time.c 4.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187
  1. #include <linux/types.h>
  2. #include <linux/interrupt.h>
  3. #include <linux/time.h>
  4. #include <linux/clockchips.h>
  5. #include <asm/i8253.h>
  6. #include <asm/sni.h>
  7. #include <asm/time.h>
  8. #include <asm-generic/rtc.h>
  9. #define SNI_CLOCK_TICK_RATE 3686400
  10. #define SNI_COUNTER2_DIV 64
  11. #define SNI_COUNTER0_DIV ((SNI_CLOCK_TICK_RATE / SNI_COUNTER2_DIV) / HZ)
  12. static void a20r_set_mode(enum clock_event_mode mode,
  13. struct clock_event_device *evt)
  14. {
  15. switch (mode) {
  16. case CLOCK_EVT_MODE_PERIODIC:
  17. *(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0x34;
  18. wmb();
  19. *(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = SNI_COUNTER0_DIV;
  20. wmb();
  21. *(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = SNI_COUNTER0_DIV >> 8;
  22. wmb();
  23. *(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0xb4;
  24. wmb();
  25. *(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = SNI_COUNTER2_DIV;
  26. wmb();
  27. *(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = SNI_COUNTER2_DIV >> 8;
  28. wmb();
  29. break;
  30. case CLOCK_EVT_MODE_ONESHOT:
  31. case CLOCK_EVT_MODE_UNUSED:
  32. case CLOCK_EVT_MODE_SHUTDOWN:
  33. break;
  34. case CLOCK_EVT_MODE_RESUME:
  35. break;
  36. }
  37. }
  38. static struct clock_event_device a20r_clockevent_device = {
  39. .name = "a20r-timer",
  40. .features = CLOCK_EVT_FEAT_PERIODIC,
  41. /* .mult, .shift, .max_delta_ns and .min_delta_ns left uninitialized */
  42. .rating = 300,
  43. .irq = SNI_A20R_IRQ_TIMER,
  44. .set_mode = a20r_set_mode,
  45. };
  46. static irqreturn_t a20r_interrupt(int irq, void *dev_id)
  47. {
  48. struct clock_event_device *cd = dev_id;
  49. *(volatile u8 *)A20R_PT_TIM0_ACK = 0;
  50. wmb();
  51. cd->event_handler(cd);
  52. return IRQ_HANDLED;
  53. }
  54. static struct irqaction a20r_irqaction = {
  55. .handler = a20r_interrupt,
  56. .flags = IRQF_DISABLED | IRQF_PERCPU,
  57. .name = "a20r-timer",
  58. };
  59. /*
  60. * a20r platform uses 2 counters to divide the input frequency.
  61. * Counter 2 output is connected to Counter 0 & 1 input.
  62. */
  63. static void __init sni_a20r_timer_setup(void)
  64. {
  65. struct clock_event_device *cd = &a20r_clockevent_device;
  66. struct irqaction *action = &a20r_irqaction;
  67. unsigned int cpu = smp_processor_id();
  68. cd->cpumask = cpumask_of(cpu);
  69. clockevents_register_device(cd);
  70. action->dev_id = cd;
  71. setup_irq(SNI_A20R_IRQ_TIMER, &a20r_irqaction);
  72. }
  73. #define SNI_8254_TICK_RATE 1193182UL
  74. #define SNI_8254_TCSAMP_COUNTER ((SNI_8254_TICK_RATE / HZ) + 255)
  75. static __init unsigned long dosample(void)
  76. {
  77. u32 ct0, ct1;
  78. volatile u8 msb, lsb;
  79. /* Start the counter. */
  80. outb_p(0x34, 0x43);
  81. outb_p(SNI_8254_TCSAMP_COUNTER & 0xff, 0x40);
  82. outb(SNI_8254_TCSAMP_COUNTER >> 8, 0x40);
  83. /* Get initial counter invariant */
  84. ct0 = read_c0_count();
  85. /* Latch and spin until top byte of counter0 is zero */
  86. do {
  87. outb(0x00, 0x43);
  88. lsb = inb(0x40);
  89. msb = inb(0x40);
  90. ct1 = read_c0_count();
  91. } while (msb);
  92. /* Stop the counter. */
  93. outb(0x38, 0x43);
  94. /*
  95. * Return the difference, this is how far the r4k counter increments
  96. * for every 1/HZ seconds. We round off the nearest 1 MHz of master
  97. * clock (= 1000000 / HZ / 2).
  98. */
  99. /*return (ct1 - ct0 + (500000/HZ/2)) / (500000/HZ) * (500000/HZ);*/
  100. return (ct1 - ct0) / (500000/HZ) * (500000/HZ);
  101. }
  102. /*
  103. * Here we need to calibrate the cycle counter to at least be close.
  104. */
  105. void __init plat_time_init(void)
  106. {
  107. unsigned long r4k_ticks[3];
  108. unsigned long r4k_tick;
  109. /*
  110. * Figure out the r4k offset, the algorithm is very simple and works in
  111. * _all_ cases as long as the 8254 counter register itself works ok (as
  112. * an interrupt driving timer it does not because of bug, this is why
  113. * we are using the onchip r4k counter/compare register to serve this
  114. * purpose, but for r4k_offset calculation it will work ok for us).
  115. * There are other very complicated ways of performing this calculation
  116. * but this one works just fine so I am not going to futz around. ;-)
  117. */
  118. printk(KERN_INFO "Calibrating system timer... ");
  119. dosample(); /* Prime cache. */
  120. dosample(); /* Prime cache. */
  121. /* Zero is NOT an option. */
  122. do {
  123. r4k_ticks[0] = dosample();
  124. } while (!r4k_ticks[0]);
  125. do {
  126. r4k_ticks[1] = dosample();
  127. } while (!r4k_ticks[1]);
  128. if (r4k_ticks[0] != r4k_ticks[1]) {
  129. printk("warning: timer counts differ, retrying... ");
  130. r4k_ticks[2] = dosample();
  131. if (r4k_ticks[2] == r4k_ticks[0]
  132. || r4k_ticks[2] == r4k_ticks[1])
  133. r4k_tick = r4k_ticks[2];
  134. else {
  135. printk("disagreement, using average... ");
  136. r4k_tick = (r4k_ticks[0] + r4k_ticks[1]
  137. + r4k_ticks[2]) / 3;
  138. }
  139. } else
  140. r4k_tick = r4k_ticks[0];
  141. printk("%d [%d.%04d MHz CPU]\n", (int) r4k_tick,
  142. (int) (r4k_tick / (500000 / HZ)),
  143. (int) (r4k_tick % (500000 / HZ)));
  144. mips_hpt_frequency = r4k_tick * HZ;
  145. switch (sni_brd_type) {
  146. case SNI_BRD_10:
  147. case SNI_BRD_10NEW:
  148. case SNI_BRD_TOWER_OASIC:
  149. case SNI_BRD_MINITOWER:
  150. sni_a20r_timer_setup();
  151. break;
  152. }
  153. setup_pit_timer();
  154. }
  155. unsigned long read_persistent_clock(void)
  156. {
  157. return -1;
  158. }