discontig.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723
  1. /*
  2. * Copyright (c) 2000, 2003 Silicon Graphics, Inc. All rights reserved.
  3. * Copyright (c) 2001 Intel Corp.
  4. * Copyright (c) 2001 Tony Luck <tony.luck@intel.com>
  5. * Copyright (c) 2002 NEC Corp.
  6. * Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com>
  7. * Copyright (c) 2004 Silicon Graphics, Inc
  8. * Russ Anderson <rja@sgi.com>
  9. * Jesse Barnes <jbarnes@sgi.com>
  10. * Jack Steiner <steiner@sgi.com>
  11. */
  12. /*
  13. * Platform initialization for Discontig Memory
  14. */
  15. #include <linux/kernel.h>
  16. #include <linux/mm.h>
  17. #include <linux/nmi.h>
  18. #include <linux/swap.h>
  19. #include <linux/bootmem.h>
  20. #include <linux/acpi.h>
  21. #include <linux/efi.h>
  22. #include <linux/nodemask.h>
  23. #include <asm/pgalloc.h>
  24. #include <asm/tlb.h>
  25. #include <asm/meminit.h>
  26. #include <asm/numa.h>
  27. #include <asm/sections.h>
  28. /*
  29. * Track per-node information needed to setup the boot memory allocator, the
  30. * per-node areas, and the real VM.
  31. */
  32. struct early_node_data {
  33. struct ia64_node_data *node_data;
  34. unsigned long pernode_addr;
  35. unsigned long pernode_size;
  36. unsigned long num_physpages;
  37. #ifdef CONFIG_ZONE_DMA
  38. unsigned long num_dma_physpages;
  39. #endif
  40. unsigned long min_pfn;
  41. unsigned long max_pfn;
  42. };
  43. static struct early_node_data mem_data[MAX_NUMNODES] __initdata;
  44. static nodemask_t memory_less_mask __initdata;
  45. pg_data_t *pgdat_list[MAX_NUMNODES];
  46. /*
  47. * To prevent cache aliasing effects, align per-node structures so that they
  48. * start at addresses that are strided by node number.
  49. */
  50. #define MAX_NODE_ALIGN_OFFSET (32 * 1024 * 1024)
  51. #define NODEDATA_ALIGN(addr, node) \
  52. ((((addr) + 1024*1024-1) & ~(1024*1024-1)) + \
  53. (((node)*PERCPU_PAGE_SIZE) & (MAX_NODE_ALIGN_OFFSET - 1)))
  54. /**
  55. * build_node_maps - callback to setup bootmem structs for each node
  56. * @start: physical start of range
  57. * @len: length of range
  58. * @node: node where this range resides
  59. *
  60. * We allocate a struct bootmem_data for each piece of memory that we wish to
  61. * treat as a virtually contiguous block (i.e. each node). Each such block
  62. * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down
  63. * if necessary. Any non-existent pages will simply be part of the virtual
  64. * memmap. We also update min_low_pfn and max_low_pfn here as we receive
  65. * memory ranges from the caller.
  66. */
  67. static int __init build_node_maps(unsigned long start, unsigned long len,
  68. int node)
  69. {
  70. unsigned long spfn, epfn, end = start + len;
  71. struct bootmem_data *bdp = &bootmem_node_data[node];
  72. epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT;
  73. spfn = GRANULEROUNDDOWN(start) >> PAGE_SHIFT;
  74. if (!bdp->node_low_pfn) {
  75. bdp->node_min_pfn = spfn;
  76. bdp->node_low_pfn = epfn;
  77. } else {
  78. bdp->node_min_pfn = min(spfn, bdp->node_min_pfn);
  79. bdp->node_low_pfn = max(epfn, bdp->node_low_pfn);
  80. }
  81. return 0;
  82. }
  83. /**
  84. * early_nr_cpus_node - return number of cpus on a given node
  85. * @node: node to check
  86. *
  87. * Count the number of cpus on @node. We can't use nr_cpus_node() yet because
  88. * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been
  89. * called yet. Note that node 0 will also count all non-existent cpus.
  90. */
  91. static int __meminit early_nr_cpus_node(int node)
  92. {
  93. int cpu, n = 0;
  94. for_each_possible_early_cpu(cpu)
  95. if (node == node_cpuid[cpu].nid)
  96. n++;
  97. return n;
  98. }
  99. /**
  100. * compute_pernodesize - compute size of pernode data
  101. * @node: the node id.
