eeprom.c 47 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769
  1. /*
  2. * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
  3. * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
  4. * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
  5. *
  6. * Permission to use, copy, modify, and distribute this software for any
  7. * purpose with or without fee is hereby granted, provided that the above
  8. * copyright notice and this permission notice appear in all copies.
  9. *
  10. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  11. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  12. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  13. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  14. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  15. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  16. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  17. *
  18. */
  19. /*************************************\
  20. * EEPROM access functions and helpers *
  21. \*************************************/
  22. #include "ath5k.h"
  23. #include "reg.h"
  24. #include "debug.h"
  25. #include "base.h"
  26. /*
  27. * Read from eeprom
  28. */
  29. static int ath5k_hw_eeprom_read(struct ath5k_hw *ah, u32 offset, u16 *data)
  30. {
  31. u32 status, timeout;
  32. ATH5K_TRACE(ah->ah_sc);
  33. /*
  34. * Initialize EEPROM access
  35. */
  36. if (ah->ah_version == AR5K_AR5210) {
  37. AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_EEAE);
  38. (void)ath5k_hw_reg_read(ah, AR5K_EEPROM_BASE + (4 * offset));
  39. } else {
  40. ath5k_hw_reg_write(ah, offset, AR5K_EEPROM_BASE);
  41. AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
  42. AR5K_EEPROM_CMD_READ);
  43. }
  44. for (timeout = AR5K_TUNE_REGISTER_TIMEOUT; timeout > 0; timeout--) {
  45. status = ath5k_hw_reg_read(ah, AR5K_EEPROM_STATUS);
  46. if (status & AR5K_EEPROM_STAT_RDDONE) {
  47. if (status & AR5K_EEPROM_STAT_RDERR)
  48. return -EIO;
  49. *data = (u16)(ath5k_hw_reg_read(ah, AR5K_EEPROM_DATA) &
  50. 0xffff);
  51. return 0;
  52. }
  53. udelay(15);
  54. }
  55. return -ETIMEDOUT;
  56. }
  57. /*
  58. * Translate binary channel representation in EEPROM to frequency
  59. */
  60. static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
  61. unsigned int mode)
  62. {
  63. u16 val;
  64. if (bin == AR5K_EEPROM_CHANNEL_DIS)
  65. return bin;
  66. if (mode == AR5K_EEPROM_MODE_11A) {
  67. if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
  68. val = (5 * bin) + 4800;
  69. else
  70. val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
  71. (bin * 10) + 5100;
  72. } else {
  73. if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
  74. val = bin + 2300;
  75. else
  76. val = bin + 2400;
  77. }
  78. return val;
  79. }
  80. /*
  81. * Initialize eeprom & capabilities structs
  82. */
  83. static int
  84. ath5k_eeprom_init_header(struct ath5k_hw *ah)
  85. {
  86. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  87. int ret;
  88. u16 val;
  89. /*
  90. * Read values from EEPROM and store them in the capability structure
  91. */
  92. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
  93. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
  94. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
  95. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
  96. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
  97. /* Return if we have an old EEPROM */
  98. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
  99. return 0;
  100. #ifdef notyet
  101. /*
  102. * Validate the checksum of the EEPROM date. There are some
  103. * devices with invalid EEPROMs.
  104. */
  105. for (cksum = 0, offset = 0; offset < AR5K_EEPROM_INFO_MAX; offset++) {
  106. AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
  107. cksum ^= val;
  108. }
  109. if (cksum != AR5K_EEPROM_INFO_CKSUM) {
  110. ATH5K_ERR(ah->ah_sc, "Invalid EEPROM checksum 0x%04x\n", cksum);
  111. return -EIO;
  112. }
  113. #endif
  114. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
  115. ee_ant_gain);
  116. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
  117. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
  118. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
  119. /* XXX: Don't know which versions include these two */
  120. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);
  121. if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
  122. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);
  123. if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
  124. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
  125. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
  126. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
  127. }
  128. }
  129. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
  130. AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
  131. ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
  132. ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
  133. AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
  134. ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
  135. ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
  136. }
  137. return 0;
  138. }
  139. /*
  140. * Read antenna infos from eeprom
  141. */
  142. static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
  143. unsigned int mode)
  144. {
  145. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  146. u32 o = *offset;
  147. u16 val;
  148. int ret, i = 0;
  149. AR5K_EEPROM_READ(o++, val);
  150. ee->ee_switch_settling[mode] = (val >> 8) & 0x7f;
  151. ee->ee_atn_tx_rx[mode] = (val >> 2) & 0x3f;
  152. ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
  153. AR5K_EEPROM_READ(o++, val);
  154. ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
  155. ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
  156. ee->ee_ant_control[mode][i++] = val & 0x3f;
  157. AR5K_EEPROM_READ(o++, val);
  158. ee->ee_ant_control[mode][i++] = (val >> 10) & 0x3f;
  159. ee->ee_ant_control[mode][i++] = (val >> 4) & 0x3f;
  160. ee->ee_ant_control[mode][i] = (val << 2) & 0x3f;
  161. AR5K_EEPROM_READ(o++, val);
  162. ee->ee_ant_control[mode][i++] |= (val >> 14) & 0x3;
  163. ee->ee_ant_control[mode][i++] = (val >> 8) & 0x3f;
  164. ee->ee_ant_control[mode][i++] = (val >> 2) & 0x3f;
  165. ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
  166. AR5K_EEPROM_READ(o++, val);
  167. ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
  168. ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
  169. ee->ee_ant_control[mode][i++] = val & 0x3f;
  170. /* Get antenna modes */
  171. ah->ah_antenna[mode][0] =
  172. (ee->ee_ant_control[mode][0] << 4);
  173. ah->ah_antenna[mode][AR5K_ANT_FIXED_A] =
  174. ee->ee_ant_control[mode][1] |
  175. (ee->ee_ant_control[mode][2] << 6) |
  176. (ee->ee_ant_control[mode][3] << 12) |
  177. (ee->ee_ant_control[mode][4] << 18) |
  178. (ee->ee_ant_control[mode][5] << 24);
  179. ah->ah_antenna[mode][AR5K_ANT_FIXED_B] =
  180. ee->ee_ant_control[mode][6] |
  181. (ee->ee_ant_control[mode][7] << 6) |
  182. (ee->ee_ant_control[mode][8] << 12) |
  183. (ee->ee_ant_control[mode][9] << 18) |
  184. (ee->ee_ant_control[mode][10] << 24);
  185. /* return new offset */
  186. *offset = o;
  187. return 0;
  188. }
  189. /*
  190. * Read supported modes and some mode-specific calibration data
