tlbex.c 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Synthesize TLB refill handlers at runtime.
  7. *
  8. * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
  9. * Copyright (C) 2005, 2007 Maciej W. Rozycki
  10. * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
  11. *
  12. * ... and the days got worse and worse and now you see
  13. * I've gone completly out of my mind.
  14. *
  15. * They're coming to take me a away haha
  16. * they're coming to take me a away hoho hihi haha
  17. * to the funny farm where code is beautiful all the time ...
  18. *
  19. * (Condolences to Napoleon XIV)
  20. */
  21. #include <linux/kernel.h>
  22. #include <linux/types.h>
  23. #include <linux/string.h>
  24. #include <linux/init.h>
  25. #include <asm/mmu_context.h>
  26. #include <asm/war.h>
  27. #include "uasm.h"
  28. static inline int r45k_bvahwbug(void)
  29. {
  30. /* XXX: We should probe for the presence of this bug, but we don't. */
  31. return 0;
  32. }
  33. static inline int r4k_250MHZhwbug(void)
  34. {
  35. /* XXX: We should probe for the presence of this bug, but we don't. */
  36. return 0;
  37. }
  38. static inline int __maybe_unused bcm1250_m3_war(void)
  39. {
  40. return BCM1250_M3_WAR;
  41. }
  42. static inline int __maybe_unused r10000_llsc_war(void)
  43. {
  44. return R10000_LLSC_WAR;
  45. }
  46. /*
  47. * Found by experiment: At least some revisions of the 4kc throw under
  48. * some circumstances a machine check exception, triggered by invalid
  49. * values in the index register. Delaying the tlbp instruction until
  50. * after the next branch, plus adding an additional nop in front of
  51. * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
  52. * why; it's not an issue caused by the core RTL.
  53. *
  54. */
  55. static int __cpuinit m4kc_tlbp_war(void)
  56. {
  57. return (current_cpu_data.processor_id & 0xffff00) ==
  58. (PRID_COMP_MIPS | PRID_IMP_4KC);
  59. }
  60. /* Handle labels (which must be positive integers). */
  61. enum label_id {
  62. label_second_part = 1,
  63. label_leave,
  64. #ifdef MODULE_START
  65. label_module_alloc,
  66. #endif
  67. label_vmalloc,
  68. label_vmalloc_done,
  69. label_tlbw_hazard,
  70. label_split,
  71. label_nopage_tlbl,
  72. label_nopage_tlbs,
  73. label_nopage_tlbm,
  74. label_smp_pgtable_change,
  75. label_r3000_write_probe_fail,
  76. };
  77. UASM_L_LA(_second_part)
  78. UASM_L_LA(_leave)
  79. #ifdef MODULE_START
  80. UASM_L_LA(_module_alloc)
  81. #endif
  82. UASM_L_LA(_vmalloc)
  83. UASM_L_LA(_vmalloc_done)
  84. UASM_L_LA(_tlbw_hazard)
  85. UASM_L_LA(_split)
  86. UASM_L_LA(_nopage_tlbl)
  87. UASM_L_LA(_nopage_tlbs)
  88. UASM_L_LA(_nopage_tlbm)
  89. UASM_L_LA(_smp_pgtable_change)
  90. UASM_L_LA(_r3000_write_probe_fail)
  91. /*
  92. * For debug purposes.
  93. */
  94. static inline void dump_handler(const u32 *handler, int count)
  95. {
  96. int i;
  97. pr_debug("\t.set push\n");
  98. pr_debug("\t.set noreorder\n");
  99. for (i = 0; i < count; i++)
  100. pr_debug("\t%p\t.word 0x%08x\n", &handler[i], handler[i]);
  101. pr_debug("\t.set pop\n");
  102. }
  103. /* The only general purpose registers allowed in TLB handlers. */
  104. #define K0 26
  105. #define K1 27
  106. /* Some CP0 registers */
  107. #define C0_INDEX 0, 0
  108. #define C0_ENTRYLO0 2, 0
  109. #define C0_TCBIND 2, 2
  110. #define C0_ENTRYLO1 3, 0
  111. #define C0_CONTEXT 4, 0
  112. #define C0_BADVADDR 8, 0
  113. #define C0_ENTRYHI 10, 0
  114. #define C0_EPC 14, 0
  115. #define C0_XCONTEXT 20, 0
  116. #ifdef CONFIG_64BIT
  117. # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
  118. #else
  119. # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
  120. #endif
  121. /* The worst case length of the handler is around 18 instructions for
  122. * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
  123. * Maximum space available is 32 instructions for R3000 and 64
  124. * instructions for R4000.
  125. *
  126. * We deliberately chose a buffer size of 128, so we won't scribble
  127. * over anything important on overflow before we panic.
  128. */
  129. static u32 tlb_handler[128] __cpuinitdata;
  130. /* simply assume worst case size for labels and relocs */
  131. static struct uasm_label labels[128] __cpuinitdata;
  132. static struct uasm_reloc relocs[128] __cpuinitdata;
  133. /*
  134. * The R3000 TLB handler is simple.
