kvm-ia64.c 43 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948
  1. /*
  2. * kvm_ia64.c: Basic KVM suppport On Itanium series processors
  3. *
  4. *
  5. * Copyright (C) 2007, Intel Corporation.
  6. * Xiantao Zhang (xiantao.zhang@intel.com)
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms and conditions of the GNU General Public License,
  10. * version 2, as published by the Free Software Foundation.
  11. *
  12. * This program is distributed in the hope it will be useful, but WITHOUT
  13. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  15. * more details.
  16. *
  17. * You should have received a copy of the GNU General Public License along with
  18. * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
  19. * Place - Suite 330, Boston, MA 02111-1307 USA.
  20. *
  21. */
  22. #include <linux/module.h>
  23. #include <linux/errno.h>
  24. #include <linux/percpu.h>
  25. #include <linux/gfp.h>
  26. #include <linux/fs.h>
  27. #include <linux/smp.h>
  28. #include <linux/kvm_host.h>
  29. #include <linux/kvm.h>
  30. #include <linux/bitops.h>
  31. #include <linux/hrtimer.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/iommu.h>
  34. #include <linux/intel-iommu.h>
  35. #include <asm/pgtable.h>
  36. #include <asm/gcc_intrin.h>
  37. #include <asm/pal.h>
  38. #include <asm/cacheflush.h>
  39. #include <asm/div64.h>
  40. #include <asm/tlb.h>
  41. #include <asm/elf.h>
  42. #include "misc.h"
  43. #include "vti.h"
  44. #include "iodev.h"
  45. #include "ioapic.h"
  46. #include "lapic.h"
  47. #include "irq.h"
  48. static unsigned long kvm_vmm_base;
  49. static unsigned long kvm_vsa_base;
  50. static unsigned long kvm_vm_buffer;
  51. static unsigned long kvm_vm_buffer_size;
  52. unsigned long kvm_vmm_gp;
  53. static long vp_env_info;
  54. static struct kvm_vmm_info *kvm_vmm_info;
  55. static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);
  56. struct kvm_stats_debugfs_item debugfs_entries[] = {
  57. { NULL }
  58. };
  59. static void kvm_flush_icache(unsigned long start, unsigned long len)
  60. {
  61. int l;
  62. for (l = 0; l < (len + 32); l += 32)
  63. ia64_fc((void *)(start + l));
  64. ia64_sync_i();
  65. ia64_srlz_i();
  66. }
  67. static void kvm_flush_tlb_all(void)
  68. {
  69. unsigned long i, j, count0, count1, stride0, stride1, addr;
  70. long flags;
  71. addr = local_cpu_data->ptce_base;
  72. count0 = local_cpu_data->ptce_count[0];
  73. count1 = local_cpu_data->ptce_count[1];
  74. stride0 = local_cpu_data->ptce_stride[0];
  75. stride1 = local_cpu_data->ptce_stride[1];
  76. local_irq_save(flags);
  77. for (i = 0; i < count0; ++i) {
  78. for (j = 0; j < count1; ++j) {
  79. ia64_ptce(addr);
  80. addr += stride1;
  81. }
  82. addr += stride0;
  83. }
  84. local_irq_restore(flags);
  85. ia64_srlz_i(); /* srlz.i implies srlz.d */
  86. }
  87. long ia64_pal_vp_create(u64 *vpd, u64 *host_iva, u64 *opt_handler)
  88. {
  89. struct ia64_pal_retval iprv;
  90. PAL_CALL_STK(iprv, PAL_VP_CREATE, (u64)vpd, (u64)host_iva,
  91. (u64)opt_handler);
  92. return iprv.status;
  93. }
  94. static DEFINE_SPINLOCK(vp_lock);
  95. void kvm_arch_hardware_enable(void *garbage)
  96. {
  97. long status;
  98. long tmp_base;
  99. unsigned long pte;
  100. unsigned long saved_psr;
  101. int slot;
  102. pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
  103. PAGE_KERNEL));
  104. local_irq_save(saved_psr);
  105. slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
  106. local_irq_restore(saved_psr);
  107. if (slot < 0)
  108. return;
  109. spin_lock(&vp_lock);
  110. status = ia64_pal_vp_init_env(kvm_vsa_base ?
  111. VP_INIT_ENV : VP_INIT_ENV_INITALIZE,
  112. __pa(kvm_vm_buffer), KVM_VM_BUFFER_BASE, &tmp_base);
  113. if (status != 0) {
  114. printk(KERN_WARNING"kvm: Failed to Enable VT Support!!!!\n");
  115. return ;
  116. }
  117. if (!kvm_vsa_base) {
  118. kvm_vsa_base = tmp_base;
  119. printk(KERN_INFO"kvm: kvm_vsa_base:0x%lx\n", kvm_vsa_base);
  120. }
  121. spin_unlock(&vp_lock);
  122. ia64_ptr_entry(0x3, slot);
  123. }
  124. void kvm_arch_hardware_disable(void *garbage)
  125. {
  126. long status;
  127. int slot;
  128. unsigned long pte;
  129. unsigned long saved_psr;
  130. unsigned long host_iva = ia64_getreg(_IA64_REG_CR_IVA);
  131. pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
  132. PAGE_KERNEL));
  133. local_irq_save(saved_psr);
  134. slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
  135. local_irq_restore(saved_psr);
  136. if (slot < 0)
  137. return;
  138. status = ia64_pal_vp_exit_env(host_iva);
  139. if (status)
  140. printk(KERN_DEBUG"kvm: Failed to disable VT support! :%ld\n",
  141. status);
  142. ia64_ptr_entry(0x3, slot);
  143. }
  144. void kvm_arch_check_processor_compat(void *rtn)
  145. {
  146. *(int *)rtn = 0;
  147. }
  148. int kvm_dev_ioctl_check_extension(long ext)
  149. {
  150. int r;
  151. switch (ext) {
  152. case KVM_CAP_IRQCHIP:
  153. case KVM_CAP_MP_STATE:
  154. case KVM_CAP_IRQ_INJECT_STATUS:
  155. r = 1;
  156. break;
  157. case KVM_CAP_COALESCED_MMIO:
  158. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  159. break;
  160. case KVM_CAP_IOMMU:
  161. r = iommu_found();
  162. break;
  163. default:
  164. r = 0;
  165. }
  166. return r;
  167. }
  168. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  169. gpa_t addr, int len, int is_write)
  170. {
  171. struct kvm_io_device *dev;
  172. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len, is_write);
  173. return dev;
  174. }
  175. static int handle_vm_error(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  176. {
  177. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  178. kvm_run->hw.hardware_exit_reason = 1;
  179. return 0;
  180. }
  181. static int handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  182. {
  183. struct kvm_mmio_req *p;
  184. struct kvm_io_device *mmio_dev;
  185. p = kvm_get_vcpu_ioreq(vcpu);
  186. if ((p->addr & PAGE_MASK) == IOAPIC_DEFAULT_BASE_ADDRESS)
  187. goto mmio;
  188. vcpu->mmio_needed = 1;
  189. vcpu->mmio_phys_addr = kvm_run->mmio.phys_addr = p->addr;
  190. vcpu->mmio_size = kvm_run->mmio.len = p->size;
  191. vcpu->mmio_is_write = kvm_run->mmio.is_write = !p->dir;
  192. if (vcpu->mmio_is_write)
  193. memcpy(vcpu->mmio_data, &p->data, p->size);
  194. memcpy(kvm_run->mmio.data, &p->data, p->size);
  195. kvm_run->exit_reason = KVM_EXIT_MMIO;
  196. return 0;
  197. mmio:
  198. mmio_dev = vcpu_find_mmio_dev(vcpu, p->addr, p->size, !p->dir);
  199. if (mmio_dev) {
  200. if (!p->dir)
  201. kvm_iodevice_write(mmio_dev, p->addr, p->size,
  202. &p->data);
  203. else
  204. kvm_iodevice_read(mmio_dev, p->addr, p->size,
  205. &p->data);
  206. } else
  207. printk(KERN_ERR"kvm: No iodevice found! addr:%lx\n", p->addr);
  208. p->state = STATE_IORESP_READY;
  209. return 1;
  210. }
  211. static int handle_pal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  212. {
  213. struct exit_ctl_data *p;
  214. p = kvm_get_exit_data(vcpu);
  215. if (p->exit_reason == EXIT_REASON_PAL_CALL)
  216. return kvm_pal_emul(vcpu, kvm_run);
  217. else {
  218. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  219. kvm_run->hw.hardware_exit_reason = 2;
  220. return 0;
  221. }
  222. }
  223. static int handle_sal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  224. {
  225. struct exit_ctl_data *p;
  226. p = kvm_get_exit_data(vcpu);
  227. if (p->exit_reason == EXIT_REASON_SAL_CALL) {
  228. kvm_sal_emul(vcpu);
  229. return 1;
  230. } else {
  231. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  232. kvm_run->hw.hardware_exit_reason = 3;
  233. return 0;
  234. }
  235. }
  236. /*
  237. * offset: address offset to IPI space.
