forcedeth.c 193 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378
  1. /*
  2. * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
  3. *
  4. * Note: This driver is a cleanroom reimplementation based on reverse
  5. * engineered documentation written by Carl-Daniel Hailfinger
  6. * and Andrew de Quincey.
  7. *
  8. * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
  9. * trademarks of NVIDIA Corporation in the United States and other
  10. * countries.
  11. *
  12. * Copyright (C) 2003,4,5 Manfred Spraul
  13. * Copyright (C) 2004 Andrew de Quincey (wol support)
  14. * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
  15. * IRQ rate fixes, bigendian fixes, cleanups, verification)
  16. * Copyright (c) 2004,2005,2006,2007,2008,2009 NVIDIA Corporation
  17. *
  18. * This program is free software; you can redistribute it and/or modify
  19. * it under the terms of the GNU General Public License as published by
  20. * the Free Software Foundation; either version 2 of the License, or
  21. * (at your option) any later version.
  22. *
  23. * This program is distributed in the hope that it will be useful,
  24. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  25. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  26. * GNU General Public License for more details.
  27. *
  28. * You should have received a copy of the GNU General Public License
  29. * along with this program; if not, write to the Free Software
  30. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  31. *
  32. * Known bugs:
  33. * We suspect that on some hardware no TX done interrupts are generated.
  34. * This means recovery from netif_stop_queue only happens if the hw timer
  35. * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
  36. * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
  37. * If your hardware reliably generates tx done interrupts, then you can remove
  38. * DEV_NEED_TIMERIRQ from the driver_data flags.
  39. * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
  40. * superfluous timer interrupts from the nic.
  41. */
  42. #define FORCEDETH_VERSION "0.64"
  43. #define DRV_NAME "forcedeth"
  44. #include <linux/module.h>
  45. #include <linux/types.h>
  46. #include <linux/pci.h>
  47. #include <linux/interrupt.h>
  48. #include <linux/netdevice.h>
  49. #include <linux/etherdevice.h>
  50. #include <linux/delay.h>
  51. #include <linux/spinlock.h>
  52. #include <linux/ethtool.h>
  53. #include <linux/timer.h>
  54. #include <linux/skbuff.h>
  55. #include <linux/mii.h>
  56. #include <linux/random.h>
  57. #include <linux/init.h>
  58. #include <linux/if_vlan.h>
  59. #include <linux/dma-mapping.h>
  60. #include <asm/irq.h>
  61. #include <asm/io.h>
  62. #include <asm/uaccess.h>
  63. #include <asm/system.h>
  64. #if 0
  65. #define dprintk printk
  66. #else
  67. #define dprintk(x...) do { } while (0)
  68. #endif
  69. #define TX_WORK_PER_LOOP 64
  70. #define RX_WORK_PER_LOOP 64
  71. /*
  72. * Hardware access:
  73. */
  74. #define DEV_NEED_TIMERIRQ 0x000001 /* set the timer irq flag in the irq mask */
  75. #define DEV_NEED_LINKTIMER 0x000002 /* poll link settings. Relies on the timer irq */
  76. #define DEV_HAS_LARGEDESC 0x000004 /* device supports jumbo frames and needs packet format 2 */
  77. #define DEV_HAS_HIGH_DMA 0x000008 /* device supports 64bit dma */
  78. #define DEV_HAS_CHECKSUM 0x000010 /* device supports tx and rx checksum offloads */
  79. #define DEV_HAS_VLAN 0x000020 /* device supports vlan tagging and striping */
  80. #define DEV_HAS_MSI 0x000040 /* device supports MSI */
  81. #define DEV_HAS_MSI_X 0x000080 /* device supports MSI-X */
  82. #define DEV_HAS_POWER_CNTRL 0x000100 /* device supports power savings */
  83. #define DEV_HAS_STATISTICS_V1 0x000200 /* device supports hw statistics version 1 */
  84. #define DEV_HAS_STATISTICS_V2 0x000600 /* device supports hw statistics version 2 */
  85. #define DEV_HAS_STATISTICS_V3 0x000e00 /* device supports hw statistics version 3 */
  86. #define DEV_HAS_TEST_EXTENDED 0x001000 /* device supports extended diagnostic test */
  87. #define DEV_HAS_MGMT_UNIT 0x002000 /* device supports management unit */
  88. #define DEV_HAS_CORRECT_MACADDR 0x004000 /* device supports correct mac address order */
  89. #define DEV_HAS_COLLISION_FIX 0x008000 /* device supports tx collision fix */
  90. #define DEV_HAS_PAUSEFRAME_TX_V1 0x010000 /* device supports tx pause frames version 1 */
  91. #define DEV_HAS_PAUSEFRAME_TX_V2 0x020000 /* device supports tx pause frames version 2 */
  92. #define DEV_HAS_PAUSEFRAME_TX_V3 0x040000 /* device supports tx pause frames version 3 */
  93. #define DEV_NEED_TX_LIMIT 0x080000 /* device needs to limit tx */
  94. #define DEV_HAS_GEAR_MODE 0x100000 /* device supports gear mode */
  95. enum {
  96. NvRegIrqStatus = 0x000,
  97. #define NVREG_IRQSTAT_MIIEVENT 0x040
  98. #define NVREG_IRQSTAT_MASK 0x83ff
  99. NvRegIrqMask = 0x004,
  100. #define NVREG_IRQ_RX_ERROR 0x0001
  101. #define NVREG_IRQ_RX 0x0002
  102. #define NVREG_IRQ_RX_NOBUF 0x0004
  103. #define NVREG_IRQ_TX_ERR 0x0008
  104. #define NVREG_IRQ_TX_OK 0x0010
  105. #define NVREG_IRQ_TIMER 0x0020
  106. #define NVREG_IRQ_LINK 0x0040
  107. #define NVREG_IRQ_RX_FORCED 0x0080
  108. #define NVREG_IRQ_TX_FORCED 0x0100
  109. #define NVREG_IRQ_RECOVER_ERROR 0x8200
  110. #define NVREG_IRQMASK_THROUGHPUT 0x00df
  111. #define NVREG_IRQMASK_CPU 0x0060
  112. #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
  113. #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
  114. #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR)
  115. NvRegUnknownSetupReg6 = 0x008,
  116. #define NVREG_UNKSETUP6_VAL 3
  117. /*
  118. * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
  119. * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
  120. */
  121. NvRegPollingInterval = 0x00c,
  122. #define NVREG_POLL_DEFAULT_THROUGHPUT 65535 /* backup tx cleanup if loop max reached */
  123. #define NVREG_POLL_DEFAULT_CPU 13
  124. NvRegMSIMap0 = 0x020,
  125. NvRegMSIMap1 = 0x024,
  126. NvRegMSIIrqMask = 0x030,
  127. #define NVREG_MSI_VECTOR_0_ENABLED 0x01
  128. NvRegMisc1 = 0x080,
  129. #define NVREG_MISC1_PAUSE_TX 0x01
  130. #define NVREG_MISC1_HD 0x02
  131. #define NVREG_MISC1_FORCE 0x3b0f3c
  132. NvRegMacReset = 0x34,
  133. #define NVREG_MAC_RESET_ASSERT 0x0F3
  134. NvRegTransmitterControl = 0x084,
  135. #define NVREG_XMITCTL_START 0x01
  136. #define NVREG_XMITCTL_MGMT_ST 0x40000000
  137. #define NVREG_XMITCTL_SYNC_MASK 0x000f0000
  138. #define NVREG_XMITCTL_SYNC_NOT_READY 0x0
  139. #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000
  140. #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00
  141. #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0
  142. #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000
  143. #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000
  144. #define NVREG_XMITCTL_HOST_LOADED 0x00004000
  145. #define NVREG_XMITCTL_TX_PATH_EN 0x01000000
  146. #define NVREG_XMITCTL_DATA_START 0x00100000
  147. #define NVREG_XMITCTL_DATA_READY 0x00010000
  148. #define NVREG_XMITCTL_DATA_ERROR 0x00020000
  149. NvRegTransmitterStatus = 0x088,
  150. #define NVREG_XMITSTAT_BUSY 0x01
  151. NvRegPacketFilterFlags = 0x8c,
  152. #define NVREG_PFF_PAUSE_RX 0x08
  153. #define NVREG_PFF_ALWAYS 0x7F0000
  154. #define NVREG_PFF_PROMISC 0x80
  155. #define NVREG_PFF_MYADDR 0x20
  156. #define NVREG_PFF_LOOPBACK 0x10
  157. NvRegOffloadConfig = 0x90,
  158. #define NVREG_OFFLOAD_HOMEPHY 0x601
  159. #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
  160. NvRegReceiverControl = 0x094,
  161. #define NVREG_RCVCTL_START 0x01
  162. #define NVREG_RCVCTL_RX_PATH_EN 0x01000000
  163. NvRegReceiverStatus = 0x98,
  164. #define NVREG_RCVSTAT_BUSY 0x01
  165. NvRegSlotTime = 0x9c,
  166. #define NVREG_SLOTTIME_LEGBF_ENABLED 0x80000000
  167. #define NVREG_SLOTTIME_10_100_FULL 0x00007f00
  168. #define NVREG_SLOTTIME_1000_FULL 0x0003ff00
  169. #define NVREG_SLOTTIME_HALF 0x0000ff00
  170. #define NVREG_SLOTTIME_DEFAULT 0x00007f00
  171. #define NVREG_SLOTTIME_MASK 0x000000ff
  172. NvRegTxDeferral = 0xA0,
  173. #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f
  174. #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f
  175. #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f
  176. #define NVREG_TX_DEFERRAL_RGMII_STRETCH_10 0x16190f
  177. #define NVREG_TX_DEFERRAL_RGMII_STRETCH_100 0x16300f
  178. #define NVREG_TX_DEFERRAL_MII_STRETCH 0x152000
  179. NvRegRxDeferral = 0xA4,
  180. #define NVREG_RX_DEFERRAL_DEFAULT 0x16
  181. NvRegMacAddrA = 0xA8,
  182. NvRegMacAddrB = 0xAC,
  183. NvRegMulticastAddrA = 0xB0,
  184. #define NVREG_MCASTADDRA_FORCE 0x01
  185. NvRegMulticastAddrB = 0xB4,
  186. NvRegMulticastMaskA = 0xB8,
  187. #define NVREG_MCASTMASKA_NONE 0xffffffff
  188. NvRegMulticastMaskB = 0xBC,
  189. #define NVREG_MCASTMASKB_NONE 0xffff
  190. NvRegPhyInterface = 0xC0,
  191. #define PHY_RGMII 0x10000000
  192. NvRegBackOffControl = 0xC4,
  193. #define NVREG_BKOFFCTRL_DEFAULT 0x70000000
  194. #define NVREG_BKOFFCTRL_SEED_MASK 0x000003ff
  195. #define NVREG_BKOFFCTRL_SELECT 24
  196. #define NVREG_BKOFFCTRL_GEAR 12
  197. NvRegTxRingPhysAddr = 0x100,
  198. NvRegRxRingPhysAddr = 0x104,
  199. NvRegRingSizes = 0x108,
  200. #define NVREG_RINGSZ_TXSHIFT 0
  201. #define NVREG_RINGSZ_RXSHIFT 16
  202. NvRegTransmitPoll = 0x10c,
  203. #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
  204. NvRegLinkSpeed = 0x110,
  205. #define NVREG_LINKSPEED_FORCE 0x10000
  206. #define NVREG_LINKSPEED_10 1000
  207. #define NVREG_LINKSPEED_100 100
  208. #define NVREG_LINKSPEED_1000 50
  209. #define NVREG_LINKSPEED_MASK (0xFFF)
  210. NvRegUnknownSetupReg5 = 0x130,
  211. #define NVREG_UNKSETUP5_BIT31 (1<<31)
  212. NvRegTxWatermark = 0x13c,
  213. #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010
  214. #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000
  215. #define NVREG_TX_WM_DESC2_3_1000 0xfe08000
  216. NvRegTxRxControl = 0x144,
  217. #define NVREG_TXRXCTL_KICK 0x0001
  218. #define NVREG_TXRXCTL_BIT1 0x0002
  219. #define NVREG_TXRXCTL_BIT2 0x0004
  220. #define NVREG_TXRXCTL_IDLE 0x0008
  221. #define NVREG_TXRXCTL_RESET 0x0010
  222. #define NVREG_TXRXCTL_RXCHECK 0x0400
  223. #define NVREG_TXRXCTL_DESC_1 0
  224. #define NVREG_TXRXCTL_DESC_2 0x002100
  225. #define NVREG_TXRXCTL_DESC_3 0xc02200
  226. #define NVREG_TXRXCTL_VLANSTRIP 0x00040
  227. #define NVREG_TXRXCTL_VLANINS 0x00080
  228. NvRegTxRingPhysAddrHigh = 0x148,
  229. NvRegRxRingPhysAddrHigh = 0x14C,
  230. NvRegTxPauseFrame = 0x170,
  231. #define NVREG_TX_PAUSEFRAME_DISABLE 0x0fff0080
  232. #define NVREG_TX_PAUSEFRAME_ENABLE_V1 0x01800010
  233. #define NVREG_TX_PAUSEFRAME_ENABLE_V2 0x056003f0
  234. #define NVREG_TX_PAUSEFRAME_ENABLE_V3 0x09f00880
  235. NvRegTxPauseFrameLimit = 0x174,
  236. #define NVREG_TX_PAUSEFRAMELIMIT_ENABLE 0x00010000
  237. NvRegMIIStatus = 0x180,
  238. #define NVREG_MIISTAT_ERROR 0x0001
  239. #define NVREG_MIISTAT_LINKCHANGE 0x0008
  240. #define NVREG_MIISTAT_MASK_RW 0x0007
  241. #define NVREG_MIISTAT_MASK_ALL 0x000f
  242. NvRegMIIMask = 0x184,
  243. #define NVREG_MII_LINKCHANGE 0x0008
  244. NvRegAdapterControl = 0x188,
  245. #define NVREG_ADAPTCTL_START 0x02
  246. #define NVREG_ADAPTCTL_LINKUP 0x04
  247. #define NVREG_ADAPTCTL_PHYVALID 0x40000
  248. #define NVREG_ADAPTCTL_RUNNING 0x100000
  249. #define NVREG_ADAPTCTL_PHYSHIFT 24
  250. NvRegMIISpeed = 0x18c,
  251. #define NVREG_MIISPEED_BIT8 (1<<8)
  252. #define NVREG_MIIDELAY 5
  253. NvRegMIIControl = 0x190,
  254. #define NVREG_MIICTL_INUSE 0x08000
  255. #define NVREG_MIICTL_WRITE 0x00400
  256. #define NVREG_MIICTL_ADDRSHIFT 5
  257. NvRegMIIData = 0x194,
  258. NvRegTxUnicast = 0x1a0,
  259. NvRegTxMulticast = 0x1a4,
  260. NvRegTxBroadcast = 0x1a8,
  261. NvRegWakeUpFlags = 0x200,
  262. #define NVREG_WAKEUPFLAGS_VAL 0x7770
  263. #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
  264. #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
  265. #define NVREG_WAKEUPFLAGS_D3SHIFT 12
  266. #define NVREG_WAKEUPFLAGS_D2SHIFT 8
  267. #define NVREG_WAKEUPFLAGS_D1SHIFT 4
  268. #define NVREG_WAKEUPFLAGS_D0SHIFT 0
  269. #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
  270. #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
  271. #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
  272. #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
  273. NvRegMgmtUnitGetVersion = 0x204,
  274. #define NVREG_MGMTUNITGETVERSION 0x01
  275. NvRegMgmtUnitVersion = 0x208,
  276. #define NVREG_MGMTUNITVERSION 0x08
  277. NvRegPowerCap = 0x268,
  278. #define NVREG_POWERCAP_D3SUPP (1<<30)
  279. #define NVREG_POWERCAP_D2SUPP (1<<26)
  280. #define NVREG_POWERCAP_D1SUPP (1<<25)
  281. NvRegPowerState = 0x26c,
  282. #define NVREG_POWERSTATE_POWEREDUP 0x8000
  283. #define NVREG_POWERSTATE_VALID 0x0100
  284. #define NVREG_POWERSTATE_MASK 0x0003
  285. #define NVREG_POWERSTATE_D0 0x0000
  286. #define NVREG_POWERSTATE_D1 0x0001
  287. #define NVREG_POWERSTATE_D2 0x0002
  288. #define NVREG_POWERSTATE_D3 0x0003
  289. NvRegMgmtUnitControl = 0x278,
  290. #define NVREG_MGMTUNITCONTROL_INUSE 0x20000
  291. NvRegTxCnt = 0x280,
  292. NvRegTxZeroReXmt = 0x284,
  293. NvRegTxOneReXmt = 0x288,
  294. NvRegTxManyReXmt = 0x28c,
  295. NvRegTxLateCol = 0x290,
  296. NvRegTxUnderflow = 0x294,
  297. NvRegTxLossCarrier = 0x298,
  298. NvRegTxExcessDef = 0x29c,
  299. NvRegTxRetryErr = 0x2a0,
  300. NvRegRxFrameErr = 0x2a4,
  301. NvRegRxExtraByte = 0x2a8,
  302. NvRegRxLateCol = 0x2ac,
  303. NvRegRxRunt = 0x2b0,
  304. NvRegRxFrameTooLong = 0x2b4,
  305. NvRegRxOverflow = 0x2b8,
  306. NvRegRxFCSErr = 0x2bc,
  307. NvRegRxFrameAlignErr = 0x2c0,
  308. NvRegRxLenErr = 0x2c4,
  309. NvRegRxUnicast = 0x2c8,
  310. NvRegRxMulticast = 0x2cc,
  311. NvRegRxBroadcast = 0x2d0,
  312. NvRegTxDef = 0x2d4,
  313. NvRegTxFrame = 0x2d8,
  314. NvRegRxCnt = 0x2dc,
  315. NvRegTxPause = 0x2e0,
  316. NvRegRxPause = 0x2e4,
  317. NvRegRxDropFrame = 0x2e8,
  318. NvRegVlanControl = 0x300,
  319. #define NVREG_VLANCONTROL_ENABLE 0x2000
  320. NvRegMSIXMap0 = 0x3e0,
  321. NvRegMSIXMap1 = 0x3e4,
  322. NvRegMSIXIrqStatus = 0x3f0,
  323. NvRegPowerState2 = 0x600,
  324. #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F15
  325. #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
  326. #define NVREG_POWERSTATE2_PHY_RESET 0x0004
  327. };
  328. /* Big endian: should work, but is untested */
  329. struct ring_desc {
  330. __le32 buf;
  331. __le32 flaglen;
  332. };
  333. struct ring_desc_ex {
  334. __le32 bufhigh;
  335. __le32 buflow;
  336. __le32 txvlan;
  337. __le32 flaglen;
  338. };
  339. union ring_type {
  340. struct ring_desc* orig;
  341. struct ring_desc_ex* ex;
  342. };
  343. #define FLAG_MASK_V1 0xffff0000
  344. #define FLAG_MASK_V2 0xffffc000
  345. #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
  346. #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
  347. #define NV_TX_LASTPACKET (1<<16)
  348. #define NV_TX_RETRYERROR (1<<19)
  349. #define NV_TX_RETRYCOUNT_MASK (0xF<<20)
  350. #define NV_TX_FORCED_INTERRUPT (1<<24)
  351. #define NV_TX_DEFERRED (1<<26)
  352. #define NV_TX_CARRIERLOST (1<<27)
  353. #define NV_TX_LATECOLLISION (1<<28)
  354. #define NV_TX_UNDERFLOW (1<<29)
  355. #define NV_TX_ERROR (1<<30)
  356. #define NV_TX_VALID (1<<31)
  357. #define NV_TX2_LASTPACKET (1<<29)
  358. #define NV_TX2_RETRYERROR (1<<18)
  359. #define NV_TX2_RETRYCOUNT_MASK (0xF<<19)
  360. #define NV_TX2_FORCED_INTERRUPT (1<<30)
  361. #define NV_TX2_DEFERRED (1<<25)
  362. #define NV_TX2_CARRIERLOST (1<<26)
  363. #define NV_TX2_LATECOLLISION (1<<27)
  364. #define NV_TX2_UNDERFLOW (1<<28)
  365. /* error and valid are the same for both */
  366. #define NV_TX2_ERROR (1<<30)
  367. #define NV_TX2_VALID (1<<31)
  368. #define NV_TX2_TSO (1<<28)
  369. #define NV_TX2_TSO_SHIFT 14
  370. #define NV_TX2_TSO_MAX_SHIFT 14
  371. #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
  372. #define NV_TX2_CHECKSUM_L3 (1<<27)
  373. #define NV_TX2_CHECKSUM_L4 (1<<26)
  374. #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
  375. #define NV_RX_DESCRIPTORVALID (1<<16)
  376. #define NV_RX_MISSEDFRAME (1<<17)
  377. #define NV_RX_SUBSTRACT1 (1<<18)
  378. #define NV_RX_ERROR1 (1<<23)
  379. #define NV_RX_ERROR2 (1<<24)
  380. #define NV_RX_ERROR3 (1<<25)
  381. #define NV_RX_ERROR4 (1<<26)
  382. #define NV_RX_CRCERR (1<<27)
  383. #define NV_RX_OVERFLOW (1<<28)
  384. #define NV_RX_FRAMINGERR (1<<29)
  385. #define NV_RX_ERROR (1<<30)
  386. #define NV_RX_AVAIL (1<<31)
  387. #define NV_RX_ERROR_MASK (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3|NV_RX_ERROR4|NV_RX_CRCERR|NV_RX_OVERFLOW|NV_RX_FRAMINGERR)
  388. #define NV_RX2_CHECKSUMMASK (0x1C000000)
  389. #define NV_RX2_CHECKSUM_IP (0x10000000)
  390. #define NV_RX2_CHECKSUM_IP_TCP (0x14000000)
  391. #define NV_RX2_CHECKSUM_IP_UDP (0x18000000)
  392. #define NV_RX2_DESCRIPTORVALID (1<<29)
  393. #define NV_RX2_SUBSTRACT1 (1<<25)
  394. #define NV_RX2_ERROR1 (1<<18)
  395. #define NV_RX2_ERROR2 (1<<19)
  396. #define NV_RX2_ERROR3 (1<<20)
  397. #define NV_RX2_ERROR4 (1<<21)
  398. #define NV_RX2_CRCERR (1<<22)
  399. #define NV_RX2_OVERFLOW (1<<23)
  400. #define NV_RX2_FRAMINGERR (1<<24)
  401. /* error and avail are the same for both */
  402. #define NV_RX2_ERROR (1<<30)
  403. #define NV_RX2_AVAIL (1<<31)
  404. #define NV_RX2_ERROR_MASK (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3|NV_RX2_ERROR4|NV_RX2_CRCERR|NV_RX2_OVERFLOW|NV_RX2_FRAMINGERR)
  405. #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
  406. #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
  407. /* Miscelaneous hardware related defines: */
  408. #define NV_PCI_REGSZ_VER1 0x270
  409. #define NV_PCI_REGSZ_VER2 0x2d4
  410. #define NV_PCI_REGSZ_VER3 0x604
  411. #define NV_PCI_REGSZ_MAX 0x604
  412. /* various timeout delays: all in usec */
  413. #define NV_TXRX_RESET_DELAY 4
  414. #define NV_TXSTOP_DELAY1 10
  415. #define NV_TXSTOP_DELAY1MAX 500000
  416. #define NV_TXSTOP_DELAY2 100
  417. #define NV_RXSTOP_DELAY1 10
  418. #define NV_RXSTOP_DELAY1MAX 500000
  419. #define NV_RXSTOP_DELAY2 100
  420. #define NV_SETUP5_DELAY 5
  421. #define NV_SETUP5_DELAYMAX 50000
  422. #define NV_POWERUP_DELAY 5
  423. #define NV_POWERUP_DELAYMAX 5000
  424. #define NV_MIIBUSY_DELAY 50
  425. #define NV_MIIPHY_DELAY 10
  426. #define NV_MIIPHY_DELAYMAX 10000
  427. #define NV_MAC_RESET_DELAY 64
  428. #define NV_WAKEUPPATTERNS 5
  429. #define NV_WAKEUPMASKENTRIES 4
  430. /* General driver defaults */
  431. #define NV_WATCHDOG_TIMEO (5*HZ)
  432. #define RX_RING_DEFAULT 512
  433. #define TX_RING_DEFAULT 256
  434. #define RX_RING_MIN 128
  435. #define TX_RING_MIN 64
  436. #define RING_MAX_DESC_VER_1 1024
  437. #define RING_MAX_DESC_VER_2_3 16384
  438. /* rx/tx mac addr + type + vlan + align + slack*/
  439. #define NV_RX_HEADERS (64)
  440. /* even more slack. */
  441. #define NV_RX_ALLOC_PAD (64)
  442. /* maximum mtu size */
  443. #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
  444. #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
  445. #define OOM_REFILL (1+HZ/20)
  446. #define POLL_WAIT (1+HZ/100)
  447. #define LINK_TIMEOUT (3*HZ)
  448. #define STATS_INTERVAL (10*HZ)
  449. /*
  450. * desc_ver values:
  451. * The nic supports three different descriptor types:
  452. * - DESC_VER_1: Original
  453. * - DESC_VER_2: support for jumbo frames.
  454. * - DESC_VER_3: 64-bit format.