  135. */
  136. static void __cpuinit build_r3000_tlb_refill_handler(void)
  137. {
  138. long pgdc = (long)pgd_current;
  139. u32 *p;
  140. memset(tlb_handler, 0, sizeof(tlb_handler));
  141. p = tlb_handler;
  142. uasm_i_mfc0(&p, K0, C0_BADVADDR);
  143. uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
  144. uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
  145. uasm_i_srl(&p, K0, K0, 22); /* load delay */
  146. uasm_i_sll(&p, K0, K0, 2);
  147. uasm_i_addu(&p, K1, K1, K0);
  148. uasm_i_mfc0(&p, K0, C0_CONTEXT);
  149. uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
  150. uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
  151. uasm_i_addu(&p, K1, K1, K0);
  152. uasm_i_lw(&p, K0, 0, K1);
  153. uasm_i_nop(&p); /* load delay */
  154. uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
  155. uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
  156. uasm_i_tlbwr(&p); /* cp0 delay */
  157. uasm_i_jr(&p, K1);
  158. uasm_i_rfe(&p); /* branch delay */
  159. if (p > tlb_handler + 32)
  160. panic("TLB refill handler space exceeded");
  161. pr_debug("Wrote TLB refill handler (%u instructions).\n",
  162. (unsigned int)(p - tlb_handler));
  163. memcpy((void *)ebase, tlb_handler, 0x80);
  164. dump_handler((u32 *)ebase, 32);
  165. }
  166. /*
  167. * The R4000 TLB handler is much more complicated. We have two
  168. * consecutive handler areas with 32 instructions space each.
  169. * Since they aren't used at the same time, we can overflow in the
  170. * other one.To keep things simple, we first assume linear space,
  171. * then we relocate it to the final handler layout as needed.
  172. */
  173. static u32 final_handler[64] __cpuinitdata;
  174. /*
  175. * Hazards
  176. *
  177. * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
  178. * 2. A timing hazard exists for the TLBP instruction.
  179. *
  180. * stalling_instruction
  181. * TLBP
  182. *
  183. * The JTLB is being read for the TLBP throughout the stall generated by the
  184. * previous instruction. This is not really correct as the stalling instruction
  185. * can modify the address used to access the JTLB. The failure symptom is that
  186. * the TLBP instruction will use an address created for the stalling instruction
  187. * and not the address held in C0_ENHI and thus report the wrong results.
  188. *
  189. * The software work-around is to not allow the instruction preceding the TLBP
  190. * to stall - make it an NOP or some other instruction guaranteed not to stall.
  191. *
  192. * Errata 2 will not be fixed. This errata is also on the R5000.
  193. *
  194. * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
  195. */
  196. static void __cpuinit __maybe_unused build_tlb_probe_entry(u32 **p)
  197. {
  198. switch (current_cpu_type()) {
  199. /* Found by experiment: R4600 v2.0/R4700 needs this, too. */
  200. case CPU_R4600:
  201. case CPU_R4700:
  202. case CPU_R5000:
  203. case CPU_R5000A:
  204. case CPU_NEVADA:
  205. uasm_i_nop(p);
  206. uasm_i_tlbp(p);
  207. break;
  208. default:
  209. uasm_i_tlbp(p);
  210. break;
  211. }
  212. }
  213. /*
  214. * Write random or indexed TLB entry, and care about the hazards from
  215. * the preceeding mtc0 and for the following eret.
  216. */
  217. enum tlb_write_entry { tlb_random, tlb_indexed };
  218. static void __cpuinit build_tlb_write_entry(u32 **p, struct uasm_label **l,
  219. struct uasm_reloc **r,
  220. enum tlb_write_entry wmode)
  221. {
  222. void(*tlbw)(u32 **) = NULL;
  223. switch (wmode) {
  224. case tlb_random: tlbw = uasm_i_tlbwr; break;
  225. case tlb_indexed: tlbw = uasm_i_tlbwi; break;
  226. }
  227. if (cpu_has_mips_r2) {
  228. uasm_i_ehb(p);
  229. tlbw(p);
  230. return;
  231. }
  232. switch (current_cpu_type()) {
  233. case CPU_R4000PC:
  234. case CPU_R4000SC:
  235. case CPU_R4000MC:
  236. case CPU_R4400PC:
  237. case CPU_R4400SC:
  238. case CPU_R4400MC:
  239. /*
  240. * This branch uses up a mtc0 hazard nop slot and saves
  241. * two nops after the tlbw instruction.
  242. */
  243. uasm_il_bgezl(p, r, 0, label_tlbw_hazard);
  244. tlbw(p);
  245. uasm_l_tlbw_hazard(l, *p);
  246. uasm_i_nop(p);
  247. break;
  248. case CPU_R4600:
  249. case CPU_R4700:
  250. case CPU_R5000:
  251. case CPU_R5000A:
  252. uasm_i_nop(p);
  253. tlbw(p);
  254. uasm_i_nop(p);
  255. break;
  256. case CPU_R4300:
  257. case CPU_5KC:
  258. case CPU_TX49XX:
  259. case CPU_PR4450:
  260. uasm_i_nop(p);
  261. tlbw(p);
  262. break;
  263. case CPU_R10000:
  264. case CPU_R12000:
  265. case CPU_R14000:
  266. case CPU_4KC:
  267. case CPU_4KEC:
  268. case CPU_SB1:
  269. case CPU_SB1A:
  270. case CPU_4KSC:
  271. case CPU_20KC:
  272. case CPU_25KF:
  273. case CPU_BCM3302:
  274. case CPU_BCM4710:
  275. case CPU_LOONGSON2:
  276. case CPU_CAVIUM_OCTEON:
  277. case CPU_R5500:
  278. if (m4kc_tlbp_war())
  279. uasm_i_nop(p);
  280. case CPU_ALCHEMY:
  281. tlbw(p);
  282. break;
  283. case CPU_NEVADA:
  284. uasm_i_nop(p); /* QED specifies 2 nops hazard */
  285. /*
  286. * This branch uses up a mtc0 hazard nop slot and saves
  287. * a nop after the tlbw instruction.
  288. */
  289. uasm_il_bgezl(p, r, 0, label_tlbw_hazard);
  290. tlbw(p);
  291. uasm_l_tlbw_hazard(l, *p);
  292. break;
  293. case CPU_RM7000:
  294. uasm_i_nop(p);
  295. uasm_i_nop(p);
  296. uasm_i_nop(p);
  297. uasm_i_nop(p);
  298. tlbw(p);
  299. break;
  300. case CPU_RM9000:
  301. /*
  302. * When the JTLB is updated by tlbwi or tlbwr, a subsequent
  303. * use of the JTLB for instructions should not occur for 4
  304. * cpu cycles and use for data translations should not occur
  305. * for 3 cpu cycles.
