1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047 |
- /*P:100 This is the Launcher code, a simple program which lays out the
- * "physical" memory for the new Guest by mapping the kernel image and
- * the virtual devices, then opens /dev/lguest to tell the kernel
- * about the Guest and control it. :*/
- #define _LARGEFILE64_SOURCE
- #define _GNU_SOURCE
- #include <stdio.h>
- #include <string.h>
- #include <unistd.h>
- #include <err.h>
- #include <stdint.h>
- #include <stdlib.h>
- #include <elf.h>
- #include <sys/mman.h>
- #include <sys/param.h>
- #include <sys/types.h>
- #include <sys/stat.h>
- #include <sys/wait.h>
- #include <fcntl.h>
- #include <stdbool.h>
- #include <errno.h>
- #include <ctype.h>
- #include <sys/socket.h>
- #include <sys/ioctl.h>
- #include <sys/time.h>
- #include <time.h>
- #include <netinet/in.h>
- #include <net/if.h>
- #include <linux/sockios.h>
- #include <linux/if_tun.h>
- #include <sys/uio.h>
- #include <termios.h>
- #include <getopt.h>
- #include <zlib.h>
- #include <assert.h>
- #include <sched.h>
- #include <limits.h>
- #include <stddef.h>
- #include <signal.h>
- #include "linux/lguest_launcher.h"
- #include "linux/virtio_config.h"
- #include "linux/virtio_net.h"
- #include "linux/virtio_blk.h"
- #include "linux/virtio_console.h"
- #include "linux/virtio_rng.h"
- #include "linux/virtio_ring.h"
- #include "asm/bootparam.h"
- /*L:110 We can ignore the 39 include files we need for this program, but I do
- * want to draw attention to the use of kernel-style types.
- *
- * As Linus said, "C is a Spartan language, and so should your naming be." I
- * like these abbreviations, so we define them here. Note that u64 is always
- * unsigned long long, which works on all Linux systems: this means that we can
- * use %llu in printf for any u64. */
- typedef unsigned long long u64;
- typedef uint32_t u32;
- typedef uint16_t u16;
- typedef uint8_t u8;
- /*:*/
- #define PAGE_PRESENT 0x7 /* Present, RW, Execute */
- #define NET_PEERNUM 1
- #define BRIDGE_PFX "bridge:"
- #ifndef SIOCBRADDIF
- #define SIOCBRADDIF 0x89a2 /* add interface to bridge */
- #endif
- /* We can have up to 256 pages for devices. */
- #define DEVICE_PAGES 256
- /* This will occupy 3 pages: it must be a power of 2. */
- #define VIRTQUEUE_NUM 256
- /*L:120 verbose is both a global flag and a macro. The C preprocessor allows
- * this, and although I wouldn't recommend it, it works quite nicely here. */
- static bool verbose;
- #define verbose(args...) \
- do { if (verbose) printf(args); } while(0)
- /*:*/
- /* File descriptors for the Waker. */
- struct {
- int pipe[2];
- int lguest_fd;
- } waker_fds;
- /* The pointer to the start of guest memory. */
- static void *guest_base;
- /* The maximum guest physical address allowed, and maximum possible. */
- static unsigned long guest_limit, guest_max;
- /* The pipe for signal hander to write to. */
- static int timeoutpipe[2];
- static unsigned int timeout_usec = 500;
- /* a per-cpu variable indicating whose vcpu is currently running */
- static unsigned int __thread cpu_id;
- /* This is our list of devices. */
- struct device_list
- {
- /* Summary information about the devices in our list: ready to pass to
- * select() to ask which need servicing.*/
- fd_set infds;
- int max_infd;
- /* Counter to assign interrupt numbers. */
- unsigned int next_irq;
- /* Counter to print out convenient device numbers. */
- unsigned int device_num;
- /* The descriptor page for the devices. */
- u8 *descpage;
- /* A single linked list of devices. */
- struct device *dev;
- /* And a pointer to the last device for easy append and also for
- * configuration appending. */
- struct device *lastdev;
- };
- /* The list of Guest devices, based on command line arguments. */
- static struct device_list devices;
- /* The device structure describes a single device. */
- struct device
- {
- /* The linked-list pointer. */
- struct device *next;
- /* The this device's descriptor, as mapped into the Guest. */
- struct lguest_device_desc *desc;
- /* The name of this device, for --verbose. */
- const char *name;
- /* If handle_input is set, it wants to be called when this file
- * descriptor is ready. */
- int fd;
- bool (*handle_input)(int fd, struct device *me);
- /* Any queues attached to this device */
- struct virtqueue *vq;
- /* Handle status being finalized (ie. feature bits stable). */
- void (*ready)(struct device *me);
- /* Device-specific data. */
- void *priv;
- };
- /* The virtqueue structure describes a queue attached to a device. */
- struct virtqueue
- {
- struct virtqueue *next;
- /* Which device owns me. */
- struct device *dev;
- /* The configuration for this queue. */
- struct lguest_vqconfig config;
- /* The actual ring of buffers. */
- struct vring vring;
- /* Last available index we saw. */
- u16 last_avail_idx;
- /* The routine to call when the Guest pings us, or timeout. */
- void (*handle_output)(int fd, struct virtqueue *me, bool timeout);
- /* Outstanding buffers */
- unsigned int inflight;
- /* Is this blocked awaiting a timer? */
- bool blocked;
- };
- /* Remember the arguments to the program so we can "reboot" */
- static char **main_args;
- /* Since guest is UP and we don't run at the same time, we don't need barriers.