  455. */
  456. #define DESC_VER_1 1
  457. #define DESC_VER_2 2
  458. #define DESC_VER_3 3
  459. /* PHY defines */
  460. #define PHY_OUI_MARVELL 0x5043
  461. #define PHY_OUI_CICADA 0x03f1
  462. #define PHY_OUI_VITESSE 0x01c1
  463. #define PHY_OUI_REALTEK 0x0732
  464. #define PHY_OUI_REALTEK2 0x0020
  465. #define PHYID1_OUI_MASK 0x03ff
  466. #define PHYID1_OUI_SHFT 6
  467. #define PHYID2_OUI_MASK 0xfc00
  468. #define PHYID2_OUI_SHFT 10
  469. #define PHYID2_MODEL_MASK 0x03f0
  470. #define PHY_MODEL_REALTEK_8211 0x0110
  471. #define PHY_REV_MASK 0x0001
  472. #define PHY_REV_REALTEK_8211B 0x0000
  473. #define PHY_REV_REALTEK_8211C 0x0001
  474. #define PHY_MODEL_REALTEK_8201 0x0200
  475. #define PHY_MODEL_MARVELL_E3016 0x0220
  476. #define PHY_MARVELL_E3016_INITMASK 0x0300
  477. #define PHY_CICADA_INIT1 0x0f000
  478. #define PHY_CICADA_INIT2 0x0e00
  479. #define PHY_CICADA_INIT3 0x01000
  480. #define PHY_CICADA_INIT4 0x0200
  481. #define PHY_CICADA_INIT5 0x0004
  482. #define PHY_CICADA_INIT6 0x02000
  483. #define PHY_VITESSE_INIT_REG1 0x1f
  484. #define PHY_VITESSE_INIT_REG2 0x10
  485. #define PHY_VITESSE_INIT_REG3 0x11
  486. #define PHY_VITESSE_INIT_REG4 0x12
  487. #define PHY_VITESSE_INIT_MSK1 0xc
  488. #define PHY_VITESSE_INIT_MSK2 0x0180
  489. #define PHY_VITESSE_INIT1 0x52b5
  490. #define PHY_VITESSE_INIT2 0xaf8a
  491. #define PHY_VITESSE_INIT3 0x8
  492. #define PHY_VITESSE_INIT4 0x8f8a
  493. #define PHY_VITESSE_INIT5 0xaf86
  494. #define PHY_VITESSE_INIT6 0x8f86
  495. #define PHY_VITESSE_INIT7 0xaf82
  496. #define PHY_VITESSE_INIT8 0x0100
  497. #define PHY_VITESSE_INIT9 0x8f82
  498. #define PHY_VITESSE_INIT10 0x0
  499. #define PHY_REALTEK_INIT_REG1 0x1f
  500. #define PHY_REALTEK_INIT_REG2 0x19
  501. #define PHY_REALTEK_INIT_REG3 0x13
  502. #define PHY_REALTEK_INIT_REG4 0x14
  503. #define PHY_REALTEK_INIT_REG5 0x18
  504. #define PHY_REALTEK_INIT_REG6 0x11
  505. #define PHY_REALTEK_INIT_REG7 0x01
  506. #define PHY_REALTEK_INIT1 0x0000
  507. #define PHY_REALTEK_INIT2 0x8e00
  508. #define PHY_REALTEK_INIT3 0x0001
  509. #define PHY_REALTEK_INIT4 0xad17
  510. #define PHY_REALTEK_INIT5 0xfb54
  511. #define PHY_REALTEK_INIT6 0xf5c7
  512. #define PHY_REALTEK_INIT7 0x1000
  513. #define PHY_REALTEK_INIT8 0x0003
  514. #define PHY_REALTEK_INIT9 0x0008
  515. #define PHY_REALTEK_INIT10 0x0005
  516. #define PHY_REALTEK_INIT11 0x0200
  517. #define PHY_REALTEK_INIT_MSK1 0x0003
  518. #define PHY_GIGABIT 0x0100
  519. #define PHY_TIMEOUT 0x1
  520. #define PHY_ERROR 0x2
  521. #define PHY_100 0x1
  522. #define PHY_1000 0x2
  523. #define PHY_HALF 0x100
  524. #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
  525. #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
  526. #define NV_PAUSEFRAME_RX_ENABLE 0x0004
  527. #define NV_PAUSEFRAME_TX_ENABLE 0x0008
  528. #define NV_PAUSEFRAME_RX_REQ 0x0010
  529. #define NV_PAUSEFRAME_TX_REQ 0x0020
  530. #define NV_PAUSEFRAME_AUTONEG 0x0040
  531. /* MSI/MSI-X defines */
  532. #define NV_MSI_X_MAX_VECTORS 8
  533. #define NV_MSI_X_VECTORS_MASK 0x000f
  534. #define NV_MSI_CAPABLE 0x0010
  535. #define NV_MSI_X_CAPABLE 0x0020
  536. #define NV_MSI_ENABLED 0x0040
  537. #define NV_MSI_X_ENABLED 0x0080
  538. #define NV_MSI_X_VECTOR_ALL 0x0
  539. #define NV_MSI_X_VECTOR_RX 0x0
  540. #define NV_MSI_X_VECTOR_TX 0x1
  541. #define NV_MSI_X_VECTOR_OTHER 0x2
  542. #define NV_MSI_PRIV_OFFSET 0x68
  543. #define NV_MSI_PRIV_VALUE 0xffffffff
  544. #define NV_RESTART_TX 0x1
  545. #define NV_RESTART_RX 0x2
  546. #define NV_TX_LIMIT_COUNT 16
  547. #define NV_DYNAMIC_THRESHOLD 4
  548. #define NV_DYNAMIC_MAX_QUIET_COUNT 2048
  549. /* statistics */
  550. struct nv_ethtool_str {
  551. char name[ETH_GSTRING_LEN];
  552. };
  553. static const struct nv_ethtool_str nv_estats_str[] = {
  554. { "tx_bytes" },
  555. { "tx_zero_rexmt" },
  556. { "tx_one_rexmt" },
  557. { "tx_many_rexmt" },
  558. { "tx_late_collision" },
  559. { "tx_fifo_errors" },
  560. { "tx_carrier_errors" },
  561. { "tx_excess_deferral" },
  562. { "tx_retry_error" },
  563. { "rx_frame_error" },
  564. { "rx_extra_byte" },
  565. { "rx_late_collision" },
  566. { "rx_runt" },
  567. { "rx_frame_too_long" },
  568. { "rx_over_errors" },
  569. { "rx_crc_errors" },
  570. { "rx_frame_align_error" },
  571. { "rx_length_error" },
  572. { "rx_unicast" },
  573. { "rx_multicast" },
  574. { "rx_broadcast" },
  575. { "rx_packets" },
  576. { "rx_errors_total" },
  577. { "tx_errors_total" },
  578. /* version 2 stats */
  579. { "tx_deferral" },
  580. { "tx_packets" },
  581. { "rx_bytes" },
  582. { "tx_pause" },
  583. { "rx_pause" },
  584. { "rx_drop_frame" },
  585. /* version 3 stats */
  586. { "tx_unicast" },
  587. { "tx_multicast" },
  588. { "tx_broadcast" }
  589. };
  590. struct nv_ethtool_stats {
  591. u64 tx_bytes;
  592. u64 tx_zero_rexmt;
  593. u64 tx_one_rexmt;
  594. u64 tx_many_rexmt;
  595. u64 tx_late_collision;
  596. u64 tx_fifo_errors;
  597. u64 tx_carrier_errors;
  598. u64 tx_excess_deferral;
  599. u64 tx_retry_error;
  600. u64 rx_frame_error;
  601. u64 rx_extra_byte;
  602. u64 rx_late_collision;
  603. u64 rx_runt;
  604. u64 rx_frame_too_long;
  605. u64 rx_over_errors;
  606. u64 rx_crc_errors;
  607. u64 rx_frame_align_error;
  608. u64 rx_length_error;
  609. u64 rx_unicast;
  610. u64 rx_multicast;
  611. u64 rx_broadcast;
  612. u64 rx_packets;
  613. u64 rx_errors_total;
  614. u64 tx_errors_total;
  615. /* version 2 stats */
  616. u64 tx_deferral;
  617. u64 tx_packets;
  618. u64 rx_bytes;
  619. u64 tx_pause;
  620. u64 rx_pause;
  621. u64 rx_drop_frame;
  622. /* version 3 stats */
  623. u64 tx_unicast;
  624. u64 tx_multicast;
  625. u64 tx_broadcast;
  626. };
  627. #define NV_DEV_STATISTICS_V3_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64))
  628. #define NV_DEV_STATISTICS_V2_COUNT (NV_DEV_STATISTICS_V3_COUNT - 3)
  629. #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6)
  630. /* diagnostics */
  631. #define NV_TEST_COUNT_BASE 3
  632. #define NV_TEST_COUNT_EXTENDED 4
  633. static const struct nv_ethtool_str nv_etests_str[] = {
  634. { "link (online/offline)" },
  635. { "register (offline) " },
  636. { "interrupt (offline) " },
  637. { "loopback (offline) " }
  638. };
  639. struct register_test {
  640. __u32 reg;
  641. __u32 mask;
  642. };
  643. static const struct register_test nv_registers_test[] = {
  644. { NvRegUnknownSetupReg6, 0x01 },
  645. { NvRegMisc1, 0x03c },
  646. { NvRegOffloadConfig, 0x03ff },
  647. { NvRegMulticastAddrA, 0xffffffff },
  648. { NvRegTxWatermark, 0x0ff },
  649. { NvRegWakeUpFlags, 0x07777 },
  650. { 0,0 }
  651. };
  652. struct nv_skb_map {
  653. struct sk_buff *skb;
  654. dma_addr_t dma;
  655. unsigned int dma_len;
  656. struct ring_desc_ex *first_tx_desc;
  657. struct nv_skb_map *next_tx_ctx;
  658. };
  659. /*
  660. * SMP locking:
  661. * All hardware access under netdev_priv(dev)->lock, except the performance
  662. * critical parts:
  663. * - rx is (pseudo-) lockless: it relies on the single-threading provided
  664. * by the arch code for interrupts.
  665. * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
  666. * needs netdev_priv(dev)->lock :-(
  667. * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
  668. */
  669. /* in dev: base, irq */
  670. struct fe_priv {
  671. spinlock_t lock;
  672. struct net_device *dev;
  673. struct napi_struct napi;
  674. /* General data:
  675. * Locking: spin_lock(&np->lock); */
  676. struct nv_ethtool_stats estats;
  677. int in_shutdown;
  678. u32 linkspeed;
  679. int duplex;
  680. int autoneg;
  681. int fixed_mode;
  682. int phyaddr;
  683. int wolenabled;
  684. unsigned int phy_oui;
  685. unsigned int phy_model;
  686. unsigned int phy_rev;
  687. u16 gigabit;
  688. int intr_test;
  689. int recover_error;
  690. int quiet_count;
  691. /* General data: RO fields */
  692. dma_addr_t ring_addr;
  693. struct pci_dev *pci_dev;
  694. u32 orig_mac[2];
  695. u32 events;
  696. u32 irqmask;
  697. u32 desc_ver;
  698. u32 txrxctl_bits;
  699. u32 vlanctl_bits;
  700. u32 driver_data;
  701. u32 device_id;
  702. u32 register_size;
  703. int rx_csum;
  704. u32 mac_in_use;
  705. int mgmt_version;
  706. int mgmt_sema;
  707. void __iomem *base;
  708. /* rx specific fields.
  709. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  710. */
  711. union ring_type get_rx, put_rx, first_rx, last_rx;
  712. struct nv_skb_map *get_rx_ctx, *put_rx_ctx;
  713. struct nv_skb_map *first_rx_ctx, *last_rx_ctx;
  714. struct nv_skb_map *rx_skb;
  715. union ring_type rx_ring;
  716. unsigned int rx_buf_sz;
  717. unsigned int pkt_limit;
  718. struct timer_list oom_kick;
  719. struct timer_list nic_poll;
  720. struct timer_list stats_poll;
  721. u32 nic_poll_irq;
  722. int rx_ring_size;
  723. /* media detection workaround.
  724. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  725. */
  726. int need_linktimer;
  727. unsigned long link_timeout;
  728. /*
  729. * tx specific fields.
  730. */
  731. union ring_type get_tx, put_tx, first_tx, last_tx;
  732. struct nv_skb_map *get_tx_ctx, *put_tx_ctx;
  733. struct nv_skb_map *first_tx_ctx, *last_tx_ctx;
  734. struct nv_skb_map *tx_skb;
  735. union ring_type tx_ring;
  736. u32 tx_flags;
  737. int tx_ring_size;
  738. int tx_limit;
  739. u32 tx_pkts_in_progress;
  740. struct nv_skb_map *tx_change_owner;
  741. struct nv_skb_map *tx_end_flip;
  742. int tx_stop;
  743. /* vlan fields */
  744. struct vlan_group *vlangrp;
  745. /* msi/msi-x fields */
  746. u32 msi_flags;
  747. struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
  748. /* flow control */
  749. u32 pause_flags;
  750. /* power saved state */
  751. u32 saved_config_space[NV_PCI_REGSZ_MAX/4];
  752. /* for different msi-x irq type */
  753. char name_rx[IFNAMSIZ + 3]; /* -rx */
  754. char name_tx[IFNAMSIZ + 3]; /* -tx */
  755. char name_other[IFNAMSIZ + 6]; /* -other */
  756. };
  757. /*
  758. * Maximum number of loops until we assume that a bit in the irq mask
  759. * is stuck. Overridable with module param.
  760. */
  761. static int max_interrupt_work = 4;
  762. /*
  763. * Optimization can be either throuput mode or cpu mode
  764. *
  765. * Throughput Mode: Every tx and rx packet will generate an interrupt.
  766. * CPU Mode: Interrupts are controlled by a timer.
  767. */
  768. enum {
  769. NV_OPTIMIZATION_MODE_THROUGHPUT,
  770. NV_OPTIMIZATION_MODE_CPU,
  771. NV_OPTIMIZATION_MODE_DYNAMIC
  772. };
  773. static int optimization_mode = NV_OPTIMIZATION_MODE_DYNAMIC;
  774. /*
  775. * Poll interval for timer irq
  776. *
  777. * This interval determines how frequent an interrupt is generated.
  778. * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
  779. * Min = 0, and Max = 65535
  780. */
  781. static int poll_interval = -1;
  782. /*
  783. * MSI interrupts
  784. */
  785. enum {
  786. NV_MSI_INT_DISABLED,
  787. NV_MSI_INT_ENABLED
  788. };
  789. static int msi = NV_MSI_INT_ENABLED;
  790. /*
  791. * MSIX interrupts
  792. */
  793. enum {
  794. NV_MSIX_INT_DISABLED,
  795. NV_MSIX_INT_ENABLED
  796. };
  797. static int msix = NV_MSIX_INT_ENABLED;
  798. /*
  799. * DMA 64bit
  800. */
  801. enum {
  802. NV_DMA_64BIT_DISABLED,
  803. NV_DMA_64BIT_ENABLED
  804. };
  805. static int dma_64bit = NV_DMA_64BIT_ENABLED;
  806. /*
  807. * Crossover Detection
  808. * Realtek 8201 phy + some OEM boards do not work properly.
  809. */
  810. enum {
  811. NV_CROSSOVER_DETECTION_DISABLED,
  812. NV_CROSSOVER_DETECTION_ENABLED
  813. };
  814. static int phy_cross = NV_CROSSOVER_DETECTION_DISABLED;
  815. static inline struct fe_priv *get_nvpriv(struct net_device *dev)
  816. {
  817. return netdev_priv(dev);
  818. }
  819. static inline u8 __iomem *get_hwbase(struct net_device *dev)
  820. {
  821. return ((struct fe_priv *)netdev_priv(dev))->base;
  822. }
  823. static inline void pci_push(u8 __iomem *base)
  824. {
  825. /* force out pending posted writes */
  826. readl(base);
  827. }
  828. static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
  829. {
  830. return le32_to_cpu(prd->flaglen)
  831. & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
  832. }
  833. static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
  834. {
  835. return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
  836. }
  837. static bool nv_optimized(struct fe_priv *np)
  838. {
  839. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  840. return false;
  841. return true;
  842. }
  843. static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
  844. int delay, int delaymax, const char *msg)
  845. {
  846. u8 __iomem *base = get_hwbase(dev);
  847. pci_push(base);
  848. do {
  849. udelay(delay);
  850. delaymax -= delay;
  851. if (delaymax < 0) {
  852. if (msg)
  853. printk("%s", msg);
  854. return 1;
  855. }
  856. } while ((readl(base + offset) & mask) != target);
  857. return 0;
  858. }
  859. #define NV_SETUP_RX_RING 0x01
  860. #define NV_SETUP_TX_RING 0x02
  861. static inline u32 dma_low(dma_addr_t addr)
  862. {
  863. return addr;
  864. }
  865. static inline u32 dma_high(dma_addr_t addr)
  866. {
  867. return addr>>31>>1; /* 0 if 32bit, shift down by 32 if 64bit */
  868. }
  869. static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
  870. {
  871. struct fe_priv *np = get_nvpriv(dev);
  872. u8 __iomem *base = get_hwbase(dev);
  873. if (!nv_optimized(np)) {
  874. if (rxtx_flags & NV_SETUP_RX_RING) {
  875. writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
  876. }
  877. if (rxtx_flags & NV_SETUP_TX_RING) {
  878. writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
  879. }
  880. } else {
  881. if (rxtx_flags & NV_SETUP_RX_RING) {
  882. writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
  883. writel(dma_high(np->ring_addr), base + NvRegRxRingPhysAddrHigh);
  884. }
  885. if (rxtx_flags & NV_SETUP_TX_RING) {
  886. writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
  887. writel(dma_high(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddrHigh);
  888. }
  889. }
  890. }
  891. static void free_rings(struct net_device *dev)
  892. {
  893. struct fe_priv *np = get_nvpriv(dev);
  894. if (!nv_optimized(np)) {
  895. if (np->rx_ring.orig)
  896. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  897. np->rx_ring.orig, np->ring_addr);
  898. } else {
  899. if (np->rx_ring.ex)
  900. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  901. np->rx_ring.ex, np->ring_addr);
  902. }
  903. if (np->rx_skb)
  904. kfree(np->rx_skb);
  905. if (np->tx_skb)
  906. kfree(np->tx_skb);
  907. }
  908. static int using_multi_irqs(struct net_device *dev)
  909. {
  910. struct fe_priv *np = get_nvpriv(dev);
  911. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  912. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  913. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
  914. return 0;
  915. else
  916. return 1;
  917. }
  918. static void nv_enable_irq(struct net_device *dev)
  919. {
  920. struct fe_priv *np = get_nvpriv(dev);
  921. if (!using_multi_irqs(dev)) {
  922. if (np->msi_flags & NV_MSI_X_ENABLED)
  923. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  924. else
  925. enable_irq(np->pci_dev->irq);
  926. } else {
  927. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  928. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  929. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  930. }
  931. }
  932. static void nv_disable_irq(struct net_device *dev)
  933. {
  934. struct fe_priv *np = get_nvpriv(dev);
  935. if (!using_multi_irqs(dev)) {
  936. if (np->msi_flags & NV_MSI_X_ENABLED)
  937. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  938. else
  939. disable_irq(np->pci_dev->irq);
  940. } else {
  941. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  942. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  943. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  944. }
  945. }
  946. /* In MSIX mode, a write to irqmask behaves as XOR */
  947. static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
  948. {
  949. u8 __iomem *base = get_hwbase(dev);
  950. writel(mask, base + NvRegIrqMask);
  951. }
  952. static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
  953. {
  954. struct fe_priv *np = get_nvpriv(dev);
  955. u8 __iomem *base = get_hwbase(dev);
  956. if (np->msi_flags & NV_MSI_X_ENABLED) {
  957. writel(mask, base + NvRegIrqMask);
  958. } else {
  959. if (np->msi_flags & NV_MSI_ENABLED)
  960. writel(0, base + NvRegMSIIrqMask);
  961. writel(0, base + NvRegIrqMask);
  962. }
  963. }
  964. static void nv_napi_enable(struct net_device *dev)
  965. {
  966. #ifdef CONFIG_FORCEDETH_NAPI
  967. struct fe_priv *np = get_nvpriv(dev);
  968. napi_enable(&np->napi);
  969. #endif
  970. }
  971. static void nv_napi_disable(struct net_device *dev)
  972. {
  973. #ifdef CONFIG_FORCEDETH_NAPI
  974. struct fe_priv *np = get_nvpriv(dev);
  975. napi_disable(&np->napi);
  976. #endif
  977. }
  978. #define MII_READ (-1)
  979. /* mii_rw: read/write a register on the PHY.
  980. *
  981. * Caller must guarantee serialization
  982. */
  983. static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
  984. {
  985. u8 __iomem *base = get_hwbase(dev);
  986. u32 reg;
  987. int retval;
  988. writel(NVREG_MIISTAT_MASK_RW, base + NvRegMIIStatus);
  989. reg = readl(base + NvRegMIIControl);
  990. if (reg & NVREG_MIICTL_INUSE) {
  991. writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
  992. udelay(NV_MIIBUSY_DELAY);
  993. }
  994. reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
  995. if (value != MII_READ) {
  996. writel(value, base + NvRegMIIData);
  997. reg |= NVREG_MIICTL_WRITE;
  998. }
  999. writel(reg, base + NvRegMIIControl);
  1000. if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
  1001. NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
  1002. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
  1003. dev->name, miireg, addr);
  1004. retval = -1;
  1005. } else if (value != MII_READ) {
  1006. /* it was a write operation - fewer failures are detectable */
  1007. dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
  1008. dev->name, value, miireg, addr);
  1009. retval = 0;
  1010. } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
  1011. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
  1012. dev->name, miireg, addr);
  1013. retval = -1;
  1014. } else {
  1015. retval = readl(base + NvRegMIIData);
  1016. dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
  1017. dev->name, miireg, addr, retval);
  1018. }
  1019. return retval;
  1020. }
  1021. static int phy_reset(struct net_device *dev, u32 bmcr_setup)
  1022. {
  1023. struct fe_priv *np = netdev_priv(dev);
  1024. u32 miicontrol;
  1025. unsigned int tries = 0;
  1026. miicontrol = BMCR_RESET | bmcr_setup;
  1027. if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
  1028. return -1;
  1029. }
  1030. /* wait for 500ms */
  1031. msleep(500);
  1032. /* must wait till reset is deasserted */
  1033. while (miicontrol & BMCR_RESET) {
  1034. msleep(10);
  1035. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1036. /* FIXME: 100 tries seem excessive */
  1037. if (tries++ > 100)
  1038. return -1;
  1039. }
  1040. return 0;
  1041. }
  1042. static int phy_init(struct net_device *dev)
  1043. {
  1044. struct fe_priv *np = get_nvpriv(dev);
  1045. u8 __iomem *base = get_hwbase(dev);
  1046. u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
  1047. /* phy errata for E3016 phy */
  1048. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  1049. reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1050. reg &= ~PHY_MARVELL_E3016_INITMASK;
  1051. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
  1052. printk(KERN_INFO "%s: phy write to errata reg failed.\n", pci_name(np->pci_dev));
  1053. return PHY_ERROR;
  1054. }
  1055. }
  1056. if (np->phy_oui == PHY_OUI_REALTEK) {
  1057. if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1058. np->phy_rev == PHY_REV_REALTEK_8211B) {
  1059. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1060. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1061. return PHY_ERROR;
  1062. }
  1063. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
  1064. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1065. return PHY_ERROR;
  1066. }
  1067. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1068. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1069. return PHY_ERROR;
  1070. }
  1071. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
  1072. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1073. return PHY_ERROR;
  1074. }
  1075. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5)) {
  1076. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1077. return PHY_ERROR;
  1078. }
  1079. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6)) {
  1080. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1081. return PHY_ERROR;
  1082. }
  1083. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1084. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1085. return PHY_ERROR;
  1086. }
  1087. }
  1088. if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1089. np->phy_rev == PHY_REV_REALTEK_8211C) {
  1090. u32 powerstate = readl(base + NvRegPowerState2);
  1091. /* need to perform hw phy reset */
  1092. powerstate |= NVREG_POWERSTATE2_PHY_RESET;
  1093. writel(powerstate, base + NvRegPowerState2);
  1094. msleep(25);
  1095. powerstate &= ~NVREG_POWERSTATE2_PHY_RESET;
  1096. writel(powerstate, base + NvRegPowerState2);
  1097. msleep(25);
  1098. reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
  1099. reg |= PHY_REALTEK_INIT9;
  1100. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, reg)) {
  1101. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1102. return PHY_ERROR;
  1103. }
  1104. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT10)) {
  1105. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1106. return PHY_ERROR;
  1107. }
  1108. reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, MII_READ);
  1109. if (!(reg & PHY_REALTEK_INIT11)) {
  1110. reg |= PHY_REALTEK_INIT11;
  1111. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, reg)) {
  1112. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1113. return PHY_ERROR;
  1114. }
  1115. }
  1116. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1117. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1118. return PHY_ERROR;
  1119. }
  1120. }
  1121. if (np->phy_model == PHY_MODEL_REALTEK_8201) {
  1122. if (np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_32 ||
  1123. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_33 ||
  1124. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_34 ||
  1125. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_35 ||
  1126. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_36 ||
  1127. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_37 ||
  1128. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_38 ||
  1129. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_39) {
  1130. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
  1131. phy_reserved |= PHY_REALTEK_INIT7;
  1132. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, phy_reserved)) {
  1133. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1134. return PHY_ERROR;
  1135. }
  1136. }
  1137. }
  1138. }
  1139. /* set advertise register */
  1140. reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  1141. reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
  1142. if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
  1143. printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
  1144. return PHY_ERROR;
  1145. }
  1146. /* get phy interface type */
  1147. phyinterface = readl(base + NvRegPhyInterface);
  1148. /* see if gigabit phy */
  1149. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1150. if (mii_status & PHY_GIGABIT) {
  1151. np->gigabit = PHY_GIGABIT;
  1152. mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  1153. mii_control_1000 &= ~ADVERTISE_1000HALF;
  1154. if (phyinterface & PHY_RGMII)
  1155. mii_control_1000 |= ADVERTISE_1000FULL;
  1156. else
  1157. mii_control_1000 &= ~ADVERTISE_1000FULL;
  1158. if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
  1159. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1160. return PHY_ERROR;
  1161. }
  1162. }
  1163. else
  1164. np->gigabit = 0;
  1165. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1166. mii_control |= BMCR_ANENABLE;
  1167. if (np->phy_oui == PHY_OUI_REALTEK &&
  1168. np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1169. np->phy_rev == PHY_REV_REALTEK_8211C) {
  1170. /* start autoneg since we already performed hw reset above */
  1171. mii_control |= BMCR_ANRESTART;
  1172. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  1173. printk(KERN_INFO "%s: phy init failed\n", pci_name(np->pci_dev));
  1174. return PHY_ERROR;
  1175. }
  1176. } else {
  1177. /* reset the phy
  1178. * (certain phys need bmcr to be setup with reset)
  1179. */
  1180. if (phy_reset(dev, mii_control)) {
  1181. printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
  1182. return PHY_ERROR;
  1183. }
  1184. }
  1185. /* phy vendor specific configuration */
  1186. if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
  1187. phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
  1188. phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2);
  1189. phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4);
  1190. if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
  1191. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1192. return PHY_ERROR;
  1193. }
  1194. phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1195. phy_reserved |= PHY_CICADA_INIT5;
  1196. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
  1197. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1198. return PHY_ERROR;
  1199. }
  1200. }
  1201. if (np->phy_oui == PHY_OUI_CICADA) {
  1202. phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
  1203. phy_reserved |= PHY_CICADA_INIT6;
  1204. if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
  1205. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1206. return PHY_ERROR;
  1207. }
  1208. }
  1209. if (np->phy_oui == PHY_OUI_VITESSE) {
  1210. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1)) {
  1211. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1212. return PHY_ERROR;
  1213. }
  1214. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2)) {
  1215. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1216. return PHY_ERROR;
  1217. }
  1218. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1219. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1220. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1221. return PHY_ERROR;
  1222. }
  1223. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1224. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1225. phy_reserved |= PHY_VITESSE_INIT3;
  1226. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1227. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1228. return PHY_ERROR;
  1229. }
  1230. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4)) {
  1231. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1232. return PHY_ERROR;
  1233. }
  1234. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5)) {
  1235. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1236. return PHY_ERROR;
  1237. }
  1238. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1239. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1240. phy_reserved |= PHY_VITESSE_INIT3;
  1241. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1242. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1243. return PHY_ERROR;
  1244. }
  1245. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1246. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1247. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1248. return PHY_ERROR;
  1249. }
  1250. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6)) {
  1251. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1252. return PHY_ERROR;
  1253. }
  1254. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7)) {
  1255. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1256. return PHY_ERROR;
  1257. }
  1258. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1259. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1260. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1261. return PHY_ERROR;
  1262. }
  1263. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1264. phy_reserved &= ~PHY_VITESSE_INIT_MSK2;
  1265. phy_reserved |= PHY_VITESSE_INIT8;
  1266. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1267. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1268. return PHY_ERROR;
  1269. }
  1270. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9)) {
  1271. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1272. return PHY_ERROR;
  1273. }
  1274. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10)) {
  1275. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1276. return PHY_ERROR;
  1277. }
  1278. }
  1279. if (np->phy_oui == PHY_OUI_REALTEK) {
  1280. if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1281. np->phy_rev == PHY_REV_REALTEK_8211B) {
  1282. /* reset could have cleared these out, set them back */
  1283. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1284. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1285. return PHY_ERROR;
  1286. }
  1287. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
  1288. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1289. return PHY_ERROR;
  1290. }
  1291. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1292. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1293. return PHY_ERROR;
  1294. }
  1295. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
  1296. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1297. return PHY_ERROR;
  1298. }
  1299. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5)) {
  1300. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1301. return PHY_ERROR;
  1302. }
  1303. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6)) {
  1304. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1305. return PHY_ERROR;
  1306. }
  1307. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1308. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1309. return PHY_ERROR;
  1310. }
  1311. }
  1312. if (np->phy_model == PHY_MODEL_REALTEK_8201) {
  1313. if (np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_32 ||
  1314. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_33 ||
  1315. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_34 ||
  1316. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_35 ||
  1317. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_36 ||
  1318. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_37 ||
  1319. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_38 ||
  1320. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_39) {
  1321. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
  1322. phy_reserved |= PHY_REALTEK_INIT7;
  1323. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, phy_reserved)) {
  1324. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1325. return PHY_ERROR;
  1326. }
  1327. }
  1328. if (phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
  1329. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1330. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1331. return PHY_ERROR;
  1332. }
  1333. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
  1334. phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
  1335. phy_reserved |= PHY_REALTEK_INIT3;
  1336. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved)) {
  1337. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1338. return PHY_ERROR;
  1339. }
  1340. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1341. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1342. return PHY_ERROR;
  1343. }
  1344. }
  1345. }
  1346. }
  1347. /* some phys clear out pause advertisment on reset, set it back */
  1348. mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
  1349. /* restart auto negotiation, power down phy */
  1350. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1351. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE | BMCR_PDOWN);
  1352. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  1353. return PHY_ERROR;
  1354. }
  1355. return 0;
  1356. }
  1357. static void nv_start_rx(struct net_device *dev)
  1358. {
  1359. struct fe_priv *np = netdev_priv(dev);
  1360. u8 __iomem *base = get_hwbase(dev);
  1361. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1362. dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
  1363. /* Already running? Stop it. */
  1364. if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) {
  1365. rx_ctrl &= ~NVREG_RCVCTL_START;
  1366. writel(rx_ctrl, base + NvRegReceiverControl);
  1367. pci_push(base);
  1368. }
  1369. writel(np->linkspeed, base + NvRegLinkSpeed);
  1370. pci_push(base);
  1371. rx_ctrl |= NVREG_RCVCTL_START;
  1372. if (np->mac_in_use)
  1373. rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN;
  1374. writel(rx_ctrl, base + NvRegReceiverControl);
  1375. dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
  1376. dev->name, np->duplex, np->linkspeed);
  1377. pci_push(base);
  1378. }
  1379. static void nv_stop_rx(struct net_device *dev)
  1380. {
  1381. struct fe_priv *np = netdev_priv(dev);
  1382. u8 __iomem *base = get_hwbase(dev);
  1383. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1384. dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
  1385. if (!np->mac_in_use)
  1386. rx_ctrl &= ~NVREG_RCVCTL_START;
  1387. else
  1388. rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN;
  1389. writel(rx_ctrl, base + NvRegReceiverControl);
  1390. reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
  1391. NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
  1392. KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
  1393. udelay(NV_RXSTOP_DELAY2);
  1394. if (!np->mac_in_use)
  1395. writel(0, base + NvRegLinkSpeed);
  1396. }
  1397. static void nv_start_tx(struct net_device *dev)
  1398. {
  1399. struct fe_priv *np = netdev_priv(dev);
  1400. u8 __iomem *base = get_hwbase(dev);
  1401. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1402. dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
  1403. tx_ctrl |= NVREG_XMITCTL_START;
  1404. if (np->mac_in_use)
  1405. tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN;
  1406. writel(tx_ctrl, base + NvRegTransmitterControl);
  1407. pci_push(base);
  1408. }
  1409. static void nv_stop_tx(struct net_device *dev)
  1410. {
  1411. struct fe_priv *np = netdev_priv(dev);
  1412. u8 __iomem *base = get_hwbase(dev);
  1413. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1414. dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
  1415. if (!np->mac_in_use)
  1416. tx_ctrl &= ~NVREG_XMITCTL_START;
  1417. else
  1418. tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN;
  1419. writel(tx_ctrl, base + NvRegTransmitterControl);
  1420. reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
  1421. NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
  1422. KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
  1423. udelay(NV_TXSTOP_DELAY2);
  1424. if (!np->mac_in_use)
  1425. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  1426. base + NvRegTransmitPoll);
  1427. }
  1428. static void nv_start_rxtx(struct net_device *dev)
  1429. {
  1430. nv_start_rx(dev);
  1431. nv_start_tx(dev);
  1432. }
  1433. static void nv_stop_rxtx(struct net_device *dev)
  1434. {
  1435. nv_stop_rx(dev);
  1436. nv_stop_tx(dev);
  1437. }
  1438. static void nv_txrx_reset(struct net_device *dev)
  1439. {
  1440. struct fe_priv *np = netdev_priv(dev);
  1441. u8 __iomem *base = get_hwbase(dev);
  1442. dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
  1443. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1444. pci_push(base);
  1445. udelay(NV_TXRX_RESET_DELAY);
  1446. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1447. pci_push(base);
  1448. }
  1449. static void nv_mac_reset(struct net_device *dev)
  1450. {
  1451. struct fe_priv *np = netdev_priv(dev);
  1452. u8 __iomem *base = get_hwbase(dev);
  1453. u32 temp1, temp2, temp3;
  1454. dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
  1455. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1456. pci_push(base);
  1457. /* save registers since they will be cleared on reset */
  1458. temp1 = readl(base + NvRegMacAddrA);
  1459. temp2 = readl(base + NvRegMacAddrB);
  1460. temp3 = readl(base + NvRegTransmitPoll);
  1461. writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
  1462. pci_push(base);
  1463. udelay(NV_MAC_RESET_DELAY);
  1464. writel(0, base + NvRegMacReset);
  1465. pci_push(base);
  1466. udelay(NV_MAC_RESET_DELAY);
  1467. /* restore saved registers */
  1468. writel(temp1, base + NvRegMacAddrA);
  1469. writel(temp2, base + NvRegMacAddrB);
  1470. writel(temp3, base + NvRegTransmitPoll);
  1471. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1472. pci_push(base);
  1473. }
  1474. static void nv_get_hw_stats(struct net_device *dev)
  1475. {
  1476. struct fe_priv *np = netdev_priv(dev);
  1477. u8 __iomem *base = get_hwbase(dev);
  1478. np->estats.tx_bytes += readl(base + NvRegTxCnt);
  1479. np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
  1480. np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
  1481. np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
  1482. np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
  1483. np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
  1484. np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
  1485. np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
  1486. np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
  1487. np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
  1488. np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
  1489. np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
  1490. np->estats.rx_runt += readl(base + NvRegRxRunt);
  1491. np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
  1492. np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
  1493. np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
  1494. np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
  1495. np->estats.rx_length_error += readl(base + NvRegRxLenErr);
  1496. np->estats.rx_unicast += readl(base + NvRegRxUnicast);
  1497. np->estats.rx_multicast += readl(base + NvRegRxMulticast);
  1498. np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
  1499. np->estats.rx_packets =
  1500. np->estats.rx_unicast +
  1501. np->estats.rx_multicast +
  1502. np->estats.rx_broadcast;
  1503. np->estats.rx_errors_total =
  1504. np->estats.rx_crc_errors +
  1505. np->estats.rx_over_errors +
  1506. np->estats.rx_frame_error +
  1507. (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
  1508. np->estats.rx_late_collision +
  1509. np->estats.rx_runt +
  1510. np->estats.rx_frame_too_long;
  1511. np->estats.tx_errors_total =
  1512. np->estats.tx_late_collision +
  1513. np->estats.tx_fifo_errors +
  1514. np->estats.tx_carrier_errors +
  1515. np->estats.tx_excess_deferral +
  1516. np->estats.tx_retry_error;
  1517. if (np->driver_data & DEV_HAS_STATISTICS_V2) {
  1518. np->estats.tx_deferral += readl(base + NvRegTxDef);
  1519. np->estats.tx_packets += readl(base + NvRegTxFrame);
  1520. np->estats.rx_bytes += readl(base + NvRegRxCnt);
  1521. np->estats.tx_pause += readl(base + NvRegTxPause);
  1522. np->estats.rx_pause += readl(base + NvRegRxPause);
  1523. np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
  1524. }
  1525. if (np->driver_data & DEV_HAS_STATISTICS_V3) {
  1526. np->estats.tx_unicast += readl(base + NvRegTxUnicast);
  1527. np->estats.tx_multicast += readl(base + NvRegTxMulticast);
  1528. np->estats.tx_broadcast += readl(base + NvRegTxBroadcast);
  1529. }
  1530. }
  1531. /*
  1532. * nv_get_stats: dev->get_stats function
  1533. * Get latest stats value from the nic.