  306. */
  307. uasm_i_ssnop(p);
  308. uasm_i_ssnop(p);
  309. uasm_i_ssnop(p);
  310. uasm_i_ssnop(p);
  311. tlbw(p);
  312. uasm_i_ssnop(p);
  313. uasm_i_ssnop(p);
  314. uasm_i_ssnop(p);
  315. uasm_i_ssnop(p);
  316. break;
  317. case CPU_VR4111:
  318. case CPU_VR4121:
  319. case CPU_VR4122:
  320. case CPU_VR4181:
  321. case CPU_VR4181A:
  322. uasm_i_nop(p);
  323. uasm_i_nop(p);
  324. tlbw(p);
  325. uasm_i_nop(p);
  326. uasm_i_nop(p);
  327. break;
  328. case CPU_VR4131:
  329. case CPU_VR4133:
  330. case CPU_R5432:
  331. uasm_i_nop(p);
  332. uasm_i_nop(p);
  333. tlbw(p);
  334. break;
  335. default:
  336. panic("No TLB refill handler yet (CPU type: %d)",
  337. current_cpu_data.cputype);
  338. break;
  339. }
  340. }
  341. #ifdef CONFIG_64BIT
  342. /*
  343. * TMP and PTR are scratch.
  344. * TMP will be clobbered, PTR will hold the pmd entry.
  345. */
  346. static void __cpuinit
  347. build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
  348. unsigned int tmp, unsigned int ptr)
  349. {
  350. long pgdc = (long)pgd_current;
  351. /*
  352. * The vmalloc handling is not in the hotpath.
  353. */
  354. uasm_i_dmfc0(p, tmp, C0_BADVADDR);
  355. #ifdef MODULE_START
  356. uasm_il_bltz(p, r, tmp, label_module_alloc);
  357. #else
  358. uasm_il_bltz(p, r, tmp, label_vmalloc);
  359. #endif
  360. /* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
  361. #ifdef CONFIG_SMP
  362. # ifdef CONFIG_MIPS_MT_SMTC
  363. /*
  364. * SMTC uses TCBind value as "CPU" index
  365. */
  366. uasm_i_mfc0(p, ptr, C0_TCBIND);
  367. uasm_i_dsrl(p, ptr, ptr, 19);
  368. # else
  369. /*
  370. * 64 bit SMP running in XKPHYS has smp_processor_id() << 3
  371. * stored in CONTEXT.
  372. */
  373. uasm_i_dmfc0(p, ptr, C0_CONTEXT);
  374. uasm_i_dsrl(p, ptr, ptr, 23);
  375. #endif
  376. UASM_i_LA_mostly(p, tmp, pgdc);
  377. uasm_i_daddu(p, ptr, ptr, tmp);
  378. uasm_i_dmfc0(p, tmp, C0_BADVADDR);
  379. uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
  380. #else
  381. UASM_i_LA_mostly(p, ptr, pgdc);
  382. uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
  383. #endif
  384. uasm_l_vmalloc_done(l, *p);
  385. if (PGDIR_SHIFT - 3 < 32) /* get pgd offset in bytes */
  386. uasm_i_dsrl(p, tmp, tmp, PGDIR_SHIFT-3);
  387. else
  388. uasm_i_dsrl32(p, tmp, tmp, PGDIR_SHIFT - 3 - 32);
  389. uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
  390. uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
  391. uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
  392. uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
  393. uasm_i_dsrl(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
  394. uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
  395. uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
  396. }
  397. /*
  398. * BVADDR is the faulting address, PTR is scratch.
  399. * PTR will hold the pgd for vmalloc.
  400. */
  401. static void __cpuinit
  402. build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
  403. unsigned int bvaddr, unsigned int ptr)
  404. {
  405. long swpd = (long)swapper_pg_dir;
  406. #ifdef MODULE_START
  407. long modd = (long)module_pg_dir;
  408. uasm_l_module_alloc(l, *p);
  409. /*
  410. * Assumption:
  411. * VMALLOC_START >= 0xc000000000000000UL
  412. * MODULE_START >= 0xe000000000000000UL
  413. */
  414. UASM_i_SLL(p, ptr, bvaddr, 2);
  415. uasm_il_bgez(p, r, ptr, label_vmalloc);
  416. if (uasm_in_compat_space_p(MODULE_START) &&
  417. !uasm_rel_lo(MODULE_START)) {
  418. uasm_i_lui(p, ptr, uasm_rel_hi(MODULE_START)); /* delay slot */
  419. } else {
  420. /* unlikely configuration */
  421. uasm_i_nop(p); /* delay slot */
  422. UASM_i_LA(p, ptr, MODULE_START);
  423. }
  424. uasm_i_dsubu(p, bvaddr, bvaddr, ptr);
  425. if (uasm_in_compat_space_p(modd) && !uasm_rel_lo(modd)) {
  426. uasm_il_b(p, r, label_vmalloc_done);
  427. uasm_i_lui(p, ptr, uasm_rel_hi(modd));
  428. } else {
  429. UASM_i_LA_mostly(p, ptr, modd);
  430. uasm_il_b(p, r, label_vmalloc_done);
  431. if (uasm_in_compat_space_p(modd))
  432. uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(modd));
  433. else
  434. uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(modd));
  435. }
  436. uasm_l_vmalloc(l, *p);
  437. if (uasm_in_compat_space_p(MODULE_START) &&
  438. !uasm_rel_lo(MODULE_START) &&
  439. MODULE_START << 32 == VMALLOC_START)
  440. uasm_i_dsll32(p, ptr, ptr, 0); /* typical case */
  441. else
  442. UASM_i_LA(p, ptr, VMALLOC_START);
  443. #else
  444. uasm_l_vmalloc(l, *p);
  445. UASM_i_LA(p, ptr, VMALLOC_START);
  446. #endif
  447. uasm_i_dsubu(p, bvaddr, bvaddr, ptr);
  448. if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) {
  449. uasm_il_b(p, r, label_vmalloc_done);
  450. uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
  451. } else {
  452. UASM_i_LA_mostly(p, ptr, swpd);
  453. uasm_il_b(p, r, label_vmalloc_done);
  454. if (uasm_in_compat_space_p(swpd))
  455. uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
  456. else
  457. uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
  458. }
  459. }
  460. #else /* !CONFIG_64BIT */
  461. /*
  462. * TMP and PTR are scratch.
