processor_idle.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238
  1. /*
  2. * processor_idle - idle state submodule to the ACPI processor driver
  3. *
  4. * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
  5. * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
  6. * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
  7. * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
  8. * - Added processor hotplug support
  9. * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
  10. * - Added support for C3 on SMP
  11. *
  12. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  13. *
  14. * This program is free software; you can redistribute it and/or modify
  15. * it under the terms of the GNU General Public License as published by
  16. * the Free Software Foundation; either version 2 of the License, or (at
  17. * your option) any later version.
  18. *
  19. * This program is distributed in the hope that it will be useful, but
  20. * WITHOUT ANY WARRANTY; without even the implied warranty of
  21. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  22. * General Public License for more details.
  23. *
  24. * You should have received a copy of the GNU General Public License along
  25. * with this program; if not, write to the Free Software Foundation, Inc.,
  26. * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
  27. *
  28. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  29. */
  30. #include <linux/kernel.h>
  31. #include <linux/module.h>
  32. #include <linux/init.h>
  33. #include <linux/cpufreq.h>
  34. #include <linux/proc_fs.h>
  35. #include <linux/seq_file.h>
  36. #include <linux/acpi.h>
  37. #include <linux/dmi.h>
  38. #include <linux/moduleparam.h>
  39. #include <linux/sched.h> /* need_resched() */
  40. #include <linux/pm_qos_params.h>
  41. #include <linux/clockchips.h>
  42. #include <linux/cpuidle.h>
  43. #include <linux/irqflags.h>
  44. /*
  45. * Include the apic definitions for x86 to have the APIC timer related defines
  46. * available also for UP (on SMP it gets magically included via linux/smp.h).
  47. * asm/acpi.h is not an option, as it would require more include magic. Also
  48. * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
  49. */
  50. #ifdef CONFIG_X86
  51. #include <asm/apic.h>
  52. #endif
  53. #include <asm/io.h>
  54. #include <asm/uaccess.h>
  55. #include <acpi/acpi_bus.h>
  56. #include <acpi/processor.h>
  57. #include <asm/processor.h>
  58. #define ACPI_PROCESSOR_CLASS "processor"
  59. #define _COMPONENT ACPI_PROCESSOR_COMPONENT
  60. ACPI_MODULE_NAME("processor_idle");
  61. #define ACPI_PROCESSOR_FILE_POWER "power"
  62. #define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY)
  63. #define C2_OVERHEAD 1 /* 1us */
  64. #define C3_OVERHEAD 1 /* 1us */
  65. #define PM_TIMER_TICKS_TO_US(p) (((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
  66. static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
  67. module_param(max_cstate, uint, 0000);
  68. static unsigned int nocst __read_mostly;
  69. module_param(nocst, uint, 0000);
  70. static unsigned int latency_factor __read_mostly = 2;
  71. module_param(latency_factor, uint, 0644);
  72. static s64 us_to_pm_timer_ticks(s64 t)
  73. {
  74. return div64_u64(t * PM_TIMER_FREQUENCY, 1000000);
  75. }
  76. /*
  77. * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
  78. * For now disable this. Probably a bug somewhere else.
  79. *
  80. * To skip this limit, boot/load with a large max_cstate limit.
  81. */
  82. static int set_max_cstate(const struct dmi_system_id *id)
  83. {
  84. if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
  85. return 0;
  86. printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
  87. " Override with \"processor.max_cstate=%d\"\n", id->ident,
  88. (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
  89. max_cstate = (long)id->driver_data;
  90. return 0;
  91. }
  92. /* Actually this shouldn't be __cpuinitdata, would be better to fix the
  93. callers to only run once -AK */
  94. static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
  95. { set_max_cstate, "Clevo 5600D", {
  96. DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
  97. DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
  98. (void *)2},
  99. {},
  100. };
  101. /*
  102. * Callers should disable interrupts before the call and enable
  103. * interrupts after return.
  104. */
  105. static void acpi_safe_halt(void)
  106. {
  107. current_thread_info()->status &= ~TS_POLLING;
  108. /*
  109. * TS_POLLING-cleared state must be visible before we
  110. * test NEED_RESCHED:
  111. */
  112. smp_mb();
  113. if (!need_resched()) {
  114. safe_halt();
  115. local_irq_disable();
  116. }
  117. current_thread_info()->status |= TS_POLLING;
  118. }
  119. #ifdef ARCH_APICTIMER_STOPS_ON_C3
  120. /*
  121. * Some BIOS implementations switch to C3 in the published C2 state.
  122. * This seems to be a common problem on AMD boxen, but other vendors
  123. * are affected too. We pick the most conservative approach: we assume
  124. * that the local APIC stops in both C2 and C3.
