mmc-twl4030.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483
  1. /*
  2. * linux/arch/arm/mach-omap2/mmc-twl4030.c
  3. *
  4. * Copyright (C) 2007-2008 Texas Instruments
  5. * Copyright (C) 2008 Nokia Corporation
  6. * Author: Texas Instruments
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/err.h>
  13. #include <linux/io.h>
  14. #include <linux/module.h>
  15. #include <linux/platform_device.h>
  16. #include <linux/interrupt.h>
  17. #include <linux/delay.h>
  18. #include <linux/gpio.h>
  19. #include <linux/i2c/twl4030.h>
  20. #include <linux/regulator/machine.h>
  21. #include <mach/hardware.h>
  22. #include <mach/control.h>
  23. #include <mach/mmc.h>
  24. #include <mach/board.h>
  25. #include "mmc-twl4030.h"
  26. #if defined(CONFIG_TWL4030_CORE) && \
  27. (defined(CONFIG_MMC_OMAP_HS) || defined(CONFIG_MMC_OMAP_HS_MODULE))
  28. #define LDO_CLR 0x00
  29. #define VSEL_S2_CLR 0x40
  30. #define VMMC1_DEV_GRP 0x27
  31. #define VMMC1_CLR 0x00
  32. #define VMMC1_315V 0x03
  33. #define VMMC1_300V 0x02
  34. #define VMMC1_285V 0x01
  35. #define VMMC1_185V 0x00
  36. #define VMMC1_DEDICATED 0x2A
  37. #define VMMC2_DEV_GRP 0x2B
  38. #define VMMC2_CLR 0x40
  39. #define VMMC2_315V 0x0c
  40. #define VMMC2_300V 0x0b
  41. #define VMMC2_285V 0x0a
  42. #define VMMC2_280V 0x09
  43. #define VMMC2_260V 0x08
  44. #define VMMC2_185V 0x06
  45. #define VMMC2_DEDICATED 0x2E
  46. #define VMMC_DEV_GRP_P1 0x20
  47. static u16 control_pbias_offset;
  48. static u16 control_devconf1_offset;
  49. #define HSMMC_NAME_LEN 9
  50. static struct twl_mmc_controller {
  51. struct omap_mmc_platform_data *mmc;
  52. u8 twl_vmmc_dev_grp;
  53. u8 twl_mmc_dedicated;
  54. char name[HSMMC_NAME_LEN + 1];
  55. } hsmmc[OMAP34XX_NR_MMC] = {
  56. {
  57. .twl_vmmc_dev_grp = VMMC1_DEV_GRP,
  58. .twl_mmc_dedicated = VMMC1_DEDICATED,
  59. },
  60. {
  61. .twl_vmmc_dev_grp = VMMC2_DEV_GRP,
  62. .twl_mmc_dedicated = VMMC2_DEDICATED,
  63. },
  64. };
  65. static int twl_mmc_card_detect(int irq)
  66. {
  67. unsigned i;
  68. for (i = 0; i < ARRAY_SIZE(hsmmc); i++) {
  69. struct omap_mmc_platform_data *mmc;
  70. mmc = hsmmc[i].mmc;
  71. if (!mmc)
  72. continue;
  73. if (irq != mmc->slots[0].card_detect_irq)
  74. continue;
  75. /* NOTE: assumes card detect signal is active-low */
  76. return !gpio_get_value_cansleep(mmc->slots[0].switch_pin);
  77. }
  78. return -ENOSYS;
  79. }
  80. static int twl_mmc_get_ro(struct device *dev, int slot)
  81. {
  82. struct omap_mmc_platform_data *mmc = dev->platform_data;
  83. /* NOTE: assumes write protect signal is active-high */
  84. return gpio_get_value_cansleep(mmc->slots[0].gpio_wp);
  85. }
  86. static int twl_mmc_get_cover_state(struct device *dev, int slot)
  87. {
  88. struct omap_mmc_platform_data *mmc = dev->platform_data;
  89. /* NOTE: assumes card detect signal is active-low */
  90. return !gpio_get_value_cansleep(mmc->slots[0].switch_pin);
  91. }
  92. /*
  93. * MMC Slot Initialization.