  102. */
  103. static unsigned long __meminit compute_pernodesize(int node)
  104. {
  105. unsigned long pernodesize = 0, cpus;
  106. cpus = early_nr_cpus_node(node);
  107. pernodesize += PERCPU_PAGE_SIZE * cpus;
  108. pernodesize += node * L1_CACHE_BYTES;
  109. pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
  110. pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
  111. pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
  112. pernodesize = PAGE_ALIGN(pernodesize);
  113. return pernodesize;
  114. }
  115. /**
  116. * per_cpu_node_setup - setup per-cpu areas on each node
  117. * @cpu_data: per-cpu area on this node
  118. * @node: node to setup
  119. *
  120. * Copy the static per-cpu data into the region we just set aside and then
  121. * setup __per_cpu_offset for each CPU on this node. Return a pointer to
  122. * the end of the area.
  123. */
  124. static void *per_cpu_node_setup(void *cpu_data, int node)
  125. {
  126. #ifdef CONFIG_SMP
  127. int cpu;
  128. for_each_possible_early_cpu(cpu) {
  129. if (cpu == 0) {
  130. void *cpu0_data = __cpu0_per_cpu;
  131. __per_cpu_offset[cpu] = (char*)cpu0_data -
  132. __per_cpu_start;
  133. } else if (node == node_cpuid[cpu].nid) {
  134. memcpy(__va(cpu_data), __phys_per_cpu_start,
  135. __per_cpu_end - __per_cpu_start);
  136. __per_cpu_offset[cpu] = (char*)__va(cpu_data) -
  137. __per_cpu_start;
  138. cpu_data += PERCPU_PAGE_SIZE;
  139. }
  140. }
  141. #endif
  142. return cpu_data;
  143. }
  144. /**
  145. * fill_pernode - initialize pernode data.
  146. * @node: the node id.
  147. * @pernode: physical address of pernode data
  148. * @pernodesize: size of the pernode data
  149. */
  150. static void __init fill_pernode(int node, unsigned long pernode,
  151. unsigned long pernodesize)
  152. {
  153. void *cpu_data;
  154. int cpus = early_nr_cpus_node(node);
  155. struct bootmem_data *bdp = &bootmem_node_data[node];
  156. mem_data[node].pernode_addr = pernode;
  157. mem_data[node].pernode_size = pernodesize;
  158. memset(__va(pernode), 0, pernodesize);
  159. cpu_data = (void *)pernode;
  160. pernode += PERCPU_PAGE_SIZE * cpus;
  161. pernode += node * L1_CACHE_BYTES;
  162. pgdat_list[node] = __va(pernode);
  163. pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
  164. mem_data[node].node_data = __va(pernode);
  165. pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
  166. pgdat_list[node]->bdata = bdp;
  167. pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
  168. cpu_data = per_cpu_node_setup(cpu_data, node);
  169. return;
  170. }
  171. /**
  172. * find_pernode_space - allocate memory for memory map and per-node structures
  173. * @start: physical start of range
  174. * @len: length of range
  175. * @node: node where this range resides
  176. *
  177. * This routine reserves space for the per-cpu data struct, the list of
  178. * pg_data_ts and the per-node data struct. Each node will have something like
  179. * the following in the first chunk of addr. space large enough to hold it.
  180. *
  181. * ________________________
  182. * | |
  183. * |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first
  184. * | PERCPU_PAGE_SIZE * | start and length big enough
  185. * | cpus_on_this_node | Node 0 will also have entries for all non-existent cpus.
  186. * |------------------------|
  187. * | local pg_data_t * |
  188. * |------------------------|
  189. * | local ia64_node_data |
  190. * |------------------------|
  191. * | ??? |
  192. * |________________________|
  193. *
  194. * Once this space has been set aside, the bootmem maps are initialized. We
  195. * could probably move the allocation of the per-cpu and ia64_node_data space
  196. * outside of this function and use alloc_bootmem_node(), but doing it here
  197. * is straightforward and we get the alignments we want so...