  191. * from eeprom
  192. */
  193. static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
  194. unsigned int mode)
  195. {
  196. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  197. u32 o = *offset;
  198. u16 val;
  199. int ret;
  200. ee->ee_n_piers[mode] = 0;
  201. AR5K_EEPROM_READ(o++, val);
  202. ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
  203. switch(mode) {
  204. case AR5K_EEPROM_MODE_11A:
  205. ee->ee_ob[mode][3] = (val >> 5) & 0x7;
  206. ee->ee_db[mode][3] = (val >> 2) & 0x7;
  207. ee->ee_ob[mode][2] = (val << 1) & 0x7;
  208. AR5K_EEPROM_READ(o++, val);
  209. ee->ee_ob[mode][2] |= (val >> 15) & 0x1;
  210. ee->ee_db[mode][2] = (val >> 12) & 0x7;
  211. ee->ee_ob[mode][1] = (val >> 9) & 0x7;
  212. ee->ee_db[mode][1] = (val >> 6) & 0x7;
  213. ee->ee_ob[mode][0] = (val >> 3) & 0x7;
  214. ee->ee_db[mode][0] = val & 0x7;
  215. break;
  216. case AR5K_EEPROM_MODE_11G:
  217. case AR5K_EEPROM_MODE_11B:
  218. ee->ee_ob[mode][1] = (val >> 4) & 0x7;
  219. ee->ee_db[mode][1] = val & 0x7;
  220. break;
  221. }
  222. AR5K_EEPROM_READ(o++, val);
  223. ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
  224. ee->ee_thr_62[mode] = val & 0xff;
  225. if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
  226. ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
  227. AR5K_EEPROM_READ(o++, val);
  228. ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
  229. ee->ee_tx_frm2xpa_enable[mode] = val & 0xff;
  230. AR5K_EEPROM_READ(o++, val);
  231. ee->ee_pga_desired_size[mode] = (val >> 8) & 0xff;
  232. if ((val & 0xff) & 0x80)
  233. ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
  234. else
  235. ee->ee_noise_floor_thr[mode] = val & 0xff;
  236. if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
  237. ee->ee_noise_floor_thr[mode] =
  238. mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
  239. AR5K_EEPROM_READ(o++, val);
  240. ee->ee_xlna_gain[mode] = (val >> 5) & 0xff;
  241. ee->ee_x_gain[mode] = (val >> 1) & 0xf;
  242. ee->ee_xpd[mode] = val & 0x1;
  243. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0)
  244. ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
  245. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
  246. AR5K_EEPROM_READ(o++, val);
  247. ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
  248. if (mode == AR5K_EEPROM_MODE_11A)
  249. ee->ee_xr_power[mode] = val & 0x3f;
  250. else {
  251. ee->ee_ob[mode][0] = val & 0x7;
  252. ee->ee_db[mode][0] = (val >> 3) & 0x7;
  253. }
  254. }
  255. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
  256. ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
  257. ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
  258. } else {
  259. ee->ee_i_gain[mode] = (val >> 13) & 0x7;
  260. AR5K_EEPROM_READ(o++, val);
  261. ee->ee_i_gain[mode] |= (val << 3) & 0x38;
  262. if (mode == AR5K_EEPROM_MODE_11G) {
  263. ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
  264. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
  265. ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
  266. }
  267. }
  268. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
  269. mode == AR5K_EEPROM_MODE_11A) {
  270. ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
  271. ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
  272. }
  273. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
  274. goto done;
  275. /* Note: >= v5 have bg freq piers on another location
  276. * so these freq piers are ignored for >= v5 (should be 0xff
  277. * anyway) */
  278. switch(mode) {
  279. case AR5K_EEPROM_MODE_11A:
  280. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
  281. break;
  282. AR5K_EEPROM_READ(o++, val);
  283. ee->ee_margin_tx_rx[mode] = val & 0x3f;
  284. break;
  285. case AR5K_EEPROM_MODE_11B:
  286. AR5K_EEPROM_READ(o++, val);
  287. ee->ee_pwr_cal_b[0].freq =
  288. ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
  289. if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
  290. ee->ee_n_piers[mode]++;
  291. ee->ee_pwr_cal_b[1].freq =
  292. ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
  293. if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
  294. ee->ee_n_piers[mode]++;
  295. AR5K_EEPROM_READ(o++, val);
  296. ee->ee_pwr_cal_b[2].freq =
  297. ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
  298. if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
  299. ee->ee_n_piers[mode]++;
  300. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
  301. ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
  302. break;
  303. case AR5K_EEPROM_MODE_11G:
  304. AR5K_EEPROM_READ(o++, val);
  305. ee->ee_pwr_cal_g[0].freq =
  306. ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
  307. if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
  308. ee->ee_n_piers[mode]++;
  309. ee->ee_pwr_cal_g[1].freq =
  310. ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
  311. if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
  312. ee->ee_n_piers[mode]++;
  313. AR5K_EEPROM_READ(o++, val);
  314. ee->ee_turbo_max_power[mode] = val & 0x7f;
  315. ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
  316. AR5K_EEPROM_READ(o++, val);
  317. ee->ee_pwr_cal_g[2].freq =
  318. ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
  319. if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
  320. ee->ee_n_piers[mode]++;
  321. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
  322. ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
  323. AR5K_EEPROM_READ(o++, val);
  324. ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
  325. ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
  326. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
  327. AR5K_EEPROM_READ(o++, val);
  328. ee->ee_cck_ofdm_gain_delta = val & 0xff;
  329. }
  330. break;
  331. }
  332. done:
  333. /* return new offset */
  334. *offset = o;
  335. return 0;
  336. }
  337. /*
  338. * Read turbo mode information on newer EEPROM versions
  339. */
  340. static int
  341. ath5k_eeprom_read_turbo_modes(struct ath5k_hw *ah,
  342. u32 *offset, unsigned int mode)
  343. {
  344. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  345. u32 o = *offset;
  346. u16 val;
  347. int ret;
  348. if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
  349. return 0;
  350. switch (mode){
  351. case AR5K_EEPROM_MODE_11A:
  352. ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
  353. ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
  354. AR5K_EEPROM_READ(o++, val);
  355. ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
  356. ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
  357. ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
  358. AR5K_EEPROM_READ(o++, val);
  359. ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
  360. ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
  361. if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >=2)
  362. ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
  363. break;
  364. case AR5K_EEPROM_MODE_11G:
  365. ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
  366. ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
  367. AR5K_EEPROM_READ(o++, val);
  368. ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
  369. ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
  370. ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