  1534. * Called with read_lock(&dev_base_lock) held for read -
  1535. * only synchronized against unregister_netdevice.
  1536. */
  1537. static struct net_device_stats *nv_get_stats(struct net_device *dev)
  1538. {
  1539. struct fe_priv *np = netdev_priv(dev);
  1540. /* If the nic supports hw counters then retrieve latest values */
  1541. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3)) {
  1542. nv_get_hw_stats(dev);
  1543. /* copy to net_device stats */
  1544. dev->stats.tx_bytes = np->estats.tx_bytes;
  1545. dev->stats.tx_fifo_errors = np->estats.tx_fifo_errors;
  1546. dev->stats.tx_carrier_errors = np->estats.tx_carrier_errors;
  1547. dev->stats.rx_crc_errors = np->estats.rx_crc_errors;
  1548. dev->stats.rx_over_errors = np->estats.rx_over_errors;
  1549. dev->stats.rx_errors = np->estats.rx_errors_total;
  1550. dev->stats.tx_errors = np->estats.tx_errors_total;
  1551. }
  1552. return &dev->stats;
  1553. }
  1554. /*
  1555. * nv_alloc_rx: fill rx ring entries.
  1556. * Return 1 if the allocations for the skbs failed and the
  1557. * rx engine is without Available descriptors
  1558. */
  1559. static int nv_alloc_rx(struct net_device *dev)
  1560. {
  1561. struct fe_priv *np = netdev_priv(dev);
  1562. struct ring_desc* less_rx;
  1563. less_rx = np->get_rx.orig;
  1564. if (less_rx-- == np->first_rx.orig)
  1565. less_rx = np->last_rx.orig;
  1566. while (np->put_rx.orig != less_rx) {
  1567. struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1568. if (skb) {
  1569. np->put_rx_ctx->skb = skb;
  1570. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1571. skb->data,
  1572. skb_tailroom(skb),
  1573. PCI_DMA_FROMDEVICE);
  1574. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1575. np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma);
  1576. wmb();
  1577. np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
  1578. if (unlikely(np->put_rx.orig++ == np->last_rx.orig))
  1579. np->put_rx.orig = np->first_rx.orig;
  1580. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1581. np->put_rx_ctx = np->first_rx_ctx;
  1582. } else {
  1583. return 1;
  1584. }
  1585. }
  1586. return 0;
  1587. }
  1588. static int nv_alloc_rx_optimized(struct net_device *dev)
  1589. {
  1590. struct fe_priv *np = netdev_priv(dev);
  1591. struct ring_desc_ex* less_rx;
  1592. less_rx = np->get_rx.ex;
  1593. if (less_rx-- == np->first_rx.ex)
  1594. less_rx = np->last_rx.ex;
  1595. while (np->put_rx.ex != less_rx) {
  1596. struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1597. if (skb) {
  1598. np->put_rx_ctx->skb = skb;
  1599. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1600. skb->data,
  1601. skb_tailroom(skb),
  1602. PCI_DMA_FROMDEVICE);
  1603. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1604. np->put_rx.ex->bufhigh = cpu_to_le32(dma_high(np->put_rx_ctx->dma));
  1605. np->put_rx.ex->buflow = cpu_to_le32(dma_low(np->put_rx_ctx->dma));
  1606. wmb();
  1607. np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
  1608. if (unlikely(np->put_rx.ex++ == np->last_rx.ex))
  1609. np->put_rx.ex = np->first_rx.ex;
  1610. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1611. np->put_rx_ctx = np->first_rx_ctx;
  1612. } else {
  1613. return 1;
  1614. }
  1615. }
  1616. return 0;
  1617. }
  1618. /* If rx bufs are exhausted called after 50ms to attempt to refresh */
  1619. #ifdef CONFIG_FORCEDETH_NAPI
  1620. static void nv_do_rx_refill(unsigned long data)
  1621. {
  1622. struct net_device *dev = (struct net_device *) data;
  1623. struct fe_priv *np = netdev_priv(dev);
  1624. /* Just reschedule NAPI rx processing */
  1625. napi_schedule(&np->napi);
  1626. }
  1627. #else
  1628. static void nv_do_rx_refill(unsigned long data)
  1629. {
  1630. struct net_device *dev = (struct net_device *) data;
  1631. struct fe_priv *np = netdev_priv(dev);
  1632. int retcode;
  1633. if (!using_multi_irqs(dev)) {
  1634. if (np->msi_flags & NV_MSI_X_ENABLED)
  1635. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1636. else
  1637. disable_irq(np->pci_dev->irq);
  1638. } else {
  1639. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1640. }
  1641. if (!nv_optimized(np))
  1642. retcode = nv_alloc_rx(dev);
  1643. else
  1644. retcode = nv_alloc_rx_optimized(dev);
  1645. if (retcode) {
  1646. spin_lock_irq(&np->lock);
  1647. if (!np->in_shutdown)
  1648. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1649. spin_unlock_irq(&np->lock);
  1650. }
  1651. if (!using_multi_irqs(dev)) {
  1652. if (np->msi_flags & NV_MSI_X_ENABLED)
  1653. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1654. else
  1655. enable_irq(np->pci_dev->irq);
  1656. } else {
  1657. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1658. }
  1659. }
  1660. #endif
  1661. static void nv_init_rx(struct net_device *dev)
  1662. {
  1663. struct fe_priv *np = netdev_priv(dev);
  1664. int i;
  1665. np->get_rx = np->put_rx = np->first_rx = np->rx_ring;
  1666. if (!nv_optimized(np))
  1667. np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1];
  1668. else
  1669. np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1];
  1670. np->get_rx_ctx = np->put_rx_ctx = np->first_rx_ctx = np->rx_skb;
  1671. np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1];
  1672. for (i = 0; i < np->rx_ring_size; i++) {
  1673. if (!nv_optimized(np)) {
  1674. np->rx_ring.orig[i].flaglen = 0;
  1675. np->rx_ring.orig[i].buf = 0;
  1676. } else {
  1677. np->rx_ring.ex[i].flaglen = 0;
  1678. np->rx_ring.ex[i].txvlan = 0;
  1679. np->rx_ring.ex[i].bufhigh = 0;
  1680. np->rx_ring.ex[i].buflow = 0;
  1681. }
  1682. np->rx_skb[i].skb = NULL;
  1683. np->rx_skb[i].dma = 0;
  1684. }
  1685. }
  1686. static void nv_init_tx(struct net_device *dev)
  1687. {
  1688. struct fe_priv *np = netdev_priv(dev);
  1689. int i;
  1690. np->get_tx = np->put_tx = np->first_tx = np->tx_ring;
  1691. if (!nv_optimized(np))
  1692. np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1];
  1693. else
  1694. np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1];
  1695. np->get_tx_ctx = np->put_tx_ctx = np->first_tx_ctx = np->tx_skb;
  1696. np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1];
  1697. np->tx_pkts_in_progress = 0;
  1698. np->tx_change_owner = NULL;
  1699. np->tx_end_flip = NULL;
  1700. np->tx_stop = 0;
  1701. for (i = 0; i < np->tx_ring_size; i++) {
  1702. if (!nv_optimized(np)) {
  1703. np->tx_ring.orig[i].flaglen = 0;
  1704. np->tx_ring.orig[i].buf = 0;
  1705. } else {
  1706. np->tx_ring.ex[i].flaglen = 0;
  1707. np->tx_ring.ex[i].txvlan = 0;
  1708. np->tx_ring.ex[i].bufhigh = 0;
  1709. np->tx_ring.ex[i].buflow = 0;
  1710. }
  1711. np->tx_skb[i].skb = NULL;
  1712. np->tx_skb[i].dma = 0;
  1713. np->tx_skb[i].dma_len = 0;
  1714. np->tx_skb[i].first_tx_desc = NULL;
  1715. np->tx_skb[i].next_tx_ctx = NULL;
  1716. }
  1717. }
  1718. static int nv_init_ring(struct net_device *dev)
  1719. {
  1720. struct fe_priv *np = netdev_priv(dev);
  1721. nv_init_tx(dev);
  1722. nv_init_rx(dev);
  1723. if (!nv_optimized(np))
  1724. return nv_alloc_rx(dev);
  1725. else
  1726. return nv_alloc_rx_optimized(dev);
  1727. }
  1728. static int nv_release_txskb(struct net_device *dev, struct nv_skb_map* tx_skb)
  1729. {
  1730. struct fe_priv *np = netdev_priv(dev);
  1731. if (tx_skb->dma) {
  1732. pci_unmap_page(np->pci_dev, tx_skb->dma,
  1733. tx_skb->dma_len,
  1734. PCI_DMA_TODEVICE);
  1735. tx_skb->dma = 0;
  1736. }
  1737. if (tx_skb->skb) {
  1738. dev_kfree_skb_any(tx_skb->skb);
  1739. tx_skb->skb = NULL;
  1740. return 1;
  1741. } else {
  1742. return 0;
  1743. }
  1744. }
  1745. static void nv_drain_tx(struct net_device *dev)
  1746. {
  1747. struct fe_priv *np = netdev_priv(dev);
  1748. unsigned int i;
  1749. for (i = 0; i < np->tx_ring_size; i++) {
  1750. if (!nv_optimized(np)) {
  1751. np->tx_ring.orig[i].flaglen = 0;
  1752. np->tx_ring.orig[i].buf = 0;
  1753. } else {
  1754. np->tx_ring.ex[i].flaglen = 0;
  1755. np->tx_ring.ex[i].txvlan = 0;
  1756. np->tx_ring.ex[i].bufhigh = 0;
  1757. np->tx_ring.ex[i].buflow = 0;
  1758. }
  1759. if (nv_release_txskb(dev, &np->tx_skb[i]))
  1760. dev->stats.tx_dropped++;
  1761. np->tx_skb[i].dma = 0;
  1762. np->tx_skb[i].dma_len = 0;
  1763. np->tx_skb[i].first_tx_desc = NULL;
  1764. np->tx_skb[i].next_tx_ctx = NULL;
  1765. }
  1766. np->tx_pkts_in_progress = 0;
  1767. np->tx_change_owner = NULL;
  1768. np->tx_end_flip = NULL;
  1769. }
  1770. static void nv_drain_rx(struct net_device *dev)
  1771. {
  1772. struct fe_priv *np = netdev_priv(dev);
  1773. int i;
  1774. for (i = 0; i < np->rx_ring_size; i++) {
  1775. if (!nv_optimized(np)) {
  1776. np->rx_ring.orig[i].flaglen = 0;
  1777. np->rx_ring.orig[i].buf = 0;
  1778. } else {
  1779. np->rx_ring.ex[i].flaglen = 0;
  1780. np->rx_ring.ex[i].txvlan = 0;
  1781. np->rx_ring.ex[i].bufhigh = 0;
  1782. np->rx_ring.ex[i].buflow = 0;
  1783. }
  1784. wmb();
  1785. if (np->rx_skb[i].skb) {
  1786. pci_unmap_single(np->pci_dev, np->rx_skb[i].dma,
  1787. (skb_end_pointer(np->rx_skb[i].skb) -
  1788. np->rx_skb[i].skb->data),
  1789. PCI_DMA_FROMDEVICE);
  1790. dev_kfree_skb(np->rx_skb[i].skb);
  1791. np->rx_skb[i].skb = NULL;
  1792. }
  1793. }
  1794. }
  1795. static void nv_drain_rxtx(struct net_device *dev)
  1796. {
  1797. nv_drain_tx(dev);
  1798. nv_drain_rx(dev);
  1799. }
  1800. static inline u32 nv_get_empty_tx_slots(struct fe_priv *np)
  1801. {
  1802. return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size));
  1803. }
  1804. static void nv_legacybackoff_reseed(struct net_device *dev)
  1805. {
  1806. u8 __iomem *base = get_hwbase(dev);
  1807. u32 reg;
  1808. u32 low;
  1809. int tx_status = 0;
  1810. reg = readl(base + NvRegSlotTime) & ~NVREG_SLOTTIME_MASK;
  1811. get_random_bytes(&low, sizeof(low));
  1812. reg |= low & NVREG_SLOTTIME_MASK;
  1813. /* Need to stop tx before change takes effect.
  1814. * Caller has already gained np->lock.
  1815. */
  1816. tx_status = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START;
  1817. if (tx_status)
  1818. nv_stop_tx(dev);
  1819. nv_stop_rx(dev);
  1820. writel(reg, base + NvRegSlotTime);
  1821. if (tx_status)
  1822. nv_start_tx(dev);
  1823. nv_start_rx(dev);
  1824. }
  1825. /* Gear Backoff Seeds */
  1826. #define BACKOFF_SEEDSET_ROWS 8
  1827. #define BACKOFF_SEEDSET_LFSRS 15
  1828. /* Known Good seed sets */
  1829. static const u32 main_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
  1830. {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
  1831. {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 385, 761, 790, 974},
  1832. {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
  1833. {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 386, 761, 790, 974},
  1834. {266, 265, 276, 585, 397, 208, 345, 355, 365, 376, 385, 396, 771, 700, 984},
  1835. {266, 265, 276, 586, 397, 208, 346, 355, 365, 376, 285, 396, 771, 700, 984},
  1836. {366, 365, 376, 686, 497, 308, 447, 455, 466, 476, 485, 496, 871, 800, 84},
  1837. {466, 465, 476, 786, 597, 408, 547, 555, 566, 576, 585, 597, 971, 900, 184}};
  1838. static const u32 gear_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
  1839. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1840. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1841. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 397},
  1842. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1843. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1844. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1845. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1846. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395}};
  1847. static void nv_gear_backoff_reseed(struct net_device *dev)
  1848. {
  1849. u8 __iomem *base = get_hwbase(dev);
  1850. u32 miniseed1, miniseed2, miniseed2_reversed, miniseed3, miniseed3_reversed;
  1851. u32 temp, seedset, combinedSeed;
  1852. int i;
  1853. /* Setup seed for free running LFSR */
  1854. /* We are going to read the time stamp counter 3 times
  1855. and swizzle bits around to increase randomness */
  1856. get_random_bytes(&miniseed1, sizeof(miniseed1));
  1857. miniseed1 &= 0x0fff;
  1858. if (miniseed1 == 0)
  1859. miniseed1 = 0xabc;
  1860. get_random_bytes(&miniseed2, sizeof(miniseed2));
  1861. miniseed2 &= 0x0fff;
  1862. if (miniseed2 == 0)
  1863. miniseed2 = 0xabc;
  1864. miniseed2_reversed =
  1865. ((miniseed2 & 0xF00) >> 8) |
  1866. (miniseed2 & 0x0F0) |
  1867. ((miniseed2 & 0x00F) << 8);
  1868. get_random_bytes(&miniseed3, sizeof(miniseed3));
  1869. miniseed3 &= 0x0fff;
  1870. if (miniseed3 == 0)
  1871. miniseed3 = 0xabc;
  1872. miniseed3_reversed =
  1873. ((miniseed3 & 0xF00) >> 8) |
  1874. (miniseed3 & 0x0F0) |
  1875. ((miniseed3 & 0x00F) << 8);
  1876. combinedSeed = ((miniseed1 ^ miniseed2_reversed) << 12) |
  1877. (miniseed2 ^ miniseed3_reversed);
  1878. /* Seeds can not be zero */
  1879. if ((combinedSeed & NVREG_BKOFFCTRL_SEED_MASK) == 0)
  1880. combinedSeed |= 0x08;
  1881. if ((combinedSeed & (NVREG_BKOFFCTRL_SEED_MASK << NVREG_BKOFFCTRL_GEAR)) == 0)
  1882. combinedSeed |= 0x8000;
  1883. /* No need to disable tx here */
  1884. temp = NVREG_BKOFFCTRL_DEFAULT | (0 << NVREG_BKOFFCTRL_SELECT);
  1885. temp |= combinedSeed & NVREG_BKOFFCTRL_SEED_MASK;
  1886. temp |= combinedSeed >> NVREG_BKOFFCTRL_GEAR;
  1887. writel(temp,base + NvRegBackOffControl);
  1888. /* Setup seeds for all gear LFSRs. */
  1889. get_random_bytes(&seedset, sizeof(seedset));
  1890. seedset = seedset % BACKOFF_SEEDSET_ROWS;
  1891. for (i = 1; i <= BACKOFF_SEEDSET_LFSRS; i++)
  1892. {
  1893. temp = NVREG_BKOFFCTRL_DEFAULT | (i << NVREG_BKOFFCTRL_SELECT);
  1894. temp |= main_seedset[seedset][i-1] & 0x3ff;
  1895. temp |= ((gear_seedset[seedset][i-1] & 0x3ff) << NVREG_BKOFFCTRL_GEAR);
  1896. writel(temp, base + NvRegBackOffControl);
  1897. }
  1898. }
  1899. /*
  1900. * nv_start_xmit: dev->hard_start_xmit function
  1901. * Called with netif_tx_lock held.
