tlb_hash64.c 6.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211
  1. /*
  2. * This file contains the routines for flushing entries from the
  3. * TLB and MMU hash table.
  4. *
  5. * Derived from arch/ppc64/mm/init.c:
  6. * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  7. *
  8. * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
  9. * and Cort Dougan (PReP) (cort@cs.nmt.edu)
  10. * Copyright (C) 1996 Paul Mackerras
  11. *
  12. * Derived from "arch/i386/mm/init.c"
  13. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  14. *
  15. * Dave Engebretsen <engebret@us.ibm.com>
  16. * Rework for PPC64 port.
  17. *
  18. * This program is free software; you can redistribute it and/or
  19. * modify it under the terms of the GNU General Public License
  20. * as published by the Free Software Foundation; either version
  21. * 2 of the License, or (at your option) any later version.
  22. */
  23. #include <linux/kernel.h>
  24. #include <linux/mm.h>
  25. #include <linux/init.h>
  26. #include <linux/percpu.h>
  27. #include <linux/hardirq.h>
  28. #include <asm/pgalloc.h>
  29. #include <asm/tlbflush.h>
  30. #include <asm/tlb.h>
  31. #include <asm/bug.h>
  32. DEFINE_PER_CPU(struct ppc64_tlb_batch, ppc64_tlb_batch);
  33. /* This is declared as we are using the more or less generic
  34. * arch/powerpc/include/asm/tlb.h file -- tgall
  35. */
  36. DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
  37. /*
  38. * A linux PTE was changed and the corresponding hash table entry
  39. * neesd to be flushed. This function will either perform the flush
  40. * immediately or will batch it up if the current CPU has an active
  41. * batch on it.
  42. *
  43. * Must be called from within some kind of spinlock/non-preempt region...
  44. */
  45. void hpte_need_flush(struct mm_struct *mm, unsigned long addr,
  46. pte_t *ptep, unsigned long pte, int huge)
  47. {
  48. struct ppc64_tlb_batch *batch = &__get_cpu_var(ppc64_tlb_batch);
  49. unsigned long vsid, vaddr;
  50. unsigned int psize;
  51. int ssize;
  52. real_pte_t rpte;
  53. int i;
  54. i = batch->index;
  55. /* We mask the address for the base page size. Huge pages will
  56. * have applied their own masking already
  57. */
  58. addr &= PAGE_MASK;
  59. /* Get page size (maybe move back to caller).
  60. *
  61. * NOTE: when using special 64K mappings in 4K environment like
  62. * for SPEs, we obtain the page size from the slice, which thus
  63. * must still exist (and thus the VMA not reused) at the time
  64. * of this call
  65. */
  66. if (huge) {
  67. #ifdef CONFIG_HUGETLB_PAGE
  68. psize = get_slice_psize(mm, addr);;
  69. #else
  70. BUG();
  71. psize = pte_pagesize_index(mm, addr, pte); /* shutup gcc */
  72. #endif
  73. } else
  74. psize = pte_pagesize_index(mm, addr, pte);
  75. /* Build full vaddr */
  76. if (!is_kernel_addr(addr)) {
  77. ssize = user_segment_size(addr);
  78. vsid = get_vsid(mm->context.id, addr, ssize);
  79. WARN_ON(vsid == 0);
  80. } else {
  81. vsid = get_kernel_vsid(addr, mmu_kernel_ssize);
  82. ssize = mmu_kernel_ssize;
  83. }
  84. vaddr = hpt_va(addr, vsid, ssize);
  85. rpte = __real_pte(__pte(pte), ptep);
  86. /*
  87. * Check if we have an active batch on this CPU. If not, just
  88. * flush now and return. For now, we don global invalidates
  89. * in that case, might be worth testing the mm cpu mask though
  90. * and decide to use local invalidates instead...
