input.c 41 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708
  1. /*
  2. * The input core
  3. *
  4. * Copyright (c) 1999-2002 Vojtech Pavlik
  5. */
  6. /*
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms of the GNU General Public License version 2 as published by
  9. * the Free Software Foundation.
  10. */
  11. #include <linux/init.h>
  12. #include <linux/input.h>
  13. #include <linux/module.h>
  14. #include <linux/random.h>
  15. #include <linux/major.h>
  16. #include <linux/proc_fs.h>
  17. #include <linux/seq_file.h>
  18. #include <linux/poll.h>
  19. #include <linux/device.h>
  20. #include <linux/mutex.h>
  21. #include <linux/rcupdate.h>
  22. #include <linux/smp_lock.h>
  23. MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
  24. MODULE_DESCRIPTION("Input core");
  25. MODULE_LICENSE("GPL");
  26. #define INPUT_DEVICES 256
  27. /*
  28. * EV_ABS events which should not be cached are listed here.
  29. */
  30. static unsigned int input_abs_bypass_init_data[] __initdata = {
  31. ABS_MT_TOUCH_MAJOR,
  32. ABS_MT_TOUCH_MINOR,
  33. ABS_MT_WIDTH_MAJOR,
  34. ABS_MT_WIDTH_MINOR,
  35. ABS_MT_ORIENTATION,
  36. ABS_MT_POSITION_X,
  37. ABS_MT_POSITION_Y,
  38. ABS_MT_TOOL_TYPE,
  39. ABS_MT_BLOB_ID,
  40. 0
  41. };
  42. static unsigned long input_abs_bypass[BITS_TO_LONGS(ABS_CNT)];
  43. static LIST_HEAD(input_dev_list);
  44. static LIST_HEAD(input_handler_list);
  45. /*
  46. * input_mutex protects access to both input_dev_list and input_handler_list.
  47. * This also causes input_[un]register_device and input_[un]register_handler
  48. * be mutually exclusive which simplifies locking in drivers implementing
  49. * input handlers.
  50. */
  51. static DEFINE_MUTEX(input_mutex);
  52. static struct input_handler *input_table[8];
  53. static inline int is_event_supported(unsigned int code,
  54. unsigned long *bm, unsigned int max)
  55. {
  56. return code <= max && test_bit(code, bm);
  57. }
  58. static int input_defuzz_abs_event(int value, int old_val, int fuzz)
  59. {
  60. if (fuzz) {
  61. if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
  62. return old_val;
  63. if (value > old_val - fuzz && value < old_val + fuzz)
  64. return (old_val * 3 + value) / 4;
  65. if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
  66. return (old_val + value) / 2;
  67. }
  68. return value;
  69. }
  70. /*
  71. * Pass event through all open handles. This function is called with
  72. * dev->event_lock held and interrupts disabled.
  73. */
  74. static void input_pass_event(struct input_dev *dev,
  75. unsigned int type, unsigned int code, int value)
  76. {
  77. struct input_handle *handle;
  78. rcu_read_lock();
  79. handle = rcu_dereference(dev->grab);
  80. if (handle)
  81. handle->handler->event(handle, type, code, value);
  82. else
  83. list_for_each_entry_rcu(handle, &dev->h_list, d_node)
  84. if (handle->open)
  85. handle->handler->event(handle,
  86. type, code, value);
  87. rcu_read_unlock();
  88. }
  89. /*
  90. * Generate software autorepeat event. Note that we take
  91. * dev->event_lock here to avoid racing with input_event
  92. * which may cause keys get "stuck".
  93. */
  94. static void input_repeat_key(unsigned long data)
  95. {
  96. struct input_dev *dev = (void *) data;
  97. unsigned long flags;
  98. spin_lock_irqsave(&dev->event_lock, flags);
  99. if (test_bit(dev->repeat_key, dev->key) &&
  100. is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
  101. input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
  102. if (dev->sync) {
  103. /*
  104. * Only send SYN_REPORT if we are not in a middle
  105. * of driver parsing a new hardware packet.
  106. * Otherwise assume that the driver will send
  107. * SYN_REPORT once it's done.
  108. */
  109. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  110. }
  111. if (dev->rep[REP_PERIOD])
  112. mod_timer(&dev->timer, jiffies +
  113. msecs_to_jiffies(dev->rep[REP_PERIOD]));
  114. }
  115. spin_unlock_irqrestore(&dev->event_lock, flags);
  116. }
  117. static void input_start_autorepeat(struct input_dev *dev, int code)
  118. {
  119. if (test_bit(EV_REP, dev->evbit) &&
  120. dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
  121. dev->timer.data) {
  122. dev->repeat_key = code;
  123. mod_timer(&dev->timer,
  124. jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
  125. }
  126. }
  127. static void input_stop_autorepeat(struct input_dev *dev)
  128. {
  129. del_timer(&dev->timer);
  130. }
  131. #define INPUT_IGNORE_EVENT 0
  132. #define INPUT_PASS_TO_HANDLERS 1
  133. #define INPUT_PASS_TO_DEVICE 2
  134. #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
  135. static void input_handle_event(struct input_dev *dev,
  136. unsigned int type, unsigned int code, int value)
  137. {
  138. int disposition = INPUT_IGNORE_EVENT;
  139. switch (type) {
  140. case EV_SYN:
  141. switch (code) {
  142. case SYN_CONFIG:
  143. disposition = INPUT_PASS_TO_ALL;
  144. break;
  145. case SYN_REPORT:
  146. if (!dev->sync) {
  147. dev->sync = 1;
  148. disposition = INPUT_PASS_TO_HANDLERS;
  149. }
  150. break;
  151. case SYN_MT_REPORT:
  152. dev->sync = 0;
  153. disposition = INPUT_PASS_TO_HANDLERS;
  154. break;
  155. }
  156. break;
  157. case EV_KEY:
  158. if (is_event_supported(code, dev->keybit, KEY_MAX) &&
  159. !!test_bit(code, dev->key) != value) {
  160. if (value != 2) {
  161. __change_bit(code, dev->key);
  162. if (value)
  163. input_start_autorepeat(dev, code);
  164. else
  165. input_stop_autorepeat(dev);
  166. }
  167. disposition = INPUT_PASS_TO_HANDLERS;
  168. }
  169. break;
  170. case EV_SW:
  171. if (is_event_supported(code, dev->swbit, SW_MAX) &&
  172. !!test_bit(code, dev->sw) != value) {
  173. __change_bit(code, dev->sw);
  174. disposition = INPUT_PASS_TO_HANDLERS;
  175. }
  176. break;
  177. case EV_ABS:
  178. if (is_event_supported(code, dev->absbit, ABS_MAX)) {
  179. if (test_bit(code, input_abs_bypass)) {
  180. disposition = INPUT_PASS_TO_HANDLERS;
  181. break;
  182. }
  183. value = input_defuzz_abs_event(value,
  184. dev->abs[code], dev->absfuzz[code]);
  185. if (dev->abs[code] != value) {
  186. dev->abs[code] = value;
  187. disposition = INPUT_PASS_TO_HANDLERS;
  188. }
  189. }
  190. break;
  191. case EV_REL:
  192. if (is_event_supported(code, dev->relbit, REL_MAX) && value)
  193. disposition = INPUT_PASS_TO_HANDLERS;
  194. break;
  195. case EV_MSC:
  196. if (is_event_supported(code, dev->mscbit, MSC_MAX))
  197. disposition = INPUT_PASS_TO_ALL;
  198. break;
  199. case EV_LED:
  200. if (is_event_supported(code, dev->ledbit, LED_MAX) &&
  201. !!test_bit(code, dev->led) != value) {
  202. __change_bit(code, dev->led);
  203. disposition = INPUT_PASS_TO_ALL;
  204. }
  205. break;
  206. case EV_SND:
  207. if (is_event_supported(code, dev->sndbit, SND_MAX)) {
  208. if (!!test_bit(code, dev->snd) != !!value)
  209. __change_bit(code, dev->snd);
  210. disposition = INPUT_PASS_TO_ALL;
  211. }
  212. break;
  213. case EV_REP:
  214. if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
  215. dev->rep[code] = value;
  216. disposition = INPUT_PASS_TO_ALL;
  217. }
  218. break;
  219. case EV_FF:
  220. if (value >= 0)
  221. disposition = INPUT_PASS_TO_ALL;
  222. break;
  223. case EV_PWR:
  224. disposition = INPUT_PASS_TO_ALL;
  225. break;
  226. }
  227. if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
  228. dev->sync = 0;
  229. if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
  230. dev->event(dev, type, code, value);
  231. if (disposition & INPUT_PASS_TO_HANDLERS)
  232. input_pass_event(dev, type, code, value);
  233. }
  234. /**
  235. * input_event() - report new input event
  236. * @dev: device that generated the event
  237. * @type: type of the event
  238. * @code: event code
  239. * @value: value of the event
  240. *
  241. * This function should be used by drivers implementing various input
  242. * devices. See also input_inject_event().
  243. */
  244. void input_event(struct input_dev *dev,
  245. unsigned int type, unsigned int code, int value)
  246. {
  247. unsigned long flags;
  248. if (is_event_supported(type, dev->evbit, EV_MAX)) {
  249. spin_lock_irqsave(&dev->event_lock, flags);
  250. add_input_randomness(type, code, value);
  251. input_handle_event(dev, type, code, value);
  252. spin_unlock_irqrestore(&dev->event_lock, flags);
  253. }
  254. }
  255. EXPORT_SYMBOL(input_event);
  256. /**
  257. * input_inject_event() - send input event from input handler
  258. * @handle: input handle to send event through
  259. * @type: type of the event
  260. * @code: event code
  261. * @value: value of the event
  262. *
  263. * Similar to input_event() but will ignore event if device is
  264. * "grabbed" and handle injecting event is not the one that owns
  265. * the device.
  266. */
  267. void input_inject_event(struct input_handle *handle,
  268. unsigned int type, unsigned int code, int value)
  269. {
  270. struct input_dev *dev = handle->dev;
  271. struct input_handle *grab;
  272. unsigned long flags;
  273. if (is_event_supported(type, dev->evbit, EV_MAX)) {
  274. spin_lock_irqsave(&dev->event_lock, flags);
  275. rcu_read_lock();
  276. grab = rcu_dereference(dev->grab);
  277. if (!grab || grab == handle)
  278. input_handle_event(dev, type, code, value);
  279. rcu_read_unlock();
  280. spin_unlock_irqrestore(&dev->event_lock, flags);
  281. }
  282. }
  283. EXPORT_SYMBOL(input_inject_event);
  284. /**
  285. * input_grab_device - grabs device for exclusive use
  286. * @handle: input handle that wants to own the device
  287. *
  288. * When a device is grabbed by an input handle all events generated by
  289. * the device are delivered only to this handle. Also events injected
  290. * by other input handles are ignored while device is grabbed.
  291. */
  292. int input_grab_device(struct input_handle *handle)
  293. {
  294. struct input_dev *dev = handle->dev;
  295. int retval;
  296. retval = mutex_lock_interruptible(&dev->mutex);
  297. if (retval)
  298. return retval;
  299. if (dev->grab) {
  300. retval = -EBUSY;
  301. goto out;
  302. }
  303. rcu_assign_pointer(dev->grab, handle);
  304. synchronize_rcu();
  305. out:
  306. mutex_unlock(&dev->mutex);
  307. return retval;
  308. }
  309. EXPORT_SYMBOL(input_grab_device);
  310. static void __input_release_device(struct input_handle *handle)
  311. {
  312. struct input_dev *dev = handle->dev;
  313. if (dev->grab == handle) {
  314. rcu_assign_pointer(dev->grab, NULL);
  315. /* Make sure input_pass_event() notices that grab is gone */
  316. synchronize_rcu();
  317. list_for_each_entry(handle, &dev->h_list, d_node)
  318. if (handle->open && handle->handler->start)
  319. handle->handler->start(handle);
  320. }
  321. }
  322. /**
  323. * input_release_device - release previously grabbed device
  324. * @handle: input handle that owns the device
  325. *
  326. * Releases previously grabbed device so that other input handles can
  327. * start receiving input events. Upon release all handlers attached
  328. * to the device have their start() method called so they have a change
  329. * to synchronize device state with the rest of the system.
  330. */
  331. void input_release_device(struct input_handle *handle)
  332. {
  333. struct input_dev *dev = handle->dev;
  334. mutex_lock(&dev->mutex);
  335. __input_release_device(handle);
  336. mutex_unlock(&dev->mutex);
  337. }
  338. EXPORT_SYMBOL(input_release_device);
  339. /**
  340. * input_open_device - open input device
  341. * @handle: handle through which device is being accessed
  342. *
  343. * This function should be called by input handlers when they
  344. * want to start receive events from given input device.