  238. * value: deliver value.
  239. */
  240. static void vcpu_deliver_ipi(struct kvm_vcpu *vcpu, uint64_t dm,
  241. uint64_t vector)
  242. {
  243. switch (dm) {
  244. case SAPIC_FIXED:
  245. kvm_apic_set_irq(vcpu, vector, 0);
  246. break;
  247. case SAPIC_NMI:
  248. kvm_apic_set_irq(vcpu, 2, 0);
  249. break;
  250. case SAPIC_EXTINT:
  251. kvm_apic_set_irq(vcpu, 0, 0);
  252. break;
  253. case SAPIC_INIT:
  254. case SAPIC_PMI:
  255. default:
  256. printk(KERN_ERR"kvm: Unimplemented Deliver reserved IPI!\n");
  257. break;
  258. }
  259. }
  260. static struct kvm_vcpu *lid_to_vcpu(struct kvm *kvm, unsigned long id,
  261. unsigned long eid)
  262. {
  263. union ia64_lid lid;
  264. int i;
  265. for (i = 0; i < kvm->arch.online_vcpus; i++) {
  266. if (kvm->vcpus[i]) {
  267. lid.val = VCPU_LID(kvm->vcpus[i]);
  268. if (lid.id == id && lid.eid == eid)
  269. return kvm->vcpus[i];
  270. }
  271. }
  272. return NULL;
  273. }
  274. static int handle_ipi(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  275. {
  276. struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
  277. struct kvm_vcpu *target_vcpu;
  278. struct kvm_pt_regs *regs;
  279. union ia64_ipi_a addr = p->u.ipi_data.addr;
  280. union ia64_ipi_d data = p->u.ipi_data.data;
  281. target_vcpu = lid_to_vcpu(vcpu->kvm, addr.id, addr.eid);
  282. if (!target_vcpu)
  283. return handle_vm_error(vcpu, kvm_run);
  284. if (!target_vcpu->arch.launched) {
  285. regs = vcpu_regs(target_vcpu);
  286. regs->cr_iip = vcpu->kvm->arch.rdv_sal_data.boot_ip;
  287. regs->r1 = vcpu->kvm->arch.rdv_sal_data.boot_gp;
  288. target_vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  289. if (waitqueue_active(&target_vcpu->wq))
  290. wake_up_interruptible(&target_vcpu->wq);
  291. } else {
  292. vcpu_deliver_ipi(target_vcpu, data.dm, data.vector);
  293. if (target_vcpu != vcpu)
  294. kvm_vcpu_kick(target_vcpu);
  295. }
  296. return 1;
  297. }
  298. struct call_data {
  299. struct kvm_ptc_g ptc_g_data;
  300. struct kvm_vcpu *vcpu;
  301. };
  302. static void vcpu_global_purge(void *info)
  303. {
  304. struct call_data *p = (struct call_data *)info;
  305. struct kvm_vcpu *vcpu = p->vcpu;
  306. if (test_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  307. return;
  308. set_bit(KVM_REQ_PTC_G, &vcpu->requests);
  309. if (vcpu->arch.ptc_g_count < MAX_PTC_G_NUM) {
  310. vcpu->arch.ptc_g_data[vcpu->arch.ptc_g_count++] =
  311. p->ptc_g_data;
  312. } else {
  313. clear_bit(KVM_REQ_PTC_G, &vcpu->requests);
  314. vcpu->arch.ptc_g_count = 0;
  315. set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
  316. }
  317. }
  318. static int handle_global_purge(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  319. {
  320. struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
  321. struct kvm *kvm = vcpu->kvm;
  322. struct call_data call_data;
  323. int i;
  324. call_data.ptc_g_data = p->u.ptc_g_data;
  325. for (i = 0; i < kvm->arch.online_vcpus; i++) {
  326. if (!kvm->vcpus[i] || kvm->vcpus[i]->arch.mp_state ==
  327. KVM_MP_STATE_UNINITIALIZED ||
  328. vcpu == kvm->vcpus[i])
  329. continue;
  330. if (waitqueue_active(&kvm->vcpus[i]->wq))
  331. wake_up_interruptible(&kvm->vcpus[i]->wq);
  332. if (kvm->vcpus[i]->cpu != -1) {
  333. call_data.vcpu = kvm->vcpus[i];
  334. smp_call_function_single(kvm->vcpus[i]->cpu,
  335. vcpu_global_purge, &call_data, 1);
  336. } else
  337. printk(KERN_WARNING"kvm: Uninit vcpu received ipi!\n");
  338. }
  339. return 1;
  340. }
  341. static int handle_switch_rr6(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  342. {
  343. return 1;
  344. }
  345. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  346. {
  347. ktime_t kt;
  348. long itc_diff;
  349. unsigned long vcpu_now_itc;
  350. unsigned long expires;
  351. struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
  352. unsigned long cyc_per_usec = local_cpu_data->cyc_per_usec;
  353. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  354. if (irqchip_in_kernel(vcpu->kvm)) {
  355. vcpu_now_itc = ia64_getreg(_IA64_REG_AR_ITC) + vcpu->arch.itc_offset;
  356. if (time_after(vcpu_now_itc, vpd->itm)) {
  357. vcpu->arch.timer_check = 1;
  358. return 1;
  359. }
  360. itc_diff = vpd->itm - vcpu_now_itc;
  361. if (itc_diff < 0)
  362. itc_diff = -itc_diff;
  363. expires = div64_u64(itc_diff, cyc_per_usec);
  364. kt = ktime_set(0, 1000 * expires);
  365. vcpu->arch.ht_active = 1;
  366. hrtimer_start(p_ht, kt, HRTIMER_MODE_ABS);
  367. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  368. kvm_vcpu_block(vcpu);
  369. hrtimer_cancel(p_ht);
  370. vcpu->arch.ht_active = 0;
  371. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
  372. if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
  373. vcpu->arch.mp_state =
  374. KVM_MP_STATE_RUNNABLE;
  375. if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
  376. return -EINTR;
  377. return 1;
  378. } else {
  379. printk(KERN_ERR"kvm: Unsupported userspace halt!");
  380. return 0;
  381. }
  382. }
  383. static int handle_vm_shutdown(struct kvm_vcpu *vcpu,
  384. struct kvm_run *kvm_run)
  385. {
  386. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  387. return 0;
  388. }
  389. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  390. struct kvm_run *kvm_run)
  391. {
  392. return 1;
  393. }
  394. static int handle_vcpu_debug(struct kvm_vcpu *vcpu,
  395. struct kvm_run *kvm_run)
  396. {
  397. printk("VMM: %s", vcpu->arch.log_buf);
  398. return 1;
  399. }
  400. static int (*kvm_vti_exit_handlers[])(struct kvm_vcpu *vcpu,
  401. struct kvm_run *kvm_run) = {
  402. [EXIT_REASON_VM_PANIC] = handle_vm_error,
  403. [EXIT_REASON_MMIO_INSTRUCTION] = handle_mmio,
  404. [EXIT_REASON_PAL_CALL] = handle_pal_call,
  405. [EXIT_REASON_SAL_CALL] = handle_sal_call,
  406. [EXIT_REASON_SWITCH_RR6] = handle_switch_rr6,
  407. [EXIT_REASON_VM_DESTROY] = handle_vm_shutdown,
  408. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  409. [EXIT_REASON_IPI] = handle_ipi,
  410. [EXIT_REASON_PTC_G] = handle_global_purge,
  411. [EXIT_REASON_DEBUG] = handle_vcpu_debug,
  412. };
  413. static const int kvm_vti_max_exit_handlers =
  414. sizeof(kvm_vti_exit_handlers)/sizeof(*kvm_vti_exit_handlers);
  415. static uint32_t kvm_get_exit_reason(struct kvm_vcpu *vcpu)
  416. {
  417. struct exit_ctl_data *p_exit_data;
  418. p_exit_data = kvm_get_exit_data(vcpu);
  419. return p_exit_data->exit_reason;
  420. }
  421. /*
  422. * The guest has exited. See if we can fix it or if we need userspace
  423. * assistance.
