pci-gart_64.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904
  1. /*
  2. * Dynamic DMA mapping support for AMD Hammer.
  3. *
  4. * Use the integrated AGP GART in the Hammer northbridge as an IOMMU for PCI.
  5. * This allows to use PCI devices that only support 32bit addresses on systems
  6. * with more than 4GB.
  7. *
  8. * See Documentation/PCI/PCI-DMA-mapping.txt for the interface specification.
  9. *
  10. * Copyright 2002 Andi Kleen, SuSE Labs.
  11. * Subject to the GNU General Public License v2 only.
  12. */
  13. #include <linux/types.h>
  14. #include <linux/ctype.h>
  15. #include <linux/agp_backend.h>
  16. #include <linux/init.h>
  17. #include <linux/mm.h>
  18. #include <linux/string.h>
  19. #include <linux/spinlock.h>
  20. #include <linux/pci.h>
  21. #include <linux/module.h>
  22. #include <linux/topology.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/bitops.h>
  25. #include <linux/kdebug.h>
  26. #include <linux/scatterlist.h>
  27. #include <linux/iommu-helper.h>
  28. #include <linux/sysdev.h>
  29. #include <linux/io.h>
  30. #include <asm/atomic.h>
  31. #include <asm/mtrr.h>
  32. #include <asm/pgtable.h>
  33. #include <asm/proto.h>
  34. #include <asm/iommu.h>
  35. #include <asm/gart.h>
  36. #include <asm/cacheflush.h>
  37. #include <asm/swiotlb.h>
  38. #include <asm/dma.h>
  39. #include <asm/k8.h>
  40. static unsigned long iommu_bus_base; /* GART remapping area (physical) */
  41. static unsigned long iommu_size; /* size of remapping area bytes */
  42. static unsigned long iommu_pages; /* .. and in pages */
  43. static u32 *iommu_gatt_base; /* Remapping table */
  44. /*
  45. * If this is disabled the IOMMU will use an optimized flushing strategy
  46. * of only flushing when an mapping is reused. With it true the GART is
  47. * flushed for every mapping. Problem is that doing the lazy flush seems
  48. * to trigger bugs with some popular PCI cards, in particular 3ware (but
  49. * has been also also seen with Qlogic at least).
  50. */
  51. static int iommu_fullflush = 1;
  52. /* Allocation bitmap for the remapping area: */
  53. static DEFINE_SPINLOCK(iommu_bitmap_lock);
  54. /* Guarded by iommu_bitmap_lock: */
  55. static unsigned long *iommu_gart_bitmap;
  56. static u32 gart_unmapped_entry;
  57. #define GPTE_VALID 1
  58. #define GPTE_COHERENT 2
  59. #define GPTE_ENCODE(x) \
  60. (((x) & 0xfffff000) | (((x) >> 32) << 4) | GPTE_VALID | GPTE_COHERENT)
  61. #define GPTE_DECODE(x) (((x) & 0xfffff000) | (((u64)(x) & 0xff0) << 28))
  62. #define EMERGENCY_PAGES 32 /* = 128KB */
  63. #ifdef CONFIG_AGP
  64. #define AGPEXTERN extern
  65. #else
  66. #define AGPEXTERN
  67. #endif
  68. /* backdoor interface to AGP driver */
  69. AGPEXTERN int agp_memory_reserved;
  70. AGPEXTERN __u32 *agp_gatt_table;
  71. static unsigned long next_bit; /* protected by iommu_bitmap_lock */
  72. static bool need_flush; /* global flush state. set for each gart wrap */
  73. static unsigned long alloc_iommu(struct device *dev, int size,
  74. unsigned long align_mask)
  75. {
  76. unsigned long offset, flags;
  77. unsigned long boundary_size;
  78. unsigned long base_index;
  79. base_index = ALIGN(iommu_bus_base & dma_get_seg_boundary(dev),
  80. PAGE_SIZE) >> PAGE_SHIFT;
  81. boundary_size = ALIGN((unsigned long long)dma_get_seg_boundary(dev) + 1,
  82. PAGE_SIZE) >> PAGE_SHIFT;
  83. spin_lock_irqsave(&iommu_bitmap_lock, flags);
  84. offset = iommu_area_alloc(iommu_gart_bitmap, iommu_pages, next_bit,
  85. size, base_index, boundary_size, align_mask);
  86. if (offset == -1) {
  87. need_flush = true;
  88. offset = iommu_area_alloc(iommu_gart_bitmap, iommu_pages, 0,
  89. size, base_index, boundary_size,
  90. align_mask);
  91. }
  92. if (offset != -1) {
  93. next_bit = offset+size;
  94. if (next_bit >= iommu_pages) {
  95. next_bit = 0;
  96. need_flush = true;
  97. }
  98. }
  99. if (iommu_fullflush)
  100. need_flush = true;
  101. spin_unlock_irqrestore(&iommu_bitmap_lock, flags);
  102. return offset;
  103. }
  104. static void free_iommu(unsigned long offset, int size)
  105. {
  106. unsigned long flags;
  107. spin_lock_irqsave(&iommu_bitmap_lock, flags);
  108. iommu_area_free(iommu_gart_bitmap, offset, size);
  109. if (offset >= next_bit)
  110. next_bit = offset + size;
  111. spin_unlock_irqrestore(&iommu_bitmap_lock, flags);
  112. }
  113. /*
  114. * Use global flush state to avoid races with multiple flushers.
