacon = rt2400pci_tx_last_beacon,
  1350. };
  1351. static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
  1352. .irq_handler = rt2400pci_interrupt,
  1353. .probe_hw = rt2400pci_probe_hw,
  1354. .initialize = rt2x00pci_initialize,
  1355. .uninitialize = rt2x00pci_uninitialize,
  1356. .get_entry_state = rt2400pci_get_entry_state,
  1357. .clear_entry = rt2400pci_clear_entry,
  1358. .set_device_state = rt2400pci_set_device_state,
  1359. .rfkill_poll = rt2400pci_rfkill_poll,
  1360. .link_stats = rt2400pci_link_stats,
  1361. .reset_tuner = rt2400pci_reset_tuner,
  1362. .link_tuner = rt2400pci_link_tuner,
  1363. .write_tx_desc = rt2400pci_write_tx_desc,
  1364. .write_tx_data = rt2x00pci_write_tx_data,
  1365. .write_beacon = rt2400pci_write_beacon,
  1366. .kick_tx_queue = rt2400pci_kick_tx_queue,
  1367. .kill_tx_queue = rt2400pci_kill_tx_queue,
  1368. .fill_rxdone = rt2400pci_fill_rxdone,
  1369. .config_filter = rt2400pci_config_filter,
  1370. .config_intf = rt2400pci_config_intf,
  1371. .config_erp = rt2400pci_config_erp,
  1372. .config_ant = rt2400pci_config_ant,
  1373. .config = rt2400pci_config,
  1374. };
  1375. static const struct data_queue_desc rt2400pci_queue_rx = {
  1376. .entry_num = RX_ENTRIES,
  1377. .data_size = DATA_FRAME_SIZE,
  1378. .desc_size = RXD_DESC_SIZE,
  1379. .priv_size = sizeof(struct queue_entry_priv_pci),
  1380. };
  1381. static const struct data_queue_desc rt2400pci_queue_tx = {
  1382. .entry_num = TX_ENTRIES,
  1383. .data_size = DATA_FRAME_SIZE,
  1384. .desc_size = TXD_DESC_SIZE,
  1385. .priv_size = sizeof(struct queue_entry_priv_pci),
  1386. };
  1387. static const struct data_queue_desc rt2400pci_queue_bcn = {
  1388. .entry_num = BEACON_ENTRIES,
  1389. .data_size = MGMT_FRAME_SIZE,
  1390. .desc_size = TXD_DESC_SIZE,
  1391. .priv_size = sizeof(struct queue_entry_priv_pci),
  1392. };
  1393. static const struct data_queue_desc rt2400pci_queue_atim = {
  1394. .entry_num = ATIM_ENTRIES,
  1395. .data_size = DATA_FRAME_SIZE,
  1396. .desc_size = TXD_DESC_SIZE,
  1397. .priv_size = sizeof(struct queue_entry_priv_pci),
  1398. };
  1399. static const struct rt2x00_ops rt2400pci_ops = {
  1400. .name = KBUILD_MODNAME,
  1401. .max_sta_intf = 1,
  1402. .max_ap_intf = 1,
  1403. .eeprom_size = EEPROM_SIZE,
  1404. .rf_size = RF_SIZE,
  1405. .tx_queues = NUM_TX_QUEUES,
  1406. .rx = &rt2400pci_queue_rx,
  1407. .tx = &rt2400pci_queue_tx,
  1408. .bcn = &rt2400pci_queue_bcn,
  1409. .atim = &rt2400pci_queue_atim,
  1410. .lib = &rt2400pci_rt2x00_ops,
  1411. .hw = &rt2400pci_mac80211_ops,
  1412. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  1413. .debugfs = &rt2400pci_rt2x00debug,
  1414. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  1415. };
  1416. /*
  1417. * RT2400pci module information.
  1418. */
  1419. static struct pci_device_id rt2400pci_device_table[] = {
  1420. { PCI_DEVICE(0x1814, 0x0101), PCI_DEVICE_DATA(&rt2400pci_ops) },
  1421. { 0, }
  1422. };
  1423. MODULE_AUTHOR(DRV_PROJECT);
  1424. MODULE_VERSION(DRV_VERSION);
  1425. MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
  1426. MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
  1427. MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
  1428. MODULE_LICENSE("GPL");
  1429. static struct pci_driver rt2400pci_driver = {
  1430. .name = KBUILD_MODNAME,
  1431. .id_table = rt2400pci_device_table,
  1432. .probe = rt2x00pci_probe,
  1433. .remove = __devexit_p(rt2x00pci_remove),
  1434. .suspend = rt2x00pci_suspend,
  1435. .resume = rt2x00pci_resume,
  1436. };
  1437. static int __init rt2400pci_init(void)
  1438. {
  1439. return pci_register_driver(&rt2400pci_driver);
  1440. }
  1441. static void __exit rt2400pci_exit(void)
  1442. {
  1443. pci_unregister_driver(&rt2400pci_driver);
  1444. }
  1445. module_init(rt2400pci_init);
  1446. module_exit(rt2400pci_exit);