  424. */
  425. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  426. {
  427. u32 exit_reason = kvm_get_exit_reason(vcpu);
  428. vcpu->arch.last_exit = exit_reason;
  429. if (exit_reason < kvm_vti_max_exit_handlers
  430. && kvm_vti_exit_handlers[exit_reason])
  431. return kvm_vti_exit_handlers[exit_reason](vcpu, kvm_run);
  432. else {
  433. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  434. kvm_run->hw.hardware_exit_reason = exit_reason;
  435. }
  436. return 0;
  437. }
  438. static inline void vti_set_rr6(unsigned long rr6)
  439. {
  440. ia64_set_rr(RR6, rr6);
  441. ia64_srlz_i();
  442. }
  443. static int kvm_insert_vmm_mapping(struct kvm_vcpu *vcpu)
  444. {
  445. unsigned long pte;
  446. struct kvm *kvm = vcpu->kvm;
  447. int r;
  448. /*Insert a pair of tr to map vmm*/
  449. pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
  450. r = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
  451. if (r < 0)
  452. goto out;
  453. vcpu->arch.vmm_tr_slot = r;
  454. /*Insert a pairt of tr to map data of vm*/
  455. pte = pte_val(mk_pte_phys(__pa(kvm->arch.vm_base), PAGE_KERNEL));
  456. r = ia64_itr_entry(0x3, KVM_VM_DATA_BASE,
  457. pte, KVM_VM_DATA_SHIFT);
  458. if (r < 0)
  459. goto out;
  460. vcpu->arch.vm_tr_slot = r;
  461. r = 0;
  462. out:
  463. return r;
  464. }
  465. static void kvm_purge_vmm_mapping(struct kvm_vcpu *vcpu)
  466. {
  467. ia64_ptr_entry(0x3, vcpu->arch.vmm_tr_slot);
  468. ia64_ptr_entry(0x3, vcpu->arch.vm_tr_slot);
  469. }
  470. static int kvm_vcpu_pre_transition(struct kvm_vcpu *vcpu)
  471. {
  472. int cpu = smp_processor_id();
  473. if (vcpu->arch.last_run_cpu != cpu ||
  474. per_cpu(last_vcpu, cpu) != vcpu) {
  475. per_cpu(last_vcpu, cpu) = vcpu;
  476. vcpu->arch.last_run_cpu = cpu;
  477. kvm_flush_tlb_all();
  478. }
  479. vcpu->arch.host_rr6 = ia64_get_rr(RR6);
  480. vti_set_rr6(vcpu->arch.vmm_rr);
  481. return kvm_insert_vmm_mapping(vcpu);
  482. }
  483. static void kvm_vcpu_post_transition(struct kvm_vcpu *vcpu)
  484. {
  485. kvm_purge_vmm_mapping(vcpu);
  486. vti_set_rr6(vcpu->arch.host_rr6);
  487. }
  488. static int vti_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  489. {
  490. union context *host_ctx, *guest_ctx;
  491. int r;
  492. /*Get host and guest context with guest address space.*/
  493. host_ctx = kvm_get_host_context(vcpu);
  494. guest_ctx = kvm_get_guest_context(vcpu);
  495. r = kvm_vcpu_pre_transition(vcpu);
  496. if (r < 0)
  497. goto out;
  498. kvm_vmm_info->tramp_entry(host_ctx, guest_ctx);
  499. kvm_vcpu_post_transition(vcpu);
  500. r = 0;
  501. out:
  502. return r;
  503. }
  504. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  505. {
  506. int r;
  507. again:
  508. if (signal_pending(current)) {
  509. r = -EINTR;
  510. kvm_run->exit_reason = KVM_EXIT_INTR;
  511. goto out;
  512. }
  513. /*
  514. * down_read() may sleep and return with interrupts enabled
  515. */
  516. down_read(&vcpu->kvm->slots_lock);
  517. preempt_disable();
  518. local_irq_disable();
  519. vcpu->guest_mode = 1;
  520. kvm_guest_enter();
  521. r = vti_vcpu_run(vcpu, kvm_run);
  522. if (r < 0) {
  523. local_irq_enable();
  524. preempt_enable();
  525. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  526. goto out;
  527. }
  528. vcpu->arch.launched = 1;
  529. vcpu->guest_mode = 0;
  530. local_irq_enable();
  531. /*
  532. * We must have an instruction between local_irq_enable() and
  533. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  534. * the interrupt shadow. The stat.exits increment will do nicely.
  535. * But we need to prevent reordering, hence this barrier():
  536. */
  537. barrier();
  538. kvm_guest_exit();
  539. up_read(&vcpu->kvm->slots_lock);
  540. preempt_enable();
  541. r = kvm_handle_exit(kvm_run, vcpu);
  542. if (r > 0) {
  543. if (!need_resched())
  544. goto again;
  545. }
  546. out:
  547. if (r > 0) {
  548. kvm_resched(vcpu);
  549. goto again;
  550. }
  551. return r;
  552. }
  553. static void kvm_set_mmio_data(struct kvm_vcpu *vcpu)
  554. {
  555. struct kvm_mmio_req *p = kvm_get_vcpu_ioreq(vcpu);
  556. if (!vcpu->mmio_is_write)
  557. memcpy(&p->data, vcpu->mmio_data, 8);
  558. p->state = STATE_IORESP_READY;
  559. }
  560. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  561. {
  562. int r;
  563. sigset_t sigsaved;
  564. vcpu_load(vcpu);
  565. if (vcpu->sigset_active)
  566. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  567. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  568. kvm_vcpu_block(vcpu);
  569. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  570. r = -EAGAIN;
  571. goto out;
  572. }
  573. if (vcpu->mmio_needed) {
  574. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  575. kvm_set_mmio_data(vcpu);
  576. vcpu->mmio_read_completed = 1;
  577. vcpu->mmio_needed = 0;
  578. }
  579. r = __vcpu_run(vcpu, kvm_run);
  580. out:
  581. if (vcpu->sigset_active)
  582. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  583. vcpu_put(vcpu);
  584. return r;
  585. }
  586. static struct kvm *kvm_alloc_kvm(void)
  587. {
  588. struct kvm *kvm;
  589. uint64_t vm_base;
  590. BUG_ON(sizeof(struct kvm) > KVM_VM_STRUCT_SIZE);
  591. vm_base = __get_free_pages(GFP_KERNEL, get_order(KVM_VM_DATA_SIZE));
  592. if (!vm_base)
  593. return ERR_PTR(-ENOMEM);
  594. memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
  595. kvm = (struct kvm *)(vm_base +
  596. offsetof(struct kvm_vm_data, kvm_vm_struct));
  597. kvm->arch.vm_base = vm_base;
  598. printk(KERN_DEBUG"kvm: vm's data area:0x%lx\n", vm_base);
  599. return kvm;
  600. }
  601. struct kvm_io_range {
  602. unsigned long start;
  603. unsigned long size;
  604. unsigned long type;
  605. };
  606. static const struct kvm_io_range io_ranges[] = {
  607. {VGA_IO_START, VGA_IO_SIZE, GPFN_FRAME_BUFFER},
  608. {MMIO_START, MMIO_SIZE, GPFN_LOW_MMIO},
  609. {LEGACY_IO_START, LEGACY_IO_SIZE, GPFN_LEGACY_IO},
  610. {IO_SAPIC_START, IO_SAPIC_SIZE, GPFN_IOSAPIC},
  611. {PIB_START, PIB_SIZE, GPFN_PIB},
  612. };
  613. static void kvm_build_io_pmt(struct kvm *kvm)
  614. {
  615. unsigned long i, j;
  616. /* Mark I/O ranges */
  617. for (i = 0; i < (sizeof(io_ranges) / sizeof(struct kvm_io_range));
  618. i++) {
  619. for (j = io_ranges[i].start;
  620. j < io_ranges[i].start + io_ranges[i].size;
  621. j += PAGE_SIZE)
  622. kvm_set_pmt_entry(kvm, j >> PAGE_SHIFT,