  345. */
  346. int input_open_device(struct input_handle *handle)
  347. {
  348. struct input_dev *dev = handle->dev;
  349. int retval;
  350. retval = mutex_lock_interruptible(&dev->mutex);
  351. if (retval)
  352. return retval;
  353. if (dev->going_away) {
  354. retval = -ENODEV;
  355. goto out;
  356. }
  357. handle->open++;
  358. if (!dev->users++ && dev->open)
  359. retval = dev->open(dev);
  360. if (retval) {
  361. dev->users--;
  362. if (!--handle->open) {
  363. /*
  364. * Make sure we are not delivering any more events
  365. * through this handle
  366. */
  367. synchronize_rcu();
  368. }
  369. }
  370. out:
  371. mutex_unlock(&dev->mutex);
  372. return retval;
  373. }
  374. EXPORT_SYMBOL(input_open_device);
  375. int input_flush_device(struct input_handle *handle, struct file *file)
  376. {
  377. struct input_dev *dev = handle->dev;
  378. int retval;
  379. retval = mutex_lock_interruptible(&dev->mutex);
  380. if (retval)
  381. return retval;
  382. if (dev->flush)
  383. retval = dev->flush(dev, file);
  384. mutex_unlock(&dev->mutex);
  385. return retval;
  386. }
  387. EXPORT_SYMBOL(input_flush_device);
  388. /**
  389. * input_close_device - close input device
  390. * @handle: handle through which device is being accessed
  391. *
  392. * This function should be called by input handlers when they
  393. * want to stop receive events from given input device.
  394. */
  395. void input_close_device(struct input_handle *handle)
  396. {
  397. struct input_dev *dev = handle->dev;
  398. mutex_lock(&dev->mutex);
  399. __input_release_device(handle);
  400. if (!--dev->users && dev->close)
  401. dev->close(dev);
  402. if (!--handle->open) {
  403. /*
  404. * synchronize_rcu() makes sure that input_pass_event()
  405. * completed and that no more input events are delivered
  406. * through this handle
  407. */
  408. synchronize_rcu();
  409. }
  410. mutex_unlock(&dev->mutex);
  411. }
  412. EXPORT_SYMBOL(input_close_device);
  413. /*
  414. * Prepare device for unregistering
  415. */
  416. static void input_disconnect_device(struct input_dev *dev)
  417. {
  418. struct input_handle *handle;
  419. int code;
  420. /*
  421. * Mark device as going away. Note that we take dev->mutex here
  422. * not to protect access to dev->going_away but rather to ensure
  423. * that there are no threads in the middle of input_open_device()
  424. */
  425. mutex_lock(&dev->mutex);
  426. dev->going_away = 1;
  427. mutex_unlock(&dev->mutex);
  428. spin_lock_irq(&dev->event_lock);
  429. /*
  430. * Simulate keyup events for all pressed keys so that handlers
  431. * are not left with "stuck" keys. The driver may continue
  432. * generate events even after we done here but they will not
  433. * reach any handlers.
  434. */
  435. if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
  436. for (code = 0; code <= KEY_MAX; code++) {
  437. if (is_event_supported(code, dev->keybit, KEY_MAX) &&
  438. __test_and_clear_bit(code, dev->key)) {
  439. input_pass_event(dev, EV_KEY, code, 0);
  440. }
  441. }
  442. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  443. }
  444. list_for_each_entry(handle, &dev->h_list, d_node)
  445. handle->open = 0;
  446. spin_unlock_irq(&dev->event_lock);
  447. }
  448. static int input_fetch_keycode(struct input_dev *dev, int scancode)
  449. {
  450. switch (dev->keycodesize) {
  451. case 1:
  452. return ((u8 *)dev->keycode)[scancode];
  453. case 2:
  454. return ((u16 *)dev->keycode)[scancode];
  455. default:
  456. return ((u32 *)dev->keycode)[scancode];
  457. }
  458. }
  459. static int input_default_getkeycode(struct input_dev *dev,
  460. int scancode, int *keycode)
  461. {
  462. if (!dev->keycodesize)
  463. return -EINVAL;
  464. if (scancode >= dev->keycodemax)
  465. return -EINVAL;
  466. *keycode = input_fetch_keycode(dev, scancode);
  467. return 0;
  468. }
  469. static int input_default_setkeycode(struct input_dev *dev,
  470. int scancode, int keycode)
  471. {
  472. int old_keycode;
  473. int i;
  474. if (scancode >= dev->keycodemax)
  475. return -EINVAL;
  476. if (!dev->keycodesize)
  477. return -EINVAL;
  478. if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
  479. return -EINVAL;
  480. switch (dev->keycodesize) {
  481. case 1: {
  482. u8 *k = (u8 *)dev->keycode;
  483. old_keycode = k[scancode];
  484. k[scancode] = keycode;
  485. break;
  486. }
  487. case 2: {
  488. u16 *k = (u16 *)dev->keycode;
  489. old_keycode = k[scancode];
  490. k[scancode] = keycode;
  491. break;
  492. }
  493. default: {
  494. u32 *k = (u32 *)dev->keycode;
  495. old_keycode = k[scancode];
  496. k[scancode] = keycode;
  497. break;
  498. }
  499. }
  500. clear_bit(old_keycode, dev->keybit);
  501. set_bit(keycode, dev->keybit);
  502. for (i = 0; i < dev->keycodemax; i++) {
  503. if (input_fetch_keycode(dev, i) == old_keycode) {
  504. set_bit(old_keycode, dev->keybit);
  505. break; /* Setting the bit twice is useless, so break */
  506. }
  507. }
  508. return 0;
  509. }
  510. /**
  511. * input_get_keycode - retrieve keycode currently mapped to a given scancode
  512. * @dev: input device which keymap is being queried
  513. * @scancode: scancode (or its equivalent for device in question) for which
  514. * keycode is needed
  515. * @keycode: result
  516. *
  517. * This function should be called by anyone interested in retrieving current
  518. * keymap. Presently keyboard and evdev handlers use it.
  519. */
  520. int input_get_keycode(struct input_dev *dev, int scancode, int *keycode)
  521. {
  522. if (scancode < 0)
  523. return -EINVAL;
  524. return dev->getkeycode(dev, scancode, keycode);
  525. }
  526. EXPORT_SYMBOL(input_get_keycode);
  527. /**
  528. * input_get_keycode - assign new keycode to a given scancode
  529. * @dev: input device which keymap is being updated
  530. * @scancode: scancode (or its equivalent for device in question)
  531. * @keycode: new keycode to be assigned to the scancode
  532. *
  533. * This function should be called by anyone needing to update current
  534. * keymap. Presently keyboard and evdev handlers use it.