  1902. */
  1903. static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
  1904. {
  1905. struct fe_priv *np = netdev_priv(dev);
  1906. u32 tx_flags = 0;
  1907. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  1908. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1909. unsigned int i;
  1910. u32 offset = 0;
  1911. u32 bcnt;
  1912. u32 size = skb->len-skb->data_len;
  1913. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1914. u32 empty_slots;
  1915. struct ring_desc* put_tx;
  1916. struct ring_desc* start_tx;
  1917. struct ring_desc* prev_tx;
  1918. struct nv_skb_map* prev_tx_ctx;
  1919. unsigned long flags;
  1920. /* add fragments to entries count */
  1921. for (i = 0; i < fragments; i++) {
  1922. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  1923. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1924. }
  1925. spin_lock_irqsave(&np->lock, flags);
  1926. empty_slots = nv_get_empty_tx_slots(np);
  1927. if (unlikely(empty_slots <= entries)) {
  1928. netif_stop_queue(dev);
  1929. np->tx_stop = 1;
  1930. spin_unlock_irqrestore(&np->lock, flags);
  1931. return NETDEV_TX_BUSY;
  1932. }
  1933. spin_unlock_irqrestore(&np->lock, flags);
  1934. start_tx = put_tx = np->put_tx.orig;
  1935. /* setup the header buffer */
  1936. do {
  1937. prev_tx = put_tx;
  1938. prev_tx_ctx = np->put_tx_ctx;
  1939. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1940. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  1941. PCI_DMA_TODEVICE);
  1942. np->put_tx_ctx->dma_len = bcnt;
  1943. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1944. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1945. tx_flags = np->tx_flags;
  1946. offset += bcnt;
  1947. size -= bcnt;
  1948. if (unlikely(put_tx++ == np->last_tx.orig))
  1949. put_tx = np->first_tx.orig;
  1950. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1951. np->put_tx_ctx = np->first_tx_ctx;
  1952. } while (size);
  1953. /* setup the fragments */
  1954. for (i = 0; i < fragments; i++) {
  1955. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1956. u32 size = frag->size;
  1957. offset = 0;
  1958. do {
  1959. prev_tx = put_tx;
  1960. prev_tx_ctx = np->put_tx_ctx;
  1961. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1962. np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  1963. PCI_DMA_TODEVICE);
  1964. np->put_tx_ctx->dma_len = bcnt;
  1965. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1966. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1967. offset += bcnt;
  1968. size -= bcnt;
  1969. if (unlikely(put_tx++ == np->last_tx.orig))
  1970. put_tx = np->first_tx.orig;
  1971. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1972. np->put_tx_ctx = np->first_tx_ctx;
  1973. } while (size);
  1974. }
  1975. /* set last fragment flag */
  1976. prev_tx->flaglen |= cpu_to_le32(tx_flags_extra);
  1977. /* save skb in this slot's context area */
  1978. prev_tx_ctx->skb = skb;
  1979. if (skb_is_gso(skb))
  1980. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  1981. else
  1982. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  1983. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  1984. spin_lock_irqsave(&np->lock, flags);
  1985. /* set tx flags */
  1986. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1987. np->put_tx.orig = put_tx;
  1988. spin_unlock_irqrestore(&np->lock, flags);
  1989. dprintk(KERN_DEBUG "%s: nv_start_xmit: entries %d queued for transmission. tx_flags_extra: %x\n",
  1990. dev->name, entries, tx_flags_extra);
  1991. {
  1992. int j;
  1993. for (j=0; j<64; j++) {
  1994. if ((j%16) == 0)
  1995. dprintk("\n%03x:", j);
  1996. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  1997. }
  1998. dprintk("\n");
  1999. }
  2000. dev->trans_start = jiffies;
  2001. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2002. return NETDEV_TX_OK;
  2003. }
  2004. static int nv_start_xmit_optimized(struct sk_buff *skb, struct net_device *dev)
  2005. {
  2006. struct fe_priv *np = netdev_priv(dev);
  2007. u32 tx_flags = 0;
  2008. u32 tx_flags_extra;
  2009. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  2010. unsigned int i;
  2011. u32 offset = 0;
  2012. u32 bcnt;
  2013. u32 size = skb->len-skb->data_len;
  2014. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  2015. u32 empty_slots;
  2016. struct ring_desc_ex* put_tx;
  2017. struct ring_desc_ex* start_tx;
  2018. struct ring_desc_ex* prev_tx;
  2019. struct nv_skb_map* prev_tx_ctx;
  2020. struct nv_skb_map* start_tx_ctx;
  2021. unsigned long flags;
  2022. /* add fragments to entries count */
  2023. for (i = 0; i < fragments; i++) {
  2024. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  2025. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  2026. }
  2027. spin_lock_irqsave(&np->lock, flags);
  2028. empty_slots = nv_get_empty_tx_slots(np);
  2029. if (unlikely(empty_slots <= entries)) {
  2030. netif_stop_queue(dev);
  2031. np->tx_stop = 1;
  2032. spin_unlock_irqrestore(&np->lock, flags);
  2033. return NETDEV_TX_BUSY;
  2034. }
  2035. spin_unlock_irqrestore(&np->lock, flags);
  2036. start_tx = put_tx = np->put_tx.ex;
  2037. start_tx_ctx = np->put_tx_ctx;
  2038. /* setup the header buffer */
  2039. do {
  2040. prev_tx = put_tx;
  2041. prev_tx_ctx = np->put_tx_ctx;
  2042. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  2043. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  2044. PCI_DMA_TODEVICE);
  2045. np->put_tx_ctx->dma_len = bcnt;
  2046. put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
  2047. put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
  2048. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  2049. tx_flags = NV_TX2_VALID;
  2050. offset += bcnt;
  2051. size -= bcnt;
  2052. if (unlikely(put_tx++ == np->last_tx.ex))
  2053. put_tx = np->first_tx.ex;
  2054. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  2055. np->put_tx_ctx = np->first_tx_ctx;
  2056. } while (size);
  2057. /* setup the fragments */
  2058. for (i = 0; i < fragments; i++) {
  2059. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2060. u32 size = frag->size;
  2061. offset = 0;
  2062. do {
  2063. prev_tx = put_tx;
  2064. prev_tx_ctx = np->put_tx_ctx;
  2065. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  2066. np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  2067. PCI_DMA_TODEVICE);
  2068. np->put_tx_ctx->dma_len = bcnt;
  2069. put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
  2070. put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
  2071. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  2072. offset += bcnt;
  2073. size -= bcnt;
  2074. if (unlikely(put_tx++ == np->last_tx.ex))
  2075. put_tx = np->first_tx.ex;
  2076. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  2077. np->put_tx_ctx = np->first_tx_ctx;
  2078. } while (size);
  2079. }
  2080. /* set last fragment flag */
  2081. prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET);
  2082. /* save skb in this slot's context area */
  2083. prev_tx_ctx->skb = skb;
  2084. if (skb_is_gso(skb))
  2085. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  2086. else
  2087. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  2088. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  2089. /* vlan tag */
  2090. if (likely(!np->vlangrp)) {
  2091. start_tx->txvlan = 0;
  2092. } else {
  2093. if (vlan_tx_tag_present(skb))
  2094. start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb));
  2095. else
  2096. start_tx->txvlan = 0;
  2097. }
  2098. spin_lock_irqsave(&np->lock, flags);
  2099. if (np->tx_limit) {
  2100. /* Limit the number of outstanding tx. Setup all fragments, but
  2101. * do not set the VALID bit on the first descriptor. Save a pointer
  2102. * to that descriptor and also for next skb_map element.
  2103. */
  2104. if (np->tx_pkts_in_progress == NV_TX_LIMIT_COUNT) {
  2105. if (!np->tx_change_owner)
  2106. np->tx_change_owner = start_tx_ctx;
  2107. /* remove VALID bit */
  2108. tx_flags &= ~NV_TX2_VALID;
  2109. start_tx_ctx->first_tx_desc = start_tx;
  2110. start_tx_ctx->next_tx_ctx = np->put_tx_ctx;
  2111. np->tx_end_flip = np->put_tx_ctx;
  2112. } else {
  2113. np->tx_pkts_in_progress++;
  2114. }
  2115. }
  2116. /* set tx flags */
  2117. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  2118. np->put_tx.ex = put_tx;
  2119. spin_unlock_irqrestore(&np->lock, flags);
  2120. dprintk(KERN_DEBUG "%s: nv_start_xmit_optimized: entries %d queued for transmission. tx_flags_extra: %x\n",
  2121. dev->name, entries, tx_flags_extra);
  2122. {
  2123. int j;
  2124. for (j=0; j<64; j++) {
  2125. if ((j%16) == 0)
  2126. dprintk("\n%03x:", j);
  2127. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2128. }
  2129. dprintk("\n");
  2130. }
  2131. dev->trans_start = jiffies;
  2132. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2133. return NETDEV_TX_OK;
  2134. }
  2135. static inline void nv_tx_flip_ownership(struct net_device *dev)
  2136. {
  2137. struct fe_priv *np = netdev_priv(dev);
  2138. np->tx_pkts_in_progress--;
  2139. if (np->tx_change_owner) {
  2140. np->tx_change_owner->first_tx_desc->flaglen |=
  2141. cpu_to_le32(NV_TX2_VALID);
  2142. np->tx_pkts_in_progress++;
  2143. np->tx_change_owner = np->tx_change_owner->next_tx_ctx;
  2144. if (np->tx_change_owner == np->tx_end_flip)
  2145. np->tx_change_owner = NULL;
  2146. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2147. }
  2148. }
  2149. /*
  2150. * nv_tx_done: check for completed packets, release the skbs.
  2151. *
  2152. * Caller must own np->lock.
  2153. */
  2154. static int nv_tx_done(struct net_device *dev, int limit)
  2155. {
  2156. struct fe_priv *np = netdev_priv(dev);
  2157. u32 flags;
  2158. int tx_work = 0;
  2159. struct ring_desc* orig_get_tx = np->get_tx.orig;
  2160. while ((np->get_tx.orig != np->put_tx.orig) &&
  2161. !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID) &&
  2162. (tx_work < limit)) {
  2163. dprintk(KERN_DEBUG "%s: nv_tx_done: flags 0x%x.\n",
  2164. dev->name, flags);
  2165. pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
  2166. np->get_tx_ctx->dma_len,
  2167. PCI_DMA_TODEVICE);
  2168. np->get_tx_ctx->dma = 0;
  2169. if (np->desc_ver == DESC_VER_1) {
  2170. if (flags & NV_TX_LASTPACKET) {
  2171. if (flags & NV_TX_ERROR) {
  2172. if (flags & NV_TX_UNDERFLOW)
  2173. dev->stats.tx_fifo_errors++;
  2174. if (flags & NV_TX_CARRIERLOST)
  2175. dev->stats.tx_carrier_errors++;
  2176. if ((flags & NV_TX_RETRYERROR) && !(flags & NV_TX_RETRYCOUNT_MASK))
  2177. nv_legacybackoff_reseed(dev);
  2178. dev->stats.tx_errors++;
  2179. } else {
  2180. dev->stats.tx_packets++;
  2181. dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
  2182. }
  2183. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2184. np->get_tx_ctx->skb = NULL;
  2185. tx_work++;
  2186. }
  2187. } else {
  2188. if (flags & NV_TX2_LASTPACKET) {
  2189. if (flags & NV_TX2_ERROR) {
  2190. if (flags & NV_TX2_UNDERFLOW)
  2191. dev->stats.tx_fifo_errors++;
  2192. if (flags & NV_TX2_CARRIERLOST)
  2193. dev->stats.tx_carrier_errors++;
  2194. if ((flags & NV_TX2_RETRYERROR) && !(flags & NV_TX2_RETRYCOUNT_MASK))
  2195. nv_legacybackoff_reseed(dev);
  2196. dev->stats.tx_errors++;
  2197. } else {
  2198. dev->stats.tx_packets++;
  2199. dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
  2200. }
  2201. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2202. np->get_tx_ctx->skb = NULL;
  2203. tx_work++;
  2204. }
  2205. }
  2206. if (unlikely(np->get_tx.orig++ == np->last_tx.orig))
  2207. np->get_tx.orig = np->first_tx.orig;
  2208. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  2209. np->get_tx_ctx = np->first_tx_ctx;
  2210. }
  2211. if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) {
  2212. np->tx_stop = 0;
  2213. netif_wake_queue(dev);
  2214. }
  2215. return tx_work;
  2216. }
  2217. static int nv_tx_done_optimized(struct net_device *dev, int limit)
  2218. {
  2219. struct fe_priv *np = netdev_priv(dev);
  2220. u32 flags;
  2221. int tx_work = 0;
  2222. struct ring_desc_ex* orig_get_tx = np->get_tx.ex;
  2223. while ((np->get_tx.ex != np->put_tx.ex) &&
  2224. !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX_VALID) &&
  2225. (tx_work < limit)) {
  2226. dprintk(KERN_DEBUG "%s: nv_tx_done_optimized: flags 0x%x.\n",
  2227. dev->name, flags);
  2228. pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
  2229. np->get_tx_ctx->dma_len,
  2230. PCI_DMA_TODEVICE);
  2231. np->get_tx_ctx->dma = 0;
  2232. if (flags & NV_TX2_LASTPACKET) {
  2233. if (!(flags & NV_TX2_ERROR))
  2234. dev->stats.tx_packets++;
  2235. else {
  2236. if ((flags & NV_TX2_RETRYERROR) && !(flags & NV_TX2_RETRYCOUNT_MASK)) {
  2237. if (np->driver_data & DEV_HAS_GEAR_MODE)
  2238. nv_gear_backoff_reseed(dev);
  2239. else
  2240. nv_legacybackoff_reseed(dev);
  2241. }
  2242. }
  2243. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2244. np->get_tx_ctx->skb = NULL;
  2245. tx_work++;
  2246. if (np->tx_limit) {
  2247. nv_tx_flip_ownership(dev);
  2248. }
  2249. }
  2250. if (unlikely(np->get_tx.ex++ == np->last_tx.ex))
  2251. np->get_tx.ex = np->first_tx.ex;
  2252. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  2253. np->get_tx_ctx = np->first_tx_ctx;
  2254. }
  2255. if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) {
  2256. np->tx_stop = 0;
  2257. netif_wake_queue(dev);
  2258. }
  2259. return tx_work;
  2260. }
  2261. /*
  2262. * nv_tx_timeout: dev->tx_timeout function
  2263. * Called with netif_tx_lock held.
  2264. */
  2265. static void nv_tx_timeout(struct net_device *dev)
  2266. {
  2267. struct fe_priv *np = netdev_priv(dev);
  2268. u8 __iomem *base = get_hwbase(dev);
  2269. u32 status;
  2270. union ring_type put_tx;
  2271. int saved_tx_limit;
  2272. if (np->msi_flags & NV_MSI_X_ENABLED)
  2273. status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2274. else
  2275. status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2276. printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
  2277. {
  2278. int i;
  2279. printk(KERN_INFO "%s: Ring at %lx\n",
  2280. dev->name, (unsigned long)np->ring_addr);
  2281. printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
  2282. for (i=0;i<=np->register_size;i+= 32) {
  2283. printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
  2284. i,
  2285. readl(base + i + 0), readl(base + i + 4),
  2286. readl(base + i + 8), readl(base + i + 12),
  2287. readl(base + i + 16), readl(base + i + 20),
  2288. readl(base + i + 24), readl(base + i + 28));
  2289. }
  2290. printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
  2291. for (i=0;i<np->tx_ring_size;i+= 4) {
  2292. if (!nv_optimized(np)) {
  2293. printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
  2294. i,
  2295. le32_to_cpu(np->tx_ring.orig[i].buf),
  2296. le32_to_cpu(np->tx_ring.orig[i].flaglen),
  2297. le32_to_cpu(np->tx_ring.orig[i+1].buf),
  2298. le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
  2299. le32_to_cpu(np->tx_ring.orig[i+2].buf),
  2300. le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
  2301. le32_to_cpu(np->tx_ring.orig[i+3].buf),
  2302. le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
  2303. } else {
  2304. printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
  2305. i,
  2306. le32_to_cpu(np->tx_ring.ex[i].bufhigh),
  2307. le32_to_cpu(np->tx_ring.ex[i].buflow),
  2308. le32_to_cpu(np->tx_ring.ex[i].flaglen),
  2309. le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
  2310. le32_to_cpu(np->tx_ring.ex[i+1].buflow),
  2311. le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
  2312. le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
  2313. le32_to_cpu(np->tx_ring.ex[i+2].buflow),
  2314. le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
  2315. le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
  2316. le32_to_cpu(np->tx_ring.ex[i+3].buflow),
  2317. le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
  2318. }
  2319. }
  2320. }
  2321. spin_lock_irq(&np->lock);
  2322. /* 1) stop tx engine */
  2323. nv_stop_tx(dev);
  2324. /* 2) complete any outstanding tx and do not give HW any limited tx pkts */
  2325. saved_tx_limit = np->tx_limit;
  2326. np->tx_limit = 0; /* prevent giving HW any limited pkts */
  2327. np->tx_stop = 0; /* prevent waking tx queue */
  2328. if (!nv_optimized(np))
  2329. nv_tx_done(dev, np->tx_ring_size);
  2330. else
  2331. nv_tx_done_optimized(dev, np->tx_ring_size);
  2332. /* save current HW postion */
  2333. if (np->tx_change_owner)
  2334. put_tx.ex = np->tx_change_owner->first_tx_desc;
  2335. else
  2336. put_tx = np->put_tx;
  2337. /* 3) clear all tx state */
  2338. nv_drain_tx(dev);
  2339. nv_init_tx(dev);
  2340. /* 4) restore state to current HW position */
  2341. np->get_tx = np->put_tx = put_tx;
  2342. np->tx_limit = saved_tx_limit;
  2343. /* 5) restart tx engine */
  2344. nv_start_tx(dev);
  2345. netif_wake_queue(dev);
  2346. spin_unlock_irq(&np->lock);
  2347. }
  2348. /*
  2349. * Called when the nic notices a mismatch between the actual data len on the
  2350. * wire and the len indicated in the 802 header
  2351. */
  2352. static int nv_getlen(struct net_device *dev, void *packet, int datalen)
  2353. {
  2354. int hdrlen; /* length of the 802 header */
  2355. int protolen; /* length as stored in the proto field */
  2356. /* 1) calculate len according to header */
  2357. if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
  2358. protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
  2359. hdrlen = VLAN_HLEN;
  2360. } else {
  2361. protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
  2362. hdrlen = ETH_HLEN;
  2363. }
  2364. dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
  2365. dev->name, datalen, protolen, hdrlen);
  2366. if (protolen > ETH_DATA_LEN)
  2367. return datalen; /* Value in proto field not a len, no checks possible */
  2368. protolen += hdrlen;
  2369. /* consistency checks: */
  2370. if (datalen > ETH_ZLEN) {
  2371. if (datalen >= protolen) {
  2372. /* more data on wire than in 802 header, trim of
  2373. * additional data.
  2374. */
  2375. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  2376. dev->name, protolen);
  2377. return protolen;
  2378. } else {
  2379. /* less data on wire than mentioned in header.
  2380. * Discard the packet.
  2381. */
  2382. dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
  2383. dev->name);
  2384. return -1;
  2385. }
  2386. } else {
  2387. /* short packet. Accept only if 802 values are also short */
  2388. if (protolen > ETH_ZLEN) {
  2389. dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
  2390. dev->name);
  2391. return -1;
  2392. }
  2393. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  2394. dev->name, datalen);
  2395. return datalen;
  2396. }
  2397. }
  2398. static int nv_rx_process(struct net_device *dev, int limit)
  2399. {
  2400. struct fe_priv *np = netdev_priv(dev);
  2401. u32 flags;
  2402. int rx_work = 0;
  2403. struct sk_buff *skb;
  2404. int len;
  2405. while((np->get_rx.orig != np->put_rx.orig) &&
  2406. !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) &&
  2407. (rx_work < limit)) {
  2408. dprintk(KERN_DEBUG "%s: nv_rx_process: flags 0x%x.\n",
  2409. dev->name, flags);
  2410. /*
  2411. * the packet is for us - immediately tear down the pci mapping.
  2412. * TODO: check if a prefetch of the first cacheline improves
  2413. * the performance.
  2414. */
  2415. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2416. np->get_rx_ctx->dma_len,
  2417. PCI_DMA_FROMDEVICE);
  2418. skb = np->get_rx_ctx->skb;
  2419. np->get_rx_ctx->skb = NULL;
  2420. {
  2421. int j;
  2422. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
  2423. for (j=0; j<64; j++) {
  2424. if ((j%16) == 0)
  2425. dprintk("\n%03x:", j);
  2426. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2427. }
  2428. dprintk("\n");
  2429. }
  2430. /* look at what we actually got: */
  2431. if (np->desc_ver == DESC_VER_1) {
  2432. if (likely(flags & NV_RX_DESCRIPTORVALID)) {
  2433. len = flags & LEN_MASK_V1;
  2434. if (unlikely(flags & NV_RX_ERROR)) {
  2435. if ((flags & NV_RX_ERROR_MASK) == NV_RX_ERROR4) {
  2436. len = nv_getlen(dev, skb->data, len);
  2437. if (len < 0) {
  2438. dev->stats.rx_errors++;
  2439. dev_kfree_skb(skb);
  2440. goto next_pkt;
  2441. }
  2442. }
  2443. /* framing errors are soft errors */
  2444. else if ((flags & NV_RX_ERROR_MASK) == NV_RX_FRAMINGERR) {
  2445. if (flags & NV_RX_SUBSTRACT1) {
  2446. len--;
  2447. }
  2448. }
  2449. /* the rest are hard errors */
  2450. else {
  2451. if (flags & NV_RX_MISSEDFRAME)
  2452. dev->stats.rx_missed_errors++;
  2453. if (flags & NV_RX_CRCERR)
  2454. dev->stats.rx_crc_errors++;
  2455. if (flags & NV_RX_OVERFLOW)
  2456. dev->stats.rx_over_errors++;
  2457. dev->stats.rx_errors++;
  2458. dev_kfree_skb(skb);
  2459. goto next_pkt;
  2460. }
  2461. }
  2462. } else {
  2463. dev_kfree_skb(skb);
  2464. goto next_pkt;
  2465. }
  2466. } else {
  2467. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2468. len = flags & LEN_MASK_V2;
  2469. if (unlikely(flags & NV_RX2_ERROR)) {
  2470. if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
  2471. len = nv_getlen(dev, skb->data, len);
  2472. if (len < 0) {
  2473. dev->stats.rx_errors++;
  2474. dev_kfree_skb(skb);
  2475. goto next_pkt;
  2476. }
  2477. }
  2478. /* framing errors are soft errors */
  2479. else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
  2480. if (flags & NV_RX2_SUBSTRACT1) {
  2481. len--;
  2482. }
  2483. }
  2484. /* the rest are hard errors */
  2485. else {
  2486. if (flags & NV_RX2_CRCERR)
  2487. dev->stats.rx_crc_errors++;
  2488. if (flags & NV_RX2_OVERFLOW)
  2489. dev->stats.rx_over_errors++;
  2490. dev->stats.rx_errors++;
  2491. dev_kfree_skb(skb);
  2492. goto next_pkt;
  2493. }
  2494. }
  2495. if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
  2496. ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
  2497. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2498. } else {
  2499. dev_kfree_skb(skb);
  2500. goto next_pkt;
  2501. }
  2502. }
  2503. /* got a valid packet - forward it to the network core */
  2504. skb_put(skb, len);
  2505. skb->protocol = eth_type_trans(skb, dev);
  2506. dprintk(KERN_DEBUG "%s: nv_rx_process: %d bytes, proto %d accepted.\n",
  2507. dev->name, len, skb->protocol);
  2508. #ifdef CONFIG_FORCEDETH_NAPI
  2509. netif_receive_skb(skb);
  2510. #else
  2511. netif_rx(skb);
  2512. #endif
  2513. dev->stats.rx_packets++;
  2514. dev->stats.rx_bytes += len;
  2515. next_pkt:
  2516. if (unlikely(np->get_rx.orig++ == np->last_rx.orig))
  2517. np->get_rx.orig = np->first_rx.orig;
  2518. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2519. np->get_rx_ctx = np->first_rx_ctx;
  2520. rx_work++;
  2521. }
  2522. return rx_work;
  2523. }
  2524. static int nv_rx_process_optimized(struct net_device *dev, int limit)
  2525. {
  2526. struct fe_priv *np = netdev_priv(dev);
  2527. u32 flags;
  2528. u32 vlanflags = 0;
  2529. int rx_work = 0;
  2530. struct sk_buff *skb;
  2531. int len;
  2532. while((np->get_rx.ex != np->put_rx.ex) &&
  2533. !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) &&
  2534. (rx_work < limit)) {
  2535. dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: flags 0x%x.\n",
  2536. dev->name, flags);
  2537. /*
  2538. * the packet is for us - immediately tear down the pci mapping.
  2539. * TODO: check if a prefetch of the first cacheline improves
  2540. * the performance.
  2541. */
  2542. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2543. np->get_rx_ctx->dma_len,
  2544. PCI_DMA_FROMDEVICE);
  2545. skb = np->get_rx_ctx->skb;
  2546. np->get_rx_ctx->skb = NULL;
  2547. {
  2548. int j;
  2549. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
  2550. for (j=0; j<64; j++) {
  2551. if ((j%16) == 0)
  2552. dprintk("\n%03x:", j);
  2553. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2554. }
  2555. dprintk("\n");
  2556. }
  2557. /* look at what we actually got: */
  2558. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2559. len = flags & LEN_MASK_V2;
  2560. if (unlikely(flags & NV_RX2_ERROR)) {
  2561. if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
  2562. len = nv_getlen(dev, skb->data, len);
  2563. if (len < 0) {
  2564. dev_kfree_skb(skb);
  2565. goto next_pkt;
  2566. }
  2567. }
  2568. /* framing errors are soft errors */
  2569. else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
  2570. if (flags & NV_RX2_SUBSTRACT1) {
  2571. len--;
  2572. }
  2573. }
  2574. /* the rest are hard errors */
  2575. else {
  2576. dev_kfree_skb(skb);
  2577. goto next_pkt;
  2578. }
  2579. }
  2580. if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
  2581. ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
  2582. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2583. /* got a valid packet - forward it to the network core */
  2584. skb_put(skb, len);
  2585. skb->protocol = eth_type_trans(skb, dev);
  2586. prefetch(skb->data);
  2587. dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: %d bytes, proto %d accepted.\n",
  2588. dev->name, len, skb->protocol);
  2589. if (likely(!np->vlangrp)) {
  2590. #ifdef CONFIG_FORCEDETH_NAPI
  2591. netif_receive_skb(skb);
  2592. #else
  2593. netif_rx(skb);
  2594. #endif
  2595. } else {
  2596. vlanflags = le32_to_cpu(np->get_rx.ex->buflow);
  2597. if (vlanflags & NV_RX3_VLAN_TAG_PRESENT) {
  2598. #ifdef CONFIG_FORCEDETH_NAPI
  2599. vlan_hwaccel_receive_skb(skb, np->vlangrp,
  2600. vlanflags & NV_RX3_VLAN_TAG_MASK);
  2601. #else
  2602. vlan_hwaccel_rx(skb, np->vlangrp,
  2603. vlanflags & NV_RX3_VLAN_TAG_MASK);
  2604. #endif
  2605. } else {
  2606. #ifdef CONFIG_FORCEDETH_NAPI
  2607. netif_receive_skb(skb);
  2608. #else
  2609. netif_rx(skb);
  2610. #endif
  2611. }
  2612. }
  2613. dev->stats.rx_packets++;
  2614. dev->stats.rx_bytes += len;
  2615. } else {
  2616. dev_kfree_skb(skb);
  2617. }
  2618. next_pkt:
  2619. if (unlikely(np->get_rx.ex++ == np->last_rx.ex))
  2620. np->get_rx.ex = np->first_rx.ex;
  2621. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2622. np->get_rx_ctx = np->first_rx_ctx;
  2623. rx_work++;
  2624. }
  2625. return rx_work;
  2626. }
  2627. static void set_bufsize(struct net_device *dev)
  2628. {
  2629. struct fe_priv *np = netdev_priv(dev);
  2630. if (dev->mtu <= ETH_DATA_LEN)
  2631. np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
  2632. else
  2633. np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
  2634. }
  2635. /*
  2636. * nv_change_mtu: dev->change_mtu function
  2637. * Called with dev_base_lock held for read.
  2638. */
  2639. static int nv_change_mtu(struct net_device *dev, int new_mtu)
  2640. {
  2641. struct fe_priv *np = netdev_priv(dev);
  2642. int old_mtu;
  2643. if (new_mtu < 64 || new_mtu > np->pkt_limit)
  2644. return -EINVAL;
  2645. old_mtu = dev->mtu;
  2646. dev->mtu = new_mtu;
  2647. /* return early if the buffer sizes will not change */
  2648. if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
  2649. return 0;
  2650. if (old_mtu == new_mtu)
  2651. return 0;
  2652. /* synchronized against open : rtnl_lock() held by caller */
  2653. if (netif_running(dev)) {
  2654. u8 __iomem *base = get_hwbase(dev);
  2655. /*
  2656. * It seems that the nic preloads valid ring entries into an
  2657. * internal buffer. The procedure for flushing everything is
  2658. * guessed, there is probably a simpler approach.
  2659. * Changing the MTU is a rare event, it shouldn't matter.
  2660. */
  2661. nv_disable_irq(dev);
  2662. nv_napi_disable(dev);
  2663. netif_tx_lock_bh(dev);
  2664. netif_addr_lock(dev);
  2665. spin_lock(&np->lock);
  2666. /* stop engines */
  2667. nv_stop_rxtx(dev);
  2668. nv_txrx_reset(dev);
  2669. /* drain rx queue */
  2670. nv_drain_rxtx(dev);
  2671. /* reinit driver view of the rx queue */
  2672. set_bufsize(dev);
  2673. if (nv_init_ring(dev)) {
  2674. if (!np->in_shutdown)
  2675. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2676. }
  2677. /* reinit nic view of the rx queue */
  2678. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  2679. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  2680. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  2681. base + NvRegRingSizes);
  2682. pci_push(base);
  2683. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2684. pci_push(base);
  2685. /* restart rx engine */
  2686. nv_start_rxtx(dev);
  2687. spin_unlock(&np->lock);
  2688. netif_addr_unlock(dev);
  2689. netif_tx_unlock_bh(dev);
  2690. nv_napi_enable(dev);
  2691. nv_enable_irq(dev);
  2692. }
  2693. return 0;
  2694. }
  2695. static void nv_copy_mac_to_hw(struct net_device *dev)
  2696. {
  2697. u8 __iomem *base = get_hwbase(dev);
  2698. u32 mac[2];
  2699. mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
  2700. (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
  2701. mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
  2702. writel(mac[0], base + NvRegMacAddrA);
  2703. writel(mac[1], base + NvRegMacAddrB);
  2704. }
  2705. /*
  2706. * nv_set_mac_address: dev->set_mac_address function
  2707. * Called with rtnl_lock() held.