- * But I include them in the code in case others copy it. */
- #define wmb()
- /* Convert an iovec element to the given type.
- *
- * This is a fairly ugly trick: we need to know the size of the type and
- * alignment requirement to check the pointer is kosher. It's also nice to
- * have the name of the type in case we report failure.
- *
- * Typing those three things all the time is cumbersome and error prone, so we
- * have a macro which sets them all up and passes to the real function. */
- #define convert(iov, type) \
- ((type *)_convert((iov), sizeof(type), __alignof__(type), #type))
- static void *_convert(struct iovec *iov, size_t size, size_t align,
- const char *name)
- {
- if (iov->iov_len != size)
- errx(1, "Bad iovec size %zu for %s", iov->iov_len, name);
- if ((unsigned long)iov->iov_base % align != 0)
- errx(1, "Bad alignment %p for %s", iov->iov_base, name);
- return iov->iov_base;
- }
- /* Wrapper for the last available index. Makes it easier to change. */
- #define lg_last_avail(vq) ((vq)->last_avail_idx)
- /* The virtio configuration space is defined to be little-endian. x86 is
- * little-endian too, but it's nice to be explicit so we have these helpers. */
- #define cpu_to_le16(v16) (v16)
- #define cpu_to_le32(v32) (v32)
- #define cpu_to_le64(v64) (v64)
- #define le16_to_cpu(v16) (v16)
- #define le32_to_cpu(v32) (v32)
- #define le64_to_cpu(v64) (v64)
- /* Is this iovec empty? */
- static bool iov_empty(const struct iovec iov[], unsigned int num_iov)
- {
- unsigned int i;
- for (i = 0; i < num_iov; i++)
- if (iov[i].iov_len)
- return false;
- return true;
- }
- /* Take len bytes from the front of this iovec. */
- static void iov_consume(struct iovec iov[], unsigned num_iov, unsigned len)
- {
- unsigned int i;
- for (i = 0; i < num_iov; i++) {
- unsigned int used;
- used = iov[i].iov_len < len ? iov[i].iov_len : len;
- iov[i].iov_base += used;
- iov[i].iov_len -= used;
- len -= used;
- }
- assert(len == 0);
- }
- /* The device virtqueue descriptors are followed by feature bitmasks. */
- static u8 *get_feature_bits(struct device *dev)
- {
- return (u8 *)(dev->desc + 1)
- + dev->desc->num_vq * sizeof(struct lguest_vqconfig);
- }
- /*L:100 The Launcher code itself takes us out into userspace, that scary place
- * where pointers run wild and free! Unfortunately, like most userspace
- * programs, it's quite boring (which is why everyone likes to hack on the
- * kernel!). Perhaps if you make up an Lguest Drinking Game at this point, it
- * will get you through this section. Or, maybe not.
- *
- * The Launcher sets up a big chunk of memory to be the Guest's "physical"
- * memory and stores it in "guest_base". In other words, Guest physical ==
- * Launcher virtual with an offset.
- *
- * This can be tough to get your head around, but usually it just means that we
- * use these trivial conversion functions when the Guest gives us it's
- * "physical" addresses: */
- static void *from_guest_phys(unsigned long addr)
- {
- return guest_base + addr;
- }
- static unsigned long to_guest_phys(const void *addr)
- {
- return (addr - guest_base);
- }
- /*L:130
- * Loading the Kernel.
- *
- * We start with couple of simple helper routines. open_or_die() avoids
- * error-checking code cluttering the callers: */
- static int open_or_die(const char *name, int flags)
- {
- int fd = open(name, flags);
- if (fd < 0)
- err(1, "Failed to open %s", name);
- return fd;
- }
- /* map_zeroed_pages() takes a number of pages. */
- static void *map_zeroed_pages(unsigned int num)
- {
- int fd = open_or_die("/dev/zero", O_RDONLY);
- void *addr;
- /* We use a private mapping (ie. if we write to the page, it will be
- * copied). */
- addr = mmap(NULL, getpagesize() * num,
- PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, fd, 0);
- if (addr == MAP_FAILED)
- err(1, "Mmaping %u pages of /dev/zero", num);
- close(fd);
- return addr;
- }
- /* Get some more pages for a device. */
- static void *get_pages(unsigned int num)
- {
- void *addr = from_guest_phys(guest_limit);
- guest_limit += num * getpagesize();
- if (guest_limit > guest_max)
- errx(1, "Not enough memory for devices");
- return addr;
- }
- /* This routine is used to load the kernel or initrd. It tries mmap, but if
- * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
- * it falls back to reading the memory in. */
- static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
- {
- ssize_t r;
- /* We map writable even though for some segments are marked read-only.