  198. */
  199. static int __init find_pernode_space(unsigned long start, unsigned long len,
  200. int node)
  201. {
  202. unsigned long spfn, epfn;
  203. unsigned long pernodesize = 0, pernode, pages, mapsize;
  204. struct bootmem_data *bdp = &bootmem_node_data[node];
  205. spfn = start >> PAGE_SHIFT;
  206. epfn = (start + len) >> PAGE_SHIFT;
  207. pages = bdp->node_low_pfn - bdp->node_min_pfn;
  208. mapsize = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
  209. /*
  210. * Make sure this memory falls within this node's usable memory
  211. * since we may have thrown some away in build_maps().
  212. */
  213. if (spfn < bdp->node_min_pfn || epfn > bdp->node_low_pfn)
  214. return 0;
  215. /* Don't setup this node's local space twice... */
  216. if (mem_data[node].pernode_addr)
  217. return 0;
  218. /*
  219. * Calculate total size needed, incl. what's necessary
  220. * for good alignment and alias prevention.
  221. */
  222. pernodesize = compute_pernodesize(node);
  223. pernode = NODEDATA_ALIGN(start, node);
  224. /* Is this range big enough for what we want to store here? */
  225. if (start + len > (pernode + pernodesize + mapsize))
  226. fill_pernode(node, pernode, pernodesize);
  227. return 0;
  228. }
  229. /**
  230. * free_node_bootmem - free bootmem allocator memory for use
  231. * @start: physical start of range
  232. * @len: length of range
  233. * @node: node where this range resides
  234. *
  235. * Simply calls the bootmem allocator to free the specified ranged from
  236. * the given pg_data_t's bdata struct. After this function has been called
  237. * for all the entries in the EFI memory map, the bootmem allocator will
  238. * be ready to service allocation requests.
  239. */
  240. static int __init free_node_bootmem(unsigned long start, unsigned long len,
  241. int node)
  242. {
  243. free_bootmem_node(pgdat_list[node], start, len);
  244. return 0;
  245. }
  246. /**
  247. * reserve_pernode_space - reserve memory for per-node space
  248. *
  249. * Reserve the space used by the bootmem maps & per-node space in the boot
  250. * allocator so that when we actually create the real mem maps we don't
  251. * use their memory.
  252. */
  253. static void __init reserve_pernode_space(void)
  254. {
  255. unsigned long base, size, pages;
  256. struct bootmem_data *bdp;
  257. int node;
  258. for_each_online_node(node) {
  259. pg_data_t *pdp = pgdat_list[node];
  260. if (node_isset(node, memory_less_mask))
  261. continue;
  262. bdp = pdp->bdata;
  263. /* First the bootmem_map itself */
  264. pages = bdp->node_low_pfn - bdp->node_min_pfn;
  265. size = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
  266. base = __pa(bdp->node_bootmem_map);
  267. reserve_bootmem_node(pdp, base, size, BOOTMEM_DEFAULT);
  268. /* Now the per-node space */
  269. size = mem_data[node].pernode_size;
  270. base = __pa(mem_data[node].pernode_addr);
  271. reserve_bootmem_node(pdp, base, size, BOOTMEM_DEFAULT);
  272. }
  273. }
  274. static void __meminit scatter_node_data(void)
  275. {
  276. pg_data_t **dst;
  277. int node;
  278. /*
  279. * for_each_online_node() can't be used at here.
  280. * node_online_map is not set for hot-added nodes at this time,
  281. * because we are halfway through initialization of the new node's
  282. * structures. If for_each_online_node() is used, a new node's
  283. * pg_data_ptrs will be not initialized. Instead of using it,
  284. * pgdat_list[] is checked.
  285. */
  286. for_each_node(node) {
  287. if (pgdat_list[node]) {
  288. dst = LOCAL_DATA_ADDR(pgdat_list[node])->pg_data_ptrs;
  289. memcpy(dst, pgdat_list, sizeof(pgdat_list));
  290. }
  291. }
  292. }
  293. /**
  294. * initialize_pernode_data - fixup per-cpu & per-node pointers
  295. *
  296. * Each node's per-node area has a copy of the global pg_data_t list, so
  297. * we copy that to each node here, as well as setting the per-cpu pointer
  298. * to the local node data structure. The active_cpus field of the per-node
  299. * structure gets setup by the platform_cpu_init() function later.