  2708. */
  2709. static int nv_set_mac_address(struct net_device *dev, void *addr)
  2710. {
  2711. struct fe_priv *np = netdev_priv(dev);
  2712. struct sockaddr *macaddr = (struct sockaddr*)addr;
  2713. if (!is_valid_ether_addr(macaddr->sa_data))
  2714. return -EADDRNOTAVAIL;
  2715. /* synchronized against open : rtnl_lock() held by caller */
  2716. memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
  2717. if (netif_running(dev)) {
  2718. netif_tx_lock_bh(dev);
  2719. netif_addr_lock(dev);
  2720. spin_lock_irq(&np->lock);
  2721. /* stop rx engine */
  2722. nv_stop_rx(dev);
  2723. /* set mac address */
  2724. nv_copy_mac_to_hw(dev);
  2725. /* restart rx engine */
  2726. nv_start_rx(dev);
  2727. spin_unlock_irq(&np->lock);
  2728. netif_addr_unlock(dev);
  2729. netif_tx_unlock_bh(dev);
  2730. } else {
  2731. nv_copy_mac_to_hw(dev);
  2732. }
  2733. return 0;
  2734. }
  2735. /*
  2736. * nv_set_multicast: dev->set_multicast function
  2737. * Called with netif_tx_lock held.
  2738. */
  2739. static void nv_set_multicast(struct net_device *dev)
  2740. {
  2741. struct fe_priv *np = netdev_priv(dev);
  2742. u8 __iomem *base = get_hwbase(dev);
  2743. u32 addr[2];
  2744. u32 mask[2];
  2745. u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
  2746. memset(addr, 0, sizeof(addr));
  2747. memset(mask, 0, sizeof(mask));
  2748. if (dev->flags & IFF_PROMISC) {
  2749. pff |= NVREG_PFF_PROMISC;
  2750. } else {
  2751. pff |= NVREG_PFF_MYADDR;
  2752. if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
  2753. u32 alwaysOff[2];
  2754. u32 alwaysOn[2];
  2755. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
  2756. if (dev->flags & IFF_ALLMULTI) {
  2757. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
  2758. } else {
  2759. struct dev_mc_list *walk;
  2760. walk = dev->mc_list;
  2761. while (walk != NULL) {
  2762. u32 a, b;
  2763. a = le32_to_cpu(*(__le32 *) walk->dmi_addr);
  2764. b = le16_to_cpu(*(__le16 *) (&walk->dmi_addr[4]));
  2765. alwaysOn[0] &= a;
  2766. alwaysOff[0] &= ~a;
  2767. alwaysOn[1] &= b;
  2768. alwaysOff[1] &= ~b;
  2769. walk = walk->next;
  2770. }
  2771. }
  2772. addr[0] = alwaysOn[0];
  2773. addr[1] = alwaysOn[1];
  2774. mask[0] = alwaysOn[0] | alwaysOff[0];
  2775. mask[1] = alwaysOn[1] | alwaysOff[1];
  2776. } else {
  2777. mask[0] = NVREG_MCASTMASKA_NONE;
  2778. mask[1] = NVREG_MCASTMASKB_NONE;
  2779. }
  2780. }
  2781. addr[0] |= NVREG_MCASTADDRA_FORCE;
  2782. pff |= NVREG_PFF_ALWAYS;
  2783. spin_lock_irq(&np->lock);
  2784. nv_stop_rx(dev);
  2785. writel(addr[0], base + NvRegMulticastAddrA);
  2786. writel(addr[1], base + NvRegMulticastAddrB);
  2787. writel(mask[0], base + NvRegMulticastMaskA);
  2788. writel(mask[1], base + NvRegMulticastMaskB);
  2789. writel(pff, base + NvRegPacketFilterFlags);
  2790. dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
  2791. dev->name);
  2792. nv_start_rx(dev);
  2793. spin_unlock_irq(&np->lock);
  2794. }
  2795. static void nv_update_pause(struct net_device *dev, u32 pause_flags)
  2796. {
  2797. struct fe_priv *np = netdev_priv(dev);
  2798. u8 __iomem *base = get_hwbase(dev);
  2799. np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
  2800. if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
  2801. u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
  2802. if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
  2803. writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
  2804. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2805. } else {
  2806. writel(pff, base + NvRegPacketFilterFlags);
  2807. }
  2808. }
  2809. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
  2810. u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
  2811. if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
  2812. u32 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V1;
  2813. if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V2)
  2814. pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V2;
  2815. if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V3) {
  2816. pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V3;
  2817. /* limit the number of tx pause frames to a default of 8 */
  2818. writel(readl(base + NvRegTxPauseFrameLimit)|NVREG_TX_PAUSEFRAMELIMIT_ENABLE, base + NvRegTxPauseFrameLimit);
  2819. }
  2820. writel(pause_enable, base + NvRegTxPauseFrame);
  2821. writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
  2822. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2823. } else {
  2824. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  2825. writel(regmisc, base + NvRegMisc1);
  2826. }
  2827. }
  2828. }
  2829. /**
  2830. * nv_update_linkspeed: Setup the MAC according to the link partner
  2831. * @dev: Network device to be configured
  2832. *
  2833. * The function queries the PHY and checks if there is a link partner.
  2834. * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
  2835. * set to 10 MBit HD.
  2836. *
  2837. * The function returns 0 if there is no link partner and 1 if there is
  2838. * a good link partner.
  2839. */
  2840. static int nv_update_linkspeed(struct net_device *dev)
  2841. {
  2842. struct fe_priv *np = netdev_priv(dev);
  2843. u8 __iomem *base = get_hwbase(dev);
  2844. int adv = 0;
  2845. int lpa = 0;
  2846. int adv_lpa, adv_pause, lpa_pause;
  2847. int newls = np->linkspeed;
  2848. int newdup = np->duplex;
  2849. int mii_status;
  2850. int retval = 0;
  2851. u32 control_1000, status_1000, phyreg, pause_flags, txreg;
  2852. u32 txrxFlags = 0;
  2853. u32 phy_exp;
  2854. /* BMSR_LSTATUS is latched, read it twice:
  2855. * we want the current value.
  2856. */
  2857. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2858. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2859. if (!(mii_status & BMSR_LSTATUS)) {
  2860. dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
  2861. dev->name);
  2862. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2863. newdup = 0;
  2864. retval = 0;
  2865. goto set_speed;
  2866. }
  2867. if (np->autoneg == 0) {
  2868. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
  2869. dev->name, np->fixed_mode);
  2870. if (np->fixed_mode & LPA_100FULL) {
  2871. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2872. newdup = 1;
  2873. } else if (np->fixed_mode & LPA_100HALF) {
  2874. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2875. newdup = 0;
  2876. } else if (np->fixed_mode & LPA_10FULL) {
  2877. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2878. newdup = 1;
  2879. } else {
  2880. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2881. newdup = 0;
  2882. }
  2883. retval = 1;
  2884. goto set_speed;
  2885. }
  2886. /* check auto negotiation is complete */
  2887. if (!(mii_status & BMSR_ANEGCOMPLETE)) {
  2888. /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
  2889. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2890. newdup = 0;
  2891. retval = 0;
  2892. dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
  2893. goto set_speed;
  2894. }
  2895. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2896. lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
  2897. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
  2898. dev->name, adv, lpa);
  2899. retval = 1;
  2900. if (np->gigabit == PHY_GIGABIT) {
  2901. control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  2902. status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
  2903. if ((control_1000 & ADVERTISE_1000FULL) &&
  2904. (status_1000 & LPA_1000FULL)) {
  2905. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
  2906. dev->name);
  2907. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
  2908. newdup = 1;
  2909. goto set_speed;
  2910. }
  2911. }
  2912. /* FIXME: handle parallel detection properly */
  2913. adv_lpa = lpa & adv;
  2914. if (adv_lpa & LPA_100FULL) {
  2915. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2916. newdup = 1;
  2917. } else if (adv_lpa & LPA_100HALF) {
  2918. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2919. newdup = 0;
  2920. } else if (adv_lpa & LPA_10FULL) {
  2921. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2922. newdup = 1;
  2923. } else if (adv_lpa & LPA_10HALF) {
  2924. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2925. newdup = 0;
  2926. } else {
  2927. dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
  2928. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2929. newdup = 0;
  2930. }
  2931. set_speed:
  2932. if (np->duplex == newdup && np->linkspeed == newls)
  2933. return retval;
  2934. dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
  2935. dev->name, np->linkspeed, np->duplex, newls, newdup);
  2936. np->duplex = newdup;
  2937. np->linkspeed = newls;
  2938. /* The transmitter and receiver must be restarted for safe update */
  2939. if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START) {
  2940. txrxFlags |= NV_RESTART_TX;
  2941. nv_stop_tx(dev);
  2942. }
  2943. if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
  2944. txrxFlags |= NV_RESTART_RX;
  2945. nv_stop_rx(dev);
  2946. }
  2947. if (np->gigabit == PHY_GIGABIT) {
  2948. phyreg = readl(base + NvRegSlotTime);
  2949. phyreg &= ~(0x3FF00);
  2950. if (((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10) ||
  2951. ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100))
  2952. phyreg |= NVREG_SLOTTIME_10_100_FULL;
  2953. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
  2954. phyreg |= NVREG_SLOTTIME_1000_FULL;
  2955. writel(phyreg, base + NvRegSlotTime);
  2956. }
  2957. phyreg = readl(base + NvRegPhyInterface);
  2958. phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
  2959. if (np->duplex == 0)
  2960. phyreg |= PHY_HALF;
  2961. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
  2962. phyreg |= PHY_100;
  2963. else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2964. phyreg |= PHY_1000;
  2965. writel(phyreg, base + NvRegPhyInterface);
  2966. phy_exp = mii_rw(dev, np->phyaddr, MII_EXPANSION, MII_READ) & EXPANSION_NWAY; /* autoneg capable */
  2967. if (phyreg & PHY_RGMII) {
  2968. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) {
  2969. txreg = NVREG_TX_DEFERRAL_RGMII_1000;
  2970. } else {
  2971. if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) {
  2972. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_10)
  2973. txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_10;
  2974. else
  2975. txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_100;
  2976. } else {
  2977. txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
  2978. }
  2979. }
  2980. } else {
  2981. if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX))
  2982. txreg = NVREG_TX_DEFERRAL_MII_STRETCH;
  2983. else
  2984. txreg = NVREG_TX_DEFERRAL_DEFAULT;
  2985. }
  2986. writel(txreg, base + NvRegTxDeferral);
  2987. if (np->desc_ver == DESC_VER_1) {
  2988. txreg = NVREG_TX_WM_DESC1_DEFAULT;
  2989. } else {
  2990. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2991. txreg = NVREG_TX_WM_DESC2_3_1000;
  2992. else
  2993. txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
  2994. }
  2995. writel(txreg, base + NvRegTxWatermark);
  2996. writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
  2997. base + NvRegMisc1);
  2998. pci_push(base);
  2999. writel(np->linkspeed, base + NvRegLinkSpeed);
  3000. pci_push(base);
  3001. pause_flags = 0;
  3002. /* setup pause frame */
  3003. if (np->duplex != 0) {
  3004. if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
  3005. adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
  3006. lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
  3007. switch (adv_pause) {
  3008. case ADVERTISE_PAUSE_CAP:
  3009. if (lpa_pause & LPA_PAUSE_CAP) {
  3010. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3011. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3012. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3013. }
  3014. break;
  3015. case ADVERTISE_PAUSE_ASYM:
  3016. if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
  3017. {
  3018. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3019. }
  3020. break;
  3021. case ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM:
  3022. if (lpa_pause & LPA_PAUSE_CAP)
  3023. {
  3024. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3025. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3026. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3027. }
  3028. if (lpa_pause == LPA_PAUSE_ASYM)
  3029. {
  3030. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3031. }
  3032. break;
  3033. }
  3034. } else {
  3035. pause_flags = np->pause_flags;
  3036. }
  3037. }
  3038. nv_update_pause(dev, pause_flags);
  3039. if (txrxFlags & NV_RESTART_TX)
  3040. nv_start_tx(dev);
  3041. if (txrxFlags & NV_RESTART_RX)
  3042. nv_start_rx(dev);
  3043. return retval;
  3044. }
  3045. static void nv_linkchange(struct net_device *dev)
  3046. {
  3047. if (nv_update_linkspeed(dev)) {
  3048. if (!netif_carrier_ok(dev)) {
  3049. netif_carrier_on(dev);
  3050. printk(KERN_INFO "%s: link up.\n", dev->name);
  3051. nv_start_rx(dev);
  3052. }
  3053. } else {
  3054. if (netif_carrier_ok(dev)) {
  3055. netif_carrier_off(dev);
  3056. printk(KERN_INFO "%s: link down.\n", dev->name);
  3057. nv_stop_rx(dev);
  3058. }
  3059. }
  3060. }
  3061. static void nv_link_irq(struct net_device *dev)
  3062. {
  3063. u8 __iomem *base = get_hwbase(dev);
  3064. u32 miistat;
  3065. miistat = readl(base + NvRegMIIStatus);
  3066. writel(NVREG_MIISTAT_LINKCHANGE, base + NvRegMIIStatus);
  3067. dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
  3068. if (miistat & (NVREG_MIISTAT_LINKCHANGE))
  3069. nv_linkchange(dev);
  3070. dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
  3071. }
  3072. static void nv_msi_workaround(struct fe_priv *np)
  3073. {
  3074. /* Need to toggle the msi irq mask within the ethernet device,
  3075. * otherwise, future interrupts will not be detected.
  3076. */
  3077. if (np->msi_flags & NV_MSI_ENABLED) {
  3078. u8 __iomem *base = np->base;
  3079. writel(0, base + NvRegMSIIrqMask);
  3080. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  3081. }
  3082. }
  3083. static inline int nv_change_interrupt_mode(struct net_device *dev, int total_work)
  3084. {
  3085. struct fe_priv *np = netdev_priv(dev);
  3086. if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC) {
  3087. if (total_work > NV_DYNAMIC_THRESHOLD) {
  3088. /* transition to poll based interrupts */
  3089. np->quiet_count = 0;
  3090. if (np->irqmask != NVREG_IRQMASK_CPU) {
  3091. np->irqmask = NVREG_IRQMASK_CPU;
  3092. return 1;
  3093. }
  3094. } else {
  3095. if (np->quiet_count < NV_DYNAMIC_MAX_QUIET_COUNT) {
  3096. np->quiet_count++;
  3097. } else {
  3098. /* reached a period of low activity, switch
  3099. to per tx/rx packet interrupts */
  3100. if (np->irqmask != NVREG_IRQMASK_THROUGHPUT) {
  3101. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  3102. return 1;
  3103. }
  3104. }
  3105. }
  3106. }
  3107. return 0;
  3108. }
  3109. static irqreturn_t nv_nic_irq(int foo, void *data)
  3110. {
  3111. struct net_device *dev = (struct net_device *) data;
  3112. struct fe_priv *np = netdev_priv(dev);
  3113. u8 __iomem *base = get_hwbase(dev);
  3114. #ifndef CONFIG_FORCEDETH_NAPI
  3115. int total_work = 0;
  3116. int loop_count = 0;
  3117. #endif
  3118. dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
  3119. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3120. np->events = readl(base + NvRegIrqStatus);
  3121. writel(np->events, base + NvRegIrqStatus);
  3122. } else {
  3123. np->events = readl(base + NvRegMSIXIrqStatus);
  3124. writel(np->events, base + NvRegMSIXIrqStatus);
  3125. }
  3126. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, np->events);
  3127. if (!(np->events & np->irqmask))
  3128. return IRQ_NONE;
  3129. nv_msi_workaround(np);
  3130. #ifdef CONFIG_FORCEDETH_NAPI
  3131. napi_schedule(&np->napi);
  3132. /* Disable furthur irq's
  3133. (msix not enabled with napi) */
  3134. writel(0, base + NvRegIrqMask);
  3135. #else
  3136. do
  3137. {
  3138. int work = 0;
  3139. if ((work = nv_rx_process(dev, RX_WORK_PER_LOOP))) {
  3140. if (unlikely(nv_alloc_rx(dev))) {
  3141. spin_lock(&np->lock);
  3142. if (!np->in_shutdown)
  3143. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3144. spin_unlock(&np->lock);
  3145. }
  3146. }
  3147. spin_lock(&np->lock);
  3148. work += nv_tx_done(dev, TX_WORK_PER_LOOP);
  3149. spin_unlock(&np->lock);
  3150. if (!work)
  3151. break;
  3152. total_work += work;
  3153. loop_count++;
  3154. }
  3155. while (loop_count < max_interrupt_work);
  3156. if (nv_change_interrupt_mode(dev, total_work)) {
  3157. /* setup new irq mask */
  3158. writel(np->irqmask, base + NvRegIrqMask);
  3159. }
  3160. if (unlikely(np->events & NVREG_IRQ_LINK)) {
  3161. spin_lock(&np->lock);
  3162. nv_link_irq(dev);
  3163. spin_unlock(&np->lock);
  3164. }
  3165. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  3166. spin_lock(&np->lock);
  3167. nv_linkchange(dev);
  3168. spin_unlock(&np->lock);
  3169. np->link_timeout = jiffies + LINK_TIMEOUT;
  3170. }
  3171. if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) {
  3172. spin_lock(&np->lock);
  3173. /* disable interrupts on the nic */
  3174. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3175. writel(0, base + NvRegIrqMask);
  3176. else
  3177. writel(np->irqmask, base + NvRegIrqMask);
  3178. pci_push(base);
  3179. if (!np->in_shutdown) {
  3180. np->nic_poll_irq = np->irqmask;
  3181. np->recover_error = 1;
  3182. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3183. }
  3184. spin_unlock(&np->lock);
  3185. }
  3186. #endif
  3187. dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
  3188. return IRQ_HANDLED;
  3189. }
  3190. /**
  3191. * All _optimized functions are used to help increase performance
  3192. * (reduce CPU and increase throughput). They use descripter version 3,
  3193. * compiler directives, and reduce memory accesses.
  3194. */
  3195. static irqreturn_t nv_nic_irq_optimized(int foo, void *data)
  3196. {
  3197. struct net_device *dev = (struct net_device *) data;
  3198. struct fe_priv *np = netdev_priv(dev);
  3199. u8 __iomem *base = get_hwbase(dev);
  3200. #ifndef CONFIG_FORCEDETH_NAPI
  3201. int total_work = 0;
  3202. int loop_count = 0;
  3203. #endif
  3204. dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized\n", dev->name);
  3205. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3206. np->events = readl(base + NvRegIrqStatus);
  3207. writel(np->events, base + NvRegIrqStatus);
  3208. } else {
  3209. np->events = readl(base + NvRegMSIXIrqStatus);
  3210. writel(np->events, base + NvRegMSIXIrqStatus);
  3211. }
  3212. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, np->events);
  3213. if (!(np->events & np->irqmask))
  3214. return IRQ_NONE;
  3215. nv_msi_workaround(np);
  3216. #ifdef CONFIG_FORCEDETH_NAPI
  3217. napi_schedule(&np->napi);
  3218. /* Disable furthur irq's
  3219. (msix not enabled with napi) */
  3220. writel(0, base + NvRegIrqMask);
  3221. #else
  3222. do
  3223. {
  3224. int work = 0;
  3225. if ((work = nv_rx_process_optimized(dev, RX_WORK_PER_LOOP))) {
  3226. if (unlikely(nv_alloc_rx_optimized(dev))) {
  3227. spin_lock(&np->lock);
  3228. if (!np->in_shutdown)
  3229. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3230. spin_unlock(&np->lock);
  3231. }
  3232. }
  3233. spin_lock(&np->lock);
  3234. work += nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3235. spin_unlock(&np->lock);
  3236. if (!work)
  3237. break;
  3238. total_work += work;
  3239. loop_count++;
  3240. }
  3241. while (loop_count < max_interrupt_work);
  3242. if (nv_change_interrupt_mode(dev, total_work)) {
  3243. /* setup new irq mask */
  3244. writel(np->irqmask, base + NvRegIrqMask);
  3245. }
  3246. if (unlikely(np->events & NVREG_IRQ_LINK)) {
  3247. spin_lock(&np->lock);
  3248. nv_link_irq(dev);
  3249. spin_unlock(&np->lock);
  3250. }
  3251. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  3252. spin_lock(&np->lock);
  3253. nv_linkchange(dev);
  3254. spin_unlock(&np->lock);
  3255. np->link_timeout = jiffies + LINK_TIMEOUT;
  3256. }
  3257. if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) {
  3258. spin_lock(&np->lock);
  3259. /* disable interrupts on the nic */
  3260. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3261. writel(0, base + NvRegIrqMask);
  3262. else
  3263. writel(np->irqmask, base + NvRegIrqMask);
  3264. pci_push(base);
  3265. if (!np->in_shutdown) {
  3266. np->nic_poll_irq = np->irqmask;
  3267. np->recover_error = 1;
  3268. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3269. }
  3270. spin_unlock(&np->lock);
  3271. }
  3272. #endif
  3273. dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized completed\n", dev->name);
  3274. return IRQ_HANDLED;
  3275. }
  3276. static irqreturn_t nv_nic_irq_tx(int foo, void *data)
  3277. {
  3278. struct net_device *dev = (struct net_device *) data;
  3279. struct fe_priv *np = netdev_priv(dev);
  3280. u8 __iomem *base = get_hwbase(dev);
  3281. u32 events;
  3282. int i;
  3283. unsigned long flags;
  3284. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
  3285. for (i=0; ; i++) {
  3286. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
  3287. writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
  3288. dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
  3289. if (!(events & np->irqmask))
  3290. break;
  3291. spin_lock_irqsave(&np->lock, flags);
  3292. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3293. spin_unlock_irqrestore(&np->lock, flags);
  3294. if (unlikely(i > max_interrupt_work)) {
  3295. spin_lock_irqsave(&np->lock, flags);
  3296. /* disable interrupts on the nic */
  3297. writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
  3298. pci_push(base);
  3299. if (!np->in_shutdown) {
  3300. np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
  3301. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3302. }
  3303. spin_unlock_irqrestore(&np->lock, flags);
  3304. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
  3305. break;
  3306. }
  3307. }
  3308. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
  3309. return IRQ_RETVAL(i);
  3310. }
  3311. #ifdef CONFIG_FORCEDETH_NAPI
  3312. static int nv_napi_poll(struct napi_struct *napi, int budget)
  3313. {
  3314. struct fe_priv *np = container_of(napi, struct fe_priv, napi);
  3315. struct net_device *dev = np->dev;
  3316. u8 __iomem *base = get_hwbase(dev);
  3317. unsigned long flags;
  3318. int retcode;
  3319. int tx_work, rx_work;
  3320. if (!nv_optimized(np)) {
  3321. spin_lock_irqsave(&np->lock, flags);
  3322. tx_work = nv_tx_done(dev, np->tx_ring_size);
  3323. spin_unlock_irqrestore(&np->lock, flags);
  3324. rx_work = nv_rx_process(dev, budget);
  3325. retcode = nv_alloc_rx(dev);
  3326. } else {
  3327. spin_lock_irqsave(&np->lock, flags);
  3328. tx_work = nv_tx_done_optimized(dev, np->tx_ring_size);
  3329. spin_unlock_irqrestore(&np->lock, flags);
  3330. rx_work = nv_rx_process_optimized(dev, budget);
  3331. retcode = nv_alloc_rx_optimized(dev);
  3332. }
  3333. if (retcode) {
  3334. spin_lock_irqsave(&np->lock, flags);
  3335. if (!np->in_shutdown)
  3336. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3337. spin_unlock_irqrestore(&np->lock, flags);
  3338. }
  3339. nv_change_interrupt_mode(dev, tx_work + rx_work);
  3340. if (unlikely(np->events & NVREG_IRQ_LINK)) {
  3341. spin_lock_irqsave(&np->lock, flags);
  3342. nv_link_irq(dev);
  3343. spin_unlock_irqrestore(&np->lock, flags);
  3344. }
  3345. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  3346. spin_lock_irqsave(&np->lock, flags);
  3347. nv_linkchange(dev);
  3348. spin_unlock_irqrestore(&np->lock, flags);
  3349. np->link_timeout = jiffies + LINK_TIMEOUT;
  3350. }
  3351. if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) {
  3352. spin_lock_irqsave(&np->lock, flags);
  3353. if (!np->in_shutdown) {
  3354. np->nic_poll_irq = np->irqmask;
  3355. np->recover_error = 1;
  3356. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3357. }
  3358. spin_unlock_irqrestore(&np->lock, flags);
  3359. napi_complete(napi);
  3360. return rx_work;
  3361. }
  3362. if (rx_work < budget) {
  3363. /* re-enable interrupts
  3364. (msix not enabled in napi) */
  3365. napi_complete(napi);
  3366. writel(np->irqmask, base + NvRegIrqMask);
  3367. }
  3368. return rx_work;
  3369. }
  3370. #endif
  3371. static irqreturn_t nv_nic_irq_rx(int foo, void *data)
  3372. {
  3373. struct net_device *dev = (struct net_device *) data;
  3374. struct fe_priv *np = netdev_priv(dev);
  3375. u8 __iomem *base = get_hwbase(dev);
  3376. u32 events;
  3377. int i;
  3378. unsigned long flags;
  3379. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
  3380. for (i=0; ; i++) {
  3381. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  3382. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  3383. dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
  3384. if (!(events & np->irqmask))
  3385. break;
  3386. if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
  3387. if (unlikely(nv_alloc_rx_optimized(dev))) {
  3388. spin_lock_irqsave(&np->lock, flags);
  3389. if (!np->in_shutdown)
  3390. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3391. spin_unlock_irqrestore(&np->lock, flags);
  3392. }
  3393. }
  3394. if (unlikely(i > max_interrupt_work)) {
  3395. spin_lock_irqsave(&np->lock, flags);
  3396. /* disable interrupts on the nic */
  3397. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3398. pci_push(base);
  3399. if (!np->in_shutdown) {
  3400. np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
  3401. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3402. }
  3403. spin_unlock_irqrestore(&np->lock, flags);
  3404. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
  3405. break;
  3406. }
  3407. }
  3408. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
  3409. return IRQ_RETVAL(i);
  3410. }
  3411. static irqreturn_t nv_nic_irq_other(int foo, void *data)
  3412. {
  3413. struct net_device *dev = (struct net_device *) data;
  3414. struct fe_priv *np = netdev_priv(dev);
  3415. u8 __iomem *base = get_hwbase(dev);
  3416. u32 events;
  3417. int i;
  3418. unsigned long flags;
  3419. dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
  3420. for (i=0; ; i++) {
  3421. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
  3422. writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
  3423. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3424. if (!(events & np->irqmask))
  3425. break;
  3426. /* check tx in case we reached max loop limit in tx isr */
  3427. spin_lock_irqsave(&np->lock, flags);
  3428. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3429. spin_unlock_irqrestore(&np->lock, flags);
  3430. if (events & NVREG_IRQ_LINK) {
  3431. spin_lock_irqsave(&np->lock, flags);
  3432. nv_link_irq(dev);
  3433. spin_unlock_irqrestore(&np->lock, flags);
  3434. }
  3435. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  3436. spin_lock_irqsave(&np->lock, flags);
  3437. nv_linkchange(dev);
  3438. spin_unlock_irqrestore(&np->lock, flags);
  3439. np->link_timeout = jiffies + LINK_TIMEOUT;
  3440. }
  3441. if (events & NVREG_IRQ_RECOVER_ERROR) {
  3442. spin_lock_irq(&np->lock);
  3443. /* disable interrupts on the nic */
  3444. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3445. pci_push(base);
  3446. if (!np->in_shutdown) {
  3447. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3448. np->recover_error = 1;
  3449. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3450. }
  3451. spin_unlock_irq(&np->lock);
  3452. break;
  3453. }
  3454. if (unlikely(i > max_interrupt_work)) {
  3455. spin_lock_irqsave(&np->lock, flags);
  3456. /* disable interrupts on the nic */
  3457. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3458. pci_push(base);
  3459. if (!np->in_shutdown) {
  3460. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3461. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3462. }
  3463. spin_unlock_irqrestore(&np->lock, flags);
  3464. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
  3465. break;
  3466. }
  3467. }
  3468. dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
  3469. return IRQ_RETVAL(i);
  3470. }
  3471. static irqreturn_t nv_nic_irq_test(int foo, void *data)
  3472. {
  3473. struct net_device *dev = (struct net_device *) data;
  3474. struct fe_priv *np = netdev_priv(dev);
  3475. u8 __iomem *base = get_hwbase(dev);
  3476. u32 events;
  3477. dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
  3478. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3479. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  3480. writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
  3481. } else {
  3482. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  3483. writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
  3484. }
  3485. pci_push(base);
  3486. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3487. if (!(events & NVREG_IRQ_TIMER))
  3488. return IRQ_RETVAL(0);
  3489. nv_msi_workaround(np);
  3490. spin_lock(&np->lock);
  3491. np->intr_test = 1;
  3492. spin_unlock(&np->lock);
  3493. dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
  3494. return IRQ_RETVAL(1);
  3495. }
  3496. static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
  3497. {
  3498. u8 __iomem *base = get_hwbase(dev);
  3499. int i;
  3500. u32 msixmap = 0;
  3501. /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
  3502. * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
  3503. * the remaining 8 interrupts.