  535. */
  536. int input_set_keycode(struct input_dev *dev, int scancode, int keycode)
  537. {
  538. unsigned long flags;
  539. int old_keycode;
  540. int retval;
  541. if (scancode < 0)
  542. return -EINVAL;
  543. if (keycode < 0 || keycode > KEY_MAX)
  544. return -EINVAL;
  545. spin_lock_irqsave(&dev->event_lock, flags);
  546. retval = dev->getkeycode(dev, scancode, &old_keycode);
  547. if (retval)
  548. goto out;
  549. retval = dev->setkeycode(dev, scancode, keycode);
  550. if (retval)
  551. goto out;
  552. /*
  553. * Simulate keyup event if keycode is not present
  554. * in the keymap anymore
  555. */
  556. if (test_bit(EV_KEY, dev->evbit) &&
  557. !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
  558. __test_and_clear_bit(old_keycode, dev->key)) {
  559. input_pass_event(dev, EV_KEY, old_keycode, 0);
  560. if (dev->sync)
  561. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  562. }
  563. out:
  564. spin_unlock_irqrestore(&dev->event_lock, flags);
  565. return retval;
  566. }
  567. EXPORT_SYMBOL(input_set_keycode);
  568. #define MATCH_BIT(bit, max) \
  569. for (i = 0; i < BITS_TO_LONGS(max); i++) \
  570. if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
  571. break; \
  572. if (i != BITS_TO_LONGS(max)) \
  573. continue;
  574. static const struct input_device_id *input_match_device(const struct input_device_id *id,
  575. struct input_dev *dev)
  576. {
  577. int i;
  578. for (; id->flags || id->driver_info; id++) {
  579. if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
  580. if (id->bustype != dev->id.bustype)
  581. continue;
  582. if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
  583. if (id->vendor != dev->id.vendor)
  584. continue;
  585. if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
  586. if (id->product != dev->id.product)
  587. continue;
  588. if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
  589. if (id->version != dev->id.version)
  590. continue;
  591. MATCH_BIT(evbit, EV_MAX);
  592. MATCH_BIT(keybit, KEY_MAX);
  593. MATCH_BIT(relbit, REL_MAX);
  594. MATCH_BIT(absbit, ABS_MAX);
  595. MATCH_BIT(mscbit, MSC_MAX);
  596. MATCH_BIT(ledbit, LED_MAX);
  597. MATCH_BIT(sndbit, SND_MAX);
  598. MATCH_BIT(ffbit, FF_MAX);
  599. MATCH_BIT(swbit, SW_MAX);
  600. return id;
  601. }
  602. return NULL;
  603. }
  604. static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
  605. {
  606. const struct input_device_id *id;
  607. int error;
  608. if (handler->blacklist && input_match_device(handler->blacklist, dev))
  609. return -ENODEV;
  610. id = input_match_device(handler->id_table, dev);
  611. if (!id)
  612. return -ENODEV;
  613. error = handler->connect(handler, dev, id);
  614. if (error && error != -ENODEV)
  615. printk(KERN_ERR
  616. "input: failed to attach handler %s to device %s, "
  617. "error: %d\n",
  618. handler->name, kobject_name(&dev->dev.kobj), error);
  619. return error;
  620. }
  621. #ifdef CONFIG_PROC_FS
  622. static struct proc_dir_entry *proc_bus_input_dir;
  623. static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
  624. static int input_devices_state;
  625. static inline void input_wakeup_procfs_readers(void)
  626. {
  627. input_devices_state++;
  628. wake_up(&input_devices_poll_wait);
  629. }
  630. static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
  631. {
  632. poll_wait(file, &input_devices_poll_wait, wait);
  633. if (file->f_version != input_devices_state) {
  634. file->f_version = input_devices_state;
  635. return POLLIN | POLLRDNORM;
  636. }
  637. return 0;
  638. }
  639. static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
  640. {
  641. if (mutex_lock_interruptible(&input_mutex))
  642. return NULL;
  643. return seq_list_start(&input_dev_list, *pos);
  644. }
  645. static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  646. {
  647. return seq_list_next(v, &input_dev_list, pos);
  648. }
  649. static void input_devices_seq_stop(struct seq_file *seq, void *v)
  650. {
  651. mutex_unlock(&input_mutex);
  652. }
  653. static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
  654. unsigned long *bitmap, int max)
  655. {
  656. int i;
  657. for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
  658. if (bitmap[i])
  659. break;
  660. seq_printf(seq, "B: %s=", name);
  661. for (; i >= 0; i--)
  662. seq_printf(seq, "%lx%s", bitmap[i], i > 0 ? " " : "");
  663. seq_putc(seq, '\n');
  664. }
  665. static int input_devices_seq_show(struct seq_file *seq, void *v)
  666. {
  667. struct input_dev *dev = container_of(v, struct input_dev, node);
  668. const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
  669. struct input_handle *handle;
  670. seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
  671. dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
  672. seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
  673. seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
  674. seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
  675. seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
  676. seq_printf(seq, "H: Handlers=");
  677. list_for_each_entry(handle, &dev->h_list, d_node)
  678. seq_printf(seq, "%s ", handle->name);
  679. seq_putc(seq, '\n');
  680. input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
  681. if (test_bit(EV_KEY, dev->evbit))
  682. input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
  683. if (test_bit(EV_REL, dev->evbit))
  684. input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
  685. if (test_bit(EV_ABS, dev->evbit))
  686. input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
  687. if (test_bit(EV_MSC, dev->evbit))
  688. input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
  689. if (test_bit(EV_LED, dev->evbit))
  690. input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
  691. if (test_bit(EV_SND, dev->evbit))
  692. input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
  693. if (test_bit(EV_FF, dev->evbit))
  694. input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
  695. if (test_bit(EV_SW, dev->evbit))
  696. input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
  697. seq_putc(seq, '\n');
  698. kfree(path);
  699. return 0;
  700. }
  701. static const struct seq_operations input_devices_seq_ops = {
  702. .start = input_devices_seq_start,
  703. .next = input_devices_seq_next,
  704. .stop = input_devices_seq_stop,