  125. */
  126. static void acpi_timer_check_state(int state, struct acpi_processor *pr,
  127. struct acpi_processor_cx *cx)
  128. {
  129. struct acpi_processor_power *pwr = &pr->power;
  130. u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
  131. if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
  132. return;
  133. /*
  134. * Check, if one of the previous states already marked the lapic
  135. * unstable
  136. */
  137. if (pwr->timer_broadcast_on_state < state)
  138. return;
  139. if (cx->type >= type)
  140. pr->power.timer_broadcast_on_state = state;
  141. }
  142. static void acpi_propagate_timer_broadcast(struct acpi_processor *pr)
  143. {
  144. unsigned long reason;
  145. reason = pr->power.timer_broadcast_on_state < INT_MAX ?
  146. CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
  147. clockevents_notify(reason, &pr->id);
  148. }
  149. /* Power(C) State timer broadcast control */
  150. static void acpi_state_timer_broadcast(struct acpi_processor *pr,
  151. struct acpi_processor_cx *cx,
  152. int broadcast)
  153. {
  154. int state = cx - pr->power.states;
  155. if (state >= pr->power.timer_broadcast_on_state) {
  156. unsigned long reason;
  157. reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
  158. CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
  159. clockevents_notify(reason, &pr->id);
  160. }
  161. }
  162. #else
  163. static void acpi_timer_check_state(int state, struct acpi_processor *pr,
  164. struct acpi_processor_cx *cstate) { }
  165. static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { }
  166. static void acpi_state_timer_broadcast(struct acpi_processor *pr,
  167. struct acpi_processor_cx *cx,
  168. int broadcast)
  169. {
  170. }
  171. #endif
  172. /*
  173. * Suspend / resume control
  174. */
  175. static int acpi_idle_suspend;
  176. static u32 saved_bm_rld;
  177. static void acpi_idle_bm_rld_save(void)
  178. {
  179. acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld);
  180. }
  181. static void acpi_idle_bm_rld_restore(void)
  182. {
  183. u32 resumed_bm_rld;
  184. acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld);
  185. if (resumed_bm_rld != saved_bm_rld)
  186. acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld);
  187. }
  188. int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
  189. {
  190. if (acpi_idle_suspend == 1)
  191. return 0;
  192. acpi_idle_bm_rld_save();
  193. acpi_idle_suspend = 1;
  194. return 0;
  195. }
  196. int acpi_processor_resume(struct acpi_device * device)
  197. {
  198. if (acpi_idle_suspend == 0)
  199. return 0;
  200. acpi_idle_bm_rld_restore();
  201. acpi_idle_suspend = 0;
  202. return 0;
  203. }
  204. #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
  205. static void tsc_check_state(int state)
  206. {
  207. switch (boot_cpu_data.x86_vendor) {
  208. case X86_VENDOR_AMD:
  209. case X86_VENDOR_INTEL:
  210. /*
  211. * AMD Fam10h TSC will tick in all
  212. * C/P/S0/S1 states when this bit is set.
  213. */
  214. if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
  215. return;
  216. /*FALL THROUGH*/
  217. default:
  218. /* TSC could halt in idle, so notify users */
  219. if (state > ACPI_STATE_C1)
  220. mark_tsc_unstable("TSC halts in idle");
  221. }
  222. }
  223. #else
  224. static void tsc_check_state(int state) { return; }
  225. #endif
  226. static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
  227. {
  228. if (!pr)
  229. return -EINVAL;
  230. if (!pr->pblk)
  231. return -ENODEV;
  232. /* if info is obtained from pblk/fadt, type equals state */
  233. pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
  234. pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
  235. #ifndef CONFIG_HOTPLUG_CPU
  236. /*
  237. * Check for P_LVL2_UP flag before entering C2 and above on
  238. * an SMP system.