  623. io_ranges[i].type, 0);
  624. }
  625. }
  626. /*Use unused rids to virtualize guest rid.*/
  627. #define GUEST_PHYSICAL_RR0 0x1739
  628. #define GUEST_PHYSICAL_RR4 0x2739
  629. #define VMM_INIT_RR 0x1660
  630. static void kvm_init_vm(struct kvm *kvm)
  631. {
  632. BUG_ON(!kvm);
  633. kvm->arch.metaphysical_rr0 = GUEST_PHYSICAL_RR0;
  634. kvm->arch.metaphysical_rr4 = GUEST_PHYSICAL_RR4;
  635. kvm->arch.vmm_init_rr = VMM_INIT_RR;
  636. /*
  637. *Fill P2M entries for MMIO/IO ranges
  638. */
  639. kvm_build_io_pmt(kvm);
  640. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  641. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  642. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  643. }
  644. struct kvm *kvm_arch_create_vm(void)
  645. {
  646. struct kvm *kvm = kvm_alloc_kvm();
  647. if (IS_ERR(kvm))
  648. return ERR_PTR(-ENOMEM);
  649. kvm_init_vm(kvm);
  650. kvm->arch.online_vcpus = 0;
  651. return kvm;
  652. }
  653. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm,
  654. struct kvm_irqchip *chip)
  655. {
  656. int r;
  657. r = 0;
  658. switch (chip->chip_id) {
  659. case KVM_IRQCHIP_IOAPIC:
  660. memcpy(&chip->chip.ioapic, ioapic_irqchip(kvm),
  661. sizeof(struct kvm_ioapic_state));
  662. break;
  663. default:
  664. r = -EINVAL;
  665. break;
  666. }
  667. return r;
  668. }
  669. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  670. {
  671. int r;
  672. r = 0;
  673. switch (chip->chip_id) {
  674. case KVM_IRQCHIP_IOAPIC:
  675. memcpy(ioapic_irqchip(kvm),
  676. &chip->chip.ioapic,
  677. sizeof(struct kvm_ioapic_state));
  678. break;
  679. default:
  680. r = -EINVAL;
  681. break;
  682. }
  683. return r;
  684. }
  685. #define RESTORE_REGS(_x) vcpu->arch._x = regs->_x
  686. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  687. {
  688. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  689. int i;
  690. vcpu_load(vcpu);
  691. for (i = 0; i < 16; i++) {
  692. vpd->vgr[i] = regs->vpd.vgr[i];
  693. vpd->vbgr[i] = regs->vpd.vbgr[i];
  694. }
  695. for (i = 0; i < 128; i++)
  696. vpd->vcr[i] = regs->vpd.vcr[i];
  697. vpd->vhpi = regs->vpd.vhpi;
  698. vpd->vnat = regs->vpd.vnat;
  699. vpd->vbnat = regs->vpd.vbnat;
  700. vpd->vpsr = regs->vpd.vpsr;
  701. vpd->vpr = regs->vpd.vpr;
  702. memcpy(&vcpu->arch.guest, &regs->saved_guest, sizeof(union context));
  703. RESTORE_REGS(mp_state);
  704. RESTORE_REGS(vmm_rr);
  705. memcpy(vcpu->arch.itrs, regs->itrs, sizeof(struct thash_data) * NITRS);
  706. memcpy(vcpu->arch.dtrs, regs->dtrs, sizeof(struct thash_data) * NDTRS);
  707. RESTORE_REGS(itr_regions);
  708. RESTORE_REGS(dtr_regions);
  709. RESTORE_REGS(tc_regions);
  710. RESTORE_REGS(irq_check);
  711. RESTORE_REGS(itc_check);
  712. RESTORE_REGS(timer_check);
  713. RESTORE_REGS(timer_pending);
  714. RESTORE_REGS(last_itc);
  715. for (i = 0; i < 8; i++) {
  716. vcpu->arch.vrr[i] = regs->vrr[i];
  717. vcpu->arch.ibr[i] = regs->ibr[i];
  718. vcpu->arch.dbr[i] = regs->dbr[i];
  719. }
  720. for (i = 0; i < 4; i++)
  721. vcpu->arch.insvc[i] = regs->insvc[i];
  722. RESTORE_REGS(xtp);
  723. RESTORE_REGS(metaphysical_rr0);
  724. RESTORE_REGS(metaphysical_rr4);
  725. RESTORE_REGS(metaphysical_saved_rr0);
  726. RESTORE_REGS(metaphysical_saved_rr4);
  727. RESTORE_REGS(fp_psr);
  728. RESTORE_REGS(saved_gp);
  729. vcpu->arch.irq_new_pending = 1;
  730. vcpu->arch.itc_offset = regs->saved_itc - ia64_getreg(_IA64_REG_AR_ITC);
  731. set_bit(KVM_REQ_RESUME, &vcpu->requests);
  732. vcpu_put(vcpu);
  733. return 0;
  734. }
  735. long kvm_arch_vm_ioctl(struct file *filp,
  736. unsigned int ioctl, unsigned long arg)
  737. {
  738. struct kvm *kvm = filp->private_data;
  739. void __user *argp = (void __user *)arg;
  740. int r = -EINVAL;
  741. switch (ioctl) {
  742. case KVM_SET_MEMORY_REGION: {
  743. struct kvm_memory_region kvm_mem;
  744. struct kvm_userspace_memory_region kvm_userspace_mem;
  745. r = -EFAULT;
  746. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  747. goto out;
  748. kvm_userspace_mem.slot = kvm_mem.slot;
  749. kvm_userspace_mem.flags = kvm_mem.flags;
  750. kvm_userspace_mem.guest_phys_addr =
  751. kvm_mem.guest_phys_addr;
  752. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  753. r = kvm_vm_ioctl_set_memory_region(kvm,
  754. &kvm_userspace_mem, 0);
  755. if (r)
  756. goto out;
  757. break;
  758. }
  759. case KVM_CREATE_IRQCHIP:
  760. r = -EFAULT;
  761. r = kvm_ioapic_init(kvm);
  762. if (r)
  763. goto out;
  764. r = kvm_setup_default_irq_routing(kvm);
  765. if (r) {
  766. kfree(kvm->arch.vioapic);
  767. goto out;
  768. }
  769. break;
  770. case KVM_IRQ_LINE_STATUS:
  771. case KVM_IRQ_LINE: {
  772. struct kvm_irq_level irq_event;
  773. r = -EFAULT;
  774. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  775. goto out;
  776. if (irqchip_in_kernel(kvm)) {
  777. __s32 status;
  778. mutex_lock(&kvm->lock);
  779. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  780. irq_event.irq, irq_event.level);
  781. mutex_unlock(&kvm->lock);
  782. if (ioctl == KVM_IRQ_LINE_STATUS) {
  783. irq_event.status = status;
  784. if (copy_to_user(argp, &irq_event,
  785. sizeof irq_event))
  786. goto out;
  787. }
  788. r = 0;
  789. }
  790. break;
  791. }
  792. case KVM_GET_IRQCHIP: {
  793. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  794. struct kvm_irqchip chip;
  795. r = -EFAULT;
  796. if (copy_from_user(&chip, argp, sizeof chip))
  797. goto out;
  798. r = -ENXIO;
  799. if (!irqchip_in_kernel(kvm))
  800. goto out;
  801. r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
  802. if (r)
  803. goto out;
  804. r = -EFAULT;
  805. if (copy_to_user(argp, &chip, sizeof chip))
  806. goto out;
  807. r = 0;
  808. break;
  809. }
  810. case KVM_SET_IRQCHIP: {
  811. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  812. struct kvm_irqchip chip;
  813. r = -EFAULT;
  814. if (copy_from_user(&chip, argp, sizeof chip))
  815. goto out;
  816. r = -ENXIO;
  817. if (!irqchip_in_kernel(kvm))
  818. goto out;
  819. r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
  820. if (r)
  821. goto out;
  822. r = 0;
  823. break;
  824. }
  825. default:
  826. ;
  827. }
  828. out:
  829. return r;
  830. }
  831. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  832. struct kvm_sregs *sregs)
  833. {
  834. return -EINVAL;
  835. }