  463. * TMP will be clobbered, PTR will hold the pgd entry.
  464. */
  465. static void __cpuinit __maybe_unused
  466. build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
  467. {
  468. long pgdc = (long)pgd_current;
  469. /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
  470. #ifdef CONFIG_SMP
  471. #ifdef CONFIG_MIPS_MT_SMTC
  472. /*
  473. * SMTC uses TCBind value as "CPU" index
  474. */
  475. uasm_i_mfc0(p, ptr, C0_TCBIND);
  476. UASM_i_LA_mostly(p, tmp, pgdc);
  477. uasm_i_srl(p, ptr, ptr, 19);
  478. #else
  479. /*
  480. * smp_processor_id() << 3 is stored in CONTEXT.
  481. */
  482. uasm_i_mfc0(p, ptr, C0_CONTEXT);
  483. UASM_i_LA_mostly(p, tmp, pgdc);
  484. uasm_i_srl(p, ptr, ptr, 23);
  485. #endif
  486. uasm_i_addu(p, ptr, tmp, ptr);
  487. #else
  488. UASM_i_LA_mostly(p, ptr, pgdc);
  489. #endif
  490. uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
  491. uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
  492. uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
  493. uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
  494. uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
  495. }
  496. #endif /* !CONFIG_64BIT */
  497. static void __cpuinit build_adjust_context(u32 **p, unsigned int ctx)
  498. {
  499. unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
  500. unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
  501. switch (current_cpu_type()) {
  502. case CPU_VR41XX:
  503. case CPU_VR4111:
  504. case CPU_VR4121:
  505. case CPU_VR4122:
  506. case CPU_VR4131:
  507. case CPU_VR4181:
  508. case CPU_VR4181A:
  509. case CPU_VR4133:
  510. shift += 2;
  511. break;
  512. default:
  513. break;
  514. }
  515. if (shift)
  516. UASM_i_SRL(p, ctx, ctx, shift);
  517. uasm_i_andi(p, ctx, ctx, mask);
  518. }
  519. static void __cpuinit build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
  520. {
  521. /*
  522. * Bug workaround for the Nevada. It seems as if under certain
  523. * circumstances the move from cp0_context might produce a
  524. * bogus result when the mfc0 instruction and its consumer are
  525. * in a different cacheline or a load instruction, probably any
  526. * memory reference, is between them.
  527. */
  528. switch (current_cpu_type()) {
  529. case CPU_NEVADA:
  530. UASM_i_LW(p, ptr, 0, ptr);
  531. GET_CONTEXT(p, tmp); /* get context reg */
  532. break;
  533. default:
  534. GET_CONTEXT(p, tmp); /* get context reg */
  535. UASM_i_LW(p, ptr, 0, ptr);
  536. break;
  537. }
  538. build_adjust_context(p, tmp);
  539. UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
  540. }
  541. static void __cpuinit build_update_entries(u32 **p, unsigned int tmp,
  542. unsigned int ptep)
  543. {
  544. /*
  545. * 64bit address support (36bit on a 32bit CPU) in a 32bit
  546. * Kernel is a special case. Only a few CPUs use it.
  547. */
  548. #ifdef CONFIG_64BIT_PHYS_ADDR
  549. if (cpu_has_64bits) {
  550. uasm_i_ld(p, tmp, 0, ptep); /* get even pte */
  551. uasm_i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
  552. uasm_i_dsrl(p, tmp, tmp, 6); /* convert to entrylo0 */
  553. uasm_i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
  554. uasm_i_dsrl(p, ptep, ptep, 6); /* convert to entrylo1 */
  555. uasm_i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
  556. } else {
  557. int pte_off_even = sizeof(pte_t) / 2;
  558. int pte_off_odd = pte_off_even + sizeof(pte_t);
  559. /* The pte entries are pre-shifted */
  560. uasm_i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
  561. uasm_i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
  562. uasm_i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
  563. uasm_i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
  564. }
  565. #else
  566. UASM_i_LW(p, tmp, 0, ptep); /* get even pte */
  567. UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
  568. if (r45k_bvahwbug())
  569. build_tlb_probe_entry(p);
  570. UASM_i_SRL(p, tmp, tmp, 6); /* convert to entrylo0 */
  571. if (r4k_250MHZhwbug())
  572. uasm_i_mtc0(p, 0, C0_ENTRYLO0);
  573. uasm_i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
  574. UASM_i_SRL(p, ptep, ptep, 6); /* convert to entrylo1 */
  575. if (r45k_bvahwbug())
  576. uasm_i_mfc0(p, tmp, C0_INDEX);
  577. if (r4k_250MHZhwbug())
  578. uasm_i_mtc0(p, 0, C0_ENTRYLO1);
  579. uasm_i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
  580. #endif
  581. }
  582. static void __cpuinit build_r4000_tlb_refill_handler(void)
  583. {
  584. u32 *p = tlb_handler;
  585. struct uasm_label *l = labels;
  586. struct uasm_reloc *r = relocs;
  587. u32 *f;
  588. unsigned int final_len;
  589. memset(tlb_handler, 0, sizeof(tlb_handler));
  590. memset(labels, 0, sizeof(labels));
  591. memset(relocs, 0, sizeof(relocs));
  592. memset(final_handler, 0, sizeof(final_handler));
  593. /*
  594. * create the plain linear handler
  595. */
  596. if (bcm1250_m3_war()) {
  597. UASM_i_MFC0(&p, K0, C0_BADVADDR);
  598. UASM_i_MFC0(&p, K1, C0_ENTRYHI);
  599. uasm_i_xor(&p, K0, K0, K1);
  600. UASM_i_SRL(&p, K0, K0, PAGE_SHIFT + 1);
  601. uasm_il_bnez(&p, &r, K0, label_leave);
  602. /* No need for uasm_i_nop */
  603. }
  604. #ifdef CONFIG_64BIT
  605. build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
  606. #else
  607. build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
  608. #endif
  609. build_get_ptep(&p, K0, K1);
  610. build_update_entries(&p, K0, K1);
  611. build_tlb_write_entry(&p, &l, &r, tlb_random);
  612. uasm_l_leave(&l, p);
  613. uasm_i_eret(&p); /* return from trap */
  614. #ifdef CONFIG_64BIT
  615. build_get_pgd_vmalloc64(&p, &l, &r, K0, K1);
  616. #endif
  617. /*
  618. * Overflow check: For the 64bit handler, we need at least one
  619. * free instruction slot for the wrap-around branch. In worst
  620. * case, if the intended insertion point is a delay slot, we
  621. * need three, with the second nop'ed and the third being
  622. * unused.