  239. */
  240. if ((num_online_cpus() > 1) &&
  241. !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
  242. return -ENODEV;
  243. #endif
  244. /* determine C2 and C3 address from pblk */
  245. pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
  246. pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
  247. /* determine latencies from FADT */
  248. pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
  249. pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
  250. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  251. "lvl2[0x%08x] lvl3[0x%08x]\n",
  252. pr->power.states[ACPI_STATE_C2].address,
  253. pr->power.states[ACPI_STATE_C3].address));
  254. return 0;
  255. }
  256. static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
  257. {
  258. if (!pr->power.states[ACPI_STATE_C1].valid) {
  259. /* set the first C-State to C1 */
  260. /* all processors need to support C1 */
  261. pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
  262. pr->power.states[ACPI_STATE_C1].valid = 1;
  263. pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
  264. }
  265. /* the C0 state only exists as a filler in our array */
  266. pr->power.states[ACPI_STATE_C0].valid = 1;
  267. return 0;
  268. }
  269. static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
  270. {
  271. acpi_status status = 0;
  272. acpi_integer count;
  273. int current_count;
  274. int i;
  275. struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
  276. union acpi_object *cst;
  277. if (nocst)
  278. return -ENODEV;
  279. current_count = 0;
  280. status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
  281. if (ACPI_FAILURE(status)) {
  282. ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
  283. return -ENODEV;
  284. }
  285. cst = buffer.pointer;
  286. /* There must be at least 2 elements */
  287. if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
  288. printk(KERN_ERR PREFIX "not enough elements in _CST\n");
  289. status = -EFAULT;
  290. goto end;
  291. }
  292. count = cst->package.elements[0].integer.value;
  293. /* Validate number of power states. */
  294. if (count < 1 || count != cst->package.count - 1) {
  295. printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
  296. status = -EFAULT;
  297. goto end;
  298. }
  299. /* Tell driver that at least _CST is supported. */
  300. pr->flags.has_cst = 1;
  301. for (i = 1; i <= count; i++) {
  302. union acpi_object *element;
  303. union acpi_object *obj;
  304. struct acpi_power_register *reg;
  305. struct acpi_processor_cx cx;
  306. memset(&cx, 0, sizeof(cx));
  307. element = &(cst->package.elements[i]);
  308. if (element->type != ACPI_TYPE_PACKAGE)
  309. continue;
  310. if (element->package.count != 4)
  311. continue;
  312. obj = &(element->package.elements[0]);
  313. if (obj->type != ACPI_TYPE_BUFFER)
  314. continue;
  315. reg = (struct acpi_power_register *)obj->buffer.pointer;
  316. if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
  317. (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
  318. continue;
  319. /* There should be an easy way to extract an integer... */
  320. obj = &(element->package.elements[1]);
  321. if (obj->type != ACPI_TYPE_INTEGER)
  322. continue;
  323. cx.type = obj->integer.value;
  324. /*
  325. * Some buggy BIOSes won't list C1 in _CST -
  326. * Let acpi_processor_get_power_info_default() handle them later
  327. */
  328. if (i == 1 && cx.type != ACPI_STATE_C1)
  329. current_count++;
  330. cx.address = reg->address;
  331. cx.index = current_count + 1;
  332. cx.entry_method = ACPI_CSTATE_SYSTEMIO;
  333. if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
  334. if (acpi_processor_ffh_cstate_probe
  335. (pr->id, &cx, reg) == 0) {
  336. cx.entry_method = ACPI_CSTATE_FFH;
  337. } else if (cx.type == ACPI_STATE_C1) {
  338. /*
  339. * C1 is a special case where FIXED_HARDWARE
  340. * can be handled in non-MWAIT way as well.
  341. * In that case, save this _CST entry info.
  342. * Otherwise, ignore this info and continue.
  343. */
  344. cx.entry_method = ACPI_CSTATE_HALT;
  345. snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
  346. } else {
  347. continue;
  348. }
  349. if (cx.type == ACPI_STATE_C1 &&
  350. (idle_halt || idle_nomwait)) {
  351. /*
  352. * In most cases the C1 space_id obtained from
  353. * _CST object is FIXED_HARDWARE access mode.
  354. * But when the option of idle=halt is added,
  355. * the entry_method type should be changed from
  356. * CSTATE_FFH to CSTATE_HALT.
  357. * When the option of idle=nomwait is added,
  358. * the C1 entry_method type should be
  359. * CSTATE_HALT.
  360. */
  361. cx.entry_method = ACPI_CSTATE_HALT;
  362. snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
  363. }
  364. } else {
  365. snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
  366. cx.address);
  367. }
  368. if (cx.type == ACPI_STATE_C1) {
  369. cx.valid = 1;
  370. }
  371. obj = &(element->package.elements[2]);
  372. if (obj->type != ACPI_TYPE_INTEGER)
  373. continue;
  374. cx.latency = obj->integer.value;
  375. obj = &(element->package.elements[3]);
  376. if (obj->type != ACPI_TYPE_INTEGER)
  377. continue;
  378. cx.power = obj->integer.value;
  379. current_count++;
  380. memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
  381. /*
  382. * We support total ACPI_PROCESSOR_MAX_POWER - 1
  383. * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
  384. */
  385. if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
  386. printk(KERN_WARNING
  387. "Limiting number of power states to max (%d)\n",
  388. ACPI_PROCESSOR_MAX_POWER);
  389. printk(KERN_WARNING
  390. "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
  391. break;
  392. }
  393. }
  394. ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
  395. current_count));
  396. /* Validate number of power states discovered */
  397. if (current_count < 2)
  398. status = -EFAULT;
  399. end:
  400. kfree(buffer.pointer);
  401. return status;
  402. }
  403. static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
  404. {
  405. if (!cx->address)
  406. return;
  407. /*
  408. * C2 latency must be less than or equal to 100
  409. * microseconds.