  836. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  837. struct kvm_sregs *sregs)
  838. {
  839. return -EINVAL;
  840. }
  841. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  842. struct kvm_translation *tr)
  843. {
  844. return -EINVAL;
  845. }
  846. static int kvm_alloc_vmm_area(void)
  847. {
  848. if (!kvm_vmm_base && (kvm_vm_buffer_size < KVM_VM_BUFFER_SIZE)) {
  849. kvm_vmm_base = __get_free_pages(GFP_KERNEL,
  850. get_order(KVM_VMM_SIZE));
  851. if (!kvm_vmm_base)
  852. return -ENOMEM;
  853. memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
  854. kvm_vm_buffer = kvm_vmm_base + VMM_SIZE;
  855. printk(KERN_DEBUG"kvm:VMM's Base Addr:0x%lx, vm_buffer:0x%lx\n",
  856. kvm_vmm_base, kvm_vm_buffer);
  857. }
  858. return 0;
  859. }
  860. static void kvm_free_vmm_area(void)
  861. {
  862. if (kvm_vmm_base) {
  863. /*Zero this area before free to avoid bits leak!!*/
  864. memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
  865. free_pages(kvm_vmm_base, get_order(KVM_VMM_SIZE));
  866. kvm_vmm_base = 0;
  867. kvm_vm_buffer = 0;
  868. kvm_vsa_base = 0;
  869. }
  870. }
  871. static void vti_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  872. {
  873. }
  874. static int vti_init_vpd(struct kvm_vcpu *vcpu)
  875. {
  876. int i;
  877. union cpuid3_t cpuid3;
  878. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  879. if (IS_ERR(vpd))
  880. return PTR_ERR(vpd);
  881. /* CPUID init */
  882. for (i = 0; i < 5; i++)
  883. vpd->vcpuid[i] = ia64_get_cpuid(i);
  884. /* Limit the CPUID number to 5 */
  885. cpuid3.value = vpd->vcpuid[3];
  886. cpuid3.number = 4; /* 5 - 1 */
  887. vpd->vcpuid[3] = cpuid3.value;
  888. /*Set vac and vdc fields*/
  889. vpd->vac.a_from_int_cr = 1;
  890. vpd->vac.a_to_int_cr = 1;
  891. vpd->vac.a_from_psr = 1;
  892. vpd->vac.a_from_cpuid = 1;
  893. vpd->vac.a_cover = 1;
  894. vpd->vac.a_bsw = 1;
  895. vpd->vac.a_int = 1;
  896. vpd->vdc.d_vmsw = 1;
  897. /*Set virtual buffer*/
  898. vpd->virt_env_vaddr = KVM_VM_BUFFER_BASE;
  899. return 0;
  900. }
  901. static int vti_create_vp(struct kvm_vcpu *vcpu)
  902. {
  903. long ret;
  904. struct vpd *vpd = vcpu->arch.vpd;
  905. unsigned long vmm_ivt;
  906. vmm_ivt = kvm_vmm_info->vmm_ivt;
  907. printk(KERN_DEBUG "kvm: vcpu:%p,ivt: 0x%lx\n", vcpu, vmm_ivt);
  908. ret = ia64_pal_vp_create((u64 *)vpd, (u64 *)vmm_ivt, 0);
  909. if (ret) {
  910. printk(KERN_ERR"kvm: ia64_pal_vp_create failed!\n");
  911. return -EINVAL;
  912. }
  913. return 0;
  914. }
  915. static void init_ptce_info(struct kvm_vcpu *vcpu)
  916. {
  917. ia64_ptce_info_t ptce = {0};
  918. ia64_get_ptce(&ptce);
  919. vcpu->arch.ptce_base = ptce.base;
  920. vcpu->arch.ptce_count[0] = ptce.count[0];
  921. vcpu->arch.ptce_count[1] = ptce.count[1];
  922. vcpu->arch.ptce_stride[0] = ptce.stride[0];
  923. vcpu->arch.ptce_stride[1] = ptce.stride[1];
  924. }
  925. static void kvm_migrate_hlt_timer(struct kvm_vcpu *vcpu)
  926. {
  927. struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
  928. if (hrtimer_cancel(p_ht))
  929. hrtimer_start_expires(p_ht, HRTIMER_MODE_ABS);
  930. }
  931. static enum hrtimer_restart hlt_timer_fn(struct hrtimer *data)
  932. {
  933. struct kvm_vcpu *vcpu;
  934. wait_queue_head_t *q;
  935. vcpu = container_of(data, struct kvm_vcpu, arch.hlt_timer);
  936. q = &vcpu->wq;
  937. if (vcpu->arch.mp_state != KVM_MP_STATE_HALTED)
  938. goto out;
  939. if (waitqueue_active(q))
  940. wake_up_interruptible(q);
  941. out:
  942. vcpu->arch.timer_fired = 1;
  943. vcpu->arch.timer_check = 1;
  944. return HRTIMER_NORESTART;
  945. }
  946. #define PALE_RESET_ENTRY 0x80000000ffffffb0UL
  947. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  948. {
  949. struct kvm_vcpu *v;
  950. int r;
  951. int i;
  952. long itc_offset;
  953. struct kvm *kvm = vcpu->kvm;
  954. struct kvm_pt_regs *regs = vcpu_regs(vcpu);
  955. union context *p_ctx = &vcpu->arch.guest;
  956. struct kvm_vcpu *vmm_vcpu = to_guest(vcpu->kvm, vcpu);
  957. /*Init vcpu context for first run.*/
  958. if (IS_ERR(vmm_vcpu))
  959. return PTR_ERR(vmm_vcpu);
  960. if (vcpu->vcpu_id == 0) {
  961. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  962. /*Set entry address for first run.*/
  963. regs->cr_iip = PALE_RESET_ENTRY;
  964. /*Initialize itc offset for vcpus*/
  965. itc_offset = 0UL - ia64_getreg(_IA64_REG_AR_ITC);
  966. for (i = 0; i < kvm->arch.online_vcpus; i++) {
  967. v = (struct kvm_vcpu *)((char *)vcpu +
  968. sizeof(struct kvm_vcpu_data) * i);
  969. v->arch.itc_offset = itc_offset;
  970. v->arch.last_itc = 0;
  971. }
  972. } else
  973. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  974. r = -ENOMEM;
  975. vcpu->arch.apic = kzalloc(sizeof(struct kvm_lapic), GFP_KERNEL);
  976. if (!vcpu->arch.apic)
  977. goto out;
  978. vcpu->arch.apic->vcpu = vcpu;
  979. p_ctx->gr[1] = 0;
  980. p_ctx->gr[12] = (unsigned long)((char *)vmm_vcpu + KVM_STK_OFFSET);
  981. p_ctx->gr[13] = (unsigned long)vmm_vcpu;
  982. p_ctx->psr = 0x1008522000UL;
  983. p_ctx->ar[40] = FPSR_DEFAULT; /*fpsr*/
  984. p_ctx->caller_unat = 0;
  985. p_ctx->pr = 0x0;
  986. p_ctx->ar[36] = 0x0; /*unat*/
  987. p_ctx->ar[19] = 0x0; /*rnat*/
  988. p_ctx->ar[18] = (unsigned long)vmm_vcpu +
  989. ((sizeof(struct kvm_vcpu)+15) & ~15);
  990. p_ctx->ar[64] = 0x0; /*pfs*/
  991. p_ctx->cr[0] = 0x7e04UL;
  992. p_ctx->cr[2] = (unsigned long)kvm_vmm_info->vmm_ivt;
  993. p_ctx->cr[8] = 0x3c;
  994. /*Initilize region register*/
  995. p_ctx->rr[0] = 0x30;
  996. p_ctx->rr[1] = 0x30;
  997. p_ctx->rr[2] = 0x30;
  998. p_ctx->rr[3] = 0x30;
  999. p_ctx->rr[4] = 0x30;
  1000. p_ctx->rr[5] = 0x30;
  1001. p_ctx->rr[7] = 0x30;
  1002. /*Initilize branch register 0*/
  1003. p_ctx->br[0] = *(unsigned long *)kvm_vmm_info->vmm_entry;
  1004. vcpu->arch.vmm_rr = kvm->arch.vmm_init_rr;
  1005. vcpu->arch.metaphysical_rr0 = kvm->arch.metaphysical_rr0;
  1006. vcpu->arch.metaphysical_rr4 = kvm->arch.metaphysical_rr4;
  1007. hrtimer_init(&vcpu->arch.hlt_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
  1008. vcpu->arch.hlt_timer.function = hlt_timer_fn;
  1009. vcpu->arch.last_run_cpu = -1;
  1010. vcpu->arch.vpd = (struct vpd *)VPD_BASE(vcpu->vcpu_id);
  1011. vcpu->arch.vsa_base = kvm_vsa_base;
  1012. vcpu->arch.__gp = kvm_vmm_gp;
  1013. vcpu->arch.dirty_log_lock_pa = __pa(&kvm->arch.dirty_log_lock);