- * The kernel really wants to be writable: it patches its own
- * instructions.
- *
- * MAP_PRIVATE means that the page won't be copied until a write is
- * done to it. This allows us to share untouched memory between
- * Guests. */
- if (mmap(addr, len, PROT_READ|PROT_WRITE|PROT_EXEC,
- MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
- return;
- /* pread does a seek and a read in one shot: saves a few lines. */
- r = pread(fd, addr, len, offset);
- if (r != len)
- err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
- }
- /* This routine takes an open vmlinux image, which is in ELF, and maps it into
- * the Guest memory. ELF = Embedded Linking Format, which is the format used
- * by all modern binaries on Linux including the kernel.
- *
- * The ELF headers give *two* addresses: a physical address, and a virtual
- * address. We use the physical address; the Guest will map itself to the
- * virtual address.
- *
- * We return the starting address. */
- static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
- {
- Elf32_Phdr phdr[ehdr->e_phnum];
- unsigned int i;
- /* Sanity checks on the main ELF header: an x86 executable with a
- * reasonable number of correctly-sized program headers. */
- if (ehdr->e_type != ET_EXEC
- || ehdr->e_machine != EM_386
- || ehdr->e_phentsize != sizeof(Elf32_Phdr)
- || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
- errx(1, "Malformed elf header");
- /* An ELF executable contains an ELF header and a number of "program"
- * headers which indicate which parts ("segments") of the program to
- * load where. */
- /* We read in all the program headers at once: */
- if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
- err(1, "Seeking to program headers");
- if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
- err(1, "Reading program headers");
- /* Try all the headers: there are usually only three. A read-only one,
- * a read-write one, and a "note" section which we don't load. */
- for (i = 0; i < ehdr->e_phnum; i++) {
- /* If this isn't a loadable segment, we ignore it */
- if (phdr[i].p_type != PT_LOAD)
- continue;
- verbose("Section %i: size %i addr %p\n",
- i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
- /* We map this section of the file at its physical address. */
- map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
- phdr[i].p_offset, phdr[i].p_filesz);
- }
- /* The entry point is given in the ELF header. */
- return ehdr->e_entry;
- }
- /*L:150 A bzImage, unlike an ELF file, is not meant to be loaded. You're
- * supposed to jump into it and it will unpack itself. We used to have to
- * perform some hairy magic because the unpacking code scared me.
- *
- * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
- * a small patch to jump over the tricky bits in the Guest, so now we just read
- * the funky header so we know where in the file to load, and away we go! */
- static unsigned long load_bzimage(int fd)
- {
- struct boot_params boot;
- int r;
- /* Modern bzImages get loaded at 1M. */
- void *p = from_guest_phys(0x100000);
- /* Go back to the start of the file and read the header. It should be
- * a Linux boot header (see Documentation/x86/i386/boot.txt) */
- lseek(fd, 0, SEEK_SET);
- read(fd, &boot, sizeof(boot));
- /* Inside the setup_hdr, we expect the magic "HdrS" */
- if (memcmp(&boot.hdr.header, "HdrS", 4) != 0)
- errx(1, "This doesn't look like a bzImage to me");
- /* Skip over the extra sectors of the header. */
- lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET);
- /* Now read everything into memory. in nice big chunks. */
- while ((r = read(fd, p, 65536)) > 0)
- p += r;
- /* Finally, code32_start tells us where to enter the kernel. */
- return boot.hdr.code32_start;
- }
- /*L:140 Loading the kernel is easy when it's a "vmlinux", but most kernels
- * come wrapped up in the self-decompressing "bzImage" format. With a little
- * work, we can load those, too. */
- static unsigned long load_kernel(int fd)
- {
- Elf32_Ehdr hdr;
- /* Read in the first few bytes. */
- if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
- err(1, "Reading kernel");
- /* If it's an ELF file, it starts with "\177ELF" */
- if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
- return map_elf(fd, &hdr);
- /* Otherwise we assume it's a bzImage, and try to load it. */
- return load_bzimage(fd);
- }
- /* This is a trivial little helper to align pages. Andi Kleen hated it because
- * it calls getpagesize() twice: "it's dumb code."
- *
- * Kernel guys get really het up about optimization, even when it's not
- * necessary. I leave this code as a reaction against that. */
- static inline unsigned long page_align(unsigned long addr)
- {
- /* Add upwards and truncate downwards. */
- return ((addr + getpagesize()-1) & ~(getpagesize()-1));
- }
- /*L:180 An "initial ram disk" is a disk image loaded into memory along with
- * the kernel which the kernel can use to boot from without needing any
- * drivers. Most distributions now use this as standard: the initrd contains
- * the code to load the appropriate driver modules for the current machine.