  371. AR5K_EEPROM_READ(o++, val);
  372. ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
  373. ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
  374. break;
  375. }
  376. /* return new offset */
  377. *offset = o;
  378. return 0;
  379. }
  380. /* Read mode-specific data (except power calibration data) */
  381. static int
  382. ath5k_eeprom_init_modes(struct ath5k_hw *ah)
  383. {
  384. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  385. u32 mode_offset[3];
  386. unsigned int mode;
  387. u32 offset;
  388. int ret;
  389. /*
  390. * Get values for all modes
  391. */
  392. mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
  393. mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
  394. mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
  395. ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
  396. AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
  397. for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
  398. offset = mode_offset[mode];
  399. ret = ath5k_eeprom_read_ants(ah, &offset, mode);
  400. if (ret)
  401. return ret;
  402. ret = ath5k_eeprom_read_modes(ah, &offset, mode);
  403. if (ret)
  404. return ret;
  405. ret = ath5k_eeprom_read_turbo_modes(ah, &offset, mode);
  406. if (ret)
  407. return ret;
  408. }
  409. /* override for older eeprom versions for better performance */
  410. if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
  411. ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
  412. ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
  413. ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
  414. }
  415. return 0;
  416. }
  417. /* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
  418. * frequency mask) */
  419. static inline int
  420. ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
  421. struct ath5k_chan_pcal_info *pc, unsigned int mode)
  422. {
  423. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  424. int o = *offset;
  425. int i = 0;
  426. u8 freq1, freq2;
  427. int ret;
  428. u16 val;
  429. ee->ee_n_piers[mode] = 0;
  430. while(i < max) {
  431. AR5K_EEPROM_READ(o++, val);
  432. freq1 = val & 0xff;
  433. if (!freq1)
  434. break;
  435. pc[i++].freq = ath5k_eeprom_bin2freq(ee,
  436. freq1, mode);
  437. ee->ee_n_piers[mode]++;
  438. freq2 = (val >> 8) & 0xff;
  439. if (!freq2)
  440. break;
  441. pc[i++].freq = ath5k_eeprom_bin2freq(ee,
  442. freq2, mode);
  443. ee->ee_n_piers[mode]++;
  444. }
  445. /* return new offset */
  446. *offset = o;
  447. return 0;
  448. }
  449. /* Read frequency piers for 802.11a */
  450. static int
  451. ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
  452. {
  453. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  454. struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
  455. int i, ret;
  456. u16 val;
  457. u8 mask;
  458. if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
  459. ath5k_eeprom_read_freq_list(ah, &offset,
  460. AR5K_EEPROM_N_5GHZ_CHAN, pcal,
  461. AR5K_EEPROM_MODE_11A);
  462. } else {
  463. mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
  464. AR5K_EEPROM_READ(offset++, val);
  465. pcal[0].freq = (val >> 9) & mask;
  466. pcal[1].freq = (val >> 2) & mask;
  467. pcal[2].freq = (val << 5) & mask;
  468. AR5K_EEPROM_READ(offset++, val);
  469. pcal[2].freq |= (val >> 11) & 0x1f;
  470. pcal[3].freq = (val >> 4) & mask;
  471. pcal[4].freq = (val << 3) & mask;
  472. AR5K_EEPROM_READ(offset++, val);
  473. pcal[4].freq |= (val >> 13) & 0x7;
  474. pcal[5].freq = (val >> 6) & mask;
  475. pcal[6].freq = (val << 1) & mask;
  476. AR5K_EEPROM_READ(offset++, val);
  477. pcal[6].freq |= (val >> 15) & 0x1;
  478. pcal[7].freq = (val >> 8) & mask;
  479. pcal[8].freq = (val >> 1) & mask;
  480. pcal[9].freq = (val << 6) & mask;
  481. AR5K_EEPROM_READ(offset++, val);
  482. pcal[9].freq |= (val >> 10) & 0x3f;
  483. /* Fixed number of piers */
  484. ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
  485. for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
  486. pcal[i].freq = ath5k_eeprom_bin2freq(ee,
  487. pcal[i].freq, AR5K_EEPROM_MODE_11A);
  488. }
  489. }
  490. return 0;
  491. }
  492. /* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
  493. static inline int
  494. ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
  495. {
  496. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  497. struct ath5k_chan_pcal_info *pcal;
  498. switch(mode) {
  499. case AR5K_EEPROM_MODE_11B:
  500. pcal = ee->ee_pwr_cal_b;
  501. break;
  502. case AR5K_EEPROM_MODE_11G:
  503. pcal = ee->ee_pwr_cal_g;
  504. break;
  505. default:
  506. return -EINVAL;
  507. }
  508. ath5k_eeprom_read_freq_list(ah, &offset,
  509. AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
  510. mode);
  511. return 0;
  512. }
  513. /*
  514. * Read power calibration for RF5111 chips
  515. *
  516. * For RF5111 we have an XPD -eXternal Power Detector- curve
  517. * for each calibrated channel. Each curve has 0,5dB Power steps
  518. * on x axis and PCDAC steps (offsets) on y axis and looks like an
  519. * exponential function. To recreate the curve we read 11 points
  520. * here and interpolate later.
  521. */
  522. /* Used to match PCDAC steps with power values on RF5111 chips
  523. * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
  524. * steps that match with the power values we read from eeprom. On
  525. * older eeprom versions (< 3.2) these steps are equaly spaced at
  526. * 10% of the pcdac curve -until the curve reaches it's maximum-
  527. * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
  528. * these 11 steps are spaced in a different way. This function returns
  529. * the pcdac steps based on eeprom version and curve min/max so that we
  530. * can have pcdac/pwr points.
  531. */
  532. static inline void
  533. ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
  534. {
  535. const static u16 intercepts3[] =
  536. { 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100 };
  537. const static u16 intercepts3_2[] =
  538. { 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 };
  539. const u16 *ip;
  540. int i;
  541. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
  542. ip = intercepts3_2;
  543. else
  544. ip = intercepts3;
  545. for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
  546. vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100;
  547. }
  548. /* Convert RF5111 specific data to generic raw data
  549. * used by interpolation code */
  550. static int
  551. ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode,
  552. struct ath5k_chan_pcal_info *chinfo)
  553. {
  554. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  555. struct ath5k_chan_pcal_info_rf5111 *pcinfo;
  556. struct ath5k_pdgain_info *pd;
  557. u8 pier, point, idx;
  558. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  559. /* Fill raw data for each calibration pier */
  560. for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
  561. pcinfo = &chinfo[pier].rf5111_info;
  562. /* Allocate pd_curves for this cal pier */
  563. chinfo[pier].pd_curves =
  564. kcalloc(AR5K_EEPROM_N_PD_CURVES,
  565. sizeof(struct ath5k_pdgain_info),
  566. GFP_KERNEL);
  567. if (!chinfo[pier].pd_curves)
  568. return -ENOMEM;
  569. /* Only one curve for RF5111
  570. * find out which one and place
  571. * in in pd_curves.