  410. */
  411. else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
  412. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  413. "latency too large [%d]\n", cx->latency));
  414. return;
  415. }
  416. /*
  417. * Otherwise we've met all of our C2 requirements.
  418. * Normalize the C2 latency to expidite policy
  419. */
  420. cx->valid = 1;
  421. cx->latency_ticks = cx->latency;
  422. return;
  423. }
  424. static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
  425. struct acpi_processor_cx *cx)
  426. {
  427. static int bm_check_flag;
  428. if (!cx->address)
  429. return;
  430. /*
  431. * C3 latency must be less than or equal to 1000
  432. * microseconds.
  433. */
  434. else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
  435. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  436. "latency too large [%d]\n", cx->latency));
  437. return;
  438. }
  439. /*
  440. * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
  441. * DMA transfers are used by any ISA device to avoid livelock.
  442. * Note that we could disable Type-F DMA (as recommended by
  443. * the erratum), but this is known to disrupt certain ISA
  444. * devices thus we take the conservative approach.
  445. */
  446. else if (errata.piix4.fdma) {
  447. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  448. "C3 not supported on PIIX4 with Type-F DMA\n"));
  449. return;
  450. }
  451. /* All the logic here assumes flags.bm_check is same across all CPUs */
  452. if (!bm_check_flag) {
  453. /* Determine whether bm_check is needed based on CPU */
  454. acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
  455. bm_check_flag = pr->flags.bm_check;
  456. } else {
  457. pr->flags.bm_check = bm_check_flag;
  458. }
  459. if (pr->flags.bm_check) {
  460. if (!pr->flags.bm_control) {
  461. if (pr->flags.has_cst != 1) {
  462. /* bus mastering control is necessary */
  463. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  464. "C3 support requires BM control\n"));
  465. return;
  466. } else {
  467. /* Here we enter C3 without bus mastering */
  468. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  469. "C3 support without BM control\n"));
  470. }
  471. }
  472. } else {
  473. /*
  474. * WBINVD should be set in fadt, for C3 state to be
  475. * supported on when bm_check is not required.
  476. */
  477. if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
  478. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  479. "Cache invalidation should work properly"
  480. " for C3 to be enabled on SMP systems\n"));
  481. return;
  482. }
  483. }
  484. /*
  485. * Otherwise we've met all of our C3 requirements.
  486. * Normalize the C3 latency to expidite policy. Enable
  487. * checking of bus mastering status (bm_check) so we can
  488. * use this in our C3 policy
  489. */
  490. cx->valid = 1;
  491. cx->latency_ticks = cx->latency;
  492. /*
  493. * On older chipsets, BM_RLD needs to be set
  494. * in order for Bus Master activity to wake the
  495. * system from C3. Newer chipsets handle DMA
  496. * during C3 automatically and BM_RLD is a NOP.
  497. * In either case, the proper way to
  498. * handle BM_RLD is to set it and leave it set.