  623. */
  624. /* Loongson2 ebase is different than r4k, we have more space */
  625. #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
  626. if ((p - tlb_handler) > 64)
  627. panic("TLB refill handler space exceeded");
  628. #else
  629. if (((p - tlb_handler) > 63)
  630. || (((p - tlb_handler) > 61)
  631. && uasm_insn_has_bdelay(relocs, tlb_handler + 29)))
  632. panic("TLB refill handler space exceeded");
  633. #endif
  634. /*
  635. * Now fold the handler in the TLB refill handler space.
  636. */
  637. #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
  638. f = final_handler;
  639. /* Simplest case, just copy the handler. */
  640. uasm_copy_handler(relocs, labels, tlb_handler, p, f);
  641. final_len = p - tlb_handler;
  642. #else /* CONFIG_64BIT */
  643. f = final_handler + 32;
  644. if ((p - tlb_handler) <= 32) {
  645. /* Just copy the handler. */
  646. uasm_copy_handler(relocs, labels, tlb_handler, p, f);
  647. final_len = p - tlb_handler;
  648. } else {
  649. u32 *split = tlb_handler + 30;
  650. /*
  651. * Find the split point.
  652. */
  653. if (uasm_insn_has_bdelay(relocs, split - 1))
  654. split--;
  655. /* Copy first part of the handler. */
  656. uasm_copy_handler(relocs, labels, tlb_handler, split, f);
  657. f += split - tlb_handler;
  658. /* Insert branch. */
  659. uasm_l_split(&l, final_handler);
  660. uasm_il_b(&f, &r, label_split);
  661. if (uasm_insn_has_bdelay(relocs, split))
  662. uasm_i_nop(&f);
  663. else {
  664. uasm_copy_handler(relocs, labels, split, split + 1, f);
  665. uasm_move_labels(labels, f, f + 1, -1);
  666. f++;
  667. split++;
  668. }
  669. /* Copy the rest of the handler. */
  670. uasm_copy_handler(relocs, labels, split, p, final_handler);
  671. final_len = (f - (final_handler + 32)) + (p - split);
  672. }
  673. #endif /* CONFIG_64BIT */
  674. uasm_resolve_relocs(relocs, labels);
  675. pr_debug("Wrote TLB refill handler (%u instructions).\n",
  676. final_len);
  677. memcpy((void *)ebase, final_handler, 0x100);
  678. dump_handler((u32 *)ebase, 64);
  679. }
  680. /*
  681. * TLB load/store/modify handlers.
  682. *
  683. * Only the fastpath gets synthesized at runtime, the slowpath for
  684. * do_page_fault remains normal asm.
  685. */
  686. extern void tlb_do_page_fault_0(void);
  687. extern void tlb_do_page_fault_1(void);
  688. /*
  689. * 128 instructions for the fastpath handler is generous and should
  690. * never be exceeded.