  705. .show = input_devices_seq_show,
  706. };
  707. static int input_proc_devices_open(struct inode *inode, struct file *file)
  708. {
  709. return seq_open(file, &input_devices_seq_ops);
  710. }
  711. static const struct file_operations input_devices_fileops = {
  712. .owner = THIS_MODULE,
  713. .open = input_proc_devices_open,
  714. .poll = input_proc_devices_poll,
  715. .read = seq_read,
  716. .llseek = seq_lseek,
  717. .release = seq_release,
  718. };
  719. static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
  720. {
  721. if (mutex_lock_interruptible(&input_mutex))
  722. return NULL;
  723. seq->private = (void *)(unsigned long)*pos;
  724. return seq_list_start(&input_handler_list, *pos);
  725. }
  726. static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  727. {
  728. seq->private = (void *)(unsigned long)(*pos + 1);
  729. return seq_list_next(v, &input_handler_list, pos);
  730. }
  731. static void input_handlers_seq_stop(struct seq_file *seq, void *v)
  732. {
  733. mutex_unlock(&input_mutex);
  734. }
  735. static int input_handlers_seq_show(struct seq_file *seq, void *v)
  736. {
  737. struct input_handler *handler = container_of(v, struct input_handler, node);
  738. seq_printf(seq, "N: Number=%ld Name=%s",
  739. (unsigned long)seq->private, handler->name);
  740. if (handler->fops)
  741. seq_printf(seq, " Minor=%d", handler->minor);
  742. seq_putc(seq, '\n');
  743. return 0;
  744. }
  745. static const struct seq_operations input_handlers_seq_ops = {
  746. .start = input_handlers_seq_start,
  747. .next = input_handlers_seq_next,
  748. .stop = input_handlers_seq_stop,
  749. .show = input_handlers_seq_show,
  750. };
  751. static int input_proc_handlers_open(struct inode *inode, struct file *file)
  752. {
  753. return seq_open(file, &input_handlers_seq_ops);
  754. }
  755. static const struct file_operations input_handlers_fileops = {
  756. .owner = THIS_MODULE,
  757. .open = input_proc_handlers_open,
  758. .read = seq_read,
  759. .llseek = seq_lseek,
  760. .release = seq_release,
  761. };
  762. static int __init input_proc_init(void)
  763. {
  764. struct proc_dir_entry *entry;
  765. proc_bus_input_dir = proc_mkdir("bus/input", NULL);
  766. if (!proc_bus_input_dir)
  767. return -ENOMEM;
  768. entry = proc_create("devices", 0, proc_bus_input_dir,
  769. &input_devices_fileops);
  770. if (!entry)
  771. goto fail1;
  772. entry = proc_create("handlers", 0, proc_bus_input_dir,
  773. &input_handlers_fileops);
  774. if (!entry)
  775. goto fail2;
  776. return 0;
  777. fail2: remove_proc_entry("devices", proc_bus_input_dir);
  778. fail1: remove_proc_entry("bus/input", NULL);
  779. return -ENOMEM;
  780. }
  781. static void input_proc_exit(void)
  782. {
  783. remove_proc_entry("devices", proc_bus_input_dir);
  784. remove_proc_entry("handlers", proc_bus_input_dir);
  785. remove_proc_entry("bus/input", NULL);
  786. }
  787. #else /* !CONFIG_PROC_FS */
  788. static inline void input_wakeup_procfs_readers(void) { }
  789. static inline int input_proc_init(void) { return 0; }
  790. static inline void input_proc_exit(void) { }
  791. #endif
  792. #define INPUT_DEV_STRING_ATTR_SHOW(name) \
  793. static ssize_t input_dev_show_##name(struct device *dev, \
  794. struct device_attribute *attr, \
  795. char *buf) \
  796. { \
  797. struct input_dev *input_dev = to_input_dev(dev); \
  798. \
  799. return scnprintf(buf, PAGE_SIZE, "%s\n", \
  800. input_dev->name ? input_dev->name : ""); \
  801. } \
  802. static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
  803. INPUT_DEV_STRING_ATTR_SHOW(name);
  804. INPUT_DEV_STRING_ATTR_SHOW(phys);
  805. INPUT_DEV_STRING_ATTR_SHOW(uniq);
  806. static int input_print_modalias_bits(char *buf, int size,
  807. char name, unsigned long *bm,
  808. unsigned int min_bit, unsigned int max_bit)
  809. {
  810. int len = 0, i;
  811. len += snprintf(buf, max(size, 0), "%c", name);
  812. for (i = min_bit; i < max_bit; i++)
  813. if (bm[BIT_WORD(i)] & BIT_MASK(i))
  814. len += snprintf(buf + len, max(size - len, 0), "%X,", i);
  815. return len;
  816. }
  817. static int input_print_modalias(char *buf, int size, struct input_dev *id,
  818. int add_cr)
  819. {
  820. int len;
  821. len = snprintf(buf, max(size, 0),
  822. "input:b%04Xv%04Xp%04Xe%04X-",
  823. id->id.bustype, id->id.vendor,
  824. id->id.product, id->id.version);
  825. len += input_print_modalias_bits(buf + len, size - len,
  826. 'e', id->evbit, 0, EV_MAX);
  827. len += input_print_modalias_bits(buf + len, size - len,
  828. 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
  829. len += input_print_modalias_bits(buf + len, size - len,
  830. 'r', id->relbit, 0, REL_MAX);
  831. len += input_print_modalias_bits(buf + len, size - len,
  832. 'a', id->absbit, 0, ABS_MAX);
  833. len += input_print_modalias_bits(buf + len, size - len,
  834. 'm', id->mscbit, 0, MSC_MAX);
  835. len += input_print_modalias_bits(buf + len, size - len,
  836. 'l', id->ledbit, 0, LED_MAX);
  837. len += input_print_modalias_bits(buf + len, size - len,
  838. 's', id->sndbit, 0, SND_MAX);
  839. len += input_print_modalias_bits(buf + len, size - len,
  840. 'f', id->ffbit, 0, FF_MAX);
  841. len += input_print_modalias_bits(buf + len, size - len,
  842. 'w', id->swbit, 0, SW_MAX);
  843. if (add_cr)
  844. len += snprintf(buf + len, max(size - len, 0), "\n");
  845. return len;
  846. }
  847. static ssize_t input_dev_show_modalias(struct device *dev,
  848. struct device_attribute *attr,
  849. char *buf)
  850. {
  851. struct input_dev *id = to_input_dev(dev);
  852. ssize_t len;
  853. len = input_print_modalias(buf, PAGE_SIZE, id, 1);
  854. return min_t(int, len, PAGE_SIZE);
  855. }
  856. static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
  857. static struct attribute *input_dev_attrs[] = {
  858. &dev_attr_name.attr,
  859. &dev_attr_phys.attr,
  860. &dev_attr_uniq.attr,
  861. &dev_attr_modalias.attr,
  862. NULL
  863. };
  864. static struct attribute_group input_dev_attr_group = {
  865. .attrs = input_dev_attrs,
  866. };
  867. #define INPUT_DEV_ID_ATTR(name) \
  868. static ssize_t input_dev_show_id_##name(struct device *dev, \
  869. struct device_attribute *attr, \
  870. char *buf) \
  871. { \
  872. struct input_dev *input_dev = to_input_dev(dev); \
  873. return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