  3504. */
  3505. for (i = 0; i < 8; i++) {
  3506. if ((irqmask >> i) & 0x1) {
  3507. msixmap |= vector << (i << 2);
  3508. }
  3509. }
  3510. writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
  3511. msixmap = 0;
  3512. for (i = 0; i < 8; i++) {
  3513. if ((irqmask >> (i + 8)) & 0x1) {
  3514. msixmap |= vector << (i << 2);
  3515. }
  3516. }
  3517. writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
  3518. }
  3519. static int nv_request_irq(struct net_device *dev, int intr_test)
  3520. {
  3521. struct fe_priv *np = get_nvpriv(dev);
  3522. u8 __iomem *base = get_hwbase(dev);
  3523. int ret = 1;
  3524. int i;
  3525. irqreturn_t (*handler)(int foo, void *data);
  3526. if (intr_test) {
  3527. handler = nv_nic_irq_test;
  3528. } else {
  3529. if (nv_optimized(np))
  3530. handler = nv_nic_irq_optimized;
  3531. else
  3532. handler = nv_nic_irq;
  3533. }
  3534. if (np->msi_flags & NV_MSI_X_CAPABLE) {
  3535. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  3536. np->msi_x_entry[i].entry = i;
  3537. }
  3538. if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
  3539. np->msi_flags |= NV_MSI_X_ENABLED;
  3540. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
  3541. /* Request irq for rx handling */
  3542. sprintf(np->name_rx, "%s-rx", dev->name);
  3543. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector,
  3544. &nv_nic_irq_rx, IRQF_SHARED, np->name_rx, dev) != 0) {
  3545. printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
  3546. pci_disable_msix(np->pci_dev);
  3547. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3548. goto out_err;
  3549. }
  3550. /* Request irq for tx handling */
  3551. sprintf(np->name_tx, "%s-tx", dev->name);
  3552. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector,
  3553. &nv_nic_irq_tx, IRQF_SHARED, np->name_tx, dev) != 0) {
  3554. printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
  3555. pci_disable_msix(np->pci_dev);
  3556. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3557. goto out_free_rx;
  3558. }
  3559. /* Request irq for link and timer handling */
  3560. sprintf(np->name_other, "%s-other", dev->name);
  3561. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector,
  3562. &nv_nic_irq_other, IRQF_SHARED, np->name_other, dev) != 0) {
  3563. printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
  3564. pci_disable_msix(np->pci_dev);
  3565. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3566. goto out_free_tx;
  3567. }
  3568. /* map interrupts to their respective vector */
  3569. writel(0, base + NvRegMSIXMap0);
  3570. writel(0, base + NvRegMSIXMap1);
  3571. set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
  3572. set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
  3573. set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
  3574. } else {
  3575. /* Request irq for all interrupts */
  3576. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3577. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  3578. pci_disable_msix(np->pci_dev);
  3579. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3580. goto out_err;
  3581. }
  3582. /* map interrupts to vector 0 */
  3583. writel(0, base + NvRegMSIXMap0);
  3584. writel(0, base + NvRegMSIXMap1);
  3585. }
  3586. }
  3587. }
  3588. if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
  3589. if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
  3590. np->msi_flags |= NV_MSI_ENABLED;
  3591. dev->irq = np->pci_dev->irq;
  3592. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3593. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  3594. pci_disable_msi(np->pci_dev);
  3595. np->msi_flags &= ~NV_MSI_ENABLED;
  3596. dev->irq = np->pci_dev->irq;
  3597. goto out_err;
  3598. }
  3599. /* map interrupts to vector 0 */
  3600. writel(0, base + NvRegMSIMap0);
  3601. writel(0, base + NvRegMSIMap1);
  3602. /* enable msi vector 0 */
  3603. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  3604. }
  3605. }
  3606. if (ret != 0) {
  3607. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0)
  3608. goto out_err;
  3609. }
  3610. return 0;
  3611. out_free_tx:
  3612. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
  3613. out_free_rx:
  3614. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
  3615. out_err:
  3616. return 1;
  3617. }
  3618. static void nv_free_irq(struct net_device *dev)
  3619. {
  3620. struct fe_priv *np = get_nvpriv(dev);
  3621. int i;
  3622. if (np->msi_flags & NV_MSI_X_ENABLED) {
  3623. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  3624. free_irq(np->msi_x_entry[i].vector, dev);
  3625. }
  3626. pci_disable_msix(np->pci_dev);
  3627. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3628. } else {
  3629. free_irq(np->pci_dev->irq, dev);
  3630. if (np->msi_flags & NV_MSI_ENABLED) {
  3631. pci_disable_msi(np->pci_dev);
  3632. np->msi_flags &= ~NV_MSI_ENABLED;
  3633. }
  3634. }
  3635. }
  3636. static void nv_do_nic_poll(unsigned long data)
  3637. {
  3638. struct net_device *dev = (struct net_device *) data;
  3639. struct fe_priv *np = netdev_priv(dev);
  3640. u8 __iomem *base = get_hwbase(dev);
  3641. u32 mask = 0;
  3642. /*
  3643. * First disable irq(s) and then
  3644. * reenable interrupts on the nic, we have to do this before calling
  3645. * nv_nic_irq because that may decide to do otherwise
  3646. */
  3647. if (!using_multi_irqs(dev)) {
  3648. if (np->msi_flags & NV_MSI_X_ENABLED)
  3649. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3650. else
  3651. disable_irq_lockdep(np->pci_dev->irq);
  3652. mask = np->irqmask;
  3653. } else {
  3654. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3655. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3656. mask |= NVREG_IRQ_RX_ALL;
  3657. }
  3658. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3659. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3660. mask |= NVREG_IRQ_TX_ALL;
  3661. }
  3662. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3663. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3664. mask |= NVREG_IRQ_OTHER;
  3665. }
  3666. }
  3667. /* disable_irq() contains synchronize_irq, thus no irq handler can run now */
  3668. if (np->recover_error) {
  3669. np->recover_error = 0;
  3670. printk(KERN_INFO "%s: MAC in recoverable error state\n", dev->name);
  3671. if (netif_running(dev)) {
  3672. netif_tx_lock_bh(dev);
  3673. netif_addr_lock(dev);
  3674. spin_lock(&np->lock);
  3675. /* stop engines */
  3676. nv_stop_rxtx(dev);
  3677. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  3678. nv_mac_reset(dev);
  3679. nv_txrx_reset(dev);
  3680. /* drain rx queue */
  3681. nv_drain_rxtx(dev);
  3682. /* reinit driver view of the rx queue */
  3683. set_bufsize(dev);
  3684. if (nv_init_ring(dev)) {
  3685. if (!np->in_shutdown)
  3686. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3687. }
  3688. /* reinit nic view of the rx queue */
  3689. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3690. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3691. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3692. base + NvRegRingSizes);
  3693. pci_push(base);
  3694. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3695. pci_push(base);
  3696. /* clear interrupts */
  3697. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3698. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3699. else
  3700. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  3701. /* restart rx engine */
  3702. nv_start_rxtx(dev);
  3703. spin_unlock(&np->lock);
  3704. netif_addr_unlock(dev);
  3705. netif_tx_unlock_bh(dev);
  3706. }
  3707. }
  3708. writel(mask, base + NvRegIrqMask);
  3709. pci_push(base);
  3710. if (!using_multi_irqs(dev)) {
  3711. np->nic_poll_irq = 0;
  3712. if (nv_optimized(np))
  3713. nv_nic_irq_optimized(0, dev);
  3714. else
  3715. nv_nic_irq(0, dev);
  3716. if (np->msi_flags & NV_MSI_X_ENABLED)
  3717. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3718. else
  3719. enable_irq_lockdep(np->pci_dev->irq);
  3720. } else {
  3721. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3722. np->nic_poll_irq &= ~NVREG_IRQ_RX_ALL;
  3723. nv_nic_irq_rx(0, dev);
  3724. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3725. }
  3726. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3727. np->nic_poll_irq &= ~NVREG_IRQ_TX_ALL;
  3728. nv_nic_irq_tx(0, dev);
  3729. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3730. }
  3731. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3732. np->nic_poll_irq &= ~NVREG_IRQ_OTHER;
  3733. nv_nic_irq_other(0, dev);
  3734. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3735. }
  3736. }
  3737. }
  3738. #ifdef CONFIG_NET_POLL_CONTROLLER
  3739. static void nv_poll_controller(struct net_device *dev)
  3740. {
  3741. nv_do_nic_poll((unsigned long) dev);
  3742. }
  3743. #endif
  3744. static void nv_do_stats_poll(unsigned long data)
  3745. {
  3746. struct net_device *dev = (struct net_device *) data;
  3747. struct fe_priv *np = netdev_priv(dev);
  3748. nv_get_hw_stats(dev);
  3749. if (!np->in_shutdown)
  3750. mod_timer(&np->stats_poll,
  3751. round_jiffies(jiffies + STATS_INTERVAL));
  3752. }
  3753. static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  3754. {
  3755. struct fe_priv *np = netdev_priv(dev);
  3756. strcpy(info->driver, DRV_NAME);
  3757. strcpy(info->version, FORCEDETH_VERSION);
  3758. strcpy(info->bus_info, pci_name(np->pci_dev));
  3759. }
  3760. static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3761. {
  3762. struct fe_priv *np = netdev_priv(dev);
  3763. wolinfo->supported = WAKE_MAGIC;
  3764. spin_lock_irq(&np->lock);
  3765. if (np->wolenabled)
  3766. wolinfo->wolopts = WAKE_MAGIC;
  3767. spin_unlock_irq(&np->lock);
  3768. }
  3769. static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3770. {
  3771. struct fe_priv *np = netdev_priv(dev);
  3772. u8 __iomem *base = get_hwbase(dev);
  3773. u32 flags = 0;
  3774. if (wolinfo->wolopts == 0) {
  3775. np->wolenabled = 0;
  3776. } else if (wolinfo->wolopts & WAKE_MAGIC) {
  3777. np->wolenabled = 1;
  3778. flags = NVREG_WAKEUPFLAGS_ENABLE;
  3779. }
  3780. if (netif_running(dev)) {
  3781. spin_lock_irq(&np->lock);
  3782. writel(flags, base + NvRegWakeUpFlags);
  3783. spin_unlock_irq(&np->lock);
  3784. }
  3785. return 0;
  3786. }
  3787. static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3788. {
  3789. struct fe_priv *np = netdev_priv(dev);
  3790. int adv;
  3791. spin_lock_irq(&np->lock);
  3792. ecmd->port = PORT_MII;
  3793. if (!netif_running(dev)) {
  3794. /* We do not track link speed / duplex setting if the
  3795. * interface is disabled. Force a link check */
  3796. if (nv_update_linkspeed(dev)) {
  3797. if (!netif_carrier_ok(dev))
  3798. netif_carrier_on(dev);
  3799. } else {
  3800. if (netif_carrier_ok(dev))
  3801. netif_carrier_off(dev);
  3802. }
  3803. }
  3804. if (netif_carrier_ok(dev)) {
  3805. switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
  3806. case NVREG_LINKSPEED_10:
  3807. ecmd->speed = SPEED_10;
  3808. break;
  3809. case NVREG_LINKSPEED_100:
  3810. ecmd->speed = SPEED_100;
  3811. break;
  3812. case NVREG_LINKSPEED_1000:
  3813. ecmd->speed = SPEED_1000;
  3814. break;
  3815. }
  3816. ecmd->duplex = DUPLEX_HALF;
  3817. if (np->duplex)
  3818. ecmd->duplex = DUPLEX_FULL;
  3819. } else {
  3820. ecmd->speed = -1;
  3821. ecmd->duplex = -1;
  3822. }
  3823. ecmd->autoneg = np->autoneg;
  3824. ecmd->advertising = ADVERTISED_MII;
  3825. if (np->autoneg) {
  3826. ecmd->advertising |= ADVERTISED_Autoneg;
  3827. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3828. if (adv & ADVERTISE_10HALF)
  3829. ecmd->advertising |= ADVERTISED_10baseT_Half;
  3830. if (adv & ADVERTISE_10FULL)
  3831. ecmd->advertising |= ADVERTISED_10baseT_Full;
  3832. if (adv & ADVERTISE_100HALF)
  3833. ecmd->advertising |= ADVERTISED_100baseT_Half;
  3834. if (adv & ADVERTISE_100FULL)
  3835. ecmd->advertising |= ADVERTISED_100baseT_Full;
  3836. if (np->gigabit == PHY_GIGABIT) {
  3837. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3838. if (adv & ADVERTISE_1000FULL)
  3839. ecmd->advertising |= ADVERTISED_1000baseT_Full;
  3840. }
  3841. }
  3842. ecmd->supported = (SUPPORTED_Autoneg |
  3843. SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  3844. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  3845. SUPPORTED_MII);
  3846. if (np->gigabit == PHY_GIGABIT)
  3847. ecmd->supported |= SUPPORTED_1000baseT_Full;
  3848. ecmd->phy_address = np->phyaddr;
  3849. ecmd->transceiver = XCVR_EXTERNAL;
  3850. /* ignore maxtxpkt, maxrxpkt for now */
  3851. spin_unlock_irq(&np->lock);
  3852. return 0;
  3853. }
  3854. static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3855. {
  3856. struct fe_priv *np = netdev_priv(dev);
  3857. if (ecmd->port != PORT_MII)
  3858. return -EINVAL;
  3859. if (ecmd->transceiver != XCVR_EXTERNAL)
  3860. return -EINVAL;
  3861. if (ecmd->phy_address != np->phyaddr) {
  3862. /* TODO: support switching between multiple phys. Should be
  3863. * trivial, but not enabled due to lack of test hardware. */
  3864. return -EINVAL;
  3865. }
  3866. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3867. u32 mask;
  3868. mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
  3869. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
  3870. if (np->gigabit == PHY_GIGABIT)
  3871. mask |= ADVERTISED_1000baseT_Full;
  3872. if ((ecmd->advertising & mask) == 0)
  3873. return -EINVAL;
  3874. } else if (ecmd->autoneg == AUTONEG_DISABLE) {
  3875. /* Note: autonegotiation disable, speed 1000 intentionally
  3876. * forbidden - noone should need that. */
  3877. if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
  3878. return -EINVAL;
  3879. if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
  3880. return -EINVAL;
  3881. } else {
  3882. return -EINVAL;
  3883. }
  3884. netif_carrier_off(dev);
  3885. if (netif_running(dev)) {
  3886. unsigned long flags;
  3887. nv_disable_irq(dev);
  3888. netif_tx_lock_bh(dev);
  3889. netif_addr_lock(dev);
  3890. /* with plain spinlock lockdep complains */
  3891. spin_lock_irqsave(&np->lock, flags);
  3892. /* stop engines */
  3893. /* FIXME:
  3894. * this can take some time, and interrupts are disabled
  3895. * due to spin_lock_irqsave, but let's hope no daemon
  3896. * is going to change the settings very often...
  3897. * Worst case:
  3898. * NV_RXSTOP_DELAY1MAX + NV_TXSTOP_DELAY1MAX
  3899. * + some minor delays, which is up to a second approximately
  3900. */
  3901. nv_stop_rxtx(dev);
  3902. spin_unlock_irqrestore(&np->lock, flags);
  3903. netif_addr_unlock(dev);
  3904. netif_tx_unlock_bh(dev);
  3905. }
  3906. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3907. int adv, bmcr;
  3908. np->autoneg = 1;
  3909. /* advertise only what has been requested */
  3910. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3911. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3912. if (ecmd->advertising & ADVERTISED_10baseT_Half)
  3913. adv |= ADVERTISE_10HALF;
  3914. if (ecmd->advertising & ADVERTISED_10baseT_Full)
  3915. adv |= ADVERTISE_10FULL;
  3916. if (ecmd->advertising & ADVERTISED_100baseT_Half)
  3917. adv |= ADVERTISE_100HALF;
  3918. if (ecmd->advertising & ADVERTISED_100baseT_Full)
  3919. adv |= ADVERTISE_100FULL;
  3920. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  3921. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3922. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3923. adv |= ADVERTISE_PAUSE_ASYM;
  3924. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3925. if (np->gigabit == PHY_GIGABIT) {
  3926. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3927. adv &= ~ADVERTISE_1000FULL;
  3928. if (ecmd->advertising & ADVERTISED_1000baseT_Full)
  3929. adv |= ADVERTISE_1000FULL;
  3930. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3931. }
  3932. if (netif_running(dev))
  3933. printk(KERN_INFO "%s: link down.\n", dev->name);
  3934. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3935. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  3936. bmcr |= BMCR_ANENABLE;
  3937. /* reset the phy in order for settings to stick,
  3938. * and cause autoneg to start */
  3939. if (phy_reset(dev, bmcr)) {
  3940. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3941. return -EINVAL;
  3942. }
  3943. } else {
  3944. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3945. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3946. }
  3947. } else {
  3948. int adv, bmcr;
  3949. np->autoneg = 0;
  3950. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3951. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3952. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
  3953. adv |= ADVERTISE_10HALF;
  3954. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
  3955. adv |= ADVERTISE_10FULL;
  3956. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
  3957. adv |= ADVERTISE_100HALF;
  3958. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
  3959. adv |= ADVERTISE_100FULL;
  3960. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  3961. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
  3962. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3963. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3964. }
  3965. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
  3966. adv |= ADVERTISE_PAUSE_ASYM;
  3967. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3968. }
  3969. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3970. np->fixed_mode = adv;
  3971. if (np->gigabit == PHY_GIGABIT) {
  3972. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3973. adv &= ~ADVERTISE_1000FULL;
  3974. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3975. }
  3976. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3977. bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
  3978. if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
  3979. bmcr |= BMCR_FULLDPLX;
  3980. if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
  3981. bmcr |= BMCR_SPEED100;
  3982. if (np->phy_oui == PHY_OUI_MARVELL) {
  3983. /* reset the phy in order for forced mode settings to stick */
  3984. if (phy_reset(dev, bmcr)) {
  3985. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3986. return -EINVAL;
  3987. }
  3988. } else {
  3989. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3990. if (netif_running(dev)) {
  3991. /* Wait a bit and then reconfigure the nic. */
  3992. udelay(10);
  3993. nv_linkchange(dev);
  3994. }
  3995. }
  3996. }
  3997. if (netif_running(dev)) {
  3998. nv_start_rxtx(dev);
  3999. nv_enable_irq(dev);
  4000. }
  4001. return 0;
  4002. }
  4003. #define FORCEDETH_REGS_VER 1
  4004. static int nv_get_regs_len(struct net_device *dev)
  4005. {
  4006. struct fe_priv *np = netdev_priv(dev);
  4007. return np->register_size;
  4008. }
  4009. static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
  4010. {
  4011. struct fe_priv *np = netdev_priv(dev);
  4012. u8 __iomem *base = get_hwbase(dev);
  4013. u32 *rbuf = buf;
  4014. int i;
  4015. regs->version = FORCEDETH_REGS_VER;
  4016. spin_lock_irq(&np->lock);
  4017. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  4018. rbuf[i] = readl(base + i*sizeof(u32));
  4019. spin_unlock_irq(&np->lock);
  4020. }
  4021. static int nv_nway_reset(struct net_device *dev)
  4022. {
  4023. struct fe_priv *np = netdev_priv(dev);
  4024. int ret;
  4025. if (np->autoneg) {
  4026. int bmcr;
  4027. netif_carrier_off(dev);
  4028. if (netif_running(dev)) {
  4029. nv_disable_irq(dev);
  4030. netif_tx_lock_bh(dev);
  4031. netif_addr_lock(dev);
  4032. spin_lock(&np->lock);
  4033. /* stop engines */
  4034. nv_stop_rxtx(dev);
  4035. spin_unlock(&np->lock);
  4036. netif_addr_unlock(dev);
  4037. netif_tx_unlock_bh(dev);
  4038. printk(KERN_INFO "%s: link down.\n", dev->name);
  4039. }
  4040. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  4041. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  4042. bmcr |= BMCR_ANENABLE;
  4043. /* reset the phy in order for settings to stick*/
  4044. if (phy_reset(dev, bmcr)) {
  4045. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  4046. return -EINVAL;
  4047. }
  4048. } else {
  4049. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  4050. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  4051. }
  4052. if (netif_running(dev)) {
  4053. nv_start_rxtx(dev);
  4054. nv_enable_irq(dev);
  4055. }
  4056. ret = 0;
  4057. } else {
  4058. ret = -EINVAL;
  4059. }
  4060. return ret;
  4061. }
  4062. static int nv_set_tso(struct net_device *dev, u32 value)
  4063. {
  4064. struct fe_priv *np = netdev_priv(dev);
  4065. if ((np->driver_data & DEV_HAS_CHECKSUM))
  4066. return ethtool_op_set_tso(dev, value);
  4067. else
  4068. return -EOPNOTSUPP;
  4069. }
  4070. static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  4071. {
  4072. struct fe_priv *np = netdev_priv(dev);
  4073. ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  4074. ring->rx_mini_max_pending = 0;
  4075. ring->rx_jumbo_max_pending = 0;
  4076. ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  4077. ring->rx_pending = np->rx_ring_size;
  4078. ring->rx_mini_pending = 0;
  4079. ring->rx_jumbo_pending = 0;
  4080. ring->tx_pending = np->tx_ring_size;
  4081. }
  4082. static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  4083. {
  4084. struct fe_priv *np = netdev_priv(dev);
  4085. u8 __iomem *base = get_hwbase(dev);
  4086. u8 *rxtx_ring, *rx_skbuff, *tx_skbuff;
  4087. dma_addr_t ring_addr;
  4088. if (ring->rx_pending < RX_RING_MIN ||
  4089. ring->tx_pending < TX_RING_MIN ||
  4090. ring->rx_mini_pending != 0 ||
  4091. ring->rx_jumbo_pending != 0 ||
  4092. (np->desc_ver == DESC_VER_1 &&
  4093. (ring->rx_pending > RING_MAX_DESC_VER_1 ||
  4094. ring->tx_pending > RING_MAX_DESC_VER_1)) ||
  4095. (np->desc_ver != DESC_VER_1 &&
  4096. (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
  4097. ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
  4098. return -EINVAL;
  4099. }
  4100. /* allocate new rings */
  4101. if (!nv_optimized(np)) {
  4102. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  4103. sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  4104. &ring_addr);
  4105. } else {
  4106. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  4107. sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  4108. &ring_addr);
  4109. }
  4110. rx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->rx_pending, GFP_KERNEL);
  4111. tx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->tx_pending, GFP_KERNEL);
  4112. if (!rxtx_ring || !rx_skbuff || !tx_skbuff) {
  4113. /* fall back to old rings */
  4114. if (!nv_optimized(np)) {
  4115. if (rxtx_ring)
  4116. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  4117. rxtx_ring, ring_addr);
  4118. } else {
  4119. if (rxtx_ring)
  4120. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  4121. rxtx_ring, ring_addr);
  4122. }
  4123. if (rx_skbuff)
  4124. kfree(rx_skbuff);
  4125. if (tx_skbuff)
  4126. kfree(tx_skbuff);
  4127. goto exit;
  4128. }
  4129. if (netif_running(dev)) {
  4130. nv_disable_irq(dev);
  4131. nv_napi_disable(dev);
  4132. netif_tx_lock_bh(dev);
  4133. netif_addr_lock(dev);
  4134. spin_lock(&np->lock);
  4135. /* stop engines */
  4136. nv_stop_rxtx(dev);
  4137. nv_txrx_reset(dev);
  4138. /* drain queues */
  4139. nv_drain_rxtx(dev);
  4140. /* delete queues */
  4141. free_rings(dev);
  4142. }
  4143. /* set new values */
  4144. np->rx_ring_size = ring->rx_pending;
  4145. np->tx_ring_size = ring->tx_pending;
  4146. if (!nv_optimized(np)) {
  4147. np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
  4148. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  4149. } else {
  4150. np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
  4151. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  4152. }
  4153. np->rx_skb = (struct nv_skb_map*)rx_skbuff;
  4154. np->tx_skb = (struct nv_skb_map*)tx_skbuff;
  4155. np->ring_addr = ring_addr;
  4156. memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
  4157. memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
  4158. if (netif_running(dev)) {
  4159. /* reinit driver view of the queues */
  4160. set_bufsize(dev);
  4161. if (nv_init_ring(dev)) {
  4162. if (!np->in_shutdown)
  4163. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4164. }
  4165. /* reinit nic view of the queues */
  4166. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4167. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4168. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4169. base + NvRegRingSizes);