  572. * Note: ee_x_gain is reversed here */
  573. for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) {
  574. if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) {
  575. pdgain_idx[0] = idx;
  576. break;
  577. }
  578. }
  579. ee->ee_pd_gains[mode] = 1;
  580. pd = &chinfo[pier].pd_curves[idx];
  581. pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111;
  582. /* Allocate pd points for this curve */
  583. pd->pd_step = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
  584. sizeof(u8), GFP_KERNEL);
  585. if (!pd->pd_step)
  586. return -ENOMEM;
  587. pd->pd_pwr = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
  588. sizeof(s16), GFP_KERNEL);
  589. if (!pd->pd_pwr)
  590. return -ENOMEM;
  591. /* Fill raw dataset
  592. * (convert power to 0.25dB units
  593. * for RF5112 combatibility) */
  594. for (point = 0; point < pd->pd_points; point++) {
  595. /* Absolute values */
  596. pd->pd_pwr[point] = 2 * pcinfo->pwr[point];
  597. /* Already sorted */
  598. pd->pd_step[point] = pcinfo->pcdac[point];
  599. }
  600. /* Set min/max pwr */
  601. chinfo[pier].min_pwr = pd->pd_pwr[0];
  602. chinfo[pier].max_pwr = pd->pd_pwr[10];
  603. }
  604. return 0;
  605. }
  606. /* Parse EEPROM data */
  607. static int
  608. ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
  609. {
  610. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  611. struct ath5k_chan_pcal_info *pcal;
  612. int offset, ret;
  613. int i;
  614. u16 val;
  615. offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
  616. switch(mode) {
  617. case AR5K_EEPROM_MODE_11A:
  618. if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
  619. return 0;
  620. ret = ath5k_eeprom_init_11a_pcal_freq(ah,
  621. offset + AR5K_EEPROM_GROUP1_OFFSET);
  622. if (ret < 0)
  623. return ret;
  624. offset += AR5K_EEPROM_GROUP2_OFFSET;
  625. pcal = ee->ee_pwr_cal_a;
  626. break;
  627. case AR5K_EEPROM_MODE_11B:
  628. if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
  629. !AR5K_EEPROM_HDR_11G(ee->ee_header))
  630. return 0;
  631. pcal = ee->ee_pwr_cal_b;
  632. offset += AR5K_EEPROM_GROUP3_OFFSET;
  633. /* fixed piers */
  634. pcal[0].freq = 2412;
  635. pcal[1].freq = 2447;
  636. pcal[2].freq = 2484;
  637. ee->ee_n_piers[mode] = 3;
  638. break;
  639. case AR5K_EEPROM_MODE_11G:
  640. if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
  641. return 0;
  642. pcal = ee->ee_pwr_cal_g;
  643. offset += AR5K_EEPROM_GROUP4_OFFSET;
  644. /* fixed piers */
  645. pcal[0].freq = 2312;
  646. pcal[1].freq = 2412;
  647. pcal[2].freq = 2484;
  648. ee->ee_n_piers[mode] = 3;
  649. break;
  650. default:
  651. return -EINVAL;
  652. }
  653. for (i = 0; i < ee->ee_n_piers[mode]; i++) {
  654. struct ath5k_chan_pcal_info_rf5111 *cdata =
  655. &pcal[i].rf5111_info;
  656. AR5K_EEPROM_READ(offset++, val);
  657. cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
  658. cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
  659. cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
  660. AR5K_EEPROM_READ(offset++, val);
  661. cdata->pwr[0] |= ((val >> 14) & 0x3);
  662. cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
  663. cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
  664. cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
  665. AR5K_EEPROM_READ(offset++, val);
  666. cdata->pwr[3] |= ((val >> 12) & 0xf);
  667. cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
  668. cdata->pwr[5] = (val & AR5K_EEPROM_POWER_M);
  669. AR5K_EEPROM_READ(offset++, val);
  670. cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
  671. cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
  672. cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
  673. AR5K_EEPROM_READ(offset++, val);
  674. cdata->pwr[8] |= ((val >> 14) & 0x3);
  675. cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
  676. cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
  677. ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
  678. cdata->pcdac_max, cdata->pcdac);
  679. }
  680. return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal);
  681. }
  682. /*
  683. * Read power calibration for RF5112 chips
  684. *
  685. * For RF5112 we have 4 XPD -eXternal Power Detector- curves
  686. * for each calibrated channel on 0, -6, -12 and -18dbm but we only
  687. * use the higher (3) and the lower (0) curves. Each curve has 0.5dB
  688. * power steps on x axis and PCDAC steps on y axis and looks like a
  689. * linear function. To recreate the curve and pass the power values
  690. * on hw, we read 4 points for xpd 0 (lower gain -> max power)
  691. * and 3 points for xpd 3 (higher gain -> lower power) here and
  692. * interpolate later.
  693. *
  694. * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
  695. */
  696. /* Convert RF5112 specific data to generic raw data
  697. * used by interpolation code */
  698. static int
  699. ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode,
  700. struct ath5k_chan_pcal_info *chinfo)
  701. {
  702. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  703. struct ath5k_chan_pcal_info_rf5112 *pcinfo;
  704. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  705. unsigned int pier, pdg, point;
  706. /* Fill raw data for each calibration pier */
  707. for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
  708. pcinfo = &chinfo[pier].rf5112_info;
  709. /* Allocate pd_curves for this cal pier */
  710. chinfo[pier].pd_curves =
  711. kcalloc(AR5K_EEPROM_N_PD_CURVES,
  712. sizeof(struct ath5k_pdgain_info),
  713. GFP_KERNEL);
  714. if (!chinfo[pier].pd_curves)
  715. return -ENOMEM;
  716. /* Fill pd_curves */
  717. for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
  718. u8 idx = pdgain_idx[pdg];
  719. struct ath5k_pdgain_info *pd =
  720. &chinfo[pier].pd_curves[idx];
  721. /* Lowest gain curve (max power) */
  722. if (pdg == 0) {
  723. /* One more point for better accuracy */
  724. pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS;
  725. /* Allocate pd points for this curve */
  726. pd->pd_step = kcalloc(pd->pd_points,
  727. sizeof(u8), GFP_KERNEL);
  728. if (!pd->pd_step)
  729. return -ENOMEM;
  730. pd->pd_pwr = kcalloc(pd->pd_points,
  731. sizeof(s16), GFP_KERNEL);
  732. if (!pd->pd_pwr)
  733. return -ENOMEM;
  734. /* Fill raw dataset
  735. * (all power levels are in 0.25dB units) */
  736. pd->pd_step[0] = pcinfo->pcdac_x0[0];
  737. pd->pd_pwr[0] = pcinfo->pwr_x0[0];
  738. for (point = 1; point < pd->pd_points;
  739. point++) {
  740. /* Absolute values */
  741. pd->pd_pwr[point] =
  742. pcinfo->pwr_x0[point];
  743. /* Deltas */
  744. pd->pd_step[point] =
  745. pd->pd_step[point - 1] +
  746. pcinfo->pcdac_x0[point];
  747. }
  748. /* Set min power for this frequency */
  749. chinfo[pier].min_pwr = pd->pd_pwr[0];
  750. /* Highest gain curve (min power) */
  751. } else if (pdg == 1) {
  752. pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS;
  753. /* Allocate pd points for this curve */
  754. pd->pd_step = kcalloc(pd->pd_points,
  755. sizeof(u8), GFP_KERNEL);
  756. if (!pd->pd_step)
  757. return -ENOMEM;
  758. pd->pd_pwr = kcalloc(pd->pd_points,
  759. sizeof(s16), GFP_KERNEL);
  760. if (!pd->pd_pwr)
  761. return -ENOMEM;
  762. /* Fill raw dataset
  763. * (all power levels are in 0.25dB units) */
  764. for (point = 0; point < pd->pd_points;
  765. point++) {
  766. /* Absolute values */
  767. pd->pd_pwr[point] =
  768. pcinfo->pwr_x3[point];
  769. /* Fixed points */
  770. pd->pd_step[point] =
  771. pcinfo->pcdac_x3[point];
  772. }
  773. /* Since we have a higher gain curve
  774. * override min power */
  775. chinfo[pier].min_pwr = pd->pd_pwr[0];
  776. }
  777. }
  778. }
  779. return 0;
  780. }
  781. /* Parse EEPROM data */
  782. static int
  783. ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
  784. {
  785. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  786. struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
  787. struct ath5k_chan_pcal_info *gen_chan_info;
  788. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  789. u32 offset;
  790. u8 i, c;
  791. u16 val;
  792. int ret;
  793. u8 pd_gains = 0;
  794. /* Count how many curves we have and
  795. * identify them (which one of the 4
  796. * available curves we have on each count).