  1014. vcpu->arch.vhpt.hash = (struct thash_data *)VHPT_BASE(vcpu->vcpu_id);
  1015. vcpu->arch.vtlb.hash = (struct thash_data *)VTLB_BASE(vcpu->vcpu_id);
  1016. init_ptce_info(vcpu);
  1017. r = 0;
  1018. out:
  1019. return r;
  1020. }
  1021. static int vti_vcpu_setup(struct kvm_vcpu *vcpu, int id)
  1022. {
  1023. unsigned long psr;
  1024. int r;
  1025. local_irq_save(psr);
  1026. r = kvm_insert_vmm_mapping(vcpu);
  1027. if (r)
  1028. goto fail;
  1029. r = kvm_vcpu_init(vcpu, vcpu->kvm, id);
  1030. if (r)
  1031. goto fail;
  1032. r = vti_init_vpd(vcpu);
  1033. if (r) {
  1034. printk(KERN_DEBUG"kvm: vpd init error!!\n");
  1035. goto uninit;
  1036. }
  1037. r = vti_create_vp(vcpu);
  1038. if (r)
  1039. goto uninit;
  1040. kvm_purge_vmm_mapping(vcpu);
  1041. local_irq_restore(psr);
  1042. return 0;
  1043. uninit:
  1044. kvm_vcpu_uninit(vcpu);
  1045. fail:
  1046. local_irq_restore(psr);
  1047. return r;
  1048. }
  1049. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  1050. unsigned int id)
  1051. {
  1052. struct kvm_vcpu *vcpu;
  1053. unsigned long vm_base = kvm->arch.vm_base;
  1054. int r;
  1055. int cpu;
  1056. BUG_ON(sizeof(struct kvm_vcpu) > VCPU_STRUCT_SIZE/2);
  1057. r = -EINVAL;
  1058. if (id >= KVM_MAX_VCPUS) {
  1059. printk(KERN_ERR"kvm: Can't configure vcpus > %ld",
  1060. KVM_MAX_VCPUS);
  1061. goto fail;
  1062. }
  1063. r = -ENOMEM;
  1064. if (!vm_base) {
  1065. printk(KERN_ERR"kvm: Create vcpu[%d] error!\n", id);
  1066. goto fail;
  1067. }
  1068. vcpu = (struct kvm_vcpu *)(vm_base + offsetof(struct kvm_vm_data,
  1069. vcpu_data[id].vcpu_struct));
  1070. vcpu->kvm = kvm;
  1071. cpu = get_cpu();
  1072. vti_vcpu_load(vcpu, cpu);
  1073. r = vti_vcpu_setup(vcpu, id);
  1074. put_cpu();
  1075. if (r) {
  1076. printk(KERN_DEBUG"kvm: vcpu_setup error!!\n");
  1077. goto fail;
  1078. }
  1079. kvm->arch.online_vcpus++;
  1080. return vcpu;
  1081. fail:
  1082. return ERR_PTR(r);
  1083. }
  1084. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  1085. {
  1086. return 0;
  1087. }
  1088. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  1089. {
  1090. return -EINVAL;
  1091. }
  1092. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  1093. {
  1094. return -EINVAL;
  1095. }
  1096. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  1097. struct kvm_guest_debug *dbg)
  1098. {
  1099. return -EINVAL;
  1100. }
  1101. static void free_kvm(struct kvm *kvm)
  1102. {
  1103. unsigned long vm_base = kvm->arch.vm_base;
  1104. if (vm_base) {
  1105. memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
  1106. free_pages(vm_base, get_order(KVM_VM_DATA_SIZE));
  1107. }
  1108. }
  1109. static void kvm_release_vm_pages(struct kvm *kvm)
  1110. {
  1111. struct kvm_memory_slot *memslot;
  1112. int i, j;
  1113. unsigned long base_gfn;
  1114. for (i = 0; i < kvm->nmemslots; i++) {
  1115. memslot = &kvm->memslots[i];
  1116. base_gfn = memslot->base_gfn;
  1117. for (j = 0; j < memslot->npages; j++) {
  1118. if (memslot->rmap[j])
  1119. put_page((struct page *)memslot->rmap[j]);
  1120. }
  1121. }
  1122. }
  1123. void kvm_arch_sync_events(struct kvm *kvm)
  1124. {
  1125. }
  1126. void kvm_arch_destroy_vm(struct kvm *kvm)
  1127. {
  1128. kvm_iommu_unmap_guest(kvm);
  1129. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  1130. kvm_free_all_assigned_devices(kvm);
  1131. #endif
  1132. kfree(kvm->arch.vioapic);
  1133. kvm_release_vm_pages(kvm);
  1134. kvm_free_physmem(kvm);
  1135. free_kvm(kvm);
  1136. }
  1137. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1138. {
  1139. }
  1140. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1141. {
  1142. if (cpu != vcpu->cpu) {
  1143. vcpu->cpu = cpu;
  1144. if (vcpu->arch.ht_active)
  1145. kvm_migrate_hlt_timer(vcpu);
  1146. }
  1147. }
  1148. #define SAVE_REGS(_x) regs->_x = vcpu->arch._x
  1149. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  1150. {
  1151. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  1152. int i;
  1153. vcpu_load(vcpu);
  1154. for (i = 0; i < 16; i++) {
  1155. regs->vpd.vgr[i] = vpd->vgr[i];
  1156. regs->vpd.vbgr[i] = vpd->vbgr[i];
  1157. }
  1158. for (i = 0; i < 128; i++)
  1159. regs->vpd.vcr[i] = vpd->vcr[i];
  1160. regs->vpd.vhpi = vpd->vhpi;
  1161. regs->vpd.vnat = vpd->vnat;
  1162. regs->vpd.vbnat = vpd->vbnat;
  1163. regs->vpd.vpsr = vpd->vpsr;
  1164. regs->vpd.vpr = vpd->vpr;
  1165. memcpy(&regs->saved_guest, &vcpu->arch.guest, sizeof(union context));
  1166. SAVE_REGS(mp_state);
  1167. SAVE_REGS(vmm_rr);
  1168. memcpy(regs->itrs, vcpu->arch.itrs, sizeof(struct thash_data) * NITRS);
  1169. memcpy(regs->dtrs, vcpu->arch.dtrs, sizeof(struct thash_data) * NDTRS);
  1170. SAVE_REGS(itr_regions);
  1171. SAVE_REGS(dtr_regions);
  1172. SAVE_REGS(tc_regions);
  1173. SAVE_REGS(irq_check);
  1174. SAVE_REGS(itc_check);
  1175. SAVE_REGS(timer_check);
  1176. SAVE_REGS(timer_pending);
  1177. SAVE_REGS(last_itc);
  1178. for (i = 0; i < 8; i++) {
  1179. regs->vrr[i] = vcpu->arch.vrr[i];
  1180. regs->ibr[i] = vcpu->arch.ibr[i];
  1181. regs->dbr[i] = vcpu->arch.dbr[i];
  1182. }
  1183. for (i = 0; i < 4; i++)
  1184. regs->insvc[i] = vcpu->arch.insvc[i];
  1185. regs->saved_itc = vcpu->arch.itc_offset + ia64_getreg(_IA64_REG_AR_ITC);
  1186. SAVE_REGS(xtp);
  1187. SAVE_REGS(metaphysical_rr0);
  1188. SAVE_REGS(metaphysical_rr4);
  1189. SAVE_REGS(metaphysical_saved_rr0);
  1190. SAVE_REGS(metaphysical_saved_rr4);
  1191. SAVE_REGS(fp_psr);
  1192. SAVE_REGS(saved_gp);
  1193. vcpu_put(vcpu);
  1194. return 0;
  1195. }
  1196. int kvm_arch_vcpu_ioctl_get_stack(struct kvm_vcpu *vcpu,
  1197. struct kvm_ia64_vcpu_stack *stack)
  1198. {
  1199. memcpy(stack, vcpu, sizeof(struct kvm_ia64_vcpu_stack));
  1200. return 0;
  1201. }
  1202. int kvm_arch_vcpu_ioctl_set_stack(struct kvm_vcpu *vcpu,
  1203. struct kvm_ia64_vcpu_stack *stack)
  1204. {
  1205. memcpy(vcpu + 1, &stack->stack[0] + sizeof(struct kvm_vcpu),
  1206. sizeof(struct kvm_ia64_vcpu_stack) - sizeof(struct kvm_vcpu));
  1207. vcpu->arch.exit_data = ((struct kvm_vcpu *)stack)->arch.exit_data;
  1208. return 0;
  1209. }
  1210. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  1211. {
  1212. hrtimer_cancel(&vcpu->arch.hlt_timer);
  1213. kfree(vcpu->arch.apic);
  1214. }
  1215. long kvm_arch_vcpu_ioctl(struct file *filp,
  1216. unsigned int ioctl, unsigned long arg)
  1217. {