  115. */
  116. static void flush_gart(void)
  117. {
  118. unsigned long flags;
  119. spin_lock_irqsave(&iommu_bitmap_lock, flags);
  120. if (need_flush) {
  121. k8_flush_garts();
  122. need_flush = false;
  123. }
  124. spin_unlock_irqrestore(&iommu_bitmap_lock, flags);
  125. }
  126. #ifdef CONFIG_IOMMU_LEAK
  127. #define SET_LEAK(x) \
  128. do { \
  129. if (iommu_leak_tab) \
  130. iommu_leak_tab[x] = __builtin_return_address(0);\
  131. } while (0)
  132. #define CLEAR_LEAK(x) \
  133. do { \
  134. if (iommu_leak_tab) \
  135. iommu_leak_tab[x] = NULL; \
  136. } while (0)
  137. /* Debugging aid for drivers that don't free their IOMMU tables */
  138. static void **iommu_leak_tab;
  139. static int leak_trace;
  140. static int iommu_leak_pages = 20;
  141. static void dump_leak(void)
  142. {
  143. int i;
  144. static int dump;
  145. if (dump || !iommu_leak_tab)
  146. return;
  147. dump = 1;
  148. show_stack(NULL, NULL);
  149. /* Very crude. dump some from the end of the table too */
  150. printk(KERN_DEBUG "Dumping %d pages from end of IOMMU:\n",
  151. iommu_leak_pages);
  152. for (i = 0; i < iommu_leak_pages; i += 2) {
  153. printk(KERN_DEBUG "%lu: ", iommu_pages-i);
  154. printk_address((unsigned long) iommu_leak_tab[iommu_pages-i],
  155. 0);
  156. printk(KERN_CONT "%c", (i+1)%2 == 0 ? '\n' : ' ');
  157. }
  158. printk(KERN_DEBUG "\n");
  159. }
  160. #else
  161. # define SET_LEAK(x)
  162. # define CLEAR_LEAK(x)
  163. #endif
  164. static void iommu_full(struct device *dev, size_t size, int dir)
  165. {
  166. /*
  167. * Ran out of IOMMU space for this operation. This is very bad.
  168. * Unfortunately the drivers cannot handle this operation properly.
  169. * Return some non mapped prereserved space in the aperture and
  170. * let the Northbridge deal with it. This will result in garbage
  171. * in the IO operation. When the size exceeds the prereserved space
  172. * memory corruption will occur or random memory will be DMAed
  173. * out. Hopefully no network devices use single mappings that big.