  691. */
  692. #define FASTPATH_SIZE 128
  693. u32 handle_tlbl[FASTPATH_SIZE] __cacheline_aligned;
  694. u32 handle_tlbs[FASTPATH_SIZE] __cacheline_aligned;
  695. u32 handle_tlbm[FASTPATH_SIZE] __cacheline_aligned;
  696. static void __cpuinit
  697. iPTE_LW(u32 **p, struct uasm_label **l, unsigned int pte, unsigned int ptr)
  698. {
  699. #ifdef CONFIG_SMP
  700. # ifdef CONFIG_64BIT_PHYS_ADDR
  701. if (cpu_has_64bits)
  702. uasm_i_lld(p, pte, 0, ptr);
  703. else
  704. # endif
  705. UASM_i_LL(p, pte, 0, ptr);
  706. #else
  707. # ifdef CONFIG_64BIT_PHYS_ADDR
  708. if (cpu_has_64bits)
  709. uasm_i_ld(p, pte, 0, ptr);
  710. else
  711. # endif
  712. UASM_i_LW(p, pte, 0, ptr);
  713. #endif
  714. }
  715. static void __cpuinit
  716. iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
  717. unsigned int mode)
  718. {
  719. #ifdef CONFIG_64BIT_PHYS_ADDR
  720. unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
  721. #endif
  722. uasm_i_ori(p, pte, pte, mode);
  723. #ifdef CONFIG_SMP
  724. # ifdef CONFIG_64BIT_PHYS_ADDR
  725. if (cpu_has_64bits)
  726. uasm_i_scd(p, pte, 0, ptr);
  727. else
  728. # endif
  729. UASM_i_SC(p, pte, 0, ptr);
  730. if (r10000_llsc_war())
  731. uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
  732. else
  733. uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
  734. # ifdef CONFIG_64BIT_PHYS_ADDR
  735. if (!cpu_has_64bits) {
  736. /* no uasm_i_nop needed */
  737. uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
  738. uasm_i_ori(p, pte, pte, hwmode);
  739. uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
  740. uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
  741. /* no uasm_i_nop needed */
  742. uasm_i_lw(p, pte, 0, ptr);
  743. } else
  744. uasm_i_nop(p);
  745. # else
  746. uasm_i_nop(p);
  747. # endif
  748. #else
  749. # ifdef CONFIG_64BIT_PHYS_ADDR
  750. if (cpu_has_64bits)
  751. uasm_i_sd(p, pte, 0, ptr);
  752. else
  753. # endif
  754. UASM_i_SW(p, pte, 0, ptr);
  755. # ifdef CONFIG_64BIT_PHYS_ADDR
  756. if (!cpu_has_64bits) {
  757. uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
  758. uasm_i_ori(p, pte, pte, hwmode);
  759. uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
  760. uasm_i_lw(p, pte, 0, ptr);
  761. }
  762. # endif
  763. #endif
  764. }
  765. /*
  766. * Check if PTE is present, if not then jump to LABEL. PTR points to
  767. * the page table where this PTE is located, PTE will be re-loaded
  768. * with it's original value.
  769. */
  770. static void __cpuinit
  771. build_pte_present(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
  772. unsigned int pte, unsigned int ptr, enum label_id lid)
  773. {
  774. uasm_i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_READ);
  775. uasm_i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_READ);
  776. uasm_il_bnez(p, r, pte, lid);
  777. iPTE_LW(p, l, pte, ptr);
  778. }
  779. /* Make PTE valid, store result in PTR. */
  780. static void __cpuinit
  781. build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
  782. unsigned int ptr)
  783. {
  784. unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
  785. iPTE_SW(p, r, pte, ptr, mode);
  786. }
  787. /*
  788. * Check if PTE can be written to, if not branch to LABEL. Regardless
  789. * restore PTE with value from PTR when done.
  790. */
  791. static void __cpuinit
  792. build_pte_writable(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
  793. unsigned int pte, unsigned int ptr, enum label_id lid)
  794. {
  795. uasm_i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE);
  796. uasm_i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE);
  797. uasm_il_bnez(p, r, pte, lid);
  798. iPTE_LW(p, l, pte, ptr);
  799. }
  800. /* Make PTE writable, update software status bits as well, then store
  801. * at PTR.
  802. */
  803. static void __cpuinit
  804. build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
  805. unsigned int ptr)
  806. {
  807. unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
  808. | _PAGE_DIRTY);
  809. iPTE_SW(p, r, pte, ptr, mode);
  810. }
  811. /*
  812. * Check if PTE can be modified, if not branch to LABEL. Regardless
  813. * restore PTE with value from PTR when done.
  814. */
  815. static void __cpuinit
  816. build_pte_modifiable(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
  817. unsigned int pte, unsigned int ptr, enum label_id lid)
  818. {
  819. uasm_i_andi(p, pte, pte, _PAGE_WRITE);
  820. uasm_il_beqz(p, r, pte, lid);
  821. iPTE_LW(p, l, pte, ptr);
  822. }
  823. /*
  824. * R3000 style TLB load/store/modify handlers.
  825. */
  826. /*
  827. * This places the pte into ENTRYLO0 and writes it with tlbwi.
  828. * Then it returns.
  829. */
  830. static void __cpuinit
  831. build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
  832. {
  833. uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
  834. uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
  835. uasm_i_tlbwi(p);
  836. uasm_i_jr(p, tmp);
  837. uasm_i_rfe(p); /* branch delay */
  838. }
  839. /*
  840. * This places the pte into ENTRYLO0 and writes it with tlbwi
  841. * or tlbwr as appropriate. This is because the index register
  842. * may have the probe fail bit set as a result of a trap on a
  843. * kseg2 access, i.e. without refill. Then it returns.