  797. * Curves are stored from lower (x0) to
  798. * higher (x3) gain */
  799. for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) {
  800. /* ee_x_gain[mode] is x gain mask */
  801. if ((ee->ee_x_gain[mode] >> i) & 0x1)
  802. pdgain_idx[pd_gains++] = i;
  803. }
  804. ee->ee_pd_gains[mode] = pd_gains;
  805. if (pd_gains == 0 || pd_gains > 2)
  806. return -EINVAL;
  807. switch (mode) {
  808. case AR5K_EEPROM_MODE_11A:
  809. /*
  810. * Read 5GHz EEPROM channels
  811. */
  812. offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
  813. ath5k_eeprom_init_11a_pcal_freq(ah, offset);
  814. offset += AR5K_EEPROM_GROUP2_OFFSET;
  815. gen_chan_info = ee->ee_pwr_cal_a;
  816. break;
  817. case AR5K_EEPROM_MODE_11B:
  818. offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
  819. if (AR5K_EEPROM_HDR_11A(ee->ee_header))
  820. offset += AR5K_EEPROM_GROUP3_OFFSET;
  821. /* NB: frequency piers parsed during mode init */
  822. gen_chan_info = ee->ee_pwr_cal_b;
  823. break;
  824. case AR5K_EEPROM_MODE_11G:
  825. offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
  826. if (AR5K_EEPROM_HDR_11A(ee->ee_header))
  827. offset += AR5K_EEPROM_GROUP4_OFFSET;
  828. else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
  829. offset += AR5K_EEPROM_GROUP2_OFFSET;
  830. /* NB: frequency piers parsed during mode init */
  831. gen_chan_info = ee->ee_pwr_cal_g;
  832. break;
  833. default:
  834. return -EINVAL;
  835. }
  836. for (i = 0; i < ee->ee_n_piers[mode]; i++) {
  837. chan_pcal_info = &gen_chan_info[i].rf5112_info;
  838. /* Power values in quarter dB
  839. * for the lower xpd gain curve
  840. * (0 dBm -> higher output power) */
  841. for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
  842. AR5K_EEPROM_READ(offset++, val);
  843. chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff);
  844. chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff);
  845. }
  846. /* PCDAC steps
  847. * corresponding to the above power
  848. * measurements */
  849. AR5K_EEPROM_READ(offset++, val);
  850. chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
  851. chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
  852. chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
  853. /* Power values in quarter dB
  854. * for the higher xpd gain curve
  855. * (18 dBm -> lower output power) */
  856. AR5K_EEPROM_READ(offset++, val);
  857. chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff);
  858. chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff);
  859. AR5K_EEPROM_READ(offset++, val);
  860. chan_pcal_info->pwr_x3[2] = (val & 0xff);
  861. /* PCDAC steps
  862. * corresponding to the above power
  863. * measurements (fixed) */
  864. chan_pcal_info->pcdac_x3[0] = 20;
  865. chan_pcal_info->pcdac_x3[1] = 35;
  866. chan_pcal_info->pcdac_x3[2] = 63;
  867. if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
  868. chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f);
  869. /* Last xpd0 power level is also channel maximum */
  870. gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
  871. } else {
  872. chan_pcal_info->pcdac_x0[0] = 1;
  873. gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff);
  874. }
  875. }
  876. return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info);
  877. }
  878. /*
  879. * Read power calibration for RF2413 chips
  880. *
  881. * For RF2413 we have a Power to PDDAC table (Power Detector)
  882. * instead of a PCDAC and 4 pd gain curves for each calibrated channel.
  883. * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
  884. * axis and looks like an exponential function like the RF5111 curve.
  885. *
  886. * To recreate the curves we read here the points and interpolate
  887. * later. Note that in most cases only 2 (higher and lower) curves are
  888. * used (like RF5112) but vendors have the oportunity to include all
  889. * 4 curves on eeprom. The final curve (higher power) has an extra
  890. * point for better accuracy like RF5112.
  891. */
  892. /* For RF2413 power calibration data doesn't start on a fixed location and
  893. * if a mode is not supported, it's section is missing -not zeroed-.
  894. * So we need to calculate the starting offset for each section by using
  895. * these two functions */
  896. /* Return the size of each section based on the mode and the number of pd
  897. * gains available (maximum 4). */
  898. static inline unsigned int
  899. ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
  900. {
  901. static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
  902. unsigned int sz;
  903. sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
  904. sz *= ee->ee_n_piers[mode];
  905. return sz;
  906. }
  907. /* Return the starting offset for a section based on the modes supported
  908. * and each section's size. */
  909. static unsigned int
  910. ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
  911. {
  912. u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
  913. switch(mode) {
  914. case AR5K_EEPROM_MODE_11G:
  915. if (AR5K_EEPROM_HDR_11B(ee->ee_header))
  916. offset += ath5k_pdgains_size_2413(ee,
  917. AR5K_EEPROM_MODE_11B) +
  918. AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
  919. /* fall through */
  920. case AR5K_EEPROM_MODE_11B:
  921. if (AR5K_EEPROM_HDR_11A(ee->ee_header))
  922. offset += ath5k_pdgains_size_2413(ee,
  923. AR5K_EEPROM_MODE_11A) +
  924. AR5K_EEPROM_N_5GHZ_CHAN / 2;
  925. /* fall through */
  926. case AR5K_EEPROM_MODE_11A:
  927. break;
  928. default:
  929. break;
  930. }
  931. return offset;
  932. }
  933. /* Convert RF2413 specific data to generic raw data
  934. * used by interpolation code */
  935. static int
  936. ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode,
  937. struct ath5k_chan_pcal_info *chinfo)
  938. {
  939. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  940. struct ath5k_chan_pcal_info_rf2413 *pcinfo;
  941. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  942. unsigned int pier, pdg, point;
  943. /* Fill raw data for each calibration pier */
  944. for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
  945. pcinfo = &chinfo[pier].rf2413_info;
  946. /* Allocate pd_curves for this cal pier */
  947. chinfo[pier].pd_curves =
  948. kcalloc(AR5K_EEPROM_N_PD_CURVES,
  949. sizeof(struct ath5k_pdgain_info),
  950. GFP_KERNEL);
  951. if (!chinfo[pier].pd_curves)
  952. return -ENOMEM;
  953. /* Fill pd_curves */
  954. for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
  955. u8 idx = pdgain_idx[pdg];
  956. struct ath5k_pdgain_info *pd =
  957. &chinfo[pier].pd_curves[idx];
  958. /* One more point for the highest power
  959. * curve (lowest gain) */
  960. if (pdg == ee->ee_pd_gains[mode] - 1)
  961. pd->pd_points = AR5K_EEPROM_N_PD_POINTS;
  962. else
  963. pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1;
  964. /* Allocate pd points for this curve */
  965. pd->pd_step = kcalloc(pd->pd_points,
  966. sizeof(u8), GFP_KERNEL);
  967. if (!pd->pd_step)
  968. return -ENOMEM;
  969. pd->pd_pwr = kcalloc(pd->pd_points,
  970. sizeof(s16), GFP_KERNEL);
  971. if (!pd->pd_pwr)
  972. return -ENOMEM;
  973. /* Fill raw dataset
  974. * convert all pwr levels to
  975. * quarter dB for RF5112 combatibility */
  976. pd->pd_step[0] = pcinfo->pddac_i[pdg];
  977. pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg];
  978. for (point = 1; point < pd->pd_points; point++) {
  979. pd->pd_pwr[point] = pd->pd_pwr[point - 1] +
  980. 2 * pcinfo->pwr[pdg][point - 1];
  981. pd->pd_step[point] = pd->pd_step[point - 1] +
  982. pcinfo->pddac[pdg][point - 1];
  983. }
  984. /* Highest gain curve -> min power */
  985. if (pdg == 0)
  986. chinfo[pier].min_pwr = pd->pd_pwr[0];
  987. /* Lowest gain curve -> max power */
  988. if (pdg == ee->ee_pd_gains[mode] - 1)
  989. chinfo[pier].max_pwr =
  990. pd->pd_pwr[pd->pd_points - 1];
  991. }
  992. }
  993. return 0;
  994. }
  995. /* Parse EEPROM data */
  996. static int
  997. ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
  998. {
  999. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1000. struct ath5k_chan_pcal_info_rf2413 *pcinfo;
  1001. struct ath5k_chan_pcal_info *chinfo;
  1002. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  1003. u32 offset;
  1004. int idx, i, ret;
  1005. u16 val;
  1006. u8 pd_gains = 0;
  1007. /* Count how many curves we have and
  1008. * identify them (which one of the 4
  1009. * available curves we have on each count).