  4170. pci_push(base);
  4171. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4172. pci_push(base);
  4173. /* restart engines */
  4174. nv_start_rxtx(dev);
  4175. spin_unlock(&np->lock);
  4176. netif_addr_unlock(dev);
  4177. netif_tx_unlock_bh(dev);
  4178. nv_napi_enable(dev);
  4179. nv_enable_irq(dev);
  4180. }
  4181. return 0;
  4182. exit:
  4183. return -ENOMEM;
  4184. }
  4185. static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  4186. {
  4187. struct fe_priv *np = netdev_priv(dev);
  4188. pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
  4189. pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
  4190. pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
  4191. }
  4192. static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  4193. {
  4194. struct fe_priv *np = netdev_priv(dev);
  4195. int adv, bmcr;
  4196. if ((!np->autoneg && np->duplex == 0) ||
  4197. (np->autoneg && !pause->autoneg && np->duplex == 0)) {
  4198. printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
  4199. dev->name);
  4200. return -EINVAL;
  4201. }
  4202. if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
  4203. printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
  4204. return -EINVAL;
  4205. }
  4206. netif_carrier_off(dev);
  4207. if (netif_running(dev)) {
  4208. nv_disable_irq(dev);
  4209. netif_tx_lock_bh(dev);
  4210. netif_addr_lock(dev);
  4211. spin_lock(&np->lock);
  4212. /* stop engines */
  4213. nv_stop_rxtx(dev);
  4214. spin_unlock(&np->lock);
  4215. netif_addr_unlock(dev);
  4216. netif_tx_unlock_bh(dev);
  4217. }
  4218. np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
  4219. if (pause->rx_pause)
  4220. np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
  4221. if (pause->tx_pause)
  4222. np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
  4223. if (np->autoneg && pause->autoneg) {
  4224. np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
  4225. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  4226. adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  4227. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  4228. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  4229. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  4230. adv |= ADVERTISE_PAUSE_ASYM;
  4231. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  4232. if (netif_running(dev))
  4233. printk(KERN_INFO "%s: link down.\n", dev->name);
  4234. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  4235. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  4236. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  4237. } else {
  4238. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  4239. if (pause->rx_pause)
  4240. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  4241. if (pause->tx_pause)
  4242. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  4243. if (!netif_running(dev))
  4244. nv_update_linkspeed(dev);
  4245. else
  4246. nv_update_pause(dev, np->pause_flags);
  4247. }
  4248. if (netif_running(dev)) {
  4249. nv_start_rxtx(dev);
  4250. nv_enable_irq(dev);
  4251. }
  4252. return 0;
  4253. }
  4254. static u32 nv_get_rx_csum(struct net_device *dev)
  4255. {
  4256. struct fe_priv *np = netdev_priv(dev);
  4257. return (np->rx_csum) != 0;
  4258. }
  4259. static int nv_set_rx_csum(struct net_device *dev, u32 data)
  4260. {
  4261. struct fe_priv *np = netdev_priv(dev);
  4262. u8 __iomem *base = get_hwbase(dev);
  4263. int retcode = 0;
  4264. if (np->driver_data & DEV_HAS_CHECKSUM) {
  4265. if (data) {
  4266. np->rx_csum = 1;
  4267. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  4268. } else {
  4269. np->rx_csum = 0;
  4270. /* vlan is dependent on rx checksum offload */
  4271. if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE))
  4272. np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
  4273. }
  4274. if (netif_running(dev)) {
  4275. spin_lock_irq(&np->lock);
  4276. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  4277. spin_unlock_irq(&np->lock);
  4278. }
  4279. } else {
  4280. return -EINVAL;
  4281. }
  4282. return retcode;
  4283. }
  4284. static int nv_set_tx_csum(struct net_device *dev, u32 data)
  4285. {
  4286. struct fe_priv *np = netdev_priv(dev);
  4287. if (np->driver_data & DEV_HAS_CHECKSUM)
  4288. return ethtool_op_set_tx_csum(dev, data);
  4289. else
  4290. return -EOPNOTSUPP;
  4291. }
  4292. static int nv_set_sg(struct net_device *dev, u32 data)
  4293. {
  4294. struct fe_priv *np = netdev_priv(dev);
  4295. if (np->driver_data & DEV_HAS_CHECKSUM)
  4296. return ethtool_op_set_sg(dev, data);
  4297. else
  4298. return -EOPNOTSUPP;
  4299. }
  4300. static int nv_get_sset_count(struct net_device *dev, int sset)
  4301. {
  4302. struct fe_priv *np = netdev_priv(dev);
  4303. switch (sset) {
  4304. case ETH_SS_TEST:
  4305. if (np->driver_data & DEV_HAS_TEST_EXTENDED)
  4306. return NV_TEST_COUNT_EXTENDED;
  4307. else
  4308. return NV_TEST_COUNT_BASE;
  4309. case ETH_SS_STATS:
  4310. if (np->driver_data & DEV_HAS_STATISTICS_V3)
  4311. return NV_DEV_STATISTICS_V3_COUNT;
  4312. else if (np->driver_data & DEV_HAS_STATISTICS_V2)
  4313. return NV_DEV_STATISTICS_V2_COUNT;
  4314. else if (np->driver_data & DEV_HAS_STATISTICS_V1)
  4315. return NV_DEV_STATISTICS_V1_COUNT;
  4316. else
  4317. return 0;
  4318. default:
  4319. return -EOPNOTSUPP;
  4320. }
  4321. }
  4322. static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
  4323. {
  4324. struct fe_priv *np = netdev_priv(dev);
  4325. /* update stats */
  4326. nv_do_stats_poll((unsigned long)dev);
  4327. memcpy(buffer, &np->estats, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(u64));
  4328. }
  4329. static int nv_link_test(struct net_device *dev)
  4330. {
  4331. struct fe_priv *np = netdev_priv(dev);
  4332. int mii_status;
  4333. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  4334. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  4335. /* check phy link status */
  4336. if (!(mii_status & BMSR_LSTATUS))
  4337. return 0;
  4338. else
  4339. return 1;
  4340. }
  4341. static int nv_register_test(struct net_device *dev)
  4342. {
  4343. u8 __iomem *base = get_hwbase(dev);
  4344. int i = 0;
  4345. u32 orig_read, new_read;
  4346. do {
  4347. orig_read = readl(base + nv_registers_test[i].reg);
  4348. /* xor with mask to toggle bits */
  4349. orig_read ^= nv_registers_test[i].mask;
  4350. writel(orig_read, base + nv_registers_test[i].reg);
  4351. new_read = readl(base + nv_registers_test[i].reg);
  4352. if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
  4353. return 0;
  4354. /* restore original value */
  4355. orig_read ^= nv_registers_test[i].mask;
  4356. writel(orig_read, base + nv_registers_test[i].reg);
  4357. } while (nv_registers_test[++i].reg != 0);
  4358. return 1;
  4359. }
  4360. static int nv_interrupt_test(struct net_device *dev)
  4361. {
  4362. struct fe_priv *np = netdev_priv(dev);
  4363. u8 __iomem *base = get_hwbase(dev);
  4364. int ret = 1;
  4365. int testcnt;
  4366. u32 save_msi_flags, save_poll_interval = 0;
  4367. if (netif_running(dev)) {
  4368. /* free current irq */
  4369. nv_free_irq(dev);
  4370. save_poll_interval = readl(base+NvRegPollingInterval);
  4371. }
  4372. /* flag to test interrupt handler */
  4373. np->intr_test = 0;
  4374. /* setup test irq */
  4375. save_msi_flags = np->msi_flags;
  4376. np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
  4377. np->msi_flags |= 0x001; /* setup 1 vector */
  4378. if (nv_request_irq(dev, 1))
  4379. return 0;
  4380. /* setup timer interrupt */
  4381. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  4382. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4383. nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  4384. /* wait for at least one interrupt */
  4385. msleep(100);
  4386. spin_lock_irq(&np->lock);
  4387. /* flag should be set within ISR */
  4388. testcnt = np->intr_test;
  4389. if (!testcnt)
  4390. ret = 2;
  4391. nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  4392. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  4393. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4394. else
  4395. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  4396. spin_unlock_irq(&np->lock);
  4397. nv_free_irq(dev);
  4398. np->msi_flags = save_msi_flags;
  4399. if (netif_running(dev)) {
  4400. writel(save_poll_interval, base + NvRegPollingInterval);
  4401. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4402. /* restore original irq */
  4403. if (nv_request_irq(dev, 0))
  4404. return 0;
  4405. }
  4406. return ret;
  4407. }
  4408. static int nv_loopback_test(struct net_device *dev)
  4409. {
  4410. struct fe_priv *np = netdev_priv(dev);
  4411. u8 __iomem *base = get_hwbase(dev);
  4412. struct sk_buff *tx_skb, *rx_skb;
  4413. dma_addr_t test_dma_addr;
  4414. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  4415. u32 flags;
  4416. int len, i, pkt_len;
  4417. u8 *pkt_data;
  4418. u32 filter_flags = 0;
  4419. u32 misc1_flags = 0;
  4420. int ret = 1;
  4421. if (netif_running(dev)) {
  4422. nv_disable_irq(dev);
  4423. filter_flags = readl(base + NvRegPacketFilterFlags);
  4424. misc1_flags = readl(base + NvRegMisc1);
  4425. } else {
  4426. nv_txrx_reset(dev);
  4427. }
  4428. /* reinit driver view of the rx queue */
  4429. set_bufsize(dev);
  4430. nv_init_ring(dev);
  4431. /* setup hardware for loopback */
  4432. writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
  4433. writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
  4434. /* reinit nic view of the rx queue */
  4435. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4436. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4437. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4438. base + NvRegRingSizes);
  4439. pci_push(base);
  4440. /* restart rx engine */
  4441. nv_start_rxtx(dev);
  4442. /* setup packet for tx */
  4443. pkt_len = ETH_DATA_LEN;
  4444. tx_skb = dev_alloc_skb(pkt_len);
  4445. if (!tx_skb) {
  4446. printk(KERN_ERR "dev_alloc_skb() failed during loopback test"
  4447. " of %s\n", dev->name);
  4448. ret = 0;
  4449. goto out;
  4450. }
  4451. test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
  4452. skb_tailroom(tx_skb),
  4453. PCI_DMA_FROMDEVICE);
  4454. pkt_data = skb_put(tx_skb, pkt_len);
  4455. for (i = 0; i < pkt_len; i++)
  4456. pkt_data[i] = (u8)(i & 0xff);
  4457. if (!nv_optimized(np)) {
  4458. np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
  4459. np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4460. } else {
  4461. np->tx_ring.ex[0].bufhigh = cpu_to_le32(dma_high(test_dma_addr));
  4462. np->tx_ring.ex[0].buflow = cpu_to_le32(dma_low(test_dma_addr));
  4463. np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4464. }
  4465. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4466. pci_push(get_hwbase(dev));
  4467. msleep(500);
  4468. /* check for rx of the packet */
  4469. if (!nv_optimized(np)) {
  4470. flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
  4471. len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
  4472. } else {
  4473. flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
  4474. len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
  4475. }
  4476. if (flags & NV_RX_AVAIL) {
  4477. ret = 0;
  4478. } else if (np->desc_ver == DESC_VER_1) {
  4479. if (flags & NV_RX_ERROR)
  4480. ret = 0;
  4481. } else {
  4482. if (flags & NV_RX2_ERROR) {
  4483. ret = 0;
  4484. }
  4485. }
  4486. if (ret) {
  4487. if (len != pkt_len) {
  4488. ret = 0;
  4489. dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
  4490. dev->name, len, pkt_len);
  4491. } else {
  4492. rx_skb = np->rx_skb[0].skb;
  4493. for (i = 0; i < pkt_len; i++) {
  4494. if (rx_skb->data[i] != (u8)(i & 0xff)) {
  4495. ret = 0;
  4496. dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
  4497. dev->name, i);
  4498. break;
  4499. }
  4500. }
  4501. }
  4502. } else {
  4503. dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
  4504. }
  4505. pci_unmap_page(np->pci_dev, test_dma_addr,
  4506. (skb_end_pointer(tx_skb) - tx_skb->data),
  4507. PCI_DMA_TODEVICE);
  4508. dev_kfree_skb_any(tx_skb);
  4509. out:
  4510. /* stop engines */
  4511. nv_stop_rxtx(dev);
  4512. nv_txrx_reset(dev);
  4513. /* drain rx queue */
  4514. nv_drain_rxtx(dev);
  4515. if (netif_running(dev)) {
  4516. writel(misc1_flags, base + NvRegMisc1);
  4517. writel(filter_flags, base + NvRegPacketFilterFlags);
  4518. nv_enable_irq(dev);
  4519. }
  4520. return ret;
  4521. }
  4522. static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
  4523. {
  4524. struct fe_priv *np = netdev_priv(dev);
  4525. u8 __iomem *base = get_hwbase(dev);
  4526. int result;
  4527. memset(buffer, 0, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(u64));
  4528. if (!nv_link_test(dev)) {
  4529. test->flags |= ETH_TEST_FL_FAILED;
  4530. buffer[0] = 1;
  4531. }
  4532. if (test->flags & ETH_TEST_FL_OFFLINE) {
  4533. if (netif_running(dev)) {
  4534. netif_stop_queue(dev);
  4535. nv_napi_disable(dev);
  4536. netif_tx_lock_bh(dev);
  4537. netif_addr_lock(dev);
  4538. spin_lock_irq(&np->lock);
  4539. nv_disable_hw_interrupts(dev, np->irqmask);
  4540. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  4541. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4542. } else {
  4543. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  4544. }
  4545. /* stop engines */
  4546. nv_stop_rxtx(dev);
  4547. nv_txrx_reset(dev);
  4548. /* drain rx queue */
  4549. nv_drain_rxtx(dev);
  4550. spin_unlock_irq(&np->lock);
  4551. netif_addr_unlock(dev);
  4552. netif_tx_unlock_bh(dev);
  4553. }
  4554. if (!nv_register_test(dev)) {
  4555. test->flags |= ETH_TEST_FL_FAILED;
  4556. buffer[1] = 1;
  4557. }
  4558. result = nv_interrupt_test(dev);
  4559. if (result != 1) {
  4560. test->flags |= ETH_TEST_FL_FAILED;
  4561. buffer[2] = 1;
  4562. }
  4563. if (result == 0) {
  4564. /* bail out */
  4565. return;
  4566. }
  4567. if (!nv_loopback_test(dev)) {
  4568. test->flags |= ETH_TEST_FL_FAILED;
  4569. buffer[3] = 1;
  4570. }
  4571. if (netif_running(dev)) {
  4572. /* reinit driver view of the rx queue */
  4573. set_bufsize(dev);
  4574. if (nv_init_ring(dev)) {
  4575. if (!np->in_shutdown)
  4576. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4577. }
  4578. /* reinit nic view of the rx queue */
  4579. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4580. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4581. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4582. base + NvRegRingSizes);
  4583. pci_push(base);
  4584. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4585. pci_push(base);
  4586. /* restart rx engine */
  4587. nv_start_rxtx(dev);
  4588. netif_start_queue(dev);
  4589. nv_napi_enable(dev);
  4590. nv_enable_hw_interrupts(dev, np->irqmask);
  4591. }
  4592. }
  4593. }
  4594. static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
  4595. {
  4596. switch (stringset) {
  4597. case ETH_SS_STATS:
  4598. memcpy(buffer, &nv_estats_str, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(struct nv_ethtool_str));
  4599. break;
  4600. case ETH_SS_TEST:
  4601. memcpy(buffer, &nv_etests_str, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(struct nv_ethtool_str));
  4602. break;
  4603. }
  4604. }
  4605. static const struct ethtool_ops ops = {
  4606. .get_drvinfo = nv_get_drvinfo,
  4607. .get_link = ethtool_op_get_link,
  4608. .get_wol = nv_get_wol,
  4609. .set_wol = nv_set_wol,
  4610. .get_settings = nv_get_settings,
  4611. .set_settings = nv_set_settings,
  4612. .get_regs_len = nv_get_regs_len,
  4613. .get_regs = nv_get_regs,
  4614. .nway_reset = nv_nway_reset,
  4615. .set_tso = nv_set_tso,
  4616. .get_ringparam = nv_get_ringparam,
  4617. .set_ringparam = nv_set_ringparam,
  4618. .get_pauseparam = nv_get_pauseparam,
  4619. .set_pauseparam = nv_set_pauseparam,
  4620. .get_rx_csum = nv_get_rx_csum,
  4621. .set_rx_csum = nv_set_rx_csum,
  4622. .set_tx_csum = nv_set_tx_csum,
  4623. .set_sg = nv_set_sg,
  4624. .get_strings = nv_get_strings,
  4625. .get_ethtool_stats = nv_get_ethtool_stats,
  4626. .get_sset_count = nv_get_sset_count,
  4627. .self_test = nv_self_test,
  4628. };
  4629. static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
  4630. {
  4631. struct fe_priv *np = get_nvpriv(dev);
  4632. spin_lock_irq(&np->lock);
  4633. /* save vlan group */
  4634. np->vlangrp = grp;
  4635. if (grp) {
  4636. /* enable vlan on MAC */
  4637. np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
  4638. } else {
  4639. /* disable vlan on MAC */
  4640. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
  4641. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
  4642. }
  4643. writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4644. spin_unlock_irq(&np->lock);
  4645. }
  4646. /* The mgmt unit and driver use a semaphore to access the phy during init */
  4647. static int nv_mgmt_acquire_sema(struct net_device *dev)
  4648. {
  4649. struct fe_priv *np = netdev_priv(dev);
  4650. u8 __iomem *base = get_hwbase(dev);
  4651. int i;
  4652. u32 tx_ctrl, mgmt_sema;
  4653. for (i = 0; i < 10; i++) {
  4654. mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK;
  4655. if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE)
  4656. break;
  4657. msleep(500);
  4658. }
  4659. if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE)
  4660. return 0;
  4661. for (i = 0; i < 2; i++) {
  4662. tx_ctrl = readl(base + NvRegTransmitterControl);
  4663. tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ;
  4664. writel(tx_ctrl, base + NvRegTransmitterControl);
  4665. /* verify that semaphore was acquired */
  4666. tx_ctrl = readl(base + NvRegTransmitterControl);
  4667. if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) &&
  4668. ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE)) {
  4669. np->mgmt_sema = 1;
  4670. return 1;
  4671. }
  4672. else
  4673. udelay(50);
  4674. }
  4675. return 0;
  4676. }
  4677. static void nv_mgmt_release_sema(struct net_device *dev)
  4678. {
  4679. struct fe_priv *np = netdev_priv(dev);
  4680. u8 __iomem *base = get_hwbase(dev);
  4681. u32 tx_ctrl;
  4682. if (np->driver_data & DEV_HAS_MGMT_UNIT) {
  4683. if (np->mgmt_sema) {
  4684. tx_ctrl = readl(base + NvRegTransmitterControl);
  4685. tx_ctrl &= ~NVREG_XMITCTL_HOST_SEMA_ACQ;
  4686. writel(tx_ctrl, base + NvRegTransmitterControl);
  4687. }
  4688. }
  4689. }
  4690. static int nv_mgmt_get_version(struct net_device *dev)
  4691. {
  4692. struct fe_priv *np = netdev_priv(dev);
  4693. u8 __iomem *base = get_hwbase(dev);
  4694. u32 data_ready = readl(base + NvRegTransmitterControl);
  4695. u32 data_ready2 = 0;
  4696. unsigned long start;
  4697. int ready = 0;
  4698. writel(NVREG_MGMTUNITGETVERSION, base + NvRegMgmtUnitGetVersion);
  4699. writel(data_ready ^ NVREG_XMITCTL_DATA_START, base + NvRegTransmitterControl);
  4700. start = jiffies;
  4701. while (time_before(jiffies, start + 5*HZ)) {
  4702. data_ready2 = readl(base + NvRegTransmitterControl);
  4703. if ((data_ready & NVREG_XMITCTL_DATA_READY) != (data_ready2 & NVREG_XMITCTL_DATA_READY)) {
  4704. ready = 1;
  4705. break;
  4706. }
  4707. schedule_timeout_uninterruptible(1);
  4708. }
  4709. if (!ready || (data_ready2 & NVREG_XMITCTL_DATA_ERROR))
  4710. return 0;
  4711. np->mgmt_version = readl(base + NvRegMgmtUnitVersion) & NVREG_MGMTUNITVERSION;
  4712. return 1;
  4713. }
  4714. static int nv_open(struct net_device *dev)
  4715. {
  4716. struct fe_priv *np = netdev_priv(dev);
  4717. u8 __iomem *base = get_hwbase(dev);
  4718. int ret = 1;
  4719. int oom, i;
  4720. u32 low;
  4721. dprintk(KERN_DEBUG "nv_open: begin\n");
  4722. /* power up phy */
  4723. mii_rw(dev, np->phyaddr, MII_BMCR,
  4724. mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ) & ~BMCR_PDOWN);
  4725. /* erase previous misconfiguration */
  4726. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  4727. nv_mac_reset(dev);
  4728. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4729. writel(0, base + NvRegMulticastAddrB);
  4730. writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
  4731. writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
  4732. writel(0, base + NvRegPacketFilterFlags);
  4733. writel(0, base + NvRegTransmitterControl);
  4734. writel(0, base + NvRegReceiverControl);
  4735. writel(0, base + NvRegAdapterControl);
  4736. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
  4737. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  4738. /* initialize descriptor rings */
  4739. set_bufsize(dev);
  4740. oom = nv_init_ring(dev);
  4741. writel(0, base + NvRegLinkSpeed);
  4742. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  4743. nv_txrx_reset(dev);
  4744. writel(0, base + NvRegUnknownSetupReg6);
  4745. np->in_shutdown = 0;
  4746. /* give hw rings */
  4747. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4748. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4749. base + NvRegRingSizes);
  4750. writel(np->linkspeed, base + NvRegLinkSpeed);
  4751. if (np->desc_ver == DESC_VER_1)
  4752. writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
  4753. else
  4754. writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
  4755. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  4756. writel(np->vlanctl_bits, base + NvRegVlanControl);
  4757. pci_push(base);
  4758. writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
  4759. reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
  4760. NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
  4761. KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
  4762. writel(0, base + NvRegMIIMask);
  4763. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4764. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4765. writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
  4766. writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
  4767. writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
  4768. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4769. writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
  4770. get_random_bytes(&low, sizeof(low));
  4771. low &= NVREG_SLOTTIME_MASK;
  4772. if (np->desc_ver == DESC_VER_1) {
  4773. writel(low|NVREG_SLOTTIME_DEFAULT, base + NvRegSlotTime);
  4774. } else {
  4775. if (!(np->driver_data & DEV_HAS_GEAR_MODE)) {
  4776. /* setup legacy backoff */
  4777. writel(NVREG_SLOTTIME_LEGBF_ENABLED|NVREG_SLOTTIME_10_100_FULL|low, base + NvRegSlotTime);
  4778. } else {
  4779. writel(NVREG_SLOTTIME_10_100_FULL, base + NvRegSlotTime);
  4780. nv_gear_backoff_reseed(dev);
  4781. }
  4782. }
  4783. writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
  4784. writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
  4785. if (poll_interval == -1) {
  4786. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
  4787. writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
  4788. else
  4789. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  4790. }
  4791. else
  4792. writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
  4793. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4794. writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
  4795. base + NvRegAdapterControl);
  4796. writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
  4797. writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask);
  4798. if (np->wolenabled)
  4799. writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
  4800. i = readl(base + NvRegPowerState);
  4801. if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
  4802. writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
  4803. pci_push(base);
  4804. udelay(10);
  4805. writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
  4806. nv_disable_hw_interrupts(dev, np->irqmask);
  4807. pci_push(base);
  4808. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4809. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4810. pci_push(base);
  4811. if (nv_request_irq(dev, 0)) {
  4812. goto out_drain;
  4813. }
  4814. /* ask for interrupts */
  4815. nv_enable_hw_interrupts(dev, np->irqmask);
  4816. spin_lock_irq(&np->lock);
  4817. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4818. writel(0, base + NvRegMulticastAddrB);
  4819. writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
  4820. writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
  4821. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4822. /* One manual link speed update: Interrupts are enabled, future link
  4823. * speed changes cause interrupts and are handled by nv_link_irq().