  874. } \
  875. static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
  876. INPUT_DEV_ID_ATTR(bustype);
  877. INPUT_DEV_ID_ATTR(vendor);
  878. INPUT_DEV_ID_ATTR(product);
  879. INPUT_DEV_ID_ATTR(version);
  880. static struct attribute *input_dev_id_attrs[] = {
  881. &dev_attr_bustype.attr,
  882. &dev_attr_vendor.attr,
  883. &dev_attr_product.attr,
  884. &dev_attr_version.attr,
  885. NULL
  886. };
  887. static struct attribute_group input_dev_id_attr_group = {
  888. .name = "id",
  889. .attrs = input_dev_id_attrs,
  890. };
  891. static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
  892. int max, int add_cr)
  893. {
  894. int i;
  895. int len = 0;
  896. for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
  897. if (bitmap[i])
  898. break;
  899. for (; i >= 0; i--)
  900. len += snprintf(buf + len, max(buf_size - len, 0),
  901. "%lx%s", bitmap[i], i > 0 ? " " : "");
  902. if (add_cr)
  903. len += snprintf(buf + len, max(buf_size - len, 0), "\n");
  904. return len;
  905. }
  906. #define INPUT_DEV_CAP_ATTR(ev, bm) \
  907. static ssize_t input_dev_show_cap_##bm(struct device *dev, \
  908. struct device_attribute *attr, \
  909. char *buf) \
  910. { \
  911. struct input_dev *input_dev = to_input_dev(dev); \
  912. int len = input_print_bitmap(buf, PAGE_SIZE, \
  913. input_dev->bm##bit, ev##_MAX, 1); \
  914. return min_t(int, len, PAGE_SIZE); \
  915. } \
  916. static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
  917. INPUT_DEV_CAP_ATTR(EV, ev);
  918. INPUT_DEV_CAP_ATTR(KEY, key);
  919. INPUT_DEV_CAP_ATTR(REL, rel);
  920. INPUT_DEV_CAP_ATTR(ABS, abs);
  921. INPUT_DEV_CAP_ATTR(MSC, msc);
  922. INPUT_DEV_CAP_ATTR(LED, led);
  923. INPUT_DEV_CAP_ATTR(SND, snd);
  924. INPUT_DEV_CAP_ATTR(FF, ff);
  925. INPUT_DEV_CAP_ATTR(SW, sw);
  926. static struct attribute *input_dev_caps_attrs[] = {
  927. &dev_attr_ev.attr,
  928. &dev_attr_key.attr,
  929. &dev_attr_rel.attr,
  930. &dev_attr_abs.attr,
  931. &dev_attr_msc.attr,
  932. &dev_attr_led.attr,
  933. &dev_attr_snd.attr,
  934. &dev_attr_ff.attr,
  935. &dev_attr_sw.attr,
  936. NULL
  937. };
  938. static struct attribute_group input_dev_caps_attr_group = {
  939. .name = "capabilities",
  940. .attrs = input_dev_caps_attrs,
  941. };
  942. static struct attribute_group *input_dev_attr_groups[] = {
  943. &input_dev_attr_group,
  944. &input_dev_id_attr_group,
  945. &input_dev_caps_attr_group,
  946. NULL
  947. };
  948. static void input_dev_release(struct device *device)
  949. {
  950. struct input_dev *dev = to_input_dev(device);
  951. input_ff_destroy(dev);
  952. kfree(dev);
  953. module_put(THIS_MODULE);
  954. }
  955. /*
  956. * Input uevent interface - loading event handlers based on
  957. * device bitfields.
  958. */
  959. static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
  960. const char *name, unsigned long *bitmap, int max)
  961. {
  962. int len;
  963. if (add_uevent_var(env, "%s=", name))
  964. return -ENOMEM;
  965. len = input_print_bitmap(&env->buf[env->buflen - 1],
  966. sizeof(env->buf) - env->buflen,
  967. bitmap, max, 0);
  968. if (len >= (sizeof(env->buf) - env->buflen))
  969. return -ENOMEM;
  970. env->buflen += len;
  971. return 0;
  972. }
  973. static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
  974. struct input_dev *dev)
  975. {
  976. int len;
  977. if (add_uevent_var(env, "MODALIAS="))
  978. return -ENOMEM;
  979. len = input_print_modalias(&env->buf[env->buflen - 1],
  980. sizeof(env->buf) - env->buflen,
  981. dev, 0);
  982. if (len >= (sizeof(env->buf) - env->buflen))
  983. return -ENOMEM;
  984. env->buflen += len;
  985. return 0;
  986. }
  987. #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
  988. do { \
  989. int err = add_uevent_var(env, fmt, val); \
  990. if (err) \
  991. return err; \
  992. } while (0)
  993. #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
  994. do { \
  995. int err = input_add_uevent_bm_var(env, name, bm, max); \
  996. if (err) \
  997. return err; \
  998. } while (0)
  999. #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
  1000. do { \
  1001. int err = input_add_uevent_modalias_var(env, dev); \
  1002. if (err) \
  1003. return err; \
  1004. } while (0)
  1005. static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
  1006. {
  1007. struct input_dev *dev = to_input_dev(device);
  1008. INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
  1009. dev->id.bustype, dev->id.vendor,
  1010. dev->id.product, dev->id.version);
  1011. if (dev->name)
  1012. INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
  1013. if (dev->phys)
  1014. INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
  1015. if (dev->uniq)
  1016. INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
  1017. INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
  1018. if (test_bit(EV_KEY, dev->evbit))
  1019. INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
  1020. if (test_bit(EV_REL, dev->evbit))
  1021. INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
  1022. if (test_bit(EV_ABS, dev->evbit))
  1023. INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
  1024. if (test_bit(EV_MSC, dev->evbit))
  1025. INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
  1026. if (test_bit(EV_LED, dev->evbit))
  1027. INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
  1028. if (test_bit(EV_SND, dev->evbit))
  1029. INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
  1030. if (test_bit(EV_FF, dev->evbit))
  1031. INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
  1032. if (test_bit(EV_SW, dev->evbit))
  1033. INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
  1034. INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
  1035. return 0;
  1036. }
  1037. static struct device_type input_dev_type = {
  1038. .groups = input_dev_attr_groups,
  1039. .release = input_dev_release,
  1040. .uevent = input_dev_uevent,
  1041. };
  1042. struct class input_class = {
  1043. .name = "input",
  1044. };
  1045. EXPORT_SYMBOL_GPL(input_class);
  1046. /**
  1047. * input_allocate_device - allocate memory for new input device
  1048. *
  1049. * Returns prepared struct input_dev or NULL.
  1050. *
  1051. * NOTE: Use input_free_device() to free devices that have not been
  1052. * registered; input_unregister_device() should be used for already
  1053. * registered devices.