  1010. * Curves are stored from higher to
  1011. * lower gain so we go backwards */
  1012. for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) {
  1013. /* ee_x_gain[mode] is x gain mask */
  1014. if ((ee->ee_x_gain[mode] >> idx) & 0x1)
  1015. pdgain_idx[pd_gains++] = idx;
  1016. }
  1017. ee->ee_pd_gains[mode] = pd_gains;
  1018. if (pd_gains == 0)
  1019. return -EINVAL;
  1020. offset = ath5k_cal_data_offset_2413(ee, mode);
  1021. switch (mode) {
  1022. case AR5K_EEPROM_MODE_11A:
  1023. if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
  1024. return 0;
  1025. ath5k_eeprom_init_11a_pcal_freq(ah, offset);
  1026. offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
  1027. chinfo = ee->ee_pwr_cal_a;
  1028. break;
  1029. case AR5K_EEPROM_MODE_11B:
  1030. if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
  1031. return 0;
  1032. ath5k_eeprom_init_11bg_2413(ah, mode, offset);
  1033. offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
  1034. chinfo = ee->ee_pwr_cal_b;
  1035. break;
  1036. case AR5K_EEPROM_MODE_11G:
  1037. if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
  1038. return 0;
  1039. ath5k_eeprom_init_11bg_2413(ah, mode, offset);
  1040. offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
  1041. chinfo = ee->ee_pwr_cal_g;
  1042. break;
  1043. default:
  1044. return -EINVAL;
  1045. }
  1046. for (i = 0; i < ee->ee_n_piers[mode]; i++) {
  1047. pcinfo = &chinfo[i].rf2413_info;
  1048. /*
  1049. * Read pwr_i, pddac_i and the first
  1050. * 2 pd points (pwr, pddac)
  1051. */
  1052. AR5K_EEPROM_READ(offset++, val);
  1053. pcinfo->pwr_i[0] = val & 0x1f;
  1054. pcinfo->pddac_i[0] = (val >> 5) & 0x7f;
  1055. pcinfo->pwr[0][0] = (val >> 12) & 0xf;
  1056. AR5K_EEPROM_READ(offset++, val);
  1057. pcinfo->pddac[0][0] = val & 0x3f;
  1058. pcinfo->pwr[0][1] = (val >> 6) & 0xf;
  1059. pcinfo->pddac[0][1] = (val >> 10) & 0x3f;
  1060. AR5K_EEPROM_READ(offset++, val);
  1061. pcinfo->pwr[0][2] = val & 0xf;
  1062. pcinfo->pddac[0][2] = (val >> 4) & 0x3f;
  1063. pcinfo->pwr[0][3] = 0;
  1064. pcinfo->pddac[0][3] = 0;
  1065. if (pd_gains > 1) {
  1066. /*
  1067. * Pd gain 0 is not the last pd gain
  1068. * so it only has 2 pd points.
  1069. * Continue wih pd gain 1.
  1070. */
  1071. pcinfo->pwr_i[1] = (val >> 10) & 0x1f;
  1072. pcinfo->pddac_i[1] = (val >> 15) & 0x1;
  1073. AR5K_EEPROM_READ(offset++, val);
  1074. pcinfo->pddac_i[1] |= (val & 0x3F) << 1;
  1075. pcinfo->pwr[1][0] = (val >> 6) & 0xf;
  1076. pcinfo->pddac[1][0] = (val >> 10) & 0x3f;
  1077. AR5K_EEPROM_READ(offset++, val);
  1078. pcinfo->pwr[1][1] = val & 0xf;
  1079. pcinfo->pddac[1][1] = (val >> 4) & 0x3f;
  1080. pcinfo->pwr[1][2] = (val >> 10) & 0xf;
  1081. pcinfo->pddac[1][2] = (val >> 14) & 0x3;
  1082. AR5K_EEPROM_READ(offset++, val);
  1083. pcinfo->pddac[1][2] |= (val & 0xF) << 2;
  1084. pcinfo->pwr[1][3] = 0;
  1085. pcinfo->pddac[1][3] = 0;
  1086. } else if (pd_gains == 1) {
  1087. /*
  1088. * Pd gain 0 is the last one so
  1089. * read the extra point.
  1090. */
  1091. pcinfo->pwr[0][3] = (val >> 10) & 0xf;
  1092. pcinfo->pddac[0][3] = (val >> 14) & 0x3;
  1093. AR5K_EEPROM_READ(offset++, val);
  1094. pcinfo->pddac[0][3] |= (val & 0xF) << 2;
  1095. }
  1096. /*
  1097. * Proceed with the other pd_gains
  1098. * as above.
