process.c 8.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393
  1. /*
  2. * linux/arch/arm/kernel/process.c
  3. *
  4. * Copyright (C) 1996-2000 Russell King - Converted to ARM.
  5. * Original Copyright (C) 1995 Linus Torvalds
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <stdarg.h>
  12. #include <linux/module.h>
  13. #include <linux/sched.h>
  14. #include <linux/kernel.h>
  15. #include <linux/mm.h>
  16. #include <linux/stddef.h>
  17. #include <linux/unistd.h>
  18. #include <linux/slab.h>
  19. #include <linux/user.h>
  20. #include <linux/delay.h>
  21. #include <linux/reboot.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/kallsyms.h>
  24. #include <linux/init.h>
  25. #include <linux/cpu.h>
  26. #include <linux/elfcore.h>
  27. #include <linux/pm.h>
  28. #include <linux/tick.h>
  29. #include <linux/utsname.h>
  30. #include <linux/uaccess.h>
  31. #include <asm/leds.h>
  32. #include <asm/processor.h>
  33. #include <asm/system.h>
  34. #include <asm/thread_notify.h>
  35. #include <asm/stacktrace.h>
  36. #include <asm/mach/time.h>
  37. static const char *processor_modes[] = {
  38. "USER_26", "FIQ_26" , "IRQ_26" , "SVC_26" , "UK4_26" , "UK5_26" , "UK6_26" , "UK7_26" ,
  39. "UK8_26" , "UK9_26" , "UK10_26", "UK11_26", "UK12_26", "UK13_26", "UK14_26", "UK15_26",
  40. "USER_32", "FIQ_32" , "IRQ_32" , "SVC_32" , "UK4_32" , "UK5_32" , "UK6_32" , "ABT_32" ,
  41. "UK8_32" , "UK9_32" , "UK10_32", "UND_32" , "UK12_32", "UK13_32", "UK14_32", "SYS_32"
  42. };
  43. static const char *isa_modes[] = {
  44. "ARM" , "Thumb" , "Jazelle", "ThumbEE"
  45. };
  46. extern void setup_mm_for_reboot(char mode);
  47. static volatile int hlt_counter;
  48. #include <mach/system.h>
  49. void disable_hlt(void)
  50. {
  51. hlt_counter++;
  52. }
  53. EXPORT_SYMBOL(disable_hlt);
  54. void enable_hlt(void)
  55. {
  56. hlt_counter--;
  57. }
  58. EXPORT_SYMBOL(enable_hlt);
  59. static int __init nohlt_setup(char *__unused)
  60. {
  61. hlt_counter = 1;
  62. return 1;
  63. }
  64. static int __init hlt_setup(char *__unused)
  65. {
  66. hlt_counter = 0;
  67. return 1;
  68. }
  69. __setup("nohlt", nohlt_setup);
  70. __setup("hlt", hlt_setup);
  71. void arm_machine_restart(char mode, const char *cmd)
  72. {
  73. /*
  74. * Clean and disable cache, and turn off interrupts
  75. */
  76. cpu_proc_fin();
  77. /*
  78. * Tell the mm system that we are going to reboot -
  79. * we may need it to insert some 1:1 mappings so that
  80. * soft boot works.
  81. */
  82. setup_mm_for_reboot(mode);
  83. /*
  84. * Now call the architecture specific reboot code.
  85. */
  86. arch_reset(mode, cmd);
  87. /*
  88. * Whoops - the architecture was unable to reboot.
  89. * Tell the user!
  90. */
  91. mdelay(1000);
  92. printk("Reboot failed -- System halted\n");
  93. while (1);
  94. }
  95. /*
  96. * Function pointers to optional machine specific functions
  97. */
  98. void (*pm_idle)(void);
  99. EXPORT_SYMBOL(pm_idle);
  100. void (*pm_power_off)(void);
  101. EXPORT_SYMBOL(pm_power_off);
  102. void (*arm_pm_restart)(char str, const char *cmd) = arm_machine_restart;
  103. EXPORT_SYMBOL_GPL(arm_pm_restart);
  104. /*
  105. * This is our default idle handler. We need to disable
  106. * interrupts here to ensure we don't miss a wakeup call.
  107. */
  108. static void default_idle(void)
  109. {
  110. if (hlt_counter)
  111. cpu_relax();
  112. else {
  113. local_irq_disable();
  114. if (!need_resched())
  115. arch_idle();
  116. local_irq_enable();
  117. }
  118. }
  119. /*
  120. * The idle thread. We try to conserve power, while trying to keep
  121. * overall latency low. The architecture specific idle is passed
  122. * a value to indicate the level of "idleness" of the system.