  174. */
  175. dev_err(dev, "PCI-DMA: Out of IOMMU space for %lu bytes\n", size);
  176. if (size > PAGE_SIZE*EMERGENCY_PAGES) {
  177. if (dir == PCI_DMA_FROMDEVICE || dir == PCI_DMA_BIDIRECTIONAL)
  178. panic("PCI-DMA: Memory would be corrupted\n");
  179. if (dir == PCI_DMA_TODEVICE || dir == PCI_DMA_BIDIRECTIONAL)
  180. panic(KERN_ERR
  181. "PCI-DMA: Random memory would be DMAed\n");
  182. }
  183. #ifdef CONFIG_IOMMU_LEAK
  184. dump_leak();
  185. #endif
  186. }
  187. static inline int
  188. need_iommu(struct device *dev, unsigned long addr, size_t size)
  189. {
  190. return force_iommu ||
  191. !is_buffer_dma_capable(*dev->dma_mask, addr, size);
  192. }
  193. static inline int
  194. nonforced_iommu(struct device *dev, unsigned long addr, size_t size)
  195. {
  196. return !is_buffer_dma_capable(*dev->dma_mask, addr, size);
  197. }
  198. /* Map a single continuous physical area into the IOMMU.
  199. * Caller needs to check if the iommu is needed and flush.
  200. */
  201. static dma_addr_t dma_map_area(struct device *dev, dma_addr_t phys_mem,
  202. size_t size, int dir, unsigned long align_mask)
  203. {
  204. unsigned long npages = iommu_num_pages(phys_mem, size, PAGE_SIZE);
  205. unsigned long iommu_page = alloc_iommu(dev, npages, align_mask);
  206. int i;
  207. if (iommu_page == -1) {
  208. if (!nonforced_iommu(dev, phys_mem, size))
  209. return phys_mem;
  210. if (panic_on_overflow)
  211. panic("dma_map_area overflow %lu bytes\n", size);
  212. iommu_full(dev, size, dir);
  213. return bad_dma_address;
  214. }
  215. for (i = 0; i < npages; i++) {
  216. iommu_gatt_base[iommu_page + i] = GPTE_ENCODE(phys_mem);
  217. SET_LEAK(iommu_page + i);
  218. phys_mem += PAGE_SIZE;
  219. }
  220. return iommu_bus_base + iommu_page*PAGE_SIZE + (phys_mem & ~PAGE_MASK);
  221. }
  222. /* Map a single area into the IOMMU */
  223. static dma_addr_t gart_map_page(struct device *dev, struct page *page,
  224. unsigned long offset, size_t size,
  225. enum dma_data_direction dir,
  226. struct dma_attrs *attrs)
  227. {
  228. unsigned long bus;
  229. phys_addr_t paddr = page_to_phys(page) + offset;
  230. if (!dev)
  231. dev = &x86_dma_fallback_dev;
  232. if (!need_iommu(dev, paddr, size))
  233. return paddr;
  234. bus = dma_map_area(dev, paddr, size, dir, 0);
  235. flush_gart();
  236. return bus;
  237. }
  238. /*
  239. * Free a DMA mapping.
  240. */
  241. static void gart_unmap_page(struct device *dev, dma_addr_t dma_addr,
  242. size_t size, enum dma_data_direction dir,
  243. struct dma_attrs *attrs)
  244. {
  245. unsigned long iommu_page;
  246. int npages;
  247. int i;
  248. if (dma_addr < iommu_bus_base + EMERGENCY_PAGES*PAGE_SIZE ||
  249. dma_addr >= iommu_bus_base + iommu_size)
  250. return;
  251. iommu_page = (dma_addr - iommu_bus_base)>>PAGE_SHIFT;
  252. npages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
  253. for (i = 0; i < npages; i++) {
  254. iommu_gatt_base[iommu_page + i] = gart_unmapped_entry;
  255. CLEAR_LEAK(iommu_page + i);
  256. }
  257. free_iommu(iommu_page, npages);
  258. }
  259. /*
  260. * Wrapper for pci_unmap_single working with scatterlists.