  94. */
  95. static int twl_mmc_late_init(struct device *dev)
  96. {
  97. struct omap_mmc_platform_data *mmc = dev->platform_data;
  98. int ret = 0;
  99. int i;
  100. ret = gpio_request(mmc->slots[0].switch_pin, "mmc_cd");
  101. if (ret)
  102. goto done;
  103. ret = gpio_direction_input(mmc->slots[0].switch_pin);
  104. if (ret)
  105. goto err;
  106. for (i = 0; i < ARRAY_SIZE(hsmmc); i++) {
  107. if (hsmmc[i].name == mmc->slots[0].name) {
  108. hsmmc[i].mmc = mmc;
  109. break;
  110. }
  111. }
  112. return 0;
  113. err:
  114. gpio_free(mmc->slots[0].switch_pin);
  115. done:
  116. mmc->slots[0].card_detect_irq = 0;
  117. mmc->slots[0].card_detect = NULL;
  118. dev_err(dev, "err %d configuring card detect\n", ret);
  119. return ret;
  120. }
  121. static void twl_mmc_cleanup(struct device *dev)
  122. {
  123. struct omap_mmc_platform_data *mmc = dev->platform_data;
  124. gpio_free(mmc->slots[0].switch_pin);
  125. }
  126. #ifdef CONFIG_PM
  127. static int twl_mmc_suspend(struct device *dev, int slot)
  128. {
  129. struct omap_mmc_platform_data *mmc = dev->platform_data;
  130. disable_irq(mmc->slots[0].card_detect_irq);
  131. return 0;
  132. }
  133. static int twl_mmc_resume(struct device *dev, int slot)
  134. {
  135. struct omap_mmc_platform_data *mmc = dev->platform_data;
  136. enable_irq(mmc->slots[0].card_detect_irq);
  137. return 0;
  138. }
  139. #else
  140. #define twl_mmc_suspend NULL
  141. #define twl_mmc_resume NULL
  142. #endif
  143. /*
  144. * Sets the MMC voltage in twl4030
  145. */
  146. #define MMC1_OCR (MMC_VDD_165_195 \
  147. |MMC_VDD_28_29|MMC_VDD_29_30|MMC_VDD_30_31|MMC_VDD_31_32)
  148. #define MMC2_OCR (MMC_VDD_165_195 \
  149. |MMC_VDD_25_26|MMC_VDD_26_27|MMC_VDD_27_28 \
  150. |MMC_VDD_28_29|MMC_VDD_29_30|MMC_VDD_30_31|MMC_VDD_31_32)
  151. static int twl_mmc_set_voltage(struct twl_mmc_controller *c, int vdd)
  152. {
  153. int ret;
  154. u8 vmmc = 0, dev_grp_val;
  155. if (!vdd)
  156. goto doit;
  157. if (c->twl_vmmc_dev_grp == VMMC1_DEV_GRP) {
  158. /* VMMC1: max 220 mA. And for 8-bit mode,
  159. * VSIM: max 50 mA
  160. */
  161. switch (1 << vdd) {
  162. case MMC_VDD_165_195:
  163. vmmc = VMMC1_185V;
  164. /* and VSIM_180V */
  165. break;
  166. case MMC_VDD_28_29:
  167. vmmc = VMMC1_285V;
  168. /* and VSIM_280V */
  169. break;
  170. case MMC_VDD_29_30:
  171. case MMC_VDD_30_31:
  172. vmmc = VMMC1_300V;
  173. /* and VSIM_300V */
  174. break;
  175. case MMC_VDD_31_32:
  176. vmmc = VMMC1_315V;
  177. /* error if VSIM needed */
  178. break;
  179. default:
  180. return -EINVAL;
  181. }
  182. } else if (c->twl_vmmc_dev_grp == VMMC2_DEV_GRP) {