- *
- * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
- * kernels. He sent me this (and tells me when I break it). */
- static unsigned long load_initrd(const char *name, unsigned long mem)
- {
- int ifd;
- struct stat st;
- unsigned long len;
- ifd = open_or_die(name, O_RDONLY);
- /* fstat() is needed to get the file size. */
- if (fstat(ifd, &st) < 0)
- err(1, "fstat() on initrd '%s'", name);
- /* We map the initrd at the top of memory, but mmap wants it to be
- * page-aligned, so we round the size up for that. */
- len = page_align(st.st_size);
- map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
- /* Once a file is mapped, you can close the file descriptor. It's a
- * little odd, but quite useful. */
- close(ifd);
- verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
- /* We return the initrd size. */
- return len;
- }
- /*:*/
- /* Simple routine to roll all the commandline arguments together with spaces
- * between them. */
- static void concat(char *dst, char *args[])
- {
- unsigned int i, len = 0;
- for (i = 0; args[i]; i++) {
- if (i) {
- strcat(dst+len, " ");
- len++;
- }
- strcpy(dst+len, args[i]);
- len += strlen(args[i]);
- }
- /* In case it's empty. */
- dst[len] = '\0';
- }
- /*L:185 This is where we actually tell the kernel to initialize the Guest. We
- * saw the arguments it expects when we looked at initialize() in lguest_user.c:
- * the base of Guest "physical" memory, the top physical page to allow and the
- * entry point for the Guest. */
- static int tell_kernel(unsigned long start)
- {
- unsigned long args[] = { LHREQ_INITIALIZE,
- (unsigned long)guest_base,
- guest_limit / getpagesize(), start };
- int fd;
- verbose("Guest: %p - %p (%#lx)\n",
- guest_base, guest_base + guest_limit, guest_limit);
- fd = open_or_die("/dev/lguest", O_RDWR);
- if (write(fd, args, sizeof(args)) < 0)
- err(1, "Writing to /dev/lguest");
- /* We return the /dev/lguest file descriptor to control this Guest */
- return fd;
- }
- /*:*/
- static void add_device_fd(int fd)
- {
- FD_SET(fd, &devices.infds);
- if (fd > devices.max_infd)
- devices.max_infd = fd;
- }
- /*L:200
- * The Waker.
- *
- * With console, block and network devices, we can have lots of input which we
- * need to process. We could try to tell the kernel what file descriptors to
- * watch, but handing a file descriptor mask through to the kernel is fairly
- * icky.
- *
- * Instead, we clone off a thread which watches the file descriptors and writes
- * the LHREQ_BREAK command to the /dev/lguest file descriptor to tell the Host
- * stop running the Guest. This causes the Launcher to return from the
- * /dev/lguest read with -EAGAIN, where it will write to /dev/lguest to reset
- * the LHREQ_BREAK and wake us up again.
- *
- * This, of course, is merely a different *kind* of icky.
- *
- * Given my well-known antipathy to threads, I'd prefer to use processes. But
- * it's easier to share Guest memory with threads, and trivial to share the
- * devices.infds as the Launcher changes it.
- */
- static int waker(void *unused)
- {
- /* Close the write end of the pipe: only the Launcher has it open. */
- close(waker_fds.pipe[1]);
- for (;;) {
- fd_set rfds = devices.infds;
- unsigned long args[] = { LHREQ_BREAK, 1 };
- unsigned int maxfd = devices.max_infd;
- /* We also listen to the pipe from the Launcher. */
- FD_SET(waker_fds.pipe[0], &rfds);
- if (waker_fds.pipe[0] > maxfd)
- maxfd = waker_fds.pipe[0];
- /* Wait until input is ready from one of the devices. */
- select(maxfd+1, &rfds, NULL, NULL, NULL);
- /* Message from Launcher? */
- if (FD_ISSET(waker_fds.pipe[0], &rfds)) {
- char c;
- /* If this fails, then assume Launcher has exited.
- * Don't do anything on exit: we're just a thread! */
- if (read(waker_fds.pipe[0], &c, 1) != 1)
- _exit(0);
- continue;
- }
- /* Send LHREQ_BREAK command to snap the Launcher out of it. */
- pwrite(waker_fds.lguest_fd, args, sizeof(args), cpu_id);
- }
- return 0;
- }
- /* This routine just sets up a pipe to the Waker process. */
- static void setup_waker(int lguest_fd)
- {
- /* This pipe is closed when Launcher dies, telling Waker. */
- if (pipe(waker_fds.pipe) != 0)
- err(1, "Creating pipe for Waker");
- /* Waker also needs to know the lguest fd */
- waker_fds.lguest_fd = lguest_fd;
- if (clone(waker, malloc(4096) + 4096, CLONE_VM | SIGCHLD, NULL) == -1)
- err(1, "Creating Waker");
- }
- /*
- * Device Handling.