  499. */
  500. acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
  501. return;
  502. }
  503. static int acpi_processor_power_verify(struct acpi_processor *pr)
  504. {
  505. unsigned int i;
  506. unsigned int working = 0;
  507. pr->power.timer_broadcast_on_state = INT_MAX;
  508. for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
  509. struct acpi_processor_cx *cx = &pr->power.states[i];
  510. switch (cx->type) {
  511. case ACPI_STATE_C1:
  512. cx->valid = 1;
  513. break;
  514. case ACPI_STATE_C2:
  515. acpi_processor_power_verify_c2(cx);
  516. if (cx->valid)
  517. acpi_timer_check_state(i, pr, cx);
  518. break;
  519. case ACPI_STATE_C3:
  520. acpi_processor_power_verify_c3(pr, cx);
  521. if (cx->valid)
  522. acpi_timer_check_state(i, pr, cx);
  523. break;
  524. }
  525. if (cx->valid)
  526. tsc_check_state(cx->type);
  527. if (cx->valid)
  528. working++;
  529. }
  530. acpi_propagate_timer_broadcast(pr);
  531. return (working);
  532. }
  533. static int acpi_processor_get_power_info(struct acpi_processor *pr)
  534. {
  535. unsigned int i;
  536. int result;
  537. /* NOTE: the idle thread may not be running while calling
  538. * this function */
  539. /* Zero initialize all the C-states info. */
  540. memset(pr->power.states, 0, sizeof(pr->power.states));
  541. result = acpi_processor_get_power_info_cst(pr);
  542. if (result == -ENODEV)
  543. result = acpi_processor_get_power_info_fadt(pr);
  544. if (result)
  545. return result;
  546. acpi_processor_get_power_info_default(pr);
  547. pr->power.count = acpi_processor_power_verify(pr);
  548. /*
  549. * if one state of type C2 or C3 is available, mark this
  550. * CPU as being "idle manageable"
  551. */
  552. for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
  553. if (pr->power.states[i].valid) {
  554. pr->power.count = i;
  555. if (pr->power.states[i].type >= ACPI_STATE_C2)
  556. pr->flags.power = 1;
  557. }
  558. }
  559. return 0;
  560. }
  561. static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
  562. {
  563. struct acpi_processor *pr = seq->private;
  564. unsigned int i;
  565. if (!pr)
  566. goto end;
  567. seq_printf(seq, "active state: C%zd\n"
  568. "max_cstate: C%d\n"
  569. "maximum allowed latency: %d usec\n",
  570. pr->power.state ? pr->power.state - pr->power.states : 0,
  571. max_cstate, pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY));
  572. seq_puts(seq, "states:\n");
  573. for (i = 1; i <= pr->power.count; i++) {
  574. seq_printf(seq, " %cC%d: ",
  575. (&pr->power.states[i] ==
  576. pr->power.state ? '*' : ' '), i);
  577. if (!pr->power.states[i].valid) {
  578. seq_puts(seq, "<not supported>\n");
  579. continue;
  580. }
  581. switch (pr->power.states[i].type) {
  582. case ACPI_STATE_C1:
  583. seq_printf(seq, "type[C1] ");
  584. break;
  585. case ACPI_STATE_C2:
  586. seq_printf(seq, "type[C2] ");
  587. break;
  588. case ACPI_STATE_C3:
  589. seq_printf(seq, "type[C3] ");
  590. break;
  591. default:
  592. seq_printf(seq, "type[--] ");
  593. break;
  594. }
  595. if (pr->power.states[i].promotion.state)
  596. seq_printf(seq, "promotion[C%zd] ",
  597. (pr->power.states[i].promotion.state -
  598. pr->power.states));
  599. else
  600. seq_puts(seq, "promotion[--] ");
  601. if (pr->power.states[i].demotion.state)
  602. seq_printf(seq, "demotion[C%zd] ",
  603. (pr->power.states[i].demotion.state -
  604. pr->power.states));
  605. else
  606. seq_puts(seq, "demotion[--] ");
  607. seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
  608. pr->power.states[i].latency,
  609. pr->power.states[i].usage,
  610. (unsigned long long)pr->power.states[i].time);
  611. }
  612. end:
  613. return 0;
  614. }
  615. static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
  616. {
  617. return single_open(file, acpi_processor_power_seq_show,
  618. PDE(inode)->data);
  619. }
  620. static const struct file_operations acpi_processor_power_fops = {
  621. .owner = THIS_MODULE,
  622. .open = acpi_processor_power_open_fs,
  623. .read = seq_read,
  624. .llseek = seq_lseek,
  625. .release = single_release,
  626. };
  627. /**
  628. * acpi_idle_bm_check - checks if bus master activity was detected
  629. */
  630. static int acpi_idle_bm_check(void)
  631. {
  632. u32 bm_status = 0;
  633. acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
  634. if (bm_status)
  635. acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
  636. /*
  637. * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
  638. * the true state of bus mastering activity; forcing us to
  639. * manually check the BMIDEA bit of each IDE channel.
  640. */
  641. else if (errata.piix4.bmisx) {
  642. if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
  643. || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
  644. bm_status = 1;
  645. }
  646. return bm_status;
  647. }
  648. /**
  649. * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
  650. * @cx: cstate data
  651. *
  652. * Caller disables interrupt before call and enables interrupt after return.