  183. /* VMMC2: max 100 mA */
  184. switch (1 << vdd) {
  185. case MMC_VDD_165_195:
  186. vmmc = VMMC2_185V;
  187. break;
  188. case MMC_VDD_25_26:
  189. case MMC_VDD_26_27:
  190. vmmc = VMMC2_260V;
  191. break;
  192. case MMC_VDD_27_28:
  193. vmmc = VMMC2_280V;
  194. break;
  195. case MMC_VDD_28_29:
  196. vmmc = VMMC2_285V;
  197. break;
  198. case MMC_VDD_29_30:
  199. case MMC_VDD_30_31:
  200. vmmc = VMMC2_300V;
  201. break;
  202. case MMC_VDD_31_32:
  203. vmmc = VMMC2_315V;
  204. break;
  205. default:
  206. return -EINVAL;
  207. }
  208. } else {
  209. return -EINVAL;
  210. }
  211. doit:
  212. if (vdd)
  213. dev_grp_val = VMMC_DEV_GRP_P1; /* Power up */
  214. else
  215. dev_grp_val = LDO_CLR; /* Power down */
  216. ret = twl4030_i2c_write_u8(TWL4030_MODULE_PM_RECEIVER,
  217. dev_grp_val, c->twl_vmmc_dev_grp);
  218. if (ret || !vdd)
  219. return ret;
  220. ret = twl4030_i2c_write_u8(TWL4030_MODULE_PM_RECEIVER,
  221. vmmc, c->twl_mmc_dedicated);
  222. return ret;
  223. }
  224. static int twl_mmc1_set_power(struct device *dev, int slot, int power_on,
  225. int vdd)
  226. {
  227. u32 reg;
  228. int ret = 0;
  229. struct twl_mmc_controller *c = &hsmmc[0];
  230. struct omap_mmc_platform_data *mmc = dev->platform_data;
  231. /*
  232. * Assume we power both OMAP VMMC1 (for CMD, CLK, DAT0..3) and the
  233. * card using the same TWL VMMC1 supply (hsmmc[0]); OMAP has both
  234. * 1.8V and 3.0V modes, controlled by the PBIAS register.
  235. *
  236. * In 8-bit modes, OMAP VMMC1A (for DAT4..7) needs a supply, which
  237. * is most naturally TWL VSIM; those pins also use PBIAS.
  238. */
  239. if (power_on) {
  240. if (cpu_is_omap2430()) {
  241. reg = omap_ctrl_readl(OMAP243X_CONTROL_DEVCONF1);
  242. if ((1 << vdd) >= MMC_VDD_30_31)
  243. reg |= OMAP243X_MMC1_ACTIVE_OVERWRITE;
  244. else
  245. reg &= ~OMAP243X_MMC1_ACTIVE_OVERWRITE;
  246. omap_ctrl_writel(reg, OMAP243X_CONTROL_DEVCONF1);
  247. }
  248. if (mmc->slots[0].internal_clock) {
  249. reg = omap_ctrl_readl(OMAP2_CONTROL_DEVCONF0);
  250. reg |= OMAP2_MMCSDIO1ADPCLKISEL;
  251. omap_ctrl_writel(reg, OMAP2_CONTROL_DEVCONF0);
  252. }
  253. reg = omap_ctrl_readl(control_pbias_offset);
  254. reg |= OMAP2_PBIASSPEEDCTRL0;
  255. reg &= ~OMAP2_PBIASLITEPWRDNZ0;
  256. omap_ctrl_writel(reg, control_pbias_offset);
  257. ret = twl_mmc_set_voltage(c, vdd);
  258. /* 100ms delay required for PBIAS configuration */
  259. msleep(100);
  260. reg = omap_ctrl_readl(control_pbias_offset);
  261. reg |= (OMAP2_PBIASLITEPWRDNZ0 | OMAP2_PBIASSPEEDCTRL0);
  262. if ((1 << vdd) <= MMC_VDD_165_195)
  263. reg &= ~OMAP2_PBIASLITEVMODE0;
  264. else