  1054. */
  1055. struct input_dev *input_allocate_device(void)
  1056. {
  1057. struct input_dev *dev;
  1058. dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
  1059. if (dev) {
  1060. dev->dev.type = &input_dev_type;
  1061. dev->dev.class = &input_class;
  1062. device_initialize(&dev->dev);
  1063. mutex_init(&dev->mutex);
  1064. spin_lock_init(&dev->event_lock);
  1065. INIT_LIST_HEAD(&dev->h_list);
  1066. INIT_LIST_HEAD(&dev->node);
  1067. __module_get(THIS_MODULE);
  1068. }
  1069. return dev;
  1070. }
  1071. EXPORT_SYMBOL(input_allocate_device);
  1072. /**
  1073. * input_free_device - free memory occupied by input_dev structure
  1074. * @dev: input device to free
  1075. *
  1076. * This function should only be used if input_register_device()
  1077. * was not called yet or if it failed. Once device was registered
  1078. * use input_unregister_device() and memory will be freed once last
  1079. * reference to the device is dropped.
  1080. *
  1081. * Device should be allocated by input_allocate_device().
  1082. *
  1083. * NOTE: If there are references to the input device then memory
  1084. * will not be freed until last reference is dropped.
  1085. */
  1086. void input_free_device(struct input_dev *dev)
  1087. {
  1088. if (dev)
  1089. input_put_device(dev);
  1090. }
  1091. EXPORT_SYMBOL(input_free_device);
  1092. /**
  1093. * input_set_capability - mark device as capable of a certain event
  1094. * @dev: device that is capable of emitting or accepting event
  1095. * @type: type of the event (EV_KEY, EV_REL, etc...)
  1096. * @code: event code
  1097. *
  1098. * In addition to setting up corresponding bit in appropriate capability
  1099. * bitmap the function also adjusts dev->evbit.
  1100. */
  1101. void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
  1102. {
  1103. switch (type) {
  1104. case EV_KEY:
  1105. __set_bit(code, dev->keybit);
  1106. break;
  1107. case EV_REL:
  1108. __set_bit(code, dev->relbit);
  1109. break;
  1110. case EV_ABS:
  1111. __set_bit(code, dev->absbit);
  1112. break;
  1113. case EV_MSC:
  1114. __set_bit(code, dev->mscbit);
  1115. break;
  1116. case EV_SW:
  1117. __set_bit(code, dev->swbit);
  1118. break;
  1119. case EV_LED:
  1120. __set_bit(code, dev->ledbit);
  1121. break;
  1122. case EV_SND:
  1123. __set_bit(code, dev->sndbit);
  1124. break;
  1125. case EV_FF:
  1126. __set_bit(code, dev->ffbit);
  1127. break;
  1128. case EV_PWR:
  1129. /* do nothing */
  1130. break;
  1131. default:
  1132. printk(KERN_ERR
  1133. "input_set_capability: unknown type %u (code %u)\n",
  1134. type, code);
  1135. dump_stack();
  1136. return;
  1137. }
  1138. __set_bit(type, dev->evbit);
  1139. }
  1140. EXPORT_SYMBOL(input_set_capability);
  1141. /**
  1142. * input_register_device - register device with input core
  1143. * @dev: device to be registered
  1144. *
  1145. * This function registers device with input core. The device must be
  1146. * allocated with input_allocate_device() and all it's capabilities
  1147. * set up before registering.
  1148. * If function fails the device must be freed with input_free_device().
  1149. * Once device has been successfully registered it can be unregistered
  1150. * with input_unregister_device(); input_free_device() should not be
  1151. * called in this case.
  1152. */
  1153. int input_register_device(struct input_dev *dev)
  1154. {
  1155. static atomic_t input_no = ATOMIC_INIT(0);
  1156. struct input_handler *handler;
  1157. const char *path;
  1158. int error;
  1159. __set_bit(EV_SYN, dev->evbit);
  1160. /*
  1161. * If delay and period are pre-set by the driver, then autorepeating
  1162. * is handled by the driver itself and we don't do it in input.c.
  1163. */
  1164. init_timer(&dev->timer);
  1165. if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
  1166. dev->timer.data = (long) dev;
  1167. dev->timer.function = input_repeat_key;
  1168. dev->rep[REP_DELAY] = 250;
  1169. dev->rep[REP_PERIOD] = 33;
  1170. }
  1171. if (!dev->getkeycode)
  1172. dev->getkeycode = input_default_getkeycode;
  1173. if (!dev->setkeycode)
  1174. dev->setkeycode = input_default_setkeycode;
  1175. dev_set_name(&dev->dev, "input%ld",
  1176. (unsigned long) atomic_inc_return(&input_no) - 1);
  1177. error = device_add(&dev->dev);
  1178. if (error)
  1179. return error;
  1180. path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
  1181. printk(KERN_INFO "input: %s as %s\n",
  1182. dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
  1183. kfree(path);
  1184. error = mutex_lock_interruptible(&input_mutex);
  1185. if (error) {
  1186. device_del(&dev->dev);
  1187. return error;
  1188. }
  1189. list_add_tail(&dev->node, &input_dev_list);
  1190. list_for_each_entry(handler, &input_handler_list, node)
  1191. input_attach_handler(dev, handler);
  1192. input_wakeup_procfs_readers();
  1193. mutex_unlock(&input_mutex);
  1194. return 0;
  1195. }
  1196. EXPORT_SYMBOL(input_register_device);
  1197. /**
  1198. * input_unregister_device - unregister previously registered device
  1199. * @dev: device to be unregistered
  1200. *
  1201. * This function unregisters an input device. Once device is unregistered
  1202. * the caller should not try to access it as it may get freed at any moment.
  1203. */
  1204. void input_unregister_device(struct input_dev *dev)
  1205. {
  1206. struct input_handle *handle, *next;
  1207. input_disconnect_device(dev);
  1208. mutex_lock(&input_mutex);
  1209. list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
  1210. handle->handler->disconnect(handle);
  1211. WARN_ON(!list_empty(&dev->h_list));
  1212. del_timer_sync(&dev->timer);
  1213. list_del_init(&dev->node);
  1214. input_wakeup_procfs_readers();
  1215. mutex_unlock(&input_mutex);
  1216. device_unregister(&dev->dev);
  1217. }
  1218. EXPORT_SYMBOL(input_unregister_device);
  1219. /**
  1220. * input_register_handler - register a new input handler
  1221. * @handler: handler to be registered
  1222. *
  1223. * This function registers a new input handler (interface) for input
  1224. * devices in the system and attaches it to all input devices that
  1225. * are compatible with the handler.