  261. */
  262. static void gart_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
  263. enum dma_data_direction dir, struct dma_attrs *attrs)
  264. {
  265. struct scatterlist *s;
  266. int i;
  267. for_each_sg(sg, s, nents, i) {
  268. if (!s->dma_length || !s->length)
  269. break;
  270. gart_unmap_page(dev, s->dma_address, s->dma_length, dir, NULL);
  271. }
  272. }
  273. /* Fallback for dma_map_sg in case of overflow */
  274. static int dma_map_sg_nonforce(struct device *dev, struct scatterlist *sg,
  275. int nents, int dir)
  276. {
  277. struct scatterlist *s;
  278. int i;
  279. #ifdef CONFIG_IOMMU_DEBUG
  280. printk(KERN_DEBUG "dma_map_sg overflow\n");
  281. #endif
  282. for_each_sg(sg, s, nents, i) {
  283. unsigned long addr = sg_phys(s);
  284. if (nonforced_iommu(dev, addr, s->length)) {
  285. addr = dma_map_area(dev, addr, s->length, dir, 0);
  286. if (addr == bad_dma_address) {
  287. if (i > 0)
  288. gart_unmap_sg(dev, sg, i, dir, NULL);
  289. nents = 0;
  290. sg[0].dma_length = 0;
  291. break;
  292. }
  293. }
  294. s->dma_address = addr;
  295. s->dma_length = s->length;
  296. }
  297. flush_gart();
  298. return nents;
  299. }
  300. /* Map multiple scatterlist entries continuous into the first. */
  301. static int __dma_map_cont(struct device *dev, struct scatterlist *start,
  302. int nelems, struct scatterlist *sout,
  303. unsigned long pages)
  304. {
  305. unsigned long iommu_start = alloc_iommu(dev, pages, 0);
  306. unsigned long iommu_page = iommu_start;
  307. struct scatterlist *s;
  308. int i;
  309. if (iommu_start == -1)
  310. return -1;
  311. for_each_sg(start, s, nelems, i) {
  312. unsigned long pages, addr;
  313. unsigned long phys_addr = s->dma_address;
  314. BUG_ON(s != start && s->offset);
  315. if (s == start) {
  316. sout->dma_address = iommu_bus_base;
  317. sout->dma_address += iommu_page*PAGE_SIZE + s->offset;
  318. sout->dma_length = s->length;
  319. } else {
  320. sout->dma_length += s->length;
  321. }
  322. addr = phys_addr;
  323. pages = iommu_num_pages(s->offset, s->length, PAGE_SIZE);
  324. while (pages--) {
  325. iommu_gatt_base[iommu_page] = GPTE_ENCODE(addr);
  326. SET_LEAK(iommu_page);
  327. addr += PAGE_SIZE;
  328. iommu_page++;
  329. }
  330. }
  331. BUG_ON(iommu_page - iommu_start != pages);
  332. return 0;
  333. }
  334. static inline int
  335. dma_map_cont(struct device *dev, struct scatterlist *start, int nelems,
  336. struct scatterlist *sout, unsigned long pages, int need)
  337. {
  338. if (!need) {
  339. BUG_ON(nelems != 1);
  340. sout->dma_address = start->dma_address;
  341. sout->dma_length = start->length;
  342. return 0;
  343. }
  344. return __dma_map_cont(dev, start, nelems, sout, pages);
  345. }
  346. /*
  347. * DMA map all entries in a scatterlist.
  348. * Merge chunks that have page aligned sizes into a continuous mapping.
  349. */
  350. static int gart_map_sg(struct device *dev, struct scatterlist *sg, int nents,
  351. enum dma_data_direction dir, struct dma_attrs *attrs)
  352. {
  353. struct scatterlist *s, *ps, *start_sg, *sgmap;
  354. int need = 0, nextneed, i, out, start;
  355. unsigned long pages = 0;
  356. unsigned int seg_size;
  357. unsigned int max_seg_size;
  358. if (nents == 0)
  359. return 0;
  360. if (!dev)
  361. dev = &x86_dma_fallback_dev;
  362. out = 0;
  363. start = 0;
  364. start_sg = sgmap = sg;
  365. seg_size = 0;
  366. max_seg_size = dma_get_max_seg_size(dev);
  367. ps = NULL; /* shut up gcc */
  368. for_each_sg(sg, s, nents, i) {
  369. dma_addr_t addr = sg_phys(s);
  370. s->dma_address = addr;
  371. BUG_ON(s->length == 0);
  372. nextneed = need_iommu(dev, addr, s->length);
  373. /* Handle the previous not yet processed entries */
  374. if (i > start) {
  375. /*
  376. * Can only merge when the last chunk ends on a
  377. * page boundary and the new one doesn't have an
  378. * offset.