  300. */
  301. static void __init initialize_pernode_data(void)
  302. {
  303. int cpu, node;
  304. scatter_node_data();
  305. #ifdef CONFIG_SMP
  306. /* Set the node_data pointer for each per-cpu struct */
  307. for_each_possible_early_cpu(cpu) {
  308. node = node_cpuid[cpu].nid;
  309. per_cpu(cpu_info, cpu).node_data = mem_data[node].node_data;
  310. }
  311. #else
  312. {
  313. struct cpuinfo_ia64 *cpu0_cpu_info;
  314. cpu = 0;
  315. node = node_cpuid[cpu].nid;
  316. cpu0_cpu_info = (struct cpuinfo_ia64 *)(__phys_per_cpu_start +
  317. ((char *)&per_cpu__cpu_info - __per_cpu_start));
  318. cpu0_cpu_info->node_data = mem_data[node].node_data;
  319. }
  320. #endif /* CONFIG_SMP */
  321. }
  322. /**
  323. * memory_less_node_alloc - * attempt to allocate memory on the best NUMA slit
  324. * node but fall back to any other node when __alloc_bootmem_node fails
  325. * for best.
  326. * @nid: node id
  327. * @pernodesize: size of this node's pernode data
  328. */
  329. static void __init *memory_less_node_alloc(int nid, unsigned long pernodesize)
  330. {
  331. void *ptr = NULL;
  332. u8 best = 0xff;
  333. int bestnode = -1, node, anynode = 0;
  334. for_each_online_node(node) {
  335. if (node_isset(node, memory_less_mask))
  336. continue;
  337. else if (node_distance(nid, node) < best) {
  338. best = node_distance(nid, node);
  339. bestnode = node;
  340. }
  341. anynode = node;
  342. }
  343. if (bestnode == -1)
  344. bestnode = anynode;
  345. ptr = __alloc_bootmem_node(pgdat_list[bestnode], pernodesize,
  346. PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
  347. return ptr;
  348. }
  349. /**
  350. * memory_less_nodes - allocate and initialize CPU only nodes pernode
  351. * information.
  352. */
  353. static void __init memory_less_nodes(void)
  354. {
  355. unsigned long pernodesize;
  356. void *pernode;
  357. int node;
  358. for_each_node_mask(node, memory_less_mask) {
  359. pernodesize = compute_pernodesize(node);
  360. pernode = memory_less_node_alloc(node, pernodesize);
  361. fill_pernode(node, __pa(pernode), pernodesize);
  362. }
  363. return;
  364. }
  365. /**
  366. * find_memory - walk the EFI memory map and setup the bootmem allocator
  367. *
  368. * Called early in boot to setup the bootmem allocator, and to
  369. * allocate the per-cpu and per-node structures.
  370. */
  371. void __init find_memory(void)
  372. {
  373. int node;
  374. reserve_memory();
  375. if (num_online_nodes() == 0) {
  376. printk(KERN_ERR "node info missing!\n");
  377. node_set_online(0);
  378. }
  379. nodes_or(memory_less_mask, memory_less_mask, node_online_map);
  380. min_low_pfn = -1;
  381. max_low_pfn = 0;
  382. /* These actually end up getting called by call_pernode_memory() */
  383. efi_memmap_walk(filter_rsvd_memory, build_node_maps);
  384. efi_memmap_walk(filter_rsvd_memory, find_pernode_space);
  385. efi_memmap_walk(find_max_min_low_pfn, NULL);
  386. for_each_online_node(node)
  387. if (bootmem_node_data[node].node_low_pfn) {
  388. node_clear(node, memory_less_mask);
  389. mem_data[node].min_pfn = ~0UL;
  390. }
  391. efi_memmap_walk(filter_memory, register_active_ranges);
  392. /*
  393. * Initialize the boot memory maps in reverse order since that's
  394. * what the bootmem allocator expects
  395. */
  396. for (node = MAX_NUMNODES - 1; node >= 0; node--) {
  397. unsigned long pernode, pernodesize, map;
  398. struct bootmem_data *bdp;
  399. if (!node_online(node))
  400. continue;
  401. else if (node_isset(node, memory_less_mask))
  402. continue;
  403. bdp = &bootmem_node_data[node];
  404. pernode = mem_data[node].pernode_addr;
  405. pernodesize = mem_data[node].pernode_size;
  406. map = pernode + pernodesize;
  407. init_bootmem_node(pgdat_list[node],
  408. map>>PAGE_SHIFT,
  409. bdp->node_min_pfn,
  410. bdp->node_low_pfn);
  411. }
  412. efi_memmap_walk(filter_rsvd_memory, free_node_bootmem);
  413. reserve_pernode_space();
  414. memory_less_nodes();
  415. initialize_pernode_data();
  416. max_pfn = max_low_pfn;
  417. find_initrd();
  418. }
  419. #ifdef CONFIG_SMP
  420. /**
  421. * per_cpu_init - setup per-cpu variables
  422. *
  423. * find_pernode_space() does most of this already, we just need to set
  424. * local_per_cpu_offset
  425. */
  426. void __cpuinit *per_cpu_init(void)
  427. {
  428. int cpu;
  429. static int first_time = 1;
  430. if (first_time) {
  431. first_time = 0;
  432. for_each_possible_early_cpu(cpu)
  433. per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
  434. }
  435. return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
  436. }
  437. #endif /* CONFIG_SMP */
  438. /**
  439. * show_mem - give short summary of memory stats
  440. *
  441. * Shows a simple page count of reserved and used pages in the system.
