vmem.c 8.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384
  1. /*
  2. * arch/s390/mm/vmem.c
  3. *
  4. * Copyright IBM Corp. 2006
  5. * Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
  6. */
  7. #include <linux/bootmem.h>
  8. #include <linux/pfn.h>
  9. #include <linux/mm.h>
  10. #include <linux/module.h>
  11. #include <linux/list.h>
  12. #include <linux/hugetlb.h>
  13. #include <asm/pgalloc.h>
  14. #include <asm/pgtable.h>
  15. #include <asm/setup.h>
  16. #include <asm/tlbflush.h>
  17. #include <asm/sections.h>
  18. static DEFINE_MUTEX(vmem_mutex);
  19. struct memory_segment {
  20. struct list_head list;
  21. unsigned long start;
  22. unsigned long size;
  23. };
  24. static LIST_HEAD(mem_segs);
  25. static void __ref *vmem_alloc_pages(unsigned int order)
  26. {
  27. if (slab_is_available())
  28. return (void *)__get_free_pages(GFP_KERNEL, order);
  29. return alloc_bootmem_pages((1 << order) * PAGE_SIZE);
  30. }
  31. static inline pud_t *vmem_pud_alloc(void)
  32. {
  33. pud_t *pud = NULL;
  34. #ifdef CONFIG_64BIT
  35. pud = vmem_alloc_pages(2);
  36. if (!pud)
  37. return NULL;
  38. clear_table((unsigned long *) pud, _REGION3_ENTRY_EMPTY, PAGE_SIZE * 4);
  39. #endif
  40. return pud;
  41. }
  42. static inline pmd_t *vmem_pmd_alloc(void)
  43. {
  44. pmd_t *pmd = NULL;
  45. #ifdef CONFIG_64BIT
  46. pmd = vmem_alloc_pages(2);
  47. if (!pmd)
  48. return NULL;
  49. clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE * 4);
  50. #endif
  51. return pmd;
  52. }
  53. static pte_t __ref *vmem_pte_alloc(void)
  54. {
  55. pte_t *pte;
  56. if (slab_is_available())
  57. pte = (pte_t *) page_table_alloc(&init_mm);
  58. else
  59. pte = alloc_bootmem(PTRS_PER_PTE * sizeof(pte_t));
  60. if (!pte)
  61. return NULL;
  62. clear_table((unsigned long *) pte, _PAGE_TYPE_EMPTY,
  63. PTRS_PER_PTE * sizeof(pte_t));
  64. return pte;
  65. }
  66. /*
  67. * Add a physical memory range to the 1:1 mapping.
  68. */
  69. static int vmem_add_mem(unsigned long start, unsigned long size, int ro)
  70. {
  71. unsigned long address;
  72. pgd_t *pg_dir;
  73. pud_t *pu_dir;
  74. pmd_t *pm_dir;
  75. pte_t *pt_dir;
  76. pte_t pte;
  77. int ret = -ENOMEM;
  78. for (address = start; address < start + size; address += PAGE_SIZE) {
  79. pg_dir = pgd_offset_k(address);
  80. if (pgd_none(*pg_dir)) {
  81. pu_dir = vmem_pud_alloc();
  82. if (!pu_dir)
  83. goto out;
  84. pgd_populate_kernel(&init_mm, pg_dir, pu_dir);
  85. }
  86. pu_dir = pud_offset(pg_dir, address);
  87. if (pud_none(*pu_dir)) {
  88. pm_dir = vmem_pmd_alloc();
  89. if (!pm_dir)
  90. goto out;
  91. pud_populate_kernel(&init_mm, pu_dir, pm_dir);
  92. }
  93. pte = mk_pte_phys(address, __pgprot(ro ? _PAGE_RO : 0));
  94. pm_dir = pmd_offset(pu_dir, address);
  95. #ifdef __s390x__
  96. if (MACHINE_HAS_HPAGE && !(address & ~HPAGE_MASK) &&
  97. (address + HPAGE_SIZE <= start + size) &&
  98. (address >= HPAGE_SIZE)) {
  99. pte_val(pte) |= _SEGMENT_ENTRY_LARGE;
  100. pmd_val(*pm_dir) = pte_val(pte);
  101. address += HPAGE_SIZE - PAGE_SIZE;
  102. continue;
  103. }
  104. #endif
  105. if (pmd_none(*pm_dir)) {
  106. pt_dir = vmem_pte_alloc();
  107. if (!pt_dir)
  108. goto out;
  109. pmd_populate_kernel(&init_mm, pm_dir, pt_dir);
  110. }
  111. pt_dir = pte_offset_kernel(pm_dir, address);
  112. *pt_dir = pte;
  113. }
  114. ret = 0;
  115. out:
  116. flush_tlb_kernel_range(start, start + size);
  117. return ret;
  118. }
  119. /*
  120. * Remove a physical memory range from the 1:1 mapping.