  1218. struct kvm_vcpu *vcpu = filp->private_data;
  1219. void __user *argp = (void __user *)arg;
  1220. struct kvm_ia64_vcpu_stack *stack = NULL;
  1221. long r;
  1222. switch (ioctl) {
  1223. case KVM_IA64_VCPU_GET_STACK: {
  1224. struct kvm_ia64_vcpu_stack __user *user_stack;
  1225. void __user *first_p = argp;
  1226. r = -EFAULT;
  1227. if (copy_from_user(&user_stack, first_p, sizeof(void *)))
  1228. goto out;
  1229. if (!access_ok(VERIFY_WRITE, user_stack,
  1230. sizeof(struct kvm_ia64_vcpu_stack))) {
  1231. printk(KERN_INFO "KVM_IA64_VCPU_GET_STACK: "
  1232. "Illegal user destination address for stack\n");
  1233. goto out;
  1234. }
  1235. stack = kzalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
  1236. if (!stack) {
  1237. r = -ENOMEM;
  1238. goto out;
  1239. }
  1240. r = kvm_arch_vcpu_ioctl_get_stack(vcpu, stack);
  1241. if (r)
  1242. goto out;
  1243. if (copy_to_user(user_stack, stack,
  1244. sizeof(struct kvm_ia64_vcpu_stack)))
  1245. goto out;
  1246. break;
  1247. }
  1248. case KVM_IA64_VCPU_SET_STACK: {
  1249. struct kvm_ia64_vcpu_stack __user *user_stack;
  1250. void __user *first_p = argp;
  1251. r = -EFAULT;
  1252. if (copy_from_user(&user_stack, first_p, sizeof(void *)))
  1253. goto out;
  1254. if (!access_ok(VERIFY_READ, user_stack,
  1255. sizeof(struct kvm_ia64_vcpu_stack))) {
  1256. printk(KERN_INFO "KVM_IA64_VCPU_SET_STACK: "
  1257. "Illegal user address for stack\n");
  1258. goto out;
  1259. }
  1260. stack = kmalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
  1261. if (!stack) {
  1262. r = -ENOMEM;
  1263. goto out;
  1264. }
  1265. if (copy_from_user(stack, user_stack,
  1266. sizeof(struct kvm_ia64_vcpu_stack)))
  1267. goto out;
  1268. r = kvm_arch_vcpu_ioctl_set_stack(vcpu, stack);
  1269. break;
  1270. }
  1271. default:
  1272. r = -EINVAL;
  1273. }
  1274. out:
  1275. kfree(stack);
  1276. return r;
  1277. }
  1278. int kvm_arch_set_memory_region(struct kvm *kvm,
  1279. struct kvm_userspace_memory_region *mem,
  1280. struct kvm_memory_slot old,
  1281. int user_alloc)
  1282. {
  1283. unsigned long i;
  1284. unsigned long pfn;
  1285. int npages = mem->memory_size >> PAGE_SHIFT;
  1286. struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
  1287. unsigned long base_gfn = memslot->base_gfn;
  1288. if (base_gfn + npages > (KVM_MAX_MEM_SIZE >> PAGE_SHIFT))
  1289. return -ENOMEM;
  1290. for (i = 0; i < npages; i++) {
  1291. pfn = gfn_to_pfn(kvm, base_gfn + i);
  1292. if (!kvm_is_mmio_pfn(pfn)) {
  1293. kvm_set_pmt_entry(kvm, base_gfn + i,
  1294. pfn << PAGE_SHIFT,
  1295. _PAGE_AR_RWX | _PAGE_MA_WB);
  1296. memslot->rmap[i] = (unsigned long)pfn_to_page(pfn);
  1297. } else {
  1298. kvm_set_pmt_entry(kvm, base_gfn + i,
  1299. GPFN_PHYS_MMIO | (pfn << PAGE_SHIFT),
  1300. _PAGE_MA_UC);
  1301. memslot->rmap[i] = 0;
  1302. }
  1303. }
  1304. return 0;
  1305. }
  1306. void kvm_arch_flush_shadow(struct kvm *kvm)
  1307. {
  1308. }
  1309. long kvm_arch_dev_ioctl(struct file *filp,
  1310. unsigned int ioctl, unsigned long arg)
  1311. {
  1312. return -EINVAL;
  1313. }
  1314. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  1315. {
  1316. kvm_vcpu_uninit(vcpu);
  1317. }
  1318. static int vti_cpu_has_kvm_support(void)
  1319. {
  1320. long avail = 1, status = 1, control = 1;
  1321. long ret;
  1322. ret = ia64_pal_proc_get_features(&avail, &status, &control, 0);
  1323. if (ret)
  1324. goto out;
  1325. if (!(avail & PAL_PROC_VM_BIT))
  1326. goto out;
  1327. printk(KERN_DEBUG"kvm: Hardware Supports VT\n");
  1328. ret = ia64_pal_vp_env_info(&kvm_vm_buffer_size, &vp_env_info);
  1329. if (ret)
  1330. goto out;
  1331. printk(KERN_DEBUG"kvm: VM Buffer Size:0x%lx\n", kvm_vm_buffer_size);
  1332. if (!(vp_env_info & VP_OPCODE)) {
  1333. printk(KERN_WARNING"kvm: No opcode ability on hardware, "
  1334. "vm_env_info:0x%lx\n", vp_env_info);
  1335. }
  1336. return 1;
  1337. out:
  1338. return 0;
  1339. }
  1340. static int kvm_relocate_vmm(struct kvm_vmm_info *vmm_info,
  1341. struct module *module)
  1342. {
  1343. unsigned long module_base;
  1344. unsigned long vmm_size;
  1345. unsigned long vmm_offset, func_offset, fdesc_offset;
  1346. struct fdesc *p_fdesc;
  1347. BUG_ON(!module);
  1348. if (!kvm_vmm_base) {
  1349. printk("kvm: kvm area hasn't been initilized yet!!\n");
  1350. return -EFAULT;
  1351. }
  1352. /*Calculate new position of relocated vmm module.*/
  1353. module_base = (unsigned long)module->module_core;
  1354. vmm_size = module->core_size;
  1355. if (unlikely(vmm_size > KVM_VMM_SIZE))
  1356. return -EFAULT;
  1357. memcpy((void *)kvm_vmm_base, (void *)module_base, vmm_size);
  1358. kvm_flush_icache(kvm_vmm_base, vmm_size);
  1359. /*Recalculate kvm_vmm_info based on new VMM*/
  1360. vmm_offset = vmm_info->vmm_ivt - module_base;
  1361. kvm_vmm_info->vmm_ivt = KVM_VMM_BASE + vmm_offset;
  1362. printk(KERN_DEBUG"kvm: Relocated VMM's IVT Base Addr:%lx\n",
  1363. kvm_vmm_info->vmm_ivt);
  1364. fdesc_offset = (unsigned long)vmm_info->vmm_entry - module_base;
  1365. kvm_vmm_info->vmm_entry = (kvm_vmm_entry *)(KVM_VMM_BASE +
  1366. fdesc_offset);
  1367. func_offset = *(unsigned long *)vmm_info->vmm_entry - module_base;
  1368. p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
  1369. p_fdesc->ip = KVM_VMM_BASE + func_offset;
  1370. p_fdesc->gp = KVM_VMM_BASE+(p_fdesc->gp - module_base);
  1371. printk(KERN_DEBUG"kvm: Relocated VMM's Init Entry Addr:%lx\n",
  1372. KVM_VMM_BASE+func_offset);
  1373. fdesc_offset = (unsigned long)vmm_info->tramp_entry - module_base;
  1374. kvm_vmm_info->tramp_entry = (kvm_tramp_entry *)(KVM_VMM_BASE +
  1375. fdesc_offset);
  1376. func_offset = *(unsigned long *)vmm_info->tramp_entry - module_base;
  1377. p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
  1378. p_fdesc->ip = KVM_VMM_BASE + func_offset;
  1379. p_fdesc->gp = KVM_VMM_BASE + (p_fdesc->gp - module_base);
  1380. kvm_vmm_gp = p_fdesc->gp;
  1381. printk(KERN_DEBUG"kvm: Relocated VMM's Entry IP:%p\n",
  1382. kvm_vmm_info->vmm_entry);
  1383. printk(KERN_DEBUG"kvm: Relocated VMM's Trampoline Entry IP:0x%lx\n",
  1384. KVM_VMM_BASE + func_offset);
  1385. return 0;
  1386. }
  1387. int kvm_arch_init(void *opaque)
  1388. {
  1389. int r;
  1390. struct kvm_vmm_info *vmm_info = (struct kvm_vmm_info *)opaque;
  1391. if (!vti_cpu_has_kvm_support()) {