  442. * For discontig machines, it does this on a per-pgdat basis.
  443. */
  444. void show_mem(void)
  445. {
  446. int i, total_reserved = 0;
  447. int total_shared = 0, total_cached = 0;
  448. unsigned long total_present = 0;
  449. pg_data_t *pgdat;
  450. printk(KERN_INFO "Mem-info:\n");
  451. show_free_areas();
  452. printk(KERN_INFO "Node memory in pages:\n");
  453. for_each_online_pgdat(pgdat) {
  454. unsigned long present;
  455. unsigned long flags;
  456. int shared = 0, cached = 0, reserved = 0;
  457. pgdat_resize_lock(pgdat, &flags);
  458. present = pgdat->node_present_pages;
  459. for(i = 0; i < pgdat->node_spanned_pages; i++) {
  460. struct page *page;
  461. if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
  462. touch_nmi_watchdog();
  463. if (pfn_valid(pgdat->node_start_pfn + i))
  464. page = pfn_to_page(pgdat->node_start_pfn + i);
  465. else {
  466. i = vmemmap_find_next_valid_pfn(pgdat->node_id,
  467. i) - 1;
  468. continue;
  469. }
  470. if (PageReserved(page))
  471. reserved++;
  472. else if (PageSwapCache(page))
  473. cached++;
  474. else if (page_count(page))
  475. shared += page_count(page)-1;
  476. }
  477. pgdat_resize_unlock(pgdat, &flags);
  478. total_present += present;
  479. total_reserved += reserved;
  480. total_cached += cached;
  481. total_shared += shared;
  482. printk(KERN_INFO "Node %4d: RAM: %11ld, rsvd: %8d, "
  483. "shrd: %10d, swpd: %10d\n", pgdat->node_id,
  484. present, reserved, shared, cached);
  485. }
  486. printk(KERN_INFO "%ld pages of RAM\n", total_present);
  487. printk(KERN_INFO "%d reserved pages\n", total_reserved);
  488. printk(KERN_INFO "%d pages shared\n", total_shared);
  489. printk(KERN_INFO "%d pages swap cached\n", total_cached);
  490. printk(KERN_INFO "Total of %ld pages in page table cache\n",
  491. quicklist_total_size());
  492. printk(KERN_INFO "%d free buffer pages\n", nr_free_buffer_pages());
  493. }
  494. /**
  495. * call_pernode_memory - use SRAT to call callback functions with node info
  496. * @start: physical start of range
  497. * @len: length of range
  498. * @arg: function to call for each range
  499. *
  500. * efi_memmap_walk() knows nothing about layout of memory across nodes. Find
  501. * out to which node a block of memory belongs. Ignore memory that we cannot
  502. * identify, and split blocks that run across multiple nodes.
  503. *
  504. * Take this opportunity to round the start address up and the end address
  505. * down to page boundaries.