  379. */
  380. if (!iommu_merge || !nextneed || !need || s->offset ||
  381. (s->length + seg_size > max_seg_size) ||
  382. (ps->offset + ps->length) % PAGE_SIZE) {
  383. if (dma_map_cont(dev, start_sg, i - start,
  384. sgmap, pages, need) < 0)
  385. goto error;
  386. out++;
  387. seg_size = 0;
  388. sgmap = sg_next(sgmap);
  389. pages = 0;
  390. start = i;
  391. start_sg = s;
  392. }
  393. }
  394. seg_size += s->length;
  395. need = nextneed;
  396. pages += iommu_num_pages(s->offset, s->length, PAGE_SIZE);
  397. ps = s;
  398. }
  399. if (dma_map_cont(dev, start_sg, i - start, sgmap, pages, need) < 0)
  400. goto error;
  401. out++;
  402. flush_gart();
  403. if (out < nents) {
  404. sgmap = sg_next(sgmap);
  405. sgmap->dma_length = 0;
  406. }
  407. return out;
  408. error:
  409. flush_gart();
  410. gart_unmap_sg(dev, sg, out, dir, NULL);
  411. /* When it was forced or merged try again in a dumb way */
  412. if (force_iommu || iommu_merge) {
  413. out = dma_map_sg_nonforce(dev, sg, nents, dir);
  414. if (out > 0)
  415. return out;
  416. }
  417. if (panic_on_overflow)
  418. panic("dma_map_sg: overflow on %lu pages\n", pages);
  419. iommu_full(dev, pages << PAGE_SHIFT, dir);
  420. for_each_sg(sg, s, nents, i)
  421. s->dma_address = bad_dma_address;
  422. return 0;
  423. }
  424. /* allocate and map a coherent mapping */
  425. static void *
  426. gart_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_addr,
  427. gfp_t flag)
  428. {
  429. dma_addr_t paddr;
  430. unsigned long align_mask;
  431. struct page *page;
  432. if (force_iommu && !(flag & GFP_DMA)) {
  433. flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
  434. page = alloc_pages(flag | __GFP_ZERO, get_order(size));
  435. if (!page)
  436. return NULL;
  437. align_mask = (1UL << get_order(size)) - 1;
  438. paddr = dma_map_area(dev, page_to_phys(page), size,
  439. DMA_BIDIRECTIONAL, align_mask);
  440. flush_gart();
  441. if (paddr != bad_dma_address) {
  442. *dma_addr = paddr;
  443. return page_address(page);
  444. }
  445. __free_pages(page, get_order(size));
  446. } else
  447. return dma_generic_alloc_coherent(dev, size, dma_addr, flag);
  448. return NULL;
  449. }
  450. /* free a coherent mapping */
  451. static void
  452. gart_free_coherent(struct device *dev, size_t size, void *vaddr,
  453. dma_addr_t dma_addr)
  454. {
  455. gart_unmap_page(dev, dma_addr, size, DMA_BIDIRECTIONAL, NULL);
  456. free_pages((unsigned long)vaddr, get_order(size));
  457. }
  458. static int no_agp;
  459. static __init unsigned long check_iommu_size(unsigned long aper, u64 aper_size)
  460. {
  461. unsigned long a;
  462. if (!iommu_size) {
  463. iommu_size = aper_size;
  464. if (!no_agp)
  465. iommu_size /= 2;
  466. }
  467. a = aper + iommu_size;
  468. iommu_size -= round_up(a, PMD_PAGE_SIZE) - a;
  469. if (iommu_size < 64*1024*1024) {
  470. printk(KERN_WARNING
  471. "PCI-DMA: Warning: Small IOMMU %luMB."
  472. " Consider increasing the AGP aperture in BIOS\n",
  473. iommu_size >> 20);
  474. }
  475. return iommu_size;
  476. }
  477. static __init unsigned read_aperture(struct pci_dev *dev, u32 *size)
  478. {
  479. unsigned aper_size = 0, aper_base_32, aper_order;
  480. u64 aper_base;
  481. pci_read_config_dword(dev, AMD64_GARTAPERTUREBASE, &aper_base_32);
  482. pci_read_config_dword(dev, AMD64_GARTAPERTURECTL, &aper_order);
  483. aper_order = (aper_order >> 1) & 7;
  484. aper_base = aper_base_32 & 0x7fff;
  485. aper_base <<= 25;
  486. aper_size = (32 * 1024 * 1024) << aper_order;
  487. if (aper_base + aper_size > 0x100000000UL || !aper_size)
  488. aper_base = 0;
  489. *size = aper_size;
  490. return aper_base;
  491. }
  492. static void enable_gart_translations(void)
  493. {
  494. int i;
  495. for (i = 0; i < num_k8_northbridges; i++) {
  496. struct pci_dev *dev = k8_northbridges[i];
  497. enable_gart_translation(dev, __pa(agp_gatt_table));
  498. }
  499. }
  500. /*
  501. * If fix_up_north_bridges is set, the north bridges have to be fixed up on
  502. * resume in the same way as they are handled in gart_iommu_hole_init().