  653. */
  654. static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
  655. {
  656. /* Don't trace irqs off for idle */
  657. stop_critical_timings();
  658. if (cx->entry_method == ACPI_CSTATE_FFH) {
  659. /* Call into architectural FFH based C-state */
  660. acpi_processor_ffh_cstate_enter(cx);
  661. } else if (cx->entry_method == ACPI_CSTATE_HALT) {
  662. acpi_safe_halt();
  663. } else {
  664. int unused;
  665. /* IO port based C-state */
  666. inb(cx->address);
  667. /* Dummy wait op - must do something useless after P_LVL2 read
  668. because chipsets cannot guarantee that STPCLK# signal
  669. gets asserted in time to freeze execution properly. */
  670. unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
  671. }
  672. start_critical_timings();
  673. }
  674. /**
  675. * acpi_idle_enter_c1 - enters an ACPI C1 state-type
  676. * @dev: the target CPU
  677. * @state: the state data
  678. *
  679. * This is equivalent to the HALT instruction.
  680. */
  681. static int acpi_idle_enter_c1(struct cpuidle_device *dev,
  682. struct cpuidle_state *state)
  683. {
  684. ktime_t kt1, kt2;
  685. s64 idle_time;
  686. struct acpi_processor *pr;
  687. struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
  688. pr = __get_cpu_var(processors);
  689. if (unlikely(!pr))
  690. return 0;
  691. local_irq_disable();
  692. /* Do not access any ACPI IO ports in suspend path */
  693. if (acpi_idle_suspend) {
  694. acpi_safe_halt();
  695. local_irq_enable();
  696. return 0;
  697. }
  698. kt1 = ktime_get_real();
  699. acpi_idle_do_entry(cx);
  700. kt2 = ktime_get_real();
  701. idle_time = ktime_to_us(ktime_sub(kt2, kt1));
  702. local_irq_enable();
  703. cx->usage++;
  704. return idle_time;
  705. }
  706. /**
  707. * acpi_idle_enter_simple - enters an ACPI state without BM handling
  708. * @dev: the target CPU
  709. * @state: the state data
  710. */
  711. static int acpi_idle_enter_simple(struct cpuidle_device *dev,
  712. struct cpuidle_state *state)
  713. {
  714. struct acpi_processor *pr;
  715. struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
  716. ktime_t kt1, kt2;
  717. s64 idle_time;
  718. s64 sleep_ticks = 0;
  719. pr = __get_cpu_var(processors);
  720. if (unlikely(!pr))
  721. return 0;
  722. if (acpi_idle_suspend)
  723. return(acpi_idle_enter_c1(dev, state));
  724. local_irq_disable();
  725. current_thread_info()->status &= ~TS_POLLING;
  726. /*
  727. * TS_POLLING-cleared state must be visible before we test
  728. * NEED_RESCHED:
  729. */
  730. smp_mb();
  731. if (unlikely(need_resched())) {
  732. current_thread_info()->status |= TS_POLLING;
  733. local_irq_enable();
  734. return 0;
  735. }
  736. /*
  737. * Must be done before busmaster disable as we might need to
  738. * access HPET !
  739. */
  740. acpi_state_timer_broadcast(pr, cx, 1);
  741. if (cx->type == ACPI_STATE_C3)
  742. ACPI_FLUSH_CPU_CACHE();
  743. kt1 = ktime_get_real();
  744. /* Tell the scheduler that we are going deep-idle: */
  745. sched_clock_idle_sleep_event();
  746. acpi_idle_do_entry(cx);
  747. kt2 = ktime_get_real();
  748. idle_time = ktime_to_us(ktime_sub(kt2, kt1));
  749. sleep_ticks = us_to_pm_timer_ticks(idle_time);
  750. /* Tell the scheduler how much we idled: */
  751. sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
  752. local_irq_enable();
  753. current_thread_info()->status |= TS_POLLING;
  754. cx->usage++;
  755. acpi_state_timer_broadcast(pr, cx, 0);
  756. cx->time += sleep_ticks;
  757. return idle_time;
  758. }
  759. static int c3_cpu_count;
  760. static DEFINE_SPINLOCK(c3_lock);
  761. /**
  762. * acpi_idle_enter_bm - enters C3 with proper BM handling
  763. * @dev: the target CPU
  764. * @state: the state data
  765. *
  766. * If BM is detected, the deepest non-C3 idle state is entered instead.