- *
- * When the Guest gives us a buffer, it sends an array of addresses and sizes.
- * We need to make sure it's not trying to reach into the Launcher itself, so
- * we have a convenient routine which checks it and exits with an error message
- * if something funny is going on:
- */
- static void *_check_pointer(unsigned long addr, unsigned int size,
- unsigned int line)
- {
- /* We have to separately check addr and addr+size, because size could
- * be huge and addr + size might wrap around. */
- if (addr >= guest_limit || addr + size >= guest_limit)
- errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
- /* We return a pointer for the caller's convenience, now we know it's
- * safe to use. */
- return from_guest_phys(addr);
- }
- /* A macro which transparently hands the line number to the real function. */
- #define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
- /* Each buffer in the virtqueues is actually a chain of descriptors. This
- * function returns the next descriptor in the chain, or vq->vring.num if we're
- * at the end. */
- static unsigned next_desc(struct virtqueue *vq, unsigned int i)
- {
- unsigned int next;
- /* If this descriptor says it doesn't chain, we're done. */
- if (!(vq->vring.desc[i].flags & VRING_DESC_F_NEXT))
- return vq->vring.num;
- /* Check they're not leading us off end of descriptors. */
- next = vq->vring.desc[i].next;
- /* Make sure compiler knows to grab that: we don't want it changing! */
- wmb();
- if (next >= vq->vring.num)
- errx(1, "Desc next is %u", next);
- return next;
- }
- /* This looks in the virtqueue and for the first available buffer, and converts
- * it to an iovec for convenient access. Since descriptors consist of some
- * number of output then some number of input descriptors, it's actually two
- * iovecs, but we pack them into one and note how many of each there were.
- *
- * This function returns the descriptor number found, or vq->vring.num (which
- * is never a valid descriptor number) if none was found. */
- static unsigned get_vq_desc(struct virtqueue *vq,
- struct iovec iov[],
- unsigned int *out_num, unsigned int *in_num)
- {
- unsigned int i, head;
- u16 last_avail;
- /* Check it isn't doing very strange things with descriptor numbers. */
- last_avail = lg_last_avail(vq);
- if ((u16)(vq->vring.avail->idx - last_avail) > vq->vring.num)
- errx(1, "Guest moved used index from %u to %u",
- last_avail, vq->vring.avail->idx);
- /* If there's nothing new since last we looked, return invalid. */
- if (vq->vring.avail->idx == last_avail)
- return vq->vring.num;
- /* Grab the next descriptor number they're advertising, and increment
- * the index we've seen. */
- head = vq->vring.avail->ring[last_avail % vq->vring.num];
- lg_last_avail(vq)++;
- /* If their number is silly, that's a fatal mistake. */
- if (head >= vq->vring.num)
- errx(1, "Guest says index %u is available", head);
- /* When we start there are none of either input nor output. */
- *out_num = *in_num = 0;
- i = head;
- do {
- /* Grab the first descriptor, and check it's OK. */
- iov[*out_num + *in_num].iov_len = vq->vring.desc[i].len;
- iov[*out_num + *in_num].iov_base
- = check_pointer(vq->vring.desc[i].addr,
- vq->vring.desc[i].len);
- /* If this is an input descriptor, increment that count. */
- if (vq->vring.desc[i].flags & VRING_DESC_F_WRITE)
- (*in_num)++;
- else {
- /* If it's an output descriptor, they're all supposed
- * to come before any input descriptors. */
- if (*in_num)
- errx(1, "Descriptor has out after in");
- (*out_num)++;
- }
- /* If we've got too many, that implies a descriptor loop. */
- if (*out_num + *in_num > vq->vring.num)
- errx(1, "Looped descriptor");
- } while ((i = next_desc(vq, i)) != vq->vring.num);
- vq->inflight++;
- return head;
- }
- /* After we've used one of their buffers, we tell them about it. We'll then
- * want to send them an interrupt, using trigger_irq(). */
- static void add_used(struct virtqueue *vq, unsigned int head, int len)
- {
- struct vring_used_elem *used;
- /* The virtqueue contains a ring of used buffers. Get a pointer to the
- * next entry in that used ring. */
- used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
- used->id = head;
- used->len = len;
- /* Make sure buffer is written before we update index. */
- wmb();
- vq->vring.used->idx++;
- vq->inflight--;
- }
- /* This actually sends the interrupt for this virtqueue */
- static void trigger_irq(int fd, struct virtqueue *vq)
- {
- unsigned long buf[] = { LHREQ_IRQ, vq->config.irq };