  123. */
  124. void cpu_idle(void)
  125. {
  126. local_fiq_enable();
  127. /* endless idle loop with no priority at all */
  128. while (1) {
  129. void (*idle)(void) = pm_idle;
  130. #ifdef CONFIG_HOTPLUG_CPU
  131. if (cpu_is_offline(smp_processor_id())) {
  132. leds_event(led_idle_start);
  133. cpu_die();
  134. }
  135. #endif
  136. if (!idle)
  137. idle = default_idle;
  138. leds_event(led_idle_start);
  139. tick_nohz_stop_sched_tick(1);
  140. while (!need_resched())
  141. idle();
  142. leds_event(led_idle_end);
  143. tick_nohz_restart_sched_tick();
  144. preempt_enable_no_resched();
  145. schedule();
  146. preempt_disable();
  147. }
  148. }
  149. static char reboot_mode = 'h';
  150. int __init reboot_setup(char *str)
  151. {
  152. reboot_mode = str[0];
  153. return 1;
  154. }
  155. __setup("reboot=", reboot_setup);
  156. void machine_halt(void)
  157. {
  158. }
  159. void machine_power_off(void)
  160. {
  161. if (pm_power_off)
  162. pm_power_off();
  163. }
  164. void machine_restart(char *cmd)
  165. {
  166. arm_pm_restart(reboot_mode, cmd);
  167. }
  168. void __show_regs(struct pt_regs *regs)
  169. {
  170. unsigned long flags;
  171. char buf[64];
  172. printk("CPU: %d %s (%s %.*s)\n",
  173. smp_processor_id(), print_tainted(), init_utsname()->release,
  174. (int)strcspn(init_utsname()->version, " "),
  175. init_utsname()->version);
  176. print_symbol("PC is at %s\n", instruction_pointer(regs));
  177. print_symbol("LR is at %s\n", regs->ARM_lr);
  178. printk("pc : [<%08lx>] lr : [<%08lx>] psr: %08lx\n"
  179. "sp : %08lx ip : %08lx fp : %08lx\n",
  180. regs->ARM_pc, regs->ARM_lr, regs->ARM_cpsr,
  181. regs->ARM_sp, regs->ARM_ip, regs->ARM_fp);
  182. printk("r10: %08lx r9 : %08lx r8 : %08lx\n",
  183. regs->ARM_r10, regs->ARM_r9,
  184. regs->ARM_r8);
  185. printk("r7 : %08lx r6 : %08lx r5 : %08lx r4 : %08lx\n",
  186. regs->ARM_r7, regs->ARM_r6,
  187. regs->ARM_r5, regs->ARM_r4);
  188. printk("r3 : %08lx r2 : %08lx r1 : %08lx r0 : %08lx\n",
  189. regs->ARM_r3, regs->ARM_r2,
  190. regs->ARM_r1, regs->ARM_r0);
  191. flags = regs->ARM_cpsr;
  192. buf[0] = flags & PSR_N_BIT ? 'N' : 'n';
  193. buf[1] = flags & PSR_Z_BIT ? 'Z' : 'z';
  194. buf[2] = flags & PSR_C_BIT ? 'C' : 'c';
  195. buf[3] = flags & PSR_V_BIT ? 'V' : 'v';
  196. buf[4] = '\0';
  197. printk("Flags: %s IRQs o%s FIQs o%s Mode %s ISA %s Segment %s\n",
  198. buf, interrupts_enabled(regs) ? "n" : "ff",
  199. fast_interrupts_enabled(regs) ? "n" : "ff",
  200. processor_modes[processor_mode(regs)],
  201. isa_modes[isa_mode(regs)],
  202. get_fs() == get_ds() ? "kernel" : "user");
  203. #ifdef CONFIG_CPU_CP15
  204. {
  205. unsigned int ctrl;
  206. buf[0] = '\0';
  207. #ifdef CONFIG_CPU_CP15_MMU
  208. {
  209. unsigned int transbase, dac;
  210. asm("mrc p15, 0, %0, c2, c0\n\t"
  211. "mrc p15, 0, %1, c3, c0\n"
  212. : "=r" (transbase), "=r" (dac));
  213. snprintf(buf, sizeof(buf), " Table: %08x DAC: %08x",
  214. transbase, dac);
  215. }
  216. #endif
  217. asm("mrc p15, 0, %0, c1, c0\n" : "=r" (ctrl));
  218. printk("Control: %08x%s\n", ctrl, buf);
  219. }
  220. #endif
  221. }
  222. void show_regs(struct pt_regs * regs)
  223. {
  224. printk("\n");
  225. printk("Pid: %d, comm: %20s\n", task_pid_nr(current), current->comm);
  226. __show_regs(regs);
  227. __backtrace();
  228. }
  229. /*
  230. * Free current thread data structures etc..