  121. * Currently only invalidates page table entries.
  122. */
  123. static void vmem_remove_range(unsigned long start, unsigned long size)
  124. {
  125. unsigned long address;
  126. pgd_t *pg_dir;
  127. pud_t *pu_dir;
  128. pmd_t *pm_dir;
  129. pte_t *pt_dir;
  130. pte_t pte;
  131. pte_val(pte) = _PAGE_TYPE_EMPTY;
  132. for (address = start; address < start + size; address += PAGE_SIZE) {
  133. pg_dir = pgd_offset_k(address);
  134. pu_dir = pud_offset(pg_dir, address);
  135. if (pud_none(*pu_dir))
  136. continue;
  137. pm_dir = pmd_offset(pu_dir, address);
  138. if (pmd_none(*pm_dir))
  139. continue;
  140. if (pmd_huge(*pm_dir)) {
  141. pmd_clear_kernel(pm_dir);
  142. address += HPAGE_SIZE - PAGE_SIZE;
  143. continue;
  144. }
  145. pt_dir = pte_offset_kernel(pm_dir, address);
  146. *pt_dir = pte;
  147. }
  148. flush_tlb_kernel_range(start, start + size);
  149. }
  150. /*
  151. * Add a backed mem_map array to the virtual mem_map array.
  152. */
  153. int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
  154. {
  155. unsigned long address, start_addr, end_addr;
  156. pgd_t *pg_dir;
  157. pud_t *pu_dir;
  158. pmd_t *pm_dir;
  159. pte_t *pt_dir;
  160. pte_t pte;
  161. int ret = -ENOMEM;
  162. start_addr = (unsigned long) start;
  163. end_addr = (unsigned long) (start + nr);
  164. for (address = start_addr; address < end_addr; address += PAGE_SIZE) {
  165. pg_dir = pgd_offset_k(address);
  166. if (pgd_none(*pg_dir)) {
  167. pu_dir = vmem_pud_alloc();
  168. if (!pu_dir)
  169. goto out;
  170. pgd_populate_kernel(&init_mm, pg_dir, pu_dir);
  171. }
  172. pu_dir = pud_offset(pg_dir, address);
  173. if (pud_none(*pu_dir)) {
  174. pm_dir = vmem_pmd_alloc();
  175. if (!pm_dir)
  176. goto out;
  177. pud_populate_kernel(&init_mm, pu_dir, pm_dir);
  178. }
  179. pm_dir = pmd_offset(pu_dir, address);
  180. if (pmd_none(*pm_dir)) {
  181. pt_dir = vmem_pte_alloc();
  182. if (!pt_dir)
  183. goto out;
  184. pmd_populate_kernel(&init_mm, pm_dir, pt_dir);
  185. }
  186. pt_dir = pte_offset_kernel(pm_dir, address);
  187. if (pte_none(*pt_dir)) {
  188. unsigned long new_page;
  189. new_page =__pa(vmem_alloc_pages(0));
  190. if (!new_page)
  191. goto out;
  192. pte = pfn_pte(new_page >> PAGE_SHIFT, PAGE_KERNEL);
  193. *pt_dir = pte;
  194. }
  195. }
  196. memset(start, 0, nr * sizeof(struct page));
  197. ret = 0;
  198. out:
  199. flush_tlb_kernel_range(start_addr, end_addr);
  200. return ret;
  201. }
  202. /*
  203. * Add memory segment to the segment list if it doesn't overlap with
  204. * an already present segment.
  205. */
  206. static int insert_memory_segment(struct memory_segment *seg)
  207. {
  208. struct memory_segment *tmp;
  209. if (seg->start + seg->size > VMEM_MAX_PHYS ||
  210. seg->start + seg->size < seg->start)
  211. return -ERANGE;
  212. list_for_each_entry(tmp, &mem_segs, list) {
  213. if (seg->start >= tmp->start + tmp->size)
  214. continue;
  215. if (seg->start + seg->size <= tmp->start)
  216. continue;
  217. return -ENOSPC;
  218. }
  219. list_add(&seg->list, &mem_segs);
  220. return 0;
  221. }
  222. /*
  223. * Remove memory segment from the segment list.