  506. */
  507. void call_pernode_memory(unsigned long start, unsigned long len, void *arg)
  508. {
  509. unsigned long rs, re, end = start + len;
  510. void (*func)(unsigned long, unsigned long, int);
  511. int i;
  512. start = PAGE_ALIGN(start);
  513. end &= PAGE_MASK;
  514. if (start >= end)
  515. return;
  516. func = arg;
  517. if (!num_node_memblks) {
  518. /* No SRAT table, so assume one node (node 0) */
  519. if (start < end)
  520. (*func)(start, end - start, 0);
  521. return;
  522. }
  523. for (i = 0; i < num_node_memblks; i++) {
  524. rs = max(start, node_memblk[i].start_paddr);
  525. re = min(end, node_memblk[i].start_paddr +
  526. node_memblk[i].size);
  527. if (rs < re)
  528. (*func)(rs, re - rs, node_memblk[i].nid);
  529. if (re == end)
  530. break;
  531. }
  532. }
  533. /**
  534. * count_node_pages - callback to build per-node memory info structures
  535. * @start: physical start of range
  536. * @len: length of range
  537. * @node: node where this range resides
  538. *
  539. * Each node has it's own number of physical pages, DMAable pages, start, and
  540. * end page frame number. This routine will be called by call_pernode_memory()
  541. * for each piece of usable memory and will setup these values for each node.
  542. * Very similar to build_maps().
  543. */
  544. static __init int count_node_pages(unsigned long start, unsigned long len, int node)
  545. {
  546. unsigned long end = start + len;
  547. mem_data[node].num_physpages += len >> PAGE_SHIFT;
  548. #ifdef CONFIG_ZONE_DMA
  549. if (start <= __pa(MAX_DMA_ADDRESS))
  550. mem_data[node].num_dma_physpages +=
  551. (min(end, __pa(MAX_DMA_ADDRESS)) - start) >>PAGE_SHIFT;
  552. #endif
  553. start = GRANULEROUNDDOWN(start);
  554. end = GRANULEROUNDUP(end);
  555. mem_data[node].max_pfn = max(mem_data[node].max_pfn,
  556. end >> PAGE_SHIFT);
  557. mem_data[node].min_pfn = min(mem_data[node].min_pfn,
  558. start >> PAGE_SHIFT);
  559. return 0;
  560. }
  561. /**
  562. * paging_init - setup page tables
  563. *
  564. * paging_init() sets up the page tables for each node of the system and frees
  565. * the bootmem allocator memory for general use.
  566. */
  567. void __init paging_init(void)
  568. {
  569. unsigned long max_dma;
  570. unsigned long pfn_offset = 0;
  571. unsigned long max_pfn = 0;
  572. int node;
  573. unsigned long max_zone_pfns[MAX_NR_ZONES];
  574. max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
  575. efi_memmap_walk(filter_rsvd_memory, count_node_pages);
  576. sparse_memory_present_with_active_regions(MAX_NUMNODES);
  577. sparse_init();
  578. #ifdef CONFIG_VIRTUAL_MEM_MAP
  579. vmalloc_end -= PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
  580. sizeof(struct page));
  581. vmem_map = (struct page *) vmalloc_end;
  582. efi_memmap_walk(create_mem_map_page_table, NULL);
  583. printk("Virtual mem_map starts at 0x%p\n", vmem_map);
  584. #endif
  585. for_each_online_node(node) {
  586. num_physpages += mem_data[node].num_physpages;
  587. pfn_offset = mem_data[node].min_pfn;
  588. #ifdef CONFIG_VIRTUAL_MEM_MAP
  589. NODE_DATA(node)->node_mem_map = vmem_map + pfn_offset;
  590. #endif
  591. if (mem_data[node].max_pfn > max_pfn)
  592. max_pfn = mem_data[node].max_pfn;
  593. }
  594. memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
  595. #ifdef CONFIG_ZONE_DMA
  596. max_zone_pfns[ZONE_DMA] = max_dma;
  597. #endif
  598. max_zone_pfns[ZONE_NORMAL] = max_pfn;
  599. free_area_init_nodes(max_zone_pfns);
  600. zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
  601. }
  602. #ifdef CONFIG_MEMORY_HOTPLUG
  603. pg_data_t *arch_alloc_nodedata(int nid)
  604. {
  605. unsigned long size = compute_pernodesize(nid);
  606. return kzalloc(size, GFP_KERNEL);
  607. }
  608. void arch_free_nodedata(pg_data_t *pgdat)
  609. {
  610. kfree(pgdat);
  611. }
  612. void arch_refresh_nodedata(int update_node, pg_data_t *update_pgdat)
  613. {
  614. pgdat_list[update_node] = update_pgdat;
  615. scatter_node_data();
  616. }
  617. #endif
  618. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  619. int __meminit vmemmap_populate(struct page *start_page,
  620. unsigned long size, int node)
  621. {
  622. return vmemmap_populate_basepages(start_page, size, node);
  623. }
  624. #endif