  265. reg |= OMAP2_PBIASLITEVMODE0;
  266. omap_ctrl_writel(reg, control_pbias_offset);
  267. } else {
  268. reg = omap_ctrl_readl(control_pbias_offset);
  269. reg &= ~OMAP2_PBIASLITEPWRDNZ0;
  270. omap_ctrl_writel(reg, control_pbias_offset);
  271. ret = twl_mmc_set_voltage(c, 0);
  272. /* 100ms delay required for PBIAS configuration */
  273. msleep(100);
  274. reg = omap_ctrl_readl(control_pbias_offset);
  275. reg |= (OMAP2_PBIASSPEEDCTRL0 | OMAP2_PBIASLITEPWRDNZ0 |
  276. OMAP2_PBIASLITEVMODE0);
  277. omap_ctrl_writel(reg, control_pbias_offset);
  278. }
  279. return ret;
  280. }
  281. static int twl_mmc2_set_power(struct device *dev, int slot, int power_on, int vdd)
  282. {
  283. int ret;
  284. struct twl_mmc_controller *c = &hsmmc[1];
  285. struct omap_mmc_platform_data *mmc = dev->platform_data;
  286. /*
  287. * Assume TWL VMMC2 (hsmmc[1]) is used only to power the card ... OMAP
  288. * VDDS is used to power the pins, optionally with a transceiver to
  289. * support cards using voltages other than VDDS (1.8V nominal). When a
  290. * transceiver is used, DAT3..7 are muxed as transceiver control pins.
  291. */
  292. if (power_on) {
  293. if (mmc->slots[0].internal_clock) {
  294. u32 reg;
  295. reg = omap_ctrl_readl(control_devconf1_offset);
  296. reg |= OMAP2_MMCSDIO2ADPCLKISEL;
  297. omap_ctrl_writel(reg, control_devconf1_offset);
  298. }
  299. ret = twl_mmc_set_voltage(c, vdd);
  300. } else {
  301. ret = twl_mmc_set_voltage(c, 0);
  302. }
  303. return ret;
  304. }
  305. static int twl_mmc3_set_power(struct device *dev, int slot, int power_on,
  306. int vdd)
  307. {
  308. /*
  309. * Assume MMC3 has self-powered device connected, for example on-board
  310. * chip with external power source.
  311. */
  312. return 0;
  313. }
  314. static struct omap_mmc_platform_data *hsmmc_data[OMAP34XX_NR_MMC] __initdata;
  315. void __init twl4030_mmc_init(struct twl4030_hsmmc_info *controllers)
  316. {
  317. struct twl4030_hsmmc_info *c;
  318. int nr_hsmmc = ARRAY_SIZE(hsmmc_data);
  319. if (cpu_is_omap2430()) {
  320. control_pbias_offset = OMAP243X_CONTROL_PBIAS_LITE;
  321. control_devconf1_offset = OMAP243X_CONTROL_DEVCONF1;
  322. nr_hsmmc = 2;
  323. } else {
  324. control_pbias_offset = OMAP343X_CONTROL_PBIAS_LITE;
  325. control_devconf1_offset = OMAP343X_CONTROL_DEVCONF1;
  326. }
  327. for (c = controllers; c->mmc; c++) {
  328. struct twl_mmc_controller *twl = hsmmc + c->mmc - 1;
  329. struct omap_mmc_platform_data *mmc = hsmmc_data[c->mmc - 1];
  330. if (!c->mmc || c->mmc > nr_hsmmc) {
  331. pr_debug("MMC%d: no such controller\n", c->mmc);
  332. continue;
  333. }
  334. if (mmc) {