- /* If they don't want an interrupt, don't send one, unless empty. */
- if ((vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
- && vq->inflight)
- return;
- /* Send the Guest an interrupt tell them we used something up. */
- if (write(fd, buf, sizeof(buf)) != 0)
- err(1, "Triggering irq %i", vq->config.irq);
- }
- /* And here's the combo meal deal. Supersize me! */
- static void add_used_and_trigger(int fd, struct virtqueue *vq,
- unsigned int head, int len)
- {
- add_used(vq, head, len);
- trigger_irq(fd, vq);
- }
- /*
- * The Console
- *
- * Here is the input terminal setting we save, and the routine to restore them
- * on exit so the user gets their terminal back. */
- static struct termios orig_term;
- static void restore_term(void)
- {
- tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
- }
- /* We associate some data with the console for our exit hack. */
- struct console_abort
- {
- /* How many times have they hit ^C? */
- int count;
- /* When did they start? */
- struct timeval start;
- };
- /* This is the routine which handles console input (ie. stdin). */
- static bool handle_console_input(int fd, struct device *dev)
- {
- int len;
- unsigned int head, in_num, out_num;
- struct iovec iov[dev->vq->vring.num];
- struct console_abort *abort = dev->priv;
- /* First we need a console buffer from the Guests's input virtqueue. */
- head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
- /* If they're not ready for input, stop listening to this file
- * descriptor. We'll start again once they add an input buffer. */
- if (head == dev->vq->vring.num)
- return false;
- if (out_num)
- errx(1, "Output buffers in console in queue?");
- /* This is why we convert to iovecs: the readv() call uses them, and so
- * it reads straight into the Guest's buffer. */
- len = readv(dev->fd, iov, in_num);
- if (len <= 0) {
- /* This implies that the console is closed, is /dev/null, or
- * something went terribly wrong. */
- warnx("Failed to get console input, ignoring console.");
- /* Put the input terminal back. */
- restore_term();
- /* Remove callback from input vq, so it doesn't restart us. */
- dev->vq->handle_output = NULL;
- /* Stop listening to this fd: don't call us again. */
- return false;
- }
- /* Tell the Guest about the new input. */
- add_used_and_trigger(fd, dev->vq, head, len);
- /* Three ^C within one second? Exit.
- *
- * This is such a hack, but works surprisingly well. Each ^C has to be
- * in a buffer by itself, so they can't be too fast. But we check that
- * we get three within about a second, so they can't be too slow. */
- if (len == 1 && ((char *)iov[0].iov_base)[0] == 3) {
- if (!abort->count++)
- gettimeofday(&abort->start, NULL);
- else if (abort->count == 3) {
- struct timeval now;
- gettimeofday(&now, NULL);
- if (now.tv_sec <= abort->start.tv_sec+1) {
- unsigned long args[] = { LHREQ_BREAK, 0 };
- /* Close the fd so Waker will know it has to
- * exit. */
- close(waker_fds.pipe[1]);
- /* Just in case Waker is blocked in BREAK, send
- * unbreak now. */
- write(fd, args, sizeof(args));
- exit(2);
- }
- abort->count = 0;
- }
- } else
- /* Any other key resets the abort counter. */
- abort->count = 0;
- /* Everything went OK! */
- return true;
- }
- /* Handling output for console is simple: we just get all the output buffers
- * and write them to stdout. */
- static void handle_console_output(int fd, struct virtqueue *vq, bool timeout)
- {
- unsigned int head, out, in;
- int len;
- struct iovec iov[vq->vring.num];
- /* Keep getting output buffers from the Guest until we run out. */
- while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
- if (in)
- errx(1, "Input buffers in output queue?");
- len = writev(STDOUT_FILENO, iov, out);
- add_used_and_trigger(fd, vq, head, len);
- }
- }
- /* This is called when we no longer want to hear about Guest changes to a
- * virtqueue. This is more efficient in high-traffic cases, but it means we
- * have to set a timer to check if any more changes have occurred. */
- static void block_vq(struct virtqueue *vq)
- {
- struct itimerval itm;
- vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
- vq->blocked = true;
- itm.it_interval.tv_sec = 0;
- itm.it_interval.tv_usec = 0;
- itm.it_value.tv_sec = 0;
- itm.it_value.tv_usec = timeout_usec;
- setitimer(ITIMER_REAL, &itm, NULL);
- }
- /*
- * The Network
- *
- * Handling output for network is also simple: we get all the output buffers
- * and write them (ignoring the first element) to this device's file descriptor
- * (/dev/net/tun).