  1226. */
  1227. int input_register_handler(struct input_handler *handler)
  1228. {
  1229. struct input_dev *dev;
  1230. int retval;
  1231. retval = mutex_lock_interruptible(&input_mutex);
  1232. if (retval)
  1233. return retval;
  1234. INIT_LIST_HEAD(&handler->h_list);
  1235. if (handler->fops != NULL) {
  1236. if (input_table[handler->minor >> 5]) {
  1237. retval = -EBUSY;
  1238. goto out;
  1239. }
  1240. input_table[handler->minor >> 5] = handler;
  1241. }
  1242. list_add_tail(&handler->node, &input_handler_list);
  1243. list_for_each_entry(dev, &input_dev_list, node)
  1244. input_attach_handler(dev, handler);
  1245. input_wakeup_procfs_readers();
  1246. out:
  1247. mutex_unlock(&input_mutex);
  1248. return retval;
  1249. }
  1250. EXPORT_SYMBOL(input_register_handler);
  1251. /**
  1252. * input_unregister_handler - unregisters an input handler
  1253. * @handler: handler to be unregistered
  1254. *
  1255. * This function disconnects a handler from its input devices and
  1256. * removes it from lists of known handlers.
  1257. */
  1258. void input_unregister_handler(struct input_handler *handler)
  1259. {
  1260. struct input_handle *handle, *next;
  1261. mutex_lock(&input_mutex);
  1262. list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
  1263. handler->disconnect(handle);
  1264. WARN_ON(!list_empty(&handler->h_list));
  1265. list_del_init(&handler->node);
  1266. if (handler->fops != NULL)
  1267. input_table[handler->minor >> 5] = NULL;
  1268. input_wakeup_procfs_readers();
  1269. mutex_unlock(&input_mutex);
  1270. }
  1271. EXPORT_SYMBOL(input_unregister_handler);
  1272. /**
  1273. * input_register_handle - register a new input handle
  1274. * @handle: handle to register
  1275. *
  1276. * This function puts a new input handle onto device's
  1277. * and handler's lists so that events can flow through
  1278. * it once it is opened using input_open_device().
  1279. *
  1280. * This function is supposed to be called from handler's
  1281. * connect() method.
  1282. */
  1283. int input_register_handle(struct input_handle *handle)
  1284. {
  1285. struct input_handler *handler = handle->handler;
  1286. struct input_dev *dev = handle->dev;
  1287. int error;
  1288. /*
  1289. * We take dev->mutex here to prevent race with
  1290. * input_release_device().
  1291. */
  1292. error = mutex_lock_interruptible(&dev->mutex);
  1293. if (error)
  1294. return error;
  1295. list_add_tail_rcu(&handle->d_node, &dev->h_list);
  1296. mutex_unlock(&dev->mutex);
  1297. /*
  1298. * Since we are supposed to be called from ->connect()
  1299. * which is mutually exclusive with ->disconnect()
  1300. * we can't be racing with input_unregister_handle()
  1301. * and so separate lock is not needed here.
  1302. */
  1303. list_add_tail(&handle->h_node, &handler->h_list);
  1304. if (handler->start)
  1305. handler->start(handle);
  1306. return 0;
  1307. }
  1308. EXPORT_SYMBOL(input_register_handle);
  1309. /**
  1310. * input_unregister_handle - unregister an input handle
  1311. * @handle: handle to unregister
  1312. *
  1313. * This function removes input handle from device's
  1314. * and handler's lists.
  1315. *
  1316. * This function is supposed to be called from handler's
  1317. * disconnect() method.
  1318. */
  1319. void input_unregister_handle(struct input_handle *handle)
  1320. {
  1321. struct input_dev *dev = handle->dev;
  1322. list_del_init(&handle->h_node);
  1323. /*
  1324. * Take dev->mutex to prevent race with input_release_device().
  1325. */
  1326. mutex_lock(&dev->mutex);
  1327. list_del_rcu(&handle->d_node);
  1328. mutex_unlock(&dev->mutex);
  1329. synchronize_rcu();
  1330. }
  1331. EXPORT_SYMBOL(input_unregister_handle);
  1332. static int input_open_file(struct inode *inode, struct file *file)
  1333. {
  1334. struct input_handler *handler;
  1335. const struct file_operations *old_fops, *new_fops = NULL;
  1336. int err;
  1337. lock_kernel();
  1338. /* No load-on-demand here? */
  1339. handler = input_table[iminor(inode) >> 5];
  1340. if (!handler || !(new_fops = fops_get(handler->fops))) {
  1341. err = -ENODEV;
  1342. goto out;
  1343. }
  1344. /*
  1345. * That's _really_ odd. Usually NULL ->open means "nothing special",
  1346. * not "no device". Oh, well...
  1347. */
  1348. if (!new_fops->open) {
  1349. fops_put(new_fops);
  1350. err = -ENODEV;
  1351. goto out;
  1352. }
  1353. old_fops = file->f_op;
  1354. file->f_op = new_fops;
  1355. err = new_fops->open(inode, file);
  1356. if (err) {
  1357. fops_put(file->f_op);
  1358. file->f_op = fops_get(old_fops);
  1359. }
  1360. fops_put(old_fops);
  1361. out:
  1362. unlock_kernel();
  1363. return err;
  1364. }
  1365. static const struct file_operations input_fops = {
  1366. .owner = THIS_MODULE,
  1367. .open = input_open_file,
  1368. };
  1369. static void __init input_init_abs_bypass(void)
  1370. {
  1371. const unsigned int *p;
  1372. for (p = input_abs_bypass_init_data; *p; p++)
  1373. input_abs_bypass[BIT_WORD(*p)] |= BIT_MASK(*p);
  1374. }
  1375. static int __init input_init(void)
  1376. {
  1377. int err;
  1378. input_init_abs_bypass();
  1379. err = class_register(&input_class);
  1380. if (err) {
  1381. printk(KERN_ERR "input: unable to register input_dev class\n");
  1382. return err;
  1383. }
  1384. err = input_proc_init();
  1385. if (err)
  1386. goto fail1;
  1387. err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
  1388. if (err) {
  1389. printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
  1390. goto fail2;
  1391. }
  1392. return 0;
  1393. fail2: input_proc_exit();
  1394. fail1: class_unregister(&input_class);
  1395. return err;
  1396. }
  1397. static void __exit input_exit(void)
  1398. {
  1399. input_proc_exit();
  1400. unregister_chrdev(INPUT_MAJOR, "input");
  1401. class_unregister(&input_class);
  1402. }
  1403. subsys_initcall(input_init);
  1404. module_exit(input_exit);