  335. pr_debug("MMC%d: already configured\n", c->mmc);
  336. continue;
  337. }
  338. mmc = kzalloc(sizeof(struct omap_mmc_platform_data), GFP_KERNEL);
  339. if (!mmc) {
  340. pr_err("Cannot allocate memory for mmc device!\n");
  341. return;
  342. }
  343. if (c->name)
  344. strncpy(twl->name, c->name, HSMMC_NAME_LEN);
  345. else
  346. snprintf(twl->name, ARRAY_SIZE(twl->name),
  347. "mmc%islot%i", c->mmc, 1);
  348. mmc->slots[0].name = twl->name;
  349. mmc->nr_slots = 1;
  350. mmc->slots[0].wires = c->wires;
  351. mmc->slots[0].internal_clock = !c->ext_clock;
  352. mmc->dma_mask = 0xffffffff;
  353. /* note: twl4030 card detect GPIOs normally switch VMMCx ... */
  354. if (gpio_is_valid(c->gpio_cd)) {
  355. mmc->init = twl_mmc_late_init;
  356. mmc->cleanup = twl_mmc_cleanup;
  357. mmc->suspend = twl_mmc_suspend;
  358. mmc->resume = twl_mmc_resume;
  359. mmc->slots[0].switch_pin = c->gpio_cd;
  360. mmc->slots[0].card_detect_irq = gpio_to_irq(c->gpio_cd);
  361. if (c->cover_only)
  362. mmc->slots[0].get_cover_state = twl_mmc_get_cover_state;
  363. else
  364. mmc->slots[0].card_detect = twl_mmc_card_detect;
  365. } else
  366. mmc->slots[0].switch_pin = -EINVAL;
  367. /* write protect normally uses an OMAP gpio */
  368. if (gpio_is_valid(c->gpio_wp)) {
  369. gpio_request(c->gpio_wp, "mmc_wp");
  370. gpio_direction_input(c->gpio_wp);
  371. mmc->slots[0].gpio_wp = c->gpio_wp;
  372. mmc->slots[0].get_ro = twl_mmc_get_ro;
  373. } else
  374. mmc->slots[0].gpio_wp = -EINVAL;
  375. /* NOTE: we assume OMAP's MMC1 and MMC2 use
  376. * the TWL4030's VMMC1 and VMMC2, respectively;
  377. * and that MMC3 device has it's own power source.
  378. */
  379. switch (c->mmc) {
  380. case 1:
  381. mmc->slots[0].set_power = twl_mmc1_set_power;
  382. mmc->slots[0].ocr_mask = MMC1_OCR;
  383. break;
  384. case 2:
  385. mmc->slots[0].set_power = twl_mmc2_set_power;
  386. if (c->transceiver)
  387. mmc->slots[0].ocr_mask = MMC2_OCR;
  388. else
  389. mmc->slots[0].ocr_mask = MMC_VDD_165_195;
  390. break;
  391. case 3:
  392. mmc->slots[0].set_power = twl_mmc3_set_power;
  393. mmc->slots[0].ocr_mask = MMC_VDD_165_195;
  394. break;
  395. default:
  396. pr_err("MMC%d configuration not supported!\n", c->mmc);
  397. kfree(mmc);
  398. continue;
  399. }
  400. hsmmc_data[c->mmc - 1] = mmc;
  401. }
  402. omap2_init_mmc(hsmmc_data, OMAP34XX_NR_MMC);
  403. /* pass the device nodes back to board setup code */
  404. for (c = controllers; c->mmc; c++) {
  405. struct omap_mmc_platform_data *mmc = hsmmc_data[c->mmc - 1];
  406. if (!c->mmc || c->mmc > nr_hsmmc)
  407. continue;
  408. c->dev = mmc->dev;
  409. }
  410. }
  411. #endif