- */
- static void handle_net_output(int fd, struct virtqueue *vq, bool timeout)
- {
- unsigned int head, out, in, num = 0;
- int len;
- struct iovec iov[vq->vring.num];
- static int last_timeout_num;
- /* Keep getting output buffers from the Guest until we run out. */
- while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
- if (in)
- errx(1, "Input buffers in output queue?");
- len = writev(vq->dev->fd, iov, out);
- if (len < 0)
- err(1, "Writing network packet to tun");
- add_used_and_trigger(fd, vq, head, len);
- num++;
- }
- /* Block further kicks and set up a timer if we saw anything. */
- if (!timeout && num)
- block_vq(vq);
- /* We never quite know how long should we wait before we check the
- * queue again for more packets. We start at 500 microseconds, and if
- * we get fewer packets than last time, we assume we made the timeout
- * too small and increase it by 10 microseconds. Otherwise, we drop it
- * by one microsecond every time. It seems to work well enough. */
- if (timeout) {
- if (num < last_timeout_num)
- timeout_usec += 10;
- else if (timeout_usec > 1)
- timeout_usec--;
- last_timeout_num = num;
- }
- }
- /* This is where we handle a packet coming in from the tun device to our
- * Guest. */
- static bool handle_tun_input(int fd, struct device *dev)
- {
- unsigned int head, in_num, out_num;
- int len;
- struct iovec iov[dev->vq->vring.num];
- /* First we need a network buffer from the Guests's recv virtqueue. */
- head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
- if (head == dev->vq->vring.num) {
- /* Now, it's expected that if we try to send a packet too
- * early, the Guest won't be ready yet. Wait until the device
- * status says it's ready. */
- /* FIXME: Actually want DRIVER_ACTIVE here. */
- /* Now tell it we want to know if new things appear. */
- dev->vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
- wmb();
- /* We'll turn this back on if input buffers are registered. */
- return false;
- } else if (out_num)
- errx(1, "Output buffers in network recv queue?");
- /* Read the packet from the device directly into the Guest's buffer. */
- len = readv(dev->fd, iov, in_num);
- if (len <= 0)
- err(1, "reading network");
- /* Tell the Guest about the new packet. */
- add_used_and_trigger(fd, dev->vq, head, len);
- verbose("tun input packet len %i [%02x %02x] (%s)\n", len,
- ((u8 *)iov[1].iov_base)[0], ((u8 *)iov[1].iov_base)[1],
- head != dev->vq->vring.num ? "sent" : "discarded");
- /* All good. */
- return true;
- }
- /*L:215 This is the callback attached to the network and console input
- * virtqueues: it ensures we try again, in case we stopped console or net
- * delivery because Guest didn't have any buffers. */
- static void enable_fd(int fd, struct virtqueue *vq, bool timeout)
- {
- add_device_fd(vq->dev->fd);
- /* Snap the Waker out of its select loop. */
- write(waker_fds.pipe[1], "", 1);
- }
- static void net_enable_fd(int fd, struct virtqueue *vq, bool timeout)
- {
- /* We don't need to know again when Guest refills receive buffer. */
- vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
- enable_fd(fd, vq, timeout);
- }
- /* When the Guest tells us they updated the status field, we handle it. */
- static void update_device_status(struct device *dev)
- {
- struct virtqueue *vq;
- /* This is a reset. */
- if (dev->desc->status == 0) {
- verbose("Resetting device %s\n", dev->name);
- /* Clear any features they've acked. */
- memset(get_feature_bits(dev) + dev->desc->feature_len, 0,
- dev->desc->feature_len);
- /* Zero out the virtqueues. */
- for (vq = dev->vq; vq; vq = vq->next) {
- memset(vq->vring.desc, 0,
- vring_size(vq->config.num, LGUEST_VRING_ALIGN));
- lg_last_avail(vq) = 0;
- }
- } else if (dev->desc->status & VIRTIO_CONFIG_S_FAILED) {
- warnx("Device %s configuration FAILED", dev->name);
- } else if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK) {
- unsigned int i;
- verbose("Device %s OK: offered", dev->name);
- for (i = 0; i < dev->desc->feature_len; i++)
- verbose(" %02x", get_feature_bits(dev)[i]);
- verbose(", accepted");
- for (i = 0; i < dev->desc->feature_len; i++)
- verbose(" %02x", get_feature_bits(dev)
- [dev->desc->feature_len+i]);
- if (dev->ready)
- dev->ready(dev);
- }
- }
- /* This is the generic routine we call when the Guest uses LHCALL_NOTIFY. */
- static void handle_output(int fd, unsigned long addr)
- {
- struct device *i;
- struct virtqueue *vq;
- /* Check each device and virtqueue. */
- for (i = devices.dev; i; i = i->next) {
- /* Notifications to device descriptors update device status. */
- if (from_guest_phys(addr) == i->desc) {
- update_device_status(i);
- return;
- }
- /* Notifications to virtqueues mean output has occurred. */
- for (vq = i->vq; vq; vq = vq->next) {
- if (vq->config.pfn != addr/getpagesize())