  844. */
  845. static void __cpuinit
  846. build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
  847. struct uasm_reloc **r, unsigned int pte,
  848. unsigned int tmp)
  849. {
  850. uasm_i_mfc0(p, tmp, C0_INDEX);
  851. uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
  852. uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
  853. uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
  854. uasm_i_tlbwi(p); /* cp0 delay */
  855. uasm_i_jr(p, tmp);
  856. uasm_i_rfe(p); /* branch delay */
  857. uasm_l_r3000_write_probe_fail(l, *p);
  858. uasm_i_tlbwr(p); /* cp0 delay */
  859. uasm_i_jr(p, tmp);
  860. uasm_i_rfe(p); /* branch delay */
  861. }
  862. static void __cpuinit
  863. build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
  864. unsigned int ptr)
  865. {
  866. long pgdc = (long)pgd_current;
  867. uasm_i_mfc0(p, pte, C0_BADVADDR);
  868. uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
  869. uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
  870. uasm_i_srl(p, pte, pte, 22); /* load delay */
  871. uasm_i_sll(p, pte, pte, 2);
  872. uasm_i_addu(p, ptr, ptr, pte);
  873. uasm_i_mfc0(p, pte, C0_CONTEXT);
  874. uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
  875. uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
  876. uasm_i_addu(p, ptr, ptr, pte);
  877. uasm_i_lw(p, pte, 0, ptr);
  878. uasm_i_tlbp(p); /* load delay */
  879. }
  880. static void __cpuinit build_r3000_tlb_load_handler(void)
  881. {
  882. u32 *p = handle_tlbl;
  883. struct uasm_label *l = labels;
  884. struct uasm_reloc *r = relocs;
  885. memset(handle_tlbl, 0, sizeof(handle_tlbl));
  886. memset(labels, 0, sizeof(labels));
  887. memset(relocs, 0, sizeof(relocs));
  888. build_r3000_tlbchange_handler_head(&p, K0, K1);
  889. build_pte_present(&p, &l, &r, K0, K1, label_nopage_tlbl);
  890. uasm_i_nop(&p); /* load delay */
  891. build_make_valid(&p, &r, K0, K1);
  892. build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
  893. uasm_l_nopage_tlbl(&l, p);
  894. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
  895. uasm_i_nop(&p);
  896. if ((p - handle_tlbl) > FASTPATH_SIZE)
  897. panic("TLB load handler fastpath space exceeded");
  898. uasm_resolve_relocs(relocs, labels);
  899. pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
  900. (unsigned int)(p - handle_tlbl));
  901. dump_handler(handle_tlbl, ARRAY_SIZE(handle_tlbl));
  902. }
  903. static void __cpuinit build_r3000_tlb_store_handler(void)
  904. {
  905. u32 *p = handle_tlbs;
  906. struct uasm_label *l = labels;
  907. struct uasm_reloc *r = relocs;
  908. memset(handle_tlbs, 0, sizeof(handle_tlbs));
  909. memset(labels, 0, sizeof(labels));
  910. memset(relocs, 0, sizeof(relocs));
  911. build_r3000_tlbchange_handler_head(&p, K0, K1);
  912. build_pte_writable(&p, &l, &r, K0, K1, label_nopage_tlbs);
  913. uasm_i_nop(&p); /* load delay */
  914. build_make_write(&p, &r, K0, K1);
  915. build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
  916. uasm_l_nopage_tlbs(&l, p);
  917. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  918. uasm_i_nop(&p);
  919. if ((p - handle_tlbs) > FASTPATH_SIZE)
  920. panic("TLB store handler fastpath space exceeded");
  921. uasm_resolve_relocs(relocs, labels);
  922. pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
  923. (unsigned int)(p - handle_tlbs));
  924. dump_handler(handle_tlbs, ARRAY_SIZE(handle_tlbs));
  925. }
  926. static void __cpuinit build_r3000_tlb_modify_handler(void)
  927. {
  928. u32 *p = handle_tlbm;
  929. struct uasm_label *l = labels;
  930. struct uasm_reloc *r = relocs;
  931. memset(handle_tlbm, 0, sizeof(handle_tlbm));
  932. memset(labels, 0, sizeof(labels));
  933. memset(relocs, 0, sizeof(relocs));
  934. build_r3000_tlbchange_handler_head(&p, K0, K1);
  935. build_pte_modifiable(&p, &l, &r, K0, K1, label_nopage_tlbm);
  936. uasm_i_nop(&p); /* load delay */
  937. build_make_write(&p, &r, K0, K1);
  938. build_r3000_pte_reload_tlbwi(&p, K0, K1);
  939. uasm_l_nopage_tlbm(&l, p);
  940. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  941. uasm_i_nop(&p);
  942. if ((p - handle_tlbm) > FASTPATH_SIZE)
  943. panic("TLB modify handler fastpath space exceeded");
  944. uasm_resolve_relocs(relocs, labels);
  945. pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
  946. (unsigned int)(p - handle_tlbm));
  947. dump_handler(handle_tlbm, ARRAY_SIZE(handle_tlbm));
  948. }
  949. /*
  950. * R4000 style TLB load/store/modify handlers.
  951. */
  952. static void __cpuinit
  953. build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
  954. struct uasm_reloc **r, unsigned int pte,
  955. unsigned int ptr)
  956. {
  957. #ifdef CONFIG_64BIT
  958. build_get_pmde64(p, l, r, pte, ptr); /* get pmd in ptr */
  959. #else
  960. build_get_pgde32(p, pte, ptr); /* get pgd in ptr */
  961. #endif
  962. UASM_i_MFC0(p, pte, C0_BADVADDR);
  963. UASM_i_LW(p, ptr, 0, ptr);
  964. UASM_i_SRL(p, pte, pte, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
  965. uasm_i_andi(p, pte, pte, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
  966. UASM_i_ADDU(p, ptr, ptr, pte);
  967. #ifdef CONFIG_SMP
  968. uasm_l_smp_pgtable_change(l, *p);
  969. #endif
  970. iPTE_LW(p, l, pte, ptr); /* get even pte */
  971. if (!m4kc_tlbp_war())
  972. build_tlb_probe_entry(p);
  973. }
  974. static void __cpuinit
  975. build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
  976. struct uasm_reloc **r, unsigned int tmp,
  977. unsigned int ptr)
  978. {