  503. */
  504. static bool fix_up_north_bridges;
  505. static u32 aperture_order;
  506. static u32 aperture_alloc;
  507. void set_up_gart_resume(u32 aper_order, u32 aper_alloc)
  508. {
  509. fix_up_north_bridges = true;
  510. aperture_order = aper_order;
  511. aperture_alloc = aper_alloc;
  512. }
  513. static int gart_resume(struct sys_device *dev)
  514. {
  515. printk(KERN_INFO "PCI-DMA: Resuming GART IOMMU\n");
  516. if (fix_up_north_bridges) {
  517. int i;
  518. printk(KERN_INFO "PCI-DMA: Restoring GART aperture settings\n");
  519. for (i = 0; i < num_k8_northbridges; i++) {
  520. struct pci_dev *dev = k8_northbridges[i];
  521. /*
  522. * Don't enable translations just yet. That is the next
  523. * step. Restore the pre-suspend aperture settings.
  524. */
  525. pci_write_config_dword(dev, AMD64_GARTAPERTURECTL,
  526. aperture_order << 1);
  527. pci_write_config_dword(dev, AMD64_GARTAPERTUREBASE,
  528. aperture_alloc >> 25);
  529. }
  530. }
  531. enable_gart_translations();
  532. return 0;
  533. }
  534. static int gart_suspend(struct sys_device *dev, pm_message_t state)
  535. {
  536. return 0;
  537. }
  538. static struct sysdev_class gart_sysdev_class = {
  539. .name = "gart",
  540. .suspend = gart_suspend,
  541. .resume = gart_resume,
  542. };
  543. static struct sys_device device_gart = {
  544. .id = 0,
  545. .cls = &gart_sysdev_class,
  546. };
  547. /*
  548. * Private Northbridge GATT initialization in case we cannot use the
  549. * AGP driver for some reason.
  550. */
  551. static __init int init_k8_gatt(struct agp_kern_info *info)
  552. {
  553. unsigned aper_size, gatt_size, new_aper_size;
  554. unsigned aper_base, new_aper_base;
  555. struct pci_dev *dev;
  556. void *gatt;
  557. int i, error;
  558. printk(KERN_INFO "PCI-DMA: Disabling AGP.\n");
  559. aper_size = aper_base = info->aper_size = 0;
  560. dev = NULL;
  561. for (i = 0; i < num_k8_northbridges; i++) {
  562. dev = k8_northbridges[i];
  563. new_aper_base = read_aperture(dev, &new_aper_size);
  564. if (!new_aper_base)
  565. goto nommu;
  566. if (!aper_base) {
  567. aper_size = new_aper_size;
  568. aper_base = new_aper_base;
  569. }
  570. if (aper_size != new_aper_size || aper_base != new_aper_base)
  571. goto nommu;
  572. }
  573. if (!aper_base)
  574. goto nommu;
  575. info->aper_base = aper_base;
  576. info->aper_size = aper_size >> 20;
  577. gatt_size = (aper_size >> PAGE_SHIFT) * sizeof(u32);
  578. gatt = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
  579. get_order(gatt_size));
  580. if (!gatt)
  581. panic("Cannot allocate GATT table");
  582. if (set_memory_uc((unsigned long)gatt, gatt_size >> PAGE_SHIFT))
  583. panic("Could not set GART PTEs to uncacheable pages");
  584. agp_gatt_table = gatt;
  585. enable_gart_translations();
  586. error = sysdev_class_register(&gart_sysdev_class);
  587. if (!error)
  588. error = sysdev_register(&device_gart);
  589. if (error)
  590. panic("Could not register gart_sysdev -- "
  591. "would corrupt data on next suspend");
  592. flush_gart();
  593. printk(KERN_INFO "PCI-DMA: aperture base @ %x size %u KB\n",
  594. aper_base, aper_size>>10);