  767. */
  768. static int acpi_idle_enter_bm(struct cpuidle_device *dev,
  769. struct cpuidle_state *state)
  770. {
  771. struct acpi_processor *pr;
  772. struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
  773. ktime_t kt1, kt2;
  774. s64 idle_time;
  775. s64 sleep_ticks = 0;
  776. pr = __get_cpu_var(processors);
  777. if (unlikely(!pr))
  778. return 0;
  779. if (acpi_idle_suspend)
  780. return(acpi_idle_enter_c1(dev, state));
  781. if (acpi_idle_bm_check()) {
  782. if (dev->safe_state) {
  783. dev->last_state = dev->safe_state;
  784. return dev->safe_state->enter(dev, dev->safe_state);
  785. } else {
  786. local_irq_disable();
  787. acpi_safe_halt();
  788. local_irq_enable();
  789. return 0;
  790. }
  791. }
  792. local_irq_disable();
  793. current_thread_info()->status &= ~TS_POLLING;
  794. /*
  795. * TS_POLLING-cleared state must be visible before we test
  796. * NEED_RESCHED:
  797. */
  798. smp_mb();
  799. if (unlikely(need_resched())) {
  800. current_thread_info()->status |= TS_POLLING;
  801. local_irq_enable();
  802. return 0;
  803. }
  804. acpi_unlazy_tlb(smp_processor_id());
  805. /* Tell the scheduler that we are going deep-idle: */
  806. sched_clock_idle_sleep_event();
  807. /*
  808. * Must be done before busmaster disable as we might need to
  809. * access HPET !
  810. */
  811. acpi_state_timer_broadcast(pr, cx, 1);
  812. kt1 = ktime_get_real();
  813. /*
  814. * disable bus master
  815. * bm_check implies we need ARB_DIS
  816. * !bm_check implies we need cache flush
  817. * bm_control implies whether we can do ARB_DIS
  818. *
  819. * That leaves a case where bm_check is set and bm_control is
  820. * not set. In that case we cannot do much, we enter C3
  821. * without doing anything.
  822. */
  823. if (pr->flags.bm_check && pr->flags.bm_control) {
  824. spin_lock(&c3_lock);
  825. c3_cpu_count++;
  826. /* Disable bus master arbitration when all CPUs are in C3 */
  827. if (c3_cpu_count == num_online_cpus())
  828. acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
  829. spin_unlock(&c3_lock);
  830. } else if (!pr->flags.bm_check) {
  831. ACPI_FLUSH_CPU_CACHE();
  832. }
  833. acpi_idle_do_entry(cx);
  834. /* Re-enable bus master arbitration */
  835. if (pr->flags.bm_check && pr->flags.bm_control) {
  836. spin_lock(&c3_lock);
  837. acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
  838. c3_cpu_count--;
  839. spin_unlock(&c3_lock);
  840. }
  841. kt2 = ktime_get_real();
  842. idle_time = ktime_to_us(ktime_sub(kt2, kt1));
  843. sleep_ticks = us_to_pm_timer_ticks(idle_time);
  844. /* Tell the scheduler how much we idled: */
  845. sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
  846. local_irq_enable();
  847. current_thread_info()->status |= TS_POLLING;
  848. cx->usage++;
  849. acpi_state_timer_broadcast(pr, cx, 0);
  850. cx->time += sleep_ticks;
  851. return idle_time;
  852. }
  853. struct cpuidle_driver acpi_idle_driver = {
  854. .name = "acpi_idle",
  855. .owner = THIS_MODULE,
  856. };
  857. /**
  858. * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
  859. * @pr: the ACPI processor
  860. */
  861. static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
  862. {
  863. int i, count = CPUIDLE_DRIVER_STATE_START;
  864. struct acpi_processor_cx *cx;
  865. struct cpuidle_state *state;
  866. struct cpuidle_device *dev = &pr->power.dev;
  867. if (!pr->flags.power_setup_done)
  868. return -EINVAL;
  869. if (pr->flags.power == 0) {
  870. return -EINVAL;
  871. }
  872. dev->cpu = pr->id;
  873. for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
  874. dev->states[i].name[0] = '\0';
  875. dev->states[i].desc[0] = '\0';
  876. }
  877. if (max_cstate == 0)
  878. max_cstate = 1;
  879. for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
  880. cx = &pr->power.states[i];
  881. state = &dev->states[count];
  882. if (!cx->valid)
  883. continue;
  884. #ifdef CONFIG_HOTPLUG_CPU
  885. if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
  886. !pr->flags.has_cst &&
  887. !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
  888. continue;
  889. #endif
  890. cpuidle_set_statedata(state, cx);
  891. snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
  892. strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
  893. state->exit_latency = cx->latency;
  894. state->target_residency = cx->latency * latency_factor;
  895. state->power_usage = cx->power;
  896. state->flags = 0;
  897. switch (cx->type) {
  898. case ACPI_STATE_C1:
  899. state->flags |= CPUIDLE_FLAG_SHALLOW;
  900. if (cx->entry_method == ACPI_CSTATE_FFH)
  901. state->flags |= CPUIDLE_FLAG_TIME_VALID;
  902. state->enter = acpi_idle_enter_c1;
  903. dev->safe_state = state;
  904. break;
  905. case ACPI_STATE_C2:
  906. state->flags |= CPUIDLE_FLAG_BALANCED;
  907. state->flags |= CPUIDLE_FLAG_TIME_VALID;
  908. state->enter = acpi_idle_enter_simple;
  909. dev->safe_state = state;
  910. break;
  911. case ACPI_STATE_C3:
  912. state->flags |= CPUIDLE_FLAG_DEEP;
  913. state->flags |= CPUIDLE_FLAG_TIME_VALID;
  914. state->flags |= CPUIDLE_FLAG_CHECK_BM;
  915. state->enter = pr->flags.bm_check ?