  4824. */
  4825. {
  4826. u32 miistat;
  4827. miistat = readl(base + NvRegMIIStatus);
  4828. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4829. dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
  4830. }
  4831. /* set linkspeed to invalid value, thus force nv_update_linkspeed
  4832. * to init hw */
  4833. np->linkspeed = 0;
  4834. ret = nv_update_linkspeed(dev);
  4835. nv_start_rxtx(dev);
  4836. netif_start_queue(dev);
  4837. nv_napi_enable(dev);
  4838. if (ret) {
  4839. netif_carrier_on(dev);
  4840. } else {
  4841. printk(KERN_INFO "%s: no link during initialization.\n", dev->name);
  4842. netif_carrier_off(dev);
  4843. }
  4844. if (oom)
  4845. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4846. /* start statistics timer */
  4847. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
  4848. mod_timer(&np->stats_poll,
  4849. round_jiffies(jiffies + STATS_INTERVAL));
  4850. spin_unlock_irq(&np->lock);
  4851. return 0;
  4852. out_drain:
  4853. nv_drain_rxtx(dev);
  4854. return ret;
  4855. }
  4856. static int nv_close(struct net_device *dev)
  4857. {
  4858. struct fe_priv *np = netdev_priv(dev);
  4859. u8 __iomem *base;
  4860. spin_lock_irq(&np->lock);
  4861. np->in_shutdown = 1;
  4862. spin_unlock_irq(&np->lock);
  4863. nv_napi_disable(dev);
  4864. synchronize_irq(np->pci_dev->irq);
  4865. del_timer_sync(&np->oom_kick);
  4866. del_timer_sync(&np->nic_poll);
  4867. del_timer_sync(&np->stats_poll);
  4868. netif_stop_queue(dev);
  4869. spin_lock_irq(&np->lock);
  4870. nv_stop_rxtx(dev);
  4871. nv_txrx_reset(dev);
  4872. /* disable interrupts on the nic or we will lock up */
  4873. base = get_hwbase(dev);
  4874. nv_disable_hw_interrupts(dev, np->irqmask);
  4875. pci_push(base);
  4876. dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
  4877. spin_unlock_irq(&np->lock);
  4878. nv_free_irq(dev);
  4879. nv_drain_rxtx(dev);
  4880. if (np->wolenabled) {
  4881. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4882. nv_start_rx(dev);
  4883. } else {
  4884. /* power down phy */
  4885. mii_rw(dev, np->phyaddr, MII_BMCR,
  4886. mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ)|BMCR_PDOWN);
  4887. }
  4888. /* FIXME: power down nic */
  4889. return 0;
  4890. }
  4891. static const struct net_device_ops nv_netdev_ops = {
  4892. .ndo_open = nv_open,
  4893. .ndo_stop = nv_close,
  4894. .ndo_get_stats = nv_get_stats,
  4895. .ndo_start_xmit = nv_start_xmit,
  4896. .ndo_tx_timeout = nv_tx_timeout,
  4897. .ndo_change_mtu = nv_change_mtu,
  4898. .ndo_validate_addr = eth_validate_addr,
  4899. .ndo_set_mac_address = nv_set_mac_address,
  4900. .ndo_set_multicast_list = nv_set_multicast,
  4901. .ndo_vlan_rx_register = nv_vlan_rx_register,
  4902. #ifdef CONFIG_NET_POLL_CONTROLLER
  4903. .ndo_poll_controller = nv_poll_controller,
  4904. #endif
  4905. };
  4906. static const struct net_device_ops nv_netdev_ops_optimized = {
  4907. .ndo_open = nv_open,
  4908. .ndo_stop = nv_close,
  4909. .ndo_get_stats = nv_get_stats,
  4910. .ndo_start_xmit = nv_start_xmit_optimized,
  4911. .ndo_tx_timeout = nv_tx_timeout,
  4912. .ndo_change_mtu = nv_change_mtu,
  4913. .ndo_validate_addr = eth_validate_addr,
  4914. .ndo_set_mac_address = nv_set_mac_address,
  4915. .ndo_set_multicast_list = nv_set_multicast,
  4916. .ndo_vlan_rx_register = nv_vlan_rx_register,
  4917. #ifdef CONFIG_NET_POLL_CONTROLLER
  4918. .ndo_poll_controller = nv_poll_controller,
  4919. #endif
  4920. };
  4921. static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
  4922. {
  4923. struct net_device *dev;
  4924. struct fe_priv *np;
  4925. unsigned long addr;
  4926. u8 __iomem *base;
  4927. int err, i;
  4928. u32 powerstate, txreg;
  4929. u32 phystate_orig = 0, phystate;
  4930. int phyinitialized = 0;
  4931. static int printed_version;
  4932. if (!printed_version++)
  4933. printk(KERN_INFO "%s: Reverse Engineered nForce ethernet"
  4934. " driver. Version %s.\n", DRV_NAME, FORCEDETH_VERSION);
  4935. dev = alloc_etherdev(sizeof(struct fe_priv));
  4936. err = -ENOMEM;
  4937. if (!dev)
  4938. goto out;
  4939. np = netdev_priv(dev);
  4940. np->dev = dev;
  4941. np->pci_dev = pci_dev;
  4942. spin_lock_init(&np->lock);
  4943. SET_NETDEV_DEV(dev, &pci_dev->dev);
  4944. init_timer(&np->oom_kick);
  4945. np->oom_kick.data = (unsigned long) dev;
  4946. np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
  4947. init_timer(&np->nic_poll);
  4948. np->nic_poll.data = (unsigned long) dev;
  4949. np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
  4950. init_timer(&np->stats_poll);
  4951. np->stats_poll.data = (unsigned long) dev;
  4952. np->stats_poll.function = &nv_do_stats_poll; /* timer handler */
  4953. err = pci_enable_device(pci_dev);
  4954. if (err)
  4955. goto out_free;
  4956. pci_set_master(pci_dev);
  4957. err = pci_request_regions(pci_dev, DRV_NAME);
  4958. if (err < 0)
  4959. goto out_disable;
  4960. if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
  4961. np->register_size = NV_PCI_REGSZ_VER3;
  4962. else if (id->driver_data & DEV_HAS_STATISTICS_V1)
  4963. np->register_size = NV_PCI_REGSZ_VER2;
  4964. else
  4965. np->register_size = NV_PCI_REGSZ_VER1;
  4966. err = -EINVAL;
  4967. addr = 0;
  4968. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  4969. dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
  4970. pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
  4971. pci_resource_len(pci_dev, i),
  4972. pci_resource_flags(pci_dev, i));
  4973. if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
  4974. pci_resource_len(pci_dev, i) >= np->register_size) {
  4975. addr = pci_resource_start(pci_dev, i);
  4976. break;
  4977. }
  4978. }
  4979. if (i == DEVICE_COUNT_RESOURCE) {
  4980. dev_printk(KERN_INFO, &pci_dev->dev,
  4981. "Couldn't find register window\n");
  4982. goto out_relreg;
  4983. }
  4984. /* copy of driver data */
  4985. np->driver_data = id->driver_data;
  4986. /* copy of device id */
  4987. np->device_id = id->device;
  4988. /* handle different descriptor versions */
  4989. if (id->driver_data & DEV_HAS_HIGH_DMA) {
  4990. /* packet format 3: supports 40-bit addressing */
  4991. np->desc_ver = DESC_VER_3;
  4992. np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
  4993. if (dma_64bit) {
  4994. if (pci_set_dma_mask(pci_dev, DMA_BIT_MASK(39)))
  4995. dev_printk(KERN_INFO, &pci_dev->dev,
  4996. "64-bit DMA failed, using 32-bit addressing\n");
  4997. else
  4998. dev->features |= NETIF_F_HIGHDMA;
  4999. if (pci_set_consistent_dma_mask(pci_dev, DMA_BIT_MASK(39))) {
  5000. dev_printk(KERN_INFO, &pci_dev->dev,
  5001. "64-bit DMA (consistent) failed, using 32-bit ring buffers\n");
  5002. }
  5003. }
  5004. } else if (id->driver_data & DEV_HAS_LARGEDESC) {
  5005. /* packet format 2: supports jumbo frames */
  5006. np->desc_ver = DESC_VER_2;
  5007. np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
  5008. } else {
  5009. /* original packet format */
  5010. np->desc_ver = DESC_VER_1;
  5011. np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
  5012. }
  5013. np->pkt_limit = NV_PKTLIMIT_1;
  5014. if (id->driver_data & DEV_HAS_LARGEDESC)
  5015. np->pkt_limit = NV_PKTLIMIT_2;
  5016. if (id->driver_data & DEV_HAS_CHECKSUM) {
  5017. np->rx_csum = 1;
  5018. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  5019. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  5020. dev->features |= NETIF_F_TSO;
  5021. }
  5022. np->vlanctl_bits = 0;
  5023. if (id->driver_data & DEV_HAS_VLAN) {
  5024. np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
  5025. dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
  5026. }
  5027. np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
  5028. if ((id->driver_data & DEV_HAS_PAUSEFRAME_TX_V1) ||
  5029. (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V2) ||
  5030. (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)) {
  5031. np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
  5032. }
  5033. err = -ENOMEM;
  5034. np->base = ioremap(addr, np->register_size);
  5035. if (!np->base)
  5036. goto out_relreg;
  5037. dev->base_addr = (unsigned long)np->base;
  5038. dev->irq = pci_dev->irq;
  5039. np->rx_ring_size = RX_RING_DEFAULT;
  5040. np->tx_ring_size = TX_RING_DEFAULT;
  5041. if (!nv_optimized(np)) {
  5042. np->rx_ring.orig = pci_alloc_consistent(pci_dev,
  5043. sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  5044. &np->ring_addr);
  5045. if (!np->rx_ring.orig)
  5046. goto out_unmap;
  5047. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  5048. } else {
  5049. np->rx_ring.ex = pci_alloc_consistent(pci_dev,
  5050. sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  5051. &np->ring_addr);
  5052. if (!np->rx_ring.ex)
  5053. goto out_unmap;
  5054. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  5055. }
  5056. np->rx_skb = kcalloc(np->rx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  5057. np->tx_skb = kcalloc(np->tx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  5058. if (!np->rx_skb || !np->tx_skb)
  5059. goto out_freering;
  5060. if (!nv_optimized(np))
  5061. dev->netdev_ops = &nv_netdev_ops;
  5062. else
  5063. dev->netdev_ops = &nv_netdev_ops_optimized;
  5064. #ifdef CONFIG_FORCEDETH_NAPI
  5065. netif_napi_add(dev, &np->napi, nv_napi_poll, RX_WORK_PER_LOOP);
  5066. #endif
  5067. SET_ETHTOOL_OPS(dev, &ops);
  5068. dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
  5069. pci_set_drvdata(pci_dev, dev);
  5070. /* read the mac address */
  5071. base = get_hwbase(dev);
  5072. np->orig_mac[0] = readl(base + NvRegMacAddrA);
  5073. np->orig_mac[1] = readl(base + NvRegMacAddrB);
  5074. /* check the workaround bit for correct mac address order */
  5075. txreg = readl(base + NvRegTransmitPoll);
  5076. if (id->driver_data & DEV_HAS_CORRECT_MACADDR) {
  5077. /* mac address is already in correct order */
  5078. dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
  5079. dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
  5080. dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
  5081. dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
  5082. dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
  5083. dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
  5084. } else if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) {
  5085. /* mac address is already in correct order */
  5086. dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
  5087. dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
  5088. dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
  5089. dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
  5090. dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
  5091. dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
  5092. /*
  5093. * Set orig mac address back to the reversed version.
  5094. * This flag will be cleared during low power transition.
  5095. * Therefore, we should always put back the reversed address.
  5096. */
  5097. np->orig_mac[0] = (dev->dev_addr[5] << 0) + (dev->dev_addr[4] << 8) +
  5098. (dev->dev_addr[3] << 16) + (dev->dev_addr[2] << 24);
  5099. np->orig_mac[1] = (dev->dev_addr[1] << 0) + (dev->dev_addr[0] << 8);
  5100. } else {
  5101. /* need to reverse mac address to correct order */
  5102. dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
  5103. dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
  5104. dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
  5105. dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
  5106. dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
  5107. dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
  5108. writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  5109. printk(KERN_DEBUG "nv_probe: set workaround bit for reversed mac addr\n");
  5110. }
  5111. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  5112. if (!is_valid_ether_addr(dev->perm_addr)) {
  5113. /*
  5114. * Bad mac address. At least one bios sets the mac address
  5115. * to 01:23:45:67:89:ab
  5116. */
  5117. dev_printk(KERN_ERR, &pci_dev->dev,
  5118. "Invalid Mac address detected: %pM\n",
  5119. dev->dev_addr);
  5120. dev_printk(KERN_ERR, &pci_dev->dev,
  5121. "Please complain to your hardware vendor. Switching to a random MAC.\n");
  5122. dev->dev_addr[0] = 0x00;
  5123. dev->dev_addr[1] = 0x00;
  5124. dev->dev_addr[2] = 0x6c;
  5125. get_random_bytes(&dev->dev_addr[3], 3);
  5126. }
  5127. dprintk(KERN_DEBUG "%s: MAC Address %pM\n",
  5128. pci_name(pci_dev), dev->dev_addr);
  5129. /* set mac address */
  5130. nv_copy_mac_to_hw(dev);
  5131. /* Workaround current PCI init glitch: wakeup bits aren't
  5132. * being set from PCI PM capability.
  5133. */
  5134. device_init_wakeup(&pci_dev->dev, 1);
  5135. /* disable WOL */
  5136. writel(0, base + NvRegWakeUpFlags);
  5137. np->wolenabled = 0;
  5138. if (id->driver_data & DEV_HAS_POWER_CNTRL) {
  5139. /* take phy and nic out of low power mode */
  5140. powerstate = readl(base + NvRegPowerState2);
  5141. powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
  5142. if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
  5143. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
  5144. pci_dev->revision >= 0xA3)
  5145. powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
  5146. writel(powerstate, base + NvRegPowerState2);
  5147. }
  5148. if (np->desc_ver == DESC_VER_1) {
  5149. np->tx_flags = NV_TX_VALID;
  5150. } else {
  5151. np->tx_flags = NV_TX2_VALID;
  5152. }
  5153. np->msi_flags = 0;
  5154. if ((id->driver_data & DEV_HAS_MSI) && msi) {
  5155. np->msi_flags |= NV_MSI_CAPABLE;
  5156. }
  5157. if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
  5158. /* msix has had reported issues when modifying irqmask
  5159. as in the case of napi, therefore, disable for now
  5160. */
  5161. #ifndef CONFIG_FORCEDETH_NAPI
  5162. np->msi_flags |= NV_MSI_X_CAPABLE;
  5163. #endif
  5164. }
  5165. if (optimization_mode == NV_OPTIMIZATION_MODE_CPU) {
  5166. np->irqmask = NVREG_IRQMASK_CPU;
  5167. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  5168. np->msi_flags |= 0x0001;
  5169. } else if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC &&
  5170. !(id->driver_data & DEV_NEED_TIMERIRQ)) {
  5171. /* start off in throughput mode */
  5172. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  5173. /* remove support for msix mode */
  5174. np->msi_flags &= ~NV_MSI_X_CAPABLE;
  5175. } else {
  5176. optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
  5177. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  5178. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  5179. np->msi_flags |= 0x0003;
  5180. }
  5181. if (id->driver_data & DEV_NEED_TIMERIRQ)
  5182. np->irqmask |= NVREG_IRQ_TIMER;
  5183. if (id->driver_data & DEV_NEED_LINKTIMER) {
  5184. dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
  5185. np->need_linktimer = 1;
  5186. np->link_timeout = jiffies + LINK_TIMEOUT;
  5187. } else {
  5188. dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
  5189. np->need_linktimer = 0;
  5190. }
  5191. /* Limit the number of tx's outstanding for hw bug */
  5192. if (id->driver_data & DEV_NEED_TX_LIMIT) {
  5193. np->tx_limit = 1;
  5194. if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_32 ||
  5195. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_33 ||
  5196. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_34 ||
  5197. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_35 ||
  5198. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_36 ||
  5199. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_37 ||
  5200. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_38 ||
  5201. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_39) &&
  5202. pci_dev->revision >= 0xA2)
  5203. np->tx_limit = 0;
  5204. }
  5205. /* clear phy state and temporarily halt phy interrupts */
  5206. writel(0, base + NvRegMIIMask);
  5207. phystate = readl(base + NvRegAdapterControl);
  5208. if (phystate & NVREG_ADAPTCTL_RUNNING) {
  5209. phystate_orig = 1;
  5210. phystate &= ~NVREG_ADAPTCTL_RUNNING;
  5211. writel(phystate, base + NvRegAdapterControl);
  5212. }
  5213. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  5214. if (id->driver_data & DEV_HAS_MGMT_UNIT) {
  5215. /* management unit running on the mac? */
  5216. if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST) &&
  5217. (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) &&
  5218. nv_mgmt_acquire_sema(dev) &&
  5219. nv_mgmt_get_version(dev)) {
  5220. np->mac_in_use = 1;
  5221. if (np->mgmt_version > 0) {
  5222. np->mac_in_use = readl(base + NvRegMgmtUnitControl) & NVREG_MGMTUNITCONTROL_INUSE;
  5223. }
  5224. dprintk(KERN_INFO "%s: mgmt unit is running. mac in use %x.\n",
  5225. pci_name(pci_dev), np->mac_in_use);
  5226. /* management unit setup the phy already? */
  5227. if (np->mac_in_use &&
  5228. ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) ==
  5229. NVREG_XMITCTL_SYNC_PHY_INIT)) {
  5230. /* phy is inited by mgmt unit */
  5231. phyinitialized = 1;
  5232. dprintk(KERN_INFO "%s: Phy already initialized by mgmt unit.\n",
  5233. pci_name(pci_dev));
  5234. } else {
  5235. /* we need to init the phy */
  5236. }
  5237. }
  5238. }
  5239. /* find a suitable phy */
  5240. for (i = 1; i <= 32; i++) {
  5241. int id1, id2;
  5242. int phyaddr = i & 0x1F;
  5243. spin_lock_irq(&np->lock);
  5244. id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
  5245. spin_unlock_irq(&np->lock);
  5246. if (id1 < 0 || id1 == 0xffff)
  5247. continue;
  5248. spin_lock_irq(&np->lock);
  5249. id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
  5250. spin_unlock_irq(&np->lock);
  5251. if (id2 < 0 || id2 == 0xffff)
  5252. continue;
  5253. np->phy_model = id2 & PHYID2_MODEL_MASK;
  5254. id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
  5255. id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
  5256. dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
  5257. pci_name(pci_dev), id1, id2, phyaddr);
  5258. np->phyaddr = phyaddr;
  5259. np->phy_oui = id1 | id2;
  5260. /* Realtek hardcoded phy id1 to all zero's on certain phys */
  5261. if (np->phy_oui == PHY_OUI_REALTEK2)
  5262. np->phy_oui = PHY_OUI_REALTEK;
  5263. /* Setup phy revision for Realtek */
  5264. if (np->phy_oui == PHY_OUI_REALTEK && np->phy_model == PHY_MODEL_REALTEK_8211)
  5265. np->phy_rev = mii_rw(dev, phyaddr, MII_RESV1, MII_READ) & PHY_REV_MASK;
  5266. break;
  5267. }
  5268. if (i == 33) {
  5269. dev_printk(KERN_INFO, &pci_dev->dev,
  5270. "open: Could not find a valid PHY.\n");
  5271. goto out_error;
  5272. }
  5273. if (!phyinitialized) {
  5274. /* reset it */
  5275. phy_init(dev);
  5276. } else {
  5277. /* see if it is a gigabit phy */
  5278. u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  5279. if (mii_status & PHY_GIGABIT) {
  5280. np->gigabit = PHY_GIGABIT;
  5281. }
  5282. }
  5283. /* set default link speed settings */
  5284. np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  5285. np->duplex = 0;
  5286. np->autoneg = 1;
  5287. err = register_netdev(dev);
  5288. if (err) {
  5289. dev_printk(KERN_INFO, &pci_dev->dev,
  5290. "unable to register netdev: %d\n", err);
  5291. goto out_error;
  5292. }
  5293. dev_printk(KERN_INFO, &pci_dev->dev, "ifname %s, PHY OUI 0x%x @ %d, "
  5294. "addr %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
  5295. dev->name,
  5296. np->phy_oui,
  5297. np->phyaddr,
  5298. dev->dev_addr[0],
  5299. dev->dev_addr[1],
  5300. dev->dev_addr[2],
  5301. dev->dev_addr[3],
  5302. dev->dev_addr[4],
  5303. dev->dev_addr[5]);
  5304. dev_printk(KERN_INFO, &pci_dev->dev, "%s%s%s%s%s%s%s%s%s%sdesc-v%u\n",
  5305. dev->features & NETIF_F_HIGHDMA ? "highdma " : "",
  5306. dev->features & (NETIF_F_IP_CSUM | NETIF_F_SG) ?
  5307. "csum " : "",
  5308. dev->features & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX) ?
  5309. "vlan " : "",
  5310. id->driver_data & DEV_HAS_POWER_CNTRL ? "pwrctl " : "",
  5311. id->driver_data & DEV_HAS_MGMT_UNIT ? "mgmt " : "",
  5312. id->driver_data & DEV_NEED_TIMERIRQ ? "timirq " : "",
  5313. np->gigabit == PHY_GIGABIT ? "gbit " : "",
  5314. np->need_linktimer ? "lnktim " : "",
  5315. np->msi_flags & NV_MSI_CAPABLE ? "msi " : "",
  5316. np->msi_flags & NV_MSI_X_CAPABLE ? "msi-x " : "",
  5317. np->desc_ver);
  5318. return 0;
  5319. out_error:
  5320. if (phystate_orig)
  5321. writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl);
  5322. pci_set_drvdata(pci_dev, NULL);
  5323. out_freering:
  5324. free_rings(dev);
  5325. out_unmap:
  5326. iounmap(get_hwbase(dev));
  5327. out_relreg:
  5328. pci_release_regions(pci_dev);
  5329. out_disable:
  5330. pci_disable_device(pci_dev);
  5331. out_free:
  5332. free_netdev(dev);
  5333. out:
  5334. return err;
  5335. }
  5336. static void nv_restore_phy(struct net_device *dev)
  5337. {
  5338. struct fe_priv *np = netdev_priv(dev);
  5339. u16 phy_reserved, mii_control;
  5340. if (np->phy_oui == PHY_OUI_REALTEK &&
  5341. np->phy_model == PHY_MODEL_REALTEK_8201 &&
  5342. phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
  5343. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3);
  5344. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
  5345. phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
  5346. phy_reserved |= PHY_REALTEK_INIT8;
  5347. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved);
  5348. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1);
  5349. /* restart auto negotiation */
  5350. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  5351. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  5352. mii_rw(dev, np->phyaddr, MII_BMCR, mii_control);
  5353. }
  5354. }
  5355. static void nv_restore_mac_addr(struct pci_dev *pci_dev)
  5356. {
  5357. struct net_device *dev = pci_get_drvdata(pci_dev);
  5358. struct fe_priv *np = netdev_priv(dev);
  5359. u8 __iomem *base = get_hwbase(dev);
  5360. /* special op: write back the misordered MAC address - otherwise
  5361. * the next nv_probe would see a wrong address.
  5362. */
  5363. writel(np->orig_mac[0], base + NvRegMacAddrA);
  5364. writel(np->orig_mac[1], base + NvRegMacAddrB);
  5365. writel(readl(base + NvRegTransmitPoll) & ~NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  5366. base + NvRegTransmitPoll);
  5367. }
  5368. static void __devexit nv_remove(struct pci_dev *pci_dev)
  5369. {
  5370. struct net_device *dev = pci_get_drvdata(pci_dev);
  5371. unregister_netdev(dev);
  5372. nv_restore_mac_addr(pci_dev);
  5373. /* restore any phy related changes */
  5374. nv_restore_phy(dev);
  5375. nv_mgmt_release_sema(dev);
  5376. /* free all structures */
  5377. free_rings(dev);
  5378. iounmap(get_hwbase(dev));
  5379. pci_release_regions(pci_dev);
  5380. pci_disable_device(pci_dev);
  5381. free_netdev(dev);
  5382. pci_set_drvdata(pci_dev, NULL);
  5383. }
  5384. #ifdef CONFIG_PM
  5385. static int nv_suspend(struct pci_dev *pdev, pm_message_t state)
  5386. {
  5387. struct net_device *dev = pci_get_drvdata(pdev);
  5388. struct fe_priv *np = netdev_priv(dev);
  5389. u8 __iomem *base = get_hwbase(dev);
  5390. int i;
  5391. if (netif_running(dev)) {
  5392. // Gross.
  5393. nv_close(dev);
  5394. }
  5395. netif_device_detach(dev);
  5396. /* save non-pci configuration space */
  5397. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  5398. np->saved_config_space[i] = readl(base + i*sizeof(u32));
  5399. pci_save_state(pdev);
  5400. pci_enable_wake(pdev, pci_choose_state(pdev, state), np->wolenabled);
  5401. pci_disable_device(pdev);
  5402. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  5403. return 0;
  5404. }
  5405. static int nv_resume(struct pci_dev *pdev)
  5406. {
  5407. struct net_device *dev = pci_get_drvdata(pdev);
  5408. struct fe_priv *np = netdev_priv(dev);
  5409. u8 __iomem *base = get_hwbase(dev);
  5410. int i, rc = 0;
  5411. pci_set_power_state(pdev, PCI_D0);
  5412. pci_restore_state(pdev);
  5413. /* ack any pending wake events, disable PME */
  5414. pci_enable_wake(pdev, PCI_D0, 0);
  5415. /* restore non-pci configuration space */
  5416. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  5417. writel(np->saved_config_space[i], base+i*sizeof(u32));
  5418. pci_write_config_dword(pdev, NV_MSI_PRIV_OFFSET, NV_MSI_PRIV_VALUE);
  5419. /* restore phy state, including autoneg */
  5420. phy_init(dev);
  5421. netif_device_attach(dev);
  5422. if (netif_running(dev)) {
  5423. rc = nv_open(dev);
  5424. nv_set_multicast(dev);
  5425. }
  5426. return rc;
  5427. }
  5428. static void nv_shutdown(struct pci_dev *pdev)
  5429. {
  5430. struct net_device *dev = pci_get_drvdata(pdev);
  5431. struct fe_priv *np = netdev_priv(dev);
  5432. if (netif_running(dev))
  5433. nv_close(dev);
  5434. /*
  5435. * Restore the MAC so a kernel started by kexec won't get confused.
  5436. * If we really go for poweroff, we must not restore the MAC,
  5437. * otherwise the MAC for WOL will be reversed at least on some boards.
  5438. */
  5439. if (system_state != SYSTEM_POWER_OFF) {
  5440. nv_restore_mac_addr(pdev);
  5441. }
  5442. pci_disable_device(pdev);
  5443. /*
  5444. * Apparently it is not possible to reinitialise from D3 hot,
  5445. * only put the device into D3 if we really go for poweroff.
  5446. */
  5447. if (system_state == SYSTEM_POWER_OFF) {
  5448. if (pci_enable_wake(pdev, PCI_D3cold, np->wolenabled))
  5449. pci_enable_wake(pdev, PCI_D3hot, np->wolenabled);
  5450. pci_set_power_state(pdev, PCI_D3hot);
  5451. }
  5452. }
  5453. #else
  5454. #define nv_suspend NULL
  5455. #define nv_shutdown NULL
  5456. #define nv_resume NULL
  5457. #endif /* CONFIG_PM */
  5458. static struct pci_device_id pci_tbl[] = {
  5459. { /* nForce Ethernet Controller */
  5460. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
  5461. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5462. },
  5463. { /* nForce2 Ethernet Controller */
  5464. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
  5465. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5466. },
  5467. { /* nForce3 Ethernet Controller */
  5468. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
  5469. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5470. },
  5471. { /* nForce3 Ethernet Controller */
  5472. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
  5473. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5474. },
  5475. { /* nForce3 Ethernet Controller */
  5476. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
  5477. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5478. },
  5479. { /* nForce3 Ethernet Controller */
  5480. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
  5481. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5482. },
  5483. { /* nForce3 Ethernet Controller */
  5484. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
  5485. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5486. },
  5487. { /* CK804 Ethernet Controller */
  5488. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
  5489. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5490. },
  5491. { /* CK804 Ethernet Controller */
  5492. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
  5493. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5494. },
  5495. { /* MCP04 Ethernet Controller */
  5496. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
  5497. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5498. },
  5499. { /* MCP04 Ethernet Controller */
  5500. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
  5501. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5502. },
  5503. { /* MCP51 Ethernet Controller */
  5504. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
  5505. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
  5506. },
  5507. { /* MCP51 Ethernet Controller */
  5508. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
  5509. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
  5510. },
  5511. { /* MCP55 Ethernet Controller */
  5512. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
  5513. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT,
  5514. },
  5515. { /* MCP55 Ethernet Controller */
  5516. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
  5517. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT,
  5518. },
  5519. { /* MCP61 Ethernet Controller */
  5520. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_16),
  5521. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5522. },
  5523. { /* MCP61 Ethernet Controller */
  5524. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_17),
  5525. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5526. },
  5527. { /* MCP61 Ethernet Controller */
  5528. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_18),
  5529. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5530. },
  5531. { /* MCP61 Ethernet Controller */
  5532. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_19),
  5533. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5534. },
  5535. { /* MCP65 Ethernet Controller */
  5536. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_20),
  5537. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5538. },
  5539. { /* MCP65 Ethernet Controller */
  5540. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_21),
  5541. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5542. },
  5543. { /* MCP65 Ethernet Controller */
  5544. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_22),
  5545. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5546. },
  5547. { /* MCP65 Ethernet Controller */
  5548. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_23),
  5549. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5550. },
  5551. { /* MCP67 Ethernet Controller */
  5552. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_24),
  5553. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE,
  5554. },
  5555. { /* MCP67 Ethernet Controller */
  5556. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_25),
  5557. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE,
  5558. },
  5559. { /* MCP67 Ethernet Controller */
  5560. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_26),
  5561. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE,
  5562. },
  5563. { /* MCP67 Ethernet Controller */
  5564. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_27),
  5565. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE,
  5566. },
  5567. { /* MCP73 Ethernet Controller */
  5568. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_28),
  5569. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE,
  5570. },
  5571. { /* MCP73 Ethernet Controller */
  5572. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_29),
  5573. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE,
  5574. },
  5575. { /* MCP73 Ethernet Controller */
  5576. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_30),
  5577. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE,
  5578. },
  5579. { /* MCP73 Ethernet Controller */
  5580. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_31),
  5581. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE,
  5582. },
  5583. { /* MCP77 Ethernet Controller */
  5584. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_32),
  5585. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5586. },
  5587. { /* MCP77 Ethernet Controller */
  5588. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_33),
  5589. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5590. },
  5591. { /* MCP77 Ethernet Controller */
  5592. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_34),
  5593. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5594. },
  5595. { /* MCP77 Ethernet Controller */
  5596. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_35),
  5597. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5598. },
  5599. { /* MCP79 Ethernet Controller */
  5600. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_36),
  5601. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5602. },
  5603. { /* MCP79 Ethernet Controller */
  5604. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_37),
  5605. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5606. },
  5607. { /* MCP79 Ethernet Controller */
  5608. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_38),
  5609. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5610. },
  5611. { /* MCP79 Ethernet Controller */
  5612. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_39),
  5613. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5614. },
  5615. {0,},
  5616. };
  5617. static struct pci_driver driver = {
  5618. .name = DRV_NAME,
  5619. .id_table = pci_tbl,
  5620. .probe = nv_probe,
  5621. .remove = __devexit_p(nv_remove),
  5622. .suspend = nv_suspend,
  5623. .resume = nv_resume,
  5624. .shutdown = nv_shutdown,
  5625. };
  5626. static int __init init_nic(void)
  5627. {
  5628. return pci_register_driver(&driver);
  5629. }
  5630. static void __exit exit_nic(void)
  5631. {
  5632. pci_unregister_driver(&driver);
  5633. }
  5634. module_param(max_interrupt_work, int, 0);
  5635. MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
  5636. module_param(optimization_mode, int, 0);
  5637. MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer. In dynamic mode (2), the mode toggles between throughput and CPU mode based on network load.");
  5638. module_param(poll_interval, int, 0);
  5639. MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
  5640. module_param(msi, int, 0);
  5641. MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
  5642. module_param(msix, int, 0);
  5643. MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
  5644. module_param(dma_64bit, int, 0);
  5645. MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
  5646. module_param(phy_cross, int, 0);
  5647. MODULE_PARM_DESC(phy_cross, "Phy crossover detection for Realtek 8201 phy is enabled by setting to 1 and disabled by setting to 0.");
  5648. MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
  5649. MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
  5650. MODULE_LICENSE("GPL");
  5651. MODULE_DEVICE_TABLE(pci, pci_tbl);
  5652. module_init(init_nic);
  5653. module_exit(exit_nic);