  1099. */
  1100. if (pd_gains > 2) {
  1101. pcinfo->pwr_i[2] = (val >> 4) & 0x1f;
  1102. pcinfo->pddac_i[2] = (val >> 9) & 0x7f;
  1103. AR5K_EEPROM_READ(offset++, val);
  1104. pcinfo->pwr[2][0] = (val >> 0) & 0xf;
  1105. pcinfo->pddac[2][0] = (val >> 4) & 0x3f;
  1106. pcinfo->pwr[2][1] = (val >> 10) & 0xf;
  1107. pcinfo->pddac[2][1] = (val >> 14) & 0x3;
  1108. AR5K_EEPROM_READ(offset++, val);
  1109. pcinfo->pddac[2][1] |= (val & 0xF) << 2;
  1110. pcinfo->pwr[2][2] = (val >> 4) & 0xf;
  1111. pcinfo->pddac[2][2] = (val >> 8) & 0x3f;
  1112. pcinfo->pwr[2][3] = 0;
  1113. pcinfo->pddac[2][3] = 0;
  1114. } else if (pd_gains == 2) {
  1115. pcinfo->pwr[1][3] = (val >> 4) & 0xf;
  1116. pcinfo->pddac[1][3] = (val >> 8) & 0x3f;
  1117. }
  1118. if (pd_gains > 3) {
  1119. pcinfo->pwr_i[3] = (val >> 14) & 0x3;
  1120. AR5K_EEPROM_READ(offset++, val);
  1121. pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
  1122. pcinfo->pddac_i[3] = (val >> 3) & 0x7f;
  1123. pcinfo->pwr[3][0] = (val >> 10) & 0xf;
  1124. pcinfo->pddac[3][0] = (val >> 14) & 0x3;
  1125. AR5K_EEPROM_READ(offset++, val);
  1126. pcinfo->pddac[3][0] |= (val & 0xF) << 2;
  1127. pcinfo->pwr[3][1] = (val >> 4) & 0xf;
  1128. pcinfo->pddac[3][1] = (val >> 8) & 0x3f;
  1129. pcinfo->pwr[3][2] = (val >> 14) & 0x3;
  1130. AR5K_EEPROM_READ(offset++, val);
  1131. pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2;
  1132. pcinfo->pddac[3][2] = (val >> 2) & 0x3f;
  1133. pcinfo->pwr[3][3] = (val >> 8) & 0xf;
  1134. pcinfo->pddac[3][3] = (val >> 12) & 0xF;
  1135. AR5K_EEPROM_READ(offset++, val);
  1136. pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4;
  1137. } else if (pd_gains == 3) {
  1138. pcinfo->pwr[2][3] = (val >> 14) & 0x3;
  1139. AR5K_EEPROM_READ(offset++, val);
  1140. pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2;
  1141. pcinfo->pddac[2][3] = (val >> 2) & 0x3f;
  1142. }
  1143. }
  1144. return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo);
  1145. }
  1146. /*
  1147. * Read per rate target power (this is the maximum tx power
  1148. * supported by the card). This info is used when setting
  1149. * tx power, no matter the channel.
  1150. *
  1151. * This also works for v5 EEPROMs.
  1152. */
  1153. static int
  1154. ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
  1155. {
  1156. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1157. struct ath5k_rate_pcal_info *rate_pcal_info;
  1158. u8 *rate_target_pwr_num;
  1159. u32 offset;
  1160. u16 val;
  1161. int ret, i;
  1162. offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
  1163. rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
  1164. switch (mode) {
  1165. case AR5K_EEPROM_MODE_11A:
  1166. offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
  1167. rate_pcal_info = ee->ee_rate_tpwr_a;
  1168. ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_CHAN;
  1169. break;
  1170. case AR5K_EEPROM_MODE_11B:
  1171. offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
  1172. rate_pcal_info = ee->ee_rate_tpwr_b;
  1173. ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
  1174. break;
  1175. case AR5K_EEPROM_MODE_11G:
  1176. offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
  1177. rate_pcal_info = ee->ee_rate_tpwr_g;
  1178. ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
  1179. break;
  1180. default:
  1181. return -EINVAL;
  1182. }
  1183. /* Different freq mask for older eeproms (<= v3.2) */
  1184. if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
  1185. for (i = 0; i < (*rate_target_pwr_num); i++) {
  1186. AR5K_EEPROM_READ(offset++, val);
  1187. rate_pcal_info[i].freq =
  1188. ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
  1189. rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
  1190. rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
  1191. AR5K_EEPROM_READ(offset++, val);
  1192. if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
  1193. val == 0) {
  1194. (*rate_target_pwr_num) = i;
  1195. break;
  1196. }
  1197. rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
  1198. rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
  1199. rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
  1200. }
  1201. } else {
  1202. for (i = 0; i < (*rate_target_pwr_num); i++) {
  1203. AR5K_EEPROM_READ(offset++, val);
  1204. rate_pcal_info[i].freq =
  1205. ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
  1206. rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
  1207. rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
  1208. AR5K_EEPROM_READ(offset++, val);
  1209. if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
  1210. val == 0) {
  1211. (*rate_target_pwr_num) = i;
  1212. break;
  1213. }
  1214. rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
  1215. rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
  1216. rate_pcal_info[i].target_power_54 = (val & 0x3f);
  1217. }
  1218. }
  1219. return 0;
  1220. }
  1221. /*
  1222. * Read per channel calibration info from EEPROM
  1223. *
  1224. * This info is used to calibrate the baseband power table. Imagine
  1225. * that for each channel there is a power curve that's hw specific
  1226. * (depends on amplifier etc) and we try to "correct" this curve using
  1227. * offests we pass on to phy chip (baseband -> before amplifier) so that
  1228. * it can use accurate power values when setting tx power (takes amplifier's
  1229. * performance on each channel into account).
  1230. *
  1231. * EEPROM provides us with the offsets for some pre-calibrated channels
  1232. * and we have to interpolate to create the full table for these channels and
  1233. * also the table for any channel.