  595. return 0;
  596. nommu:
  597. /* Should not happen anymore */
  598. printk(KERN_WARNING "PCI-DMA: More than 4GB of RAM and no IOMMU\n"
  599. KERN_WARNING "falling back to iommu=soft.\n");
  600. return -1;
  601. }
  602. static struct dma_map_ops gart_dma_ops = {
  603. .map_sg = gart_map_sg,
  604. .unmap_sg = gart_unmap_sg,
  605. .map_page = gart_map_page,
  606. .unmap_page = gart_unmap_page,
  607. .alloc_coherent = gart_alloc_coherent,
  608. .free_coherent = gart_free_coherent,
  609. };
  610. void gart_iommu_shutdown(void)
  611. {
  612. struct pci_dev *dev;
  613. int i;
  614. if (no_agp && (dma_ops != &gart_dma_ops))
  615. return;
  616. for (i = 0; i < num_k8_northbridges; i++) {
  617. u32 ctl;
  618. dev = k8_northbridges[i];
  619. pci_read_config_dword(dev, AMD64_GARTAPERTURECTL, &ctl);
  620. ctl &= ~GARTEN;
  621. pci_write_config_dword(dev, AMD64_GARTAPERTURECTL, ctl);
  622. }
  623. }
  624. void __init gart_iommu_init(void)
  625. {
  626. struct agp_kern_info info;
  627. unsigned long iommu_start;
  628. unsigned long aper_base, aper_size;
  629. unsigned long start_pfn, end_pfn;
  630. unsigned long scratch;
  631. long i;
  632. if (cache_k8_northbridges() < 0 || num_k8_northbridges == 0)
  633. return;
  634. #ifndef CONFIG_AGP_AMD64
  635. no_agp = 1;
  636. #else
  637. /* Makefile puts PCI initialization via subsys_initcall first. */
  638. /* Add other K8 AGP bridge drivers here */
  639. no_agp = no_agp ||
  640. (agp_amd64_init() < 0) ||
  641. (agp_copy_info(agp_bridge, &info) < 0);
  642. #endif
  643. if (swiotlb)
  644. return;
  645. /* Did we detect a different HW IOMMU? */
  646. if (iommu_detected && !gart_iommu_aperture)
  647. return;
  648. if (no_iommu ||
  649. (!force_iommu && max_pfn <= MAX_DMA32_PFN) ||
  650. !gart_iommu_aperture ||
  651. (no_agp && init_k8_gatt(&info) < 0)) {
  652. if (max_pfn > MAX_DMA32_PFN) {
  653. printk(KERN_WARNING "More than 4GB of memory "
  654. "but GART IOMMU not available.\n");
  655. printk(KERN_WARNING "falling back to iommu=soft.\n");
  656. }
  657. return;
  658. }
  659. /* need to map that range */
  660. aper_size = info.aper_size << 20;
  661. aper_base = info.aper_base;
  662. end_pfn = (aper_base>>PAGE_SHIFT) + (aper_size>>PAGE_SHIFT);
  663. if (end_pfn > max_low_pfn_mapped) {
  664. start_pfn = (aper_base>>PAGE_SHIFT);
  665. init_memory_mapping(start_pfn<<PAGE_SHIFT, end_pfn<<PAGE_SHIFT);
  666. }
  667. printk(KERN_INFO "PCI-DMA: using GART IOMMU.\n");
  668. iommu_size = check_iommu_size(info.aper_base, aper_size);
  669. iommu_pages = iommu_size >> PAGE_SHIFT;
  670. iommu_gart_bitmap = (void *) __get_free_pages(GFP_KERNEL | __GFP_ZERO,
  671. get_order(iommu_pages/8));
  672. if (!iommu_gart_bitmap)
  673. panic("Cannot allocate iommu bitmap\n");
  674. #ifdef CONFIG_IOMMU_LEAK
  675. if (leak_trace) {
  676. iommu_leak_tab = (void *)__get_free_pages(GFP_KERNEL|__GFP_ZERO,
  677. get_order(iommu_pages*sizeof(void *)));
  678. if (!iommu_leak_tab)
  679. printk(KERN_DEBUG
  680. "PCI-DMA: Cannot allocate leak trace area\n");
  681. }
  682. #endif
  683. /*
  684. * Out of IOMMU space handling.