  979. uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
  980. uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
  981. build_update_entries(p, tmp, ptr);
  982. build_tlb_write_entry(p, l, r, tlb_indexed);
  983. uasm_l_leave(l, *p);
  984. uasm_i_eret(p); /* return from trap */
  985. #ifdef CONFIG_64BIT
  986. build_get_pgd_vmalloc64(p, l, r, tmp, ptr);
  987. #endif
  988. }
  989. static void __cpuinit build_r4000_tlb_load_handler(void)
  990. {
  991. u32 *p = handle_tlbl;
  992. struct uasm_label *l = labels;
  993. struct uasm_reloc *r = relocs;
  994. memset(handle_tlbl, 0, sizeof(handle_tlbl));
  995. memset(labels, 0, sizeof(labels));
  996. memset(relocs, 0, sizeof(relocs));
  997. if (bcm1250_m3_war()) {
  998. UASM_i_MFC0(&p, K0, C0_BADVADDR);
  999. UASM_i_MFC0(&p, K1, C0_ENTRYHI);
  1000. uasm_i_xor(&p, K0, K0, K1);
  1001. UASM_i_SRL(&p, K0, K0, PAGE_SHIFT + 1);
  1002. uasm_il_bnez(&p, &r, K0, label_leave);
  1003. /* No need for uasm_i_nop */
  1004. }
  1005. build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
  1006. build_pte_present(&p, &l, &r, K0, K1, label_nopage_tlbl);
  1007. if (m4kc_tlbp_war())
  1008. build_tlb_probe_entry(&p);
  1009. build_make_valid(&p, &r, K0, K1);
  1010. build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
  1011. uasm_l_nopage_tlbl(&l, p);
  1012. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
  1013. uasm_i_nop(&p);
  1014. if ((p - handle_tlbl) > FASTPATH_SIZE)
  1015. panic("TLB load handler fastpath space exceeded");
  1016. uasm_resolve_relocs(relocs, labels);
  1017. pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
  1018. (unsigned int)(p - handle_tlbl));
  1019. dump_handler(handle_tlbl, ARRAY_SIZE(handle_tlbl));
  1020. }
  1021. static void __cpuinit build_r4000_tlb_store_handler(void)
  1022. {
  1023. u32 *p = handle_tlbs;
  1024. struct uasm_label *l = labels;
  1025. struct uasm_reloc *r = relocs;
  1026. memset(handle_tlbs, 0, sizeof(handle_tlbs));
  1027. memset(labels, 0, sizeof(labels));
  1028. memset(relocs, 0, sizeof(relocs));
  1029. build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
  1030. build_pte_writable(&p, &l, &r, K0, K1, label_nopage_tlbs);
  1031. if (m4kc_tlbp_war())
  1032. build_tlb_probe_entry(&p);
  1033. build_make_write(&p, &r, K0, K1);
  1034. build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
  1035. uasm_l_nopage_tlbs(&l, p);
  1036. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1037. uasm_i_nop(&p);
  1038. if ((p - handle_tlbs) > FASTPATH_SIZE)
  1039. panic("TLB store handler fastpath space exceeded");
  1040. uasm_resolve_relocs(relocs, labels);
  1041. pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
  1042. (unsigned int)(p - handle_tlbs));
  1043. dump_handler(handle_tlbs, ARRAY_SIZE(handle_tlbs));
  1044. }
  1045. static void __cpuinit build_r4000_tlb_modify_handler(void)
  1046. {
  1047. u32 *p = handle_tlbm;
  1048. struct uasm_label *l = labels;
  1049. struct uasm_reloc *r = relocs;
  1050. memset(handle_tlbm, 0, sizeof(handle_tlbm));
  1051. memset(labels, 0, sizeof(labels));
  1052. memset(relocs, 0, sizeof(relocs));
  1053. build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
  1054. build_pte_modifiable(&p, &l, &r, K0, K1, label_nopage_tlbm);
  1055. if (m4kc_tlbp_war())
  1056. build_tlb_probe_entry(&p);
  1057. /* Present and writable bits set, set accessed and dirty bits. */
  1058. build_make_write(&p, &r, K0, K1);
  1059. build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
  1060. uasm_l_nopage_tlbm(&l, p);
  1061. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1062. uasm_i_nop(&p);
  1063. if ((p - handle_tlbm) > FASTPATH_SIZE)
  1064. panic("TLB modify handler fastpath space exceeded");
  1065. uasm_resolve_relocs(relocs, labels);
  1066. pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
  1067. (unsigned int)(p - handle_tlbm));
  1068. dump_handler(handle_tlbm, ARRAY_SIZE(handle_tlbm));
  1069. }
  1070. void __cpuinit build_tlb_refill_handler(void)
  1071. {
  1072. /*
  1073. * The refill handler is generated per-CPU, multi-node systems
  1074. * may have local storage for it. The other handlers are only
  1075. * needed once.
  1076. */
  1077. static int run_once = 0;
  1078. switch (current_cpu_type()) {
  1079. case CPU_R2000:
  1080. case CPU_R3000:
  1081. case CPU_R3000A:
  1082. case CPU_R3081E:
  1083. case CPU_TX3912:
  1084. case CPU_TX3922:
  1085. case CPU_TX3927:
  1086. build_r3000_tlb_refill_handler();
  1087. if (!run_once) {
  1088. build_r3000_tlb_load_handler();
  1089. build_r3000_tlb_store_handler();
  1090. build_r3000_tlb_modify_handler();
  1091. run_once++;
  1092. }
  1093. break;
  1094. case CPU_R6000:
  1095. case CPU_R6000A:
  1096. panic("No R6000 TLB refill handler yet");
  1097. break;
  1098. case CPU_R8000:
  1099. panic("No R8000 TLB refill handler yet");
  1100. break;
  1101. default:
  1102. build_r4000_tlb_refill_handler();
  1103. if (!run_once) {
  1104. build_r4000_tlb_load_handler();
  1105. build_r4000_tlb_store_handler();
  1106. build_r4000_tlb_modify_handler();
  1107. run_once++;
  1108. }
  1109. }
  1110. }
  1111. void __cpuinit flush_tlb_handlers(void)
  1112. {
  1113. local_flush_icache_range((unsigned long)handle_tlbl,
  1114. (unsigned long)handle_tlbl + sizeof(handle_tlbl));
  1115. local_flush_icache_range((unsigned long)handle_tlbs,
  1116. (unsigned long)handle_tlbs + sizeof(handle_tlbs));
  1117. local_flush_icache_range((unsigned long)handle_tlbm,
  1118. (unsigned long)handle_tlbm + sizeof(handle_tlbm));
  1119. }