  1234. */
  1235. static int
  1236. ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
  1237. {
  1238. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1239. int (*read_pcal)(struct ath5k_hw *hw, int mode);
  1240. int mode;
  1241. int err;
  1242. if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
  1243. (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
  1244. read_pcal = ath5k_eeprom_read_pcal_info_5112;
  1245. else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
  1246. (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
  1247. read_pcal = ath5k_eeprom_read_pcal_info_2413;
  1248. else
  1249. read_pcal = ath5k_eeprom_read_pcal_info_5111;
  1250. for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G;
  1251. mode++) {
  1252. err = read_pcal(ah, mode);
  1253. if (err)
  1254. return err;
  1255. err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
  1256. if (err < 0)
  1257. return err;
  1258. }
  1259. return 0;
  1260. }
  1261. static int
  1262. ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode)
  1263. {
  1264. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1265. struct ath5k_chan_pcal_info *chinfo;
  1266. u8 pier, pdg;
  1267. switch (mode) {
  1268. case AR5K_EEPROM_MODE_11A:
  1269. if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
  1270. return 0;
  1271. chinfo = ee->ee_pwr_cal_a;
  1272. break;
  1273. case AR5K_EEPROM_MODE_11B:
  1274. if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
  1275. return 0;
  1276. chinfo = ee->ee_pwr_cal_b;
  1277. break;
  1278. case AR5K_EEPROM_MODE_11G:
  1279. if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
  1280. return 0;
  1281. chinfo = ee->ee_pwr_cal_g;
  1282. break;
  1283. default:
  1284. return -EINVAL;
  1285. }
  1286. for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
  1287. if (!chinfo[pier].pd_curves)
  1288. continue;
  1289. for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
  1290. struct ath5k_pdgain_info *pd =
  1291. &chinfo[pier].pd_curves[pdg];
  1292. if (pd != NULL) {
  1293. kfree(pd->pd_step);
  1294. kfree(pd->pd_pwr);
  1295. }
  1296. }
  1297. kfree(chinfo[pier].pd_curves);
  1298. }
  1299. return 0;
  1300. }
  1301. void
  1302. ath5k_eeprom_detach(struct ath5k_hw *ah)
  1303. {
  1304. u8 mode;
  1305. for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
  1306. ath5k_eeprom_free_pcal_info(ah, mode);
  1307. }
  1308. /* Read conformance test limits used for regulatory control */
  1309. static int
  1310. ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
  1311. {
  1312. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1313. struct ath5k_edge_power *rep;
  1314. unsigned int fmask, pmask;
  1315. unsigned int ctl_mode;
  1316. int ret, i, j;
  1317. u32 offset;
  1318. u16 val;
  1319. pmask = AR5K_EEPROM_POWER_M;
  1320. fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
  1321. offset = AR5K_EEPROM_CTL(ee->ee_version);
  1322. ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
  1323. for (i = 0; i < ee->ee_ctls; i += 2) {
  1324. AR5K_EEPROM_READ(offset++, val);
  1325. ee->ee_ctl[i] = (val >> 8) & 0xff;
  1326. ee->ee_ctl[i + 1] = val & 0xff;
  1327. }
  1328. offset = AR5K_EEPROM_GROUP8_OFFSET;
  1329. if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
  1330. offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
  1331. AR5K_EEPROM_GROUP5_OFFSET;
  1332. else
  1333. offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
  1334. rep = ee->ee_ctl_pwr;
  1335. for(i = 0; i < ee->ee_ctls; i++) {
  1336. switch(ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
  1337. case AR5K_CTL_11A:
  1338. case AR5K_CTL_TURBO:
  1339. ctl_mode = AR5K_EEPROM_MODE_11A;
  1340. break;
  1341. default:
  1342. ctl_mode = AR5K_EEPROM_MODE_11G;
  1343. break;
  1344. }
  1345. if (ee->ee_ctl[i] == 0) {
  1346. if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
  1347. offset += 8;
  1348. else
  1349. offset += 7;
  1350. rep += AR5K_EEPROM_N_EDGES;
  1351. continue;
  1352. }
  1353. if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
  1354. for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
  1355. AR5K_EEPROM_READ(offset++, val);
  1356. rep[j].freq = (val >> 8) & fmask;
  1357. rep[j + 1].freq = val & fmask;
  1358. }
  1359. for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
  1360. AR5K_EEPROM_READ(offset++, val);
  1361. rep[j].edge = (val >> 8) & pmask;
  1362. rep[j].flag = (val >> 14) & 1;
  1363. rep[j + 1].edge = val & pmask;
  1364. rep[j + 1].flag = (val >> 6) & 1;
  1365. }
  1366. } else {
  1367. AR5K_EEPROM_READ(offset++, val);
  1368. rep[0].freq = (val >> 9) & fmask;
  1369. rep[1].freq = (val >> 2) & fmask;
  1370. rep[2].freq = (val << 5) & fmask;
  1371. AR5K_EEPROM_READ(offset++, val);
  1372. rep[2].freq |= (val >> 11) & 0x1f;
  1373. rep[3].freq = (val >> 4) & fmask;
  1374. rep[4].freq = (val << 3) & fmask;
  1375. AR5K_EEPROM_READ(offset++, val);
  1376. rep[4].freq |= (val >> 13) & 0x7;
  1377. rep[5].freq = (val >> 6) & fmask;
  1378. rep[6].freq = (val << 1) & fmask;
  1379. AR5K_EEPROM_READ(offset++, val);
  1380. rep[6].freq |= (val >> 15) & 0x1;
  1381. rep[7].freq = (val >> 8) & fmask;
  1382. rep[0].edge = (val >> 2) & pmask;
  1383. rep[1].edge = (val << 4) & pmask;
  1384. AR5K_EEPROM_READ(offset++, val);
  1385. rep[1].edge |= (val >> 12) & 0xf;
  1386. rep[2].edge = (val >> 6) & pmask;
  1387. rep[3].edge = val & pmask;
  1388. AR5K_EEPROM_READ(offset++, val);
  1389. rep[4].edge = (val >> 10) & pmask;
  1390. rep[5].edge = (val >> 4) & pmask;
  1391. rep[6].edge = (val << 2) & pmask;
  1392. AR5K_EEPROM_READ(offset++, val);
  1393. rep[6].edge |= (val >> 14) & 0x3;
  1394. rep[7].edge = (val >> 8) & pmask;
  1395. }
  1396. for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
  1397. rep[j].freq = ath5k_eeprom_bin2freq(ee,
  1398. rep[j].freq, ctl_mode);
  1399. }
  1400. rep += AR5K_EEPROM_N_EDGES;
  1401. }
  1402. return 0;
  1403. }
  1404. /*
  1405. * Initialize eeprom power tables
  1406. */
  1407. int
  1408. ath5k_eeprom_init(struct ath5k_hw *ah)
  1409. {
  1410. int err;
  1411. err = ath5k_eeprom_init_header(ah);
  1412. if (err < 0)
  1413. return err;
  1414. err = ath5k_eeprom_init_modes(ah);
  1415. if (err < 0)
  1416. return err;
  1417. err = ath5k_eeprom_read_pcal_info(ah);
  1418. if (err < 0)
  1419. return err;
  1420. err = ath5k_eeprom_read_ctl_info(ah);
  1421. if (err < 0)
  1422. return err;
  1423. return 0;
  1424. }
  1425. /*
  1426. * Read the MAC address from eeprom
  1427. */
  1428. int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac)
  1429. {
  1430. u8 mac_d[ETH_ALEN] = {};
  1431. u32 total, offset;
  1432. u16 data;
  1433. int octet, ret;
  1434. ret = ath5k_hw_eeprom_read(ah, 0x20, &data);
  1435. if (ret)
  1436. return ret;
  1437. for (offset = 0x1f, octet = 0, total = 0; offset >= 0x1d; offset--) {
  1438. ret = ath5k_hw_eeprom_read(ah, offset, &data);
  1439. if (ret)
  1440. return ret;
  1441. total += data;
  1442. mac_d[octet + 1] = data & 0xff;
  1443. mac_d[octet] = data >> 8;
  1444. octet += 2;
  1445. }
  1446. if (!total || total == 3 * 0xffff)
  1447. return -EINVAL;
  1448. memcpy(mac, mac_d, ETH_ALEN);
  1449. return 0;
  1450. }
  1451. bool ath5k_eeprom_is_hb63(struct ath5k_hw *ah)
  1452. {
  1453. u16 data;
  1454. ath5k_hw_eeprom_read(ah, AR5K_EEPROM_IS_HB63, &data);
  1455. if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && data)
  1456. return true;
  1457. else
  1458. return false;
  1459. }