  91. */
  92. if (!batch->active) {
  93. flush_hash_page(vaddr, rpte, psize, ssize, 0);
  94. return;
  95. }
  96. /*
  97. * This can happen when we are in the middle of a TLB batch and
  98. * we encounter memory pressure (eg copy_page_range when it tries
  99. * to allocate a new pte). If we have to reclaim memory and end
  100. * up scanning and resetting referenced bits then our batch context
  101. * will change mid stream.
  102. *
  103. * We also need to ensure only one page size is present in a given
  104. * batch
  105. */
  106. if (i != 0 && (mm != batch->mm || batch->psize != psize ||
  107. batch->ssize != ssize)) {
  108. __flush_tlb_pending(batch);
  109. i = 0;
  110. }
  111. if (i == 0) {
  112. batch->mm = mm;
  113. batch->psize = psize;
  114. batch->ssize = ssize;
  115. }
  116. batch->pte[i] = rpte;
  117. batch->vaddr[i] = vaddr;
  118. batch->index = ++i;
  119. if (i >= PPC64_TLB_BATCH_NR)
  120. __flush_tlb_pending(batch);
  121. }
  122. /*
  123. * This function is called when terminating an mmu batch or when a batch
  124. * is full. It will perform the flush of all the entries currently stored
  125. * in a batch.
  126. *
  127. * Must be called from within some kind of spinlock/non-preempt region...
  128. */
  129. void __flush_tlb_pending(struct ppc64_tlb_batch *batch)
  130. {
  131. const struct cpumask *tmp;
  132. int i, local = 0;
  133. i = batch->index;
  134. tmp = cpumask_of(smp_processor_id());
  135. if (cpumask_equal(mm_cpumask(batch->mm), tmp))
  136. local = 1;
  137. if (i == 1)
  138. flush_hash_page(batch->vaddr[0], batch->pte[0],
  139. batch->psize, batch->ssize, local);
  140. else
  141. flush_hash_range(i, local);
  142. batch->index = 0;
  143. }
  144. /**
  145. * __flush_hash_table_range - Flush all HPTEs for a given address range
  146. * from the hash table (and the TLB). But keeps
  147. * the linux PTEs intact.
  148. *
  149. * @mm : mm_struct of the target address space (generally init_mm)
  150. * @start : starting address
  151. * @end : ending address (not included in the flush)
  152. *
  153. * This function is mostly to be used by some IO hotplug code in order
  154. * to remove all hash entries from a given address range used to map IO
  155. * space on a removed PCI-PCI bidge without tearing down the full mapping
  156. * since 64K pages may overlap with other bridges when using 64K pages
  157. * with 4K HW pages on IO space.
  158. *
  159. * Because of that usage pattern, it's only available with CONFIG_HOTPLUG
  160. * and is implemented for small size rather than speed.
  161. */
  162. #ifdef CONFIG_HOTPLUG
  163. void __flush_hash_table_range(struct mm_struct *mm, unsigned long start,
  164. unsigned long end)
  165. {
  166. unsigned long flags;
  167. start = _ALIGN_DOWN(start, PAGE_SIZE);
  168. end = _ALIGN_UP(end, PAGE_SIZE);
  169. BUG_ON(!mm->pgd);
  170. /* Note: Normally, we should only ever use a batch within a
  171. * PTE locked section. This violates the rule, but will work
  172. * since we don't actually modify the PTEs, we just flush the
  173. * hash while leaving the PTEs intact (including their reference
  174. * to being hashed). This is not the most performance oriented
  175. * way to do things but is fine for our needs here.
  176. */
  177. local_irq_save(flags);
  178. arch_enter_lazy_mmu_mode();
  179. for (; start < end; start += PAGE_SIZE) {
  180. pte_t *ptep = find_linux_pte(mm->pgd, start);
  181. unsigned long pte;
  182. if (ptep == NULL)
  183. continue;
  184. pte = pte_val(*ptep);
  185. if (!(pte & _PAGE_HASHPTE))
  186. continue;
  187. hpte_need_flush(mm, start, ptep, pte, 0);
  188. }
  189. arch_leave_lazy_mmu_mode();
  190. local_irq_restore(flags);
  191. }
  192. #endif /* CONFIG_HOTPLUG */