  1392. printk(KERN_ERR "kvm: No Hardware Virtualization Support!\n");
  1393. r = -EOPNOTSUPP;
  1394. goto out;
  1395. }
  1396. if (kvm_vmm_info) {
  1397. printk(KERN_ERR "kvm: Already loaded VMM module!\n");
  1398. r = -EEXIST;
  1399. goto out;
  1400. }
  1401. r = -ENOMEM;
  1402. kvm_vmm_info = kzalloc(sizeof(struct kvm_vmm_info), GFP_KERNEL);
  1403. if (!kvm_vmm_info)
  1404. goto out;
  1405. if (kvm_alloc_vmm_area())
  1406. goto out_free0;
  1407. r = kvm_relocate_vmm(vmm_info, vmm_info->module);
  1408. if (r)
  1409. goto out_free1;
  1410. return 0;
  1411. out_free1:
  1412. kvm_free_vmm_area();
  1413. out_free0:
  1414. kfree(kvm_vmm_info);
  1415. out:
  1416. return r;
  1417. }
  1418. void kvm_arch_exit(void)
  1419. {
  1420. kvm_free_vmm_area();
  1421. kfree(kvm_vmm_info);
  1422. kvm_vmm_info = NULL;
  1423. }
  1424. static int kvm_ia64_sync_dirty_log(struct kvm *kvm,
  1425. struct kvm_dirty_log *log)
  1426. {
  1427. struct kvm_memory_slot *memslot;
  1428. int r, i;
  1429. long n, base;
  1430. unsigned long *dirty_bitmap = (unsigned long *)(kvm->arch.vm_base +
  1431. offsetof(struct kvm_vm_data, kvm_mem_dirty_log));
  1432. r = -EINVAL;
  1433. if (log->slot >= KVM_MEMORY_SLOTS)
  1434. goto out;
  1435. memslot = &kvm->memslots[log->slot];
  1436. r = -ENOENT;
  1437. if (!memslot->dirty_bitmap)
  1438. goto out;
  1439. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1440. base = memslot->base_gfn / BITS_PER_LONG;
  1441. for (i = 0; i < n/sizeof(long); ++i) {
  1442. memslot->dirty_bitmap[i] = dirty_bitmap[base + i];
  1443. dirty_bitmap[base + i] = 0;
  1444. }
  1445. r = 0;
  1446. out:
  1447. return r;
  1448. }
  1449. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  1450. struct kvm_dirty_log *log)
  1451. {
  1452. int r;
  1453. int n;
  1454. struct kvm_memory_slot *memslot;
  1455. int is_dirty = 0;
  1456. spin_lock(&kvm->arch.dirty_log_lock);
  1457. r = kvm_ia64_sync_dirty_log(kvm, log);
  1458. if (r)
  1459. goto out;
  1460. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  1461. if (r)
  1462. goto out;
  1463. /* If nothing is dirty, don't bother messing with page tables. */
  1464. if (is_dirty) {
  1465. kvm_flush_remote_tlbs(kvm);
  1466. memslot = &kvm->memslots[log->slot];
  1467. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1468. memset(memslot->dirty_bitmap, 0, n);
  1469. }
  1470. r = 0;
  1471. out:
  1472. spin_unlock(&kvm->arch.dirty_log_lock);
  1473. return r;
  1474. }
  1475. int kvm_arch_hardware_setup(void)
  1476. {
  1477. return 0;
  1478. }
  1479. void kvm_arch_hardware_unsetup(void)
  1480. {
  1481. }
  1482. static void vcpu_kick_intr(void *info)
  1483. {
  1484. #ifdef DEBUG
  1485. struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
  1486. printk(KERN_DEBUG"vcpu_kick_intr %p \n", vcpu);
  1487. #endif
  1488. }
  1489. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  1490. {
  1491. int ipi_pcpu = vcpu->cpu;
  1492. int cpu = get_cpu();
  1493. if (waitqueue_active(&vcpu->wq))
  1494. wake_up_interruptible(&vcpu->wq);
  1495. if (vcpu->guest_mode && cpu != ipi_pcpu)
  1496. smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
  1497. put_cpu();
  1498. }
  1499. int kvm_apic_set_irq(struct kvm_vcpu *vcpu, u8 vec, u8 trig)
  1500. {
  1501. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  1502. if (!test_and_set_bit(vec, &vpd->irr[0])) {
  1503. vcpu->arch.irq_new_pending = 1;
  1504. kvm_vcpu_kick(vcpu);
  1505. return 1;
  1506. }
  1507. return 0;
  1508. }
  1509. int kvm_apic_match_physical_addr(struct kvm_lapic *apic, u16 dest)
  1510. {
  1511. return apic->vcpu->vcpu_id == dest;
  1512. }
  1513. int kvm_apic_match_logical_addr(struct kvm_lapic *apic, u8 mda)
  1514. {
  1515. return 0;
  1516. }
  1517. struct kvm_vcpu *kvm_get_lowest_prio_vcpu(struct kvm *kvm, u8 vector,
  1518. unsigned long bitmap)
  1519. {
  1520. struct kvm_vcpu *lvcpu = kvm->vcpus[0];
  1521. int i;
  1522. for (i = 1; i < kvm->arch.online_vcpus; i++) {
  1523. if (!kvm->vcpus[i])
  1524. continue;
  1525. if (lvcpu->arch.xtp > kvm->vcpus[i]->arch.xtp)
  1526. lvcpu = kvm->vcpus[i];
  1527. }
  1528. return lvcpu;
  1529. }
  1530. static int find_highest_bits(int *dat)
  1531. {
  1532. u32 bits, bitnum;
  1533. int i;
  1534. /* loop for all 256 bits */
  1535. for (i = 7; i >= 0 ; i--) {
  1536. bits = dat[i];
  1537. if (bits) {
  1538. bitnum = fls(bits);
  1539. return i * 32 + bitnum - 1;
  1540. }
  1541. }
  1542. return -1;
  1543. }
  1544. int kvm_highest_pending_irq(struct kvm_vcpu *vcpu)
  1545. {
  1546. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  1547. if (vpd->irr[0] & (1UL << NMI_VECTOR))
  1548. return NMI_VECTOR;
  1549. if (vpd->irr[0] & (1UL << ExtINT_VECTOR))
  1550. return ExtINT_VECTOR;
  1551. return find_highest_bits((int *)&vpd->irr[0]);
  1552. }
  1553. int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu)
  1554. {
  1555. if (kvm_highest_pending_irq(vcpu) != -1)
  1556. return 1;
  1557. return 0;
  1558. }
  1559. int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
  1560. {
  1561. return vcpu->arch.timer_fired;
  1562. }
  1563. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  1564. {
  1565. return gfn;
  1566. }
  1567. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  1568. {
  1569. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE;
  1570. }
  1571. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  1572. struct kvm_mp_state *mp_state)
  1573. {
  1574. vcpu_load(vcpu);
  1575. mp_state->mp_state = vcpu->arch.mp_state;
  1576. vcpu_put(vcpu);
  1577. return 0;
  1578. }
  1579. static int vcpu_reset(struct kvm_vcpu *vcpu)
  1580. {
  1581. int r;
  1582. long psr;
  1583. local_irq_save(psr);
  1584. r = kvm_insert_vmm_mapping(vcpu);
  1585. if (r)
  1586. goto fail;
  1587. vcpu->arch.launched = 0;
  1588. kvm_arch_vcpu_uninit(vcpu);
  1589. r = kvm_arch_vcpu_init(vcpu);
  1590. if (r)
  1591. goto fail;
  1592. kvm_purge_vmm_mapping(vcpu);
  1593. r = 0;
  1594. fail:
  1595. local_irq_restore(psr);
  1596. return r;
  1597. }
  1598. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  1599. struct kvm_mp_state *mp_state)
  1600. {
  1601. int r = 0;
  1602. vcpu_load(vcpu);
  1603. vcpu->arch.mp_state = mp_state->mp_state;
  1604. if (vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)
  1605. r = vcpu_reset(vcpu);
  1606. vcpu_put(vcpu);
  1607. return r;
  1608. }