  916. acpi_idle_enter_bm :
  917. acpi_idle_enter_simple;
  918. break;
  919. }
  920. count++;
  921. if (count == CPUIDLE_STATE_MAX)
  922. break;
  923. }
  924. dev->state_count = count;
  925. if (!count)
  926. return -EINVAL;
  927. return 0;
  928. }
  929. int acpi_processor_cst_has_changed(struct acpi_processor *pr)
  930. {
  931. int ret = 0;
  932. if (boot_option_idle_override)
  933. return 0;
  934. if (!pr)
  935. return -EINVAL;
  936. if (nocst) {
  937. return -ENODEV;
  938. }
  939. if (!pr->flags.power_setup_done)
  940. return -ENODEV;
  941. cpuidle_pause_and_lock();
  942. cpuidle_disable_device(&pr->power.dev);
  943. acpi_processor_get_power_info(pr);
  944. if (pr->flags.power) {
  945. acpi_processor_setup_cpuidle(pr);
  946. ret = cpuidle_enable_device(&pr->power.dev);
  947. }
  948. cpuidle_resume_and_unlock();
  949. return ret;
  950. }
  951. int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
  952. struct acpi_device *device)
  953. {
  954. acpi_status status = 0;
  955. static int first_run;
  956. struct proc_dir_entry *entry = NULL;
  957. unsigned int i;
  958. if (boot_option_idle_override)
  959. return 0;
  960. if (!first_run) {
  961. if (idle_halt) {
  962. /*
  963. * When the boot option of "idle=halt" is added, halt
  964. * is used for CPU IDLE.
  965. * In such case C2/C3 is meaningless. So the max_cstate
  966. * is set to one.
  967. */
  968. max_cstate = 1;
  969. }
  970. dmi_check_system(processor_power_dmi_table);
  971. max_cstate = acpi_processor_cstate_check(max_cstate);
  972. if (max_cstate < ACPI_C_STATES_MAX)
  973. printk(KERN_NOTICE
  974. "ACPI: processor limited to max C-state %d\n",
  975. max_cstate);
  976. first_run++;
  977. }
  978. if (!pr)
  979. return -EINVAL;
  980. if (acpi_gbl_FADT.cst_control && !nocst) {
  981. status =
  982. acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
  983. if (ACPI_FAILURE(status)) {
  984. ACPI_EXCEPTION((AE_INFO, status,
  985. "Notifying BIOS of _CST ability failed"));
  986. }
  987. }
  988. acpi_processor_get_power_info(pr);
  989. pr->flags.power_setup_done = 1;
  990. /*
  991. * Install the idle handler if processor power management is supported.
  992. * Note that we use previously set idle handler will be used on
  993. * platforms that only support C1.
  994. */
  995. if (pr->flags.power) {
  996. acpi_processor_setup_cpuidle(pr);
  997. if (cpuidle_register_device(&pr->power.dev))
  998. return -EIO;
  999. printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
  1000. for (i = 1; i <= pr->power.count; i++)
  1001. if (pr->power.states[i].valid)
  1002. printk(" C%d[C%d]", i,
  1003. pr->power.states[i].type);
  1004. printk(")\n");
  1005. }
  1006. /* 'power' [R] */
  1007. entry = proc_create_data(ACPI_PROCESSOR_FILE_POWER,
  1008. S_IRUGO, acpi_device_dir(device),
  1009. &acpi_processor_power_fops,
  1010. acpi_driver_data(device));
  1011. if (!entry)
  1012. return -EIO;
  1013. return 0;
  1014. }
  1015. int acpi_processor_power_exit(struct acpi_processor *pr,
  1016. struct acpi_device *device)
  1017. {
  1018. if (boot_option_idle_override)
  1019. return 0;
  1020. cpuidle_unregister_device(&pr->power.dev);
  1021. pr->flags.power_setup_done = 0;
  1022. if (acpi_device_dir(device))
  1023. remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
  1024. acpi_device_dir(device));
  1025. return 0;
  1026. }