  231. */
  232. void exit_thread(void)
  233. {
  234. }
  235. ATOMIC_NOTIFIER_HEAD(thread_notify_head);
  236. EXPORT_SYMBOL_GPL(thread_notify_head);
  237. void flush_thread(void)
  238. {
  239. struct thread_info *thread = current_thread_info();
  240. struct task_struct *tsk = current;
  241. memset(thread->used_cp, 0, sizeof(thread->used_cp));
  242. memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
  243. memset(&thread->fpstate, 0, sizeof(union fp_state));
  244. thread_notify(THREAD_NOTIFY_FLUSH, thread);
  245. }
  246. void release_thread(struct task_struct *dead_task)
  247. {
  248. struct thread_info *thread = task_thread_info(dead_task);
  249. thread_notify(THREAD_NOTIFY_RELEASE, thread);
  250. }
  251. asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
  252. int
  253. copy_thread(unsigned long clone_flags, unsigned long stack_start,
  254. unsigned long stk_sz, struct task_struct *p, struct pt_regs *regs)
  255. {
  256. struct thread_info *thread = task_thread_info(p);
  257. struct pt_regs *childregs = task_pt_regs(p);
  258. *childregs = *regs;
  259. childregs->ARM_r0 = 0;
  260. childregs->ARM_sp = stack_start;
  261. memset(&thread->cpu_context, 0, sizeof(struct cpu_context_save));
  262. thread->cpu_context.sp = (unsigned long)childregs;
  263. thread->cpu_context.pc = (unsigned long)ret_from_fork;
  264. if (clone_flags & CLONE_SETTLS)
  265. thread->tp_value = regs->ARM_r3;
  266. return 0;
  267. }
  268. /*
  269. * fill in the fpe structure for a core dump...
  270. */
  271. int dump_fpu (struct pt_regs *regs, struct user_fp *fp)
  272. {
  273. struct thread_info *thread = current_thread_info();
  274. int used_math = thread->used_cp[1] | thread->used_cp[2];
  275. if (used_math)
  276. memcpy(fp, &thread->fpstate.soft, sizeof (*fp));
  277. return used_math != 0;
  278. }
  279. EXPORT_SYMBOL(dump_fpu);
  280. /*
  281. * Shuffle the argument into the correct register before calling the
  282. * thread function. r1 is the thread argument, r2 is the pointer to
  283. * the thread function, and r3 points to the exit function.
  284. */
  285. extern void kernel_thread_helper(void);
  286. asm( ".section .text\n"
  287. " .align\n"
  288. " .type kernel_thread_helper, #function\n"
  289. "kernel_thread_helper:\n"
  290. " mov r0, r1\n"
  291. " mov lr, r3\n"
  292. " mov pc, r2\n"
  293. " .size kernel_thread_helper, . - kernel_thread_helper\n"
  294. " .previous");
  295. /*
  296. * Create a kernel thread.
  297. */
  298. pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
  299. {
  300. struct pt_regs regs;
  301. memset(&regs, 0, sizeof(regs));
  302. regs.ARM_r1 = (unsigned long)arg;
  303. regs.ARM_r2 = (unsigned long)fn;
  304. regs.ARM_r3 = (unsigned long)do_exit;
  305. regs.ARM_pc = (unsigned long)kernel_thread_helper;
  306. regs.ARM_cpsr = SVC_MODE;
  307. return do_fork(flags|CLONE_VM|CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
  308. }
  309. EXPORT_SYMBOL(kernel_thread);
  310. unsigned long get_wchan(struct task_struct *p)
  311. {
  312. struct stackframe frame;
  313. int count = 0;
  314. if (!p || p == current || p->state == TASK_RUNNING)
  315. return 0;
  316. frame.fp = thread_saved_fp(p);
  317. frame.sp = thread_saved_sp(p);
  318. frame.lr = 0; /* recovered from the stack */
  319. frame.pc = thread_saved_pc(p);
  320. do {
  321. int ret = unwind_frame(&frame);
  322. if (ret < 0)
  323. return 0;
  324. if (!in_sched_functions(frame.pc))
  325. return frame.pc;
  326. } while (count ++ < 16);
  327. return 0;
  328. }