  224. */
  225. static void remove_memory_segment(struct memory_segment *seg)
  226. {
  227. list_del(&seg->list);
  228. }
  229. static void __remove_shared_memory(struct memory_segment *seg)
  230. {
  231. remove_memory_segment(seg);
  232. vmem_remove_range(seg->start, seg->size);
  233. }
  234. int vmem_remove_mapping(unsigned long start, unsigned long size)
  235. {
  236. struct memory_segment *seg;
  237. int ret;
  238. mutex_lock(&vmem_mutex);
  239. ret = -ENOENT;
  240. list_for_each_entry(seg, &mem_segs, list) {
  241. if (seg->start == start && seg->size == size)
  242. break;
  243. }
  244. if (seg->start != start || seg->size != size)
  245. goto out;
  246. ret = 0;
  247. __remove_shared_memory(seg);
  248. kfree(seg);
  249. out:
  250. mutex_unlock(&vmem_mutex);
  251. return ret;
  252. }
  253. int vmem_add_mapping(unsigned long start, unsigned long size)
  254. {
  255. struct memory_segment *seg;
  256. int ret;
  257. mutex_lock(&vmem_mutex);
  258. ret = -ENOMEM;
  259. seg = kzalloc(sizeof(*seg), GFP_KERNEL);
  260. if (!seg)
  261. goto out;
  262. seg->start = start;
  263. seg->size = size;
  264. ret = insert_memory_segment(seg);
  265. if (ret)
  266. goto out_free;
  267. ret = vmem_add_mem(start, size, 0);
  268. if (ret)
  269. goto out_remove;
  270. goto out;
  271. out_remove:
  272. __remove_shared_memory(seg);
  273. out_free:
  274. kfree(seg);
  275. out:
  276. mutex_unlock(&vmem_mutex);
  277. return ret;
  278. }
  279. /*
  280. * map whole physical memory to virtual memory (identity mapping)
  281. * we reserve enough space in the vmalloc area for vmemmap to hotplug
  282. * additional memory segments.
  283. */
  284. void __init vmem_map_init(void)
  285. {
  286. unsigned long ro_start, ro_end;
  287. unsigned long start, end;
  288. int i;
  289. INIT_LIST_HEAD(&init_mm.context.crst_list);
  290. INIT_LIST_HEAD(&init_mm.context.pgtable_list);
  291. init_mm.context.noexec = 0;
  292. ro_start = ((unsigned long)&_stext) & PAGE_MASK;
  293. ro_end = PFN_ALIGN((unsigned long)&_eshared);
  294. for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
  295. start = memory_chunk[i].addr;
  296. end = memory_chunk[i].addr + memory_chunk[i].size;
  297. if (start >= ro_end || end <= ro_start)
  298. vmem_add_mem(start, end - start, 0);
  299. else if (start >= ro_start && end <= ro_end)
  300. vmem_add_mem(start, end - start, 1);
  301. else if (start >= ro_start) {
  302. vmem_add_mem(start, ro_end - start, 1);
  303. vmem_add_mem(ro_end, end - ro_end, 0);
  304. } else if (end < ro_end) {
  305. vmem_add_mem(start, ro_start - start, 0);
  306. vmem_add_mem(ro_start, end - ro_start, 1);
  307. } else {
  308. vmem_add_mem(start, ro_start - start, 0);
  309. vmem_add_mem(ro_start, ro_end - ro_start, 1);
  310. vmem_add_mem(ro_end, end - ro_end, 0);
  311. }
  312. }
  313. }
  314. /*
  315. * Convert memory chunk array to a memory segment list so there is a single
  316. * list that contains both r/w memory and shared memory segments.
  317. */
  318. static int __init vmem_convert_memory_chunk(void)
  319. {
  320. struct memory_segment *seg;
  321. int i;
  322. mutex_lock(&vmem_mutex);
  323. for (i = 0; i < MEMORY_CHUNKS; i++) {
  324. if (!memory_chunk[i].size)
  325. continue;
  326. seg = kzalloc(sizeof(*seg), GFP_KERNEL);
  327. if (!seg)
  328. panic("Out of memory...\n");
  329. seg->start = memory_chunk[i].addr;
  330. seg->size = memory_chunk[i].size;
  331. insert_memory_segment(seg);
  332. }
  333. mutex_unlock(&vmem_mutex);
  334. return 0;
  335. }
  336. core_initcall(vmem_convert_memory_chunk);