  685. * Reserve some invalid pages at the beginning of the GART.
  686. */
  687. iommu_area_reserve(iommu_gart_bitmap, 0, EMERGENCY_PAGES);
  688. agp_memory_reserved = iommu_size;
  689. printk(KERN_INFO
  690. "PCI-DMA: Reserving %luMB of IOMMU area in the AGP aperture\n",
  691. iommu_size >> 20);
  692. iommu_start = aper_size - iommu_size;
  693. iommu_bus_base = info.aper_base + iommu_start;
  694. bad_dma_address = iommu_bus_base;
  695. iommu_gatt_base = agp_gatt_table + (iommu_start>>PAGE_SHIFT);
  696. /*
  697. * Unmap the IOMMU part of the GART. The alias of the page is
  698. * always mapped with cache enabled and there is no full cache
  699. * coherency across the GART remapping. The unmapping avoids
  700. * automatic prefetches from the CPU allocating cache lines in
  701. * there. All CPU accesses are done via the direct mapping to
  702. * the backing memory. The GART address is only used by PCI
  703. * devices.
  704. */
  705. set_memory_np((unsigned long)__va(iommu_bus_base),
  706. iommu_size >> PAGE_SHIFT);
  707. /*
  708. * Tricky. The GART table remaps the physical memory range,
  709. * so the CPU wont notice potential aliases and if the memory
  710. * is remapped to UC later on, we might surprise the PCI devices
  711. * with a stray writeout of a cacheline. So play it sure and
  712. * do an explicit, full-scale wbinvd() _after_ having marked all
  713. * the pages as Not-Present:
  714. */
  715. wbinvd();
  716. /*
  717. * Try to workaround a bug (thanks to BenH):
  718. * Set unmapped entries to a scratch page instead of 0.
  719. * Any prefetches that hit unmapped entries won't get an bus abort
  720. * then. (P2P bridge may be prefetching on DMA reads).
  721. */
  722. scratch = get_zeroed_page(GFP_KERNEL);
  723. if (!scratch)
  724. panic("Cannot allocate iommu scratch page");
  725. gart_unmapped_entry = GPTE_ENCODE(__pa(scratch));
  726. for (i = EMERGENCY_PAGES; i < iommu_pages; i++)
  727. iommu_gatt_base[i] = gart_unmapped_entry;
  728. flush_gart();
  729. dma_ops = &gart_dma_ops;
  730. }
  731. void __init gart_parse_options(char *p)
  732. {
  733. int arg;
  734. #ifdef CONFIG_IOMMU_LEAK
  735. if (!strncmp(p, "leak", 4)) {
  736. leak_trace = 1;
  737. p += 4;
  738. if (*p == '=')
  739. ++p;
  740. if (isdigit(*p) && get_option(&p, &arg))
  741. iommu_leak_pages = arg;
  742. }
  743. #endif
  744. if (isdigit(*p) && get_option(&p, &arg))
  745. iommu_size = arg;
  746. if (!strncmp(p, "fullflush", 8))
  747. iommu_fullflush = 1;
  748. if (!strncmp(p, "nofullflush", 11))
  749. iommu_fullflush = 0;
  750. if (!strncmp(p, "noagp", 5))
  751. no_agp = 1;
  752. if (!strncmp(p, "noaperture", 10))
  753. fix_aperture = 0;
  754. /* duplicated from pci-dma.c */
  755. if (!strncmp(p, "force", 5))
  756. gart_iommu_aperture_allowed = 1;
  757. if (!strncmp(p, "allowed", 7))
  758. gart_iommu_aperture_allowed = 1;
  759. if (!strncmp(p, "memaper", 7)) {
  760. fallback_aper_force = 1;
  761. p += 7;
  762. if (*p == '=') {
  763. ++p;
  764. if (get_option(&p, &arg))
  765. fallback_aper_order = arg;
  766. }
  767. }
  768. }