- continue;
- /* Guest should acknowledge (and set features!) before
- * using the device. */
- if (i->desc->status == 0) {
- warnx("%s gave early output", i->name);
- return;
- }
- if (strcmp(vq->dev->name, "console") != 0)
- verbose("Output to %s\n", vq->dev->name);
- if (vq->handle_output)
- vq->handle_output(fd, vq, false);
- return;
- }
- }
- /* Early console write is done using notify on a nul-terminated string
- * in Guest memory. */
- if (addr >= guest_limit)
- errx(1, "Bad NOTIFY %#lx", addr);
- write(STDOUT_FILENO, from_guest_phys(addr),
- strnlen(from_guest_phys(addr), guest_limit - addr));
- }
- static void handle_timeout(int fd)
- {
- char buf[32];
- struct device *i;
- struct virtqueue *vq;
- /* Clear the pipe */
- read(timeoutpipe[0], buf, sizeof(buf));
- /* Check each device and virtqueue: flush blocked ones. */
- for (i = devices.dev; i; i = i->next) {
- for (vq = i->vq; vq; vq = vq->next) {
- if (!vq->blocked)
- continue;
- vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
- vq->blocked = false;
- if (vq->handle_output)
- vq->handle_output(fd, vq, true);
- }
- }
- }
- /* This is called when the Waker wakes us up: check for incoming file
- * descriptors. */
- static void handle_input(int fd)
- {
- /* select() wants a zeroed timeval to mean "don't wait". */
- struct timeval poll = { .tv_sec = 0, .tv_usec = 0 };
- for (;;) {
- struct device *i;
- fd_set fds = devices.infds;
- int num;
- num = select(devices.max_infd+1, &fds, NULL, NULL, &poll);
- /* Could get interrupted */
- if (num < 0)
- continue;
- /* If nothing is ready, we're done. */
- if (num == 0)
- break;
- /* Otherwise, call the device(s) which have readable file
- * descriptors and a method of handling them. */
- for (i = devices.dev; i; i = i->next) {
- if (i->handle_input && FD_ISSET(i->fd, &fds)) {
- if (i->handle_input(fd, i))
- continue;
- /* If handle_input() returns false, it means we
- * should no longer service it. Networking and
- * console do this when there's no input
- * buffers to deliver into. Console also uses
- * it when it discovers that stdin is closed. */
- FD_CLR(i->fd, &devices.infds);
- }
- }
- /* Is this the timeout fd? */
- if (FD_ISSET(timeoutpipe[0], &fds))
- handle_timeout(fd);
- }
- }
- /*L:190
- * Device Setup
- *
- * All devices need a descriptor so the Guest knows it exists, and a "struct
- * device" so the Launcher can keep track of it. We have common helper
- * routines to allocate and manage them.
- */
- /* The layout of the device page is a "struct lguest_device_desc" followed by a
- * number of virtqueue descriptors, then two sets of feature bits, then an
- * array of configuration bytes. This routine returns the configuration
- * pointer. */
- static u8 *device_config(const struct device *dev)
- {
- return (void *)(dev->desc + 1)
- + dev->desc->num_vq * sizeof(struct lguest_vqconfig)
- + dev->desc->feature_len * 2;
- }
- /* This routine allocates a new "struct lguest_device_desc" from descriptor
- * table page just above the Guest's normal memory. It returns a pointer to
- * that descriptor. */
- static struct lguest_device_desc *new_dev_desc(u16 type)
- {
- struct lguest_device_desc d = { .type = type };
- void *p;
- /* Figure out where the next device config is, based on the last one. */
- if (devices.lastdev)
- p = device_config(devices.lastdev)
- + devices.lastdev->desc->config_len;
- else
- p = devices.descpage;
- /* We only have one page for all the descriptors. */
- if (p + sizeof(d) > (void *)devices.descpage + getpagesize())
- errx(1, "Too many devices");
- /* p might not be aligned, so we memcpy in. */
- return memcpy(p, &d, sizeof(d));
- }
- /* Each device descriptor is followed by the description of its virtqueues. We
- * specify how many descriptors the virtqueue is to have. */
- static void add_virtqueue(struct device *dev, unsigned int num_descs,
- void (*handle_output)(int, struct virtqueue *, bool))
- {
- unsigned int pages;
- struct virtqueue **i, *vq = malloc(sizeof(*vq));
- void *p;
- /* First we need some memory for this virtqueue. */
- pages = (vring_size(num_descs, LGUEST_VRING_ALIGN) + getpagesize() - 1)
- / getpagesize();
- p = get_pages(pages);
- /* Initialize the virtqueue */
- vq->next = NULL;
- vq->last_avail_idx = 0;
- vq->dev = dev;
- vq->inflight = 0;
- vq->blocked = false;
- /* Initialize the configuration. */
- vq->config.num = num_descs;
- vq->config.irq = devices.next_irq++;
- vq->config.pfn = to_guest_phys(p) / getpagesize();
- /* Initialize the vring. */
- vring_init(&vq->vring, num_descs, p, LGUEST_VRING_ALIGN);
- /* Append virtqueue to this device's descriptor. We use
- * device_config() to get the end of the device's current virtqueues;
- * we check that we haven't added any config or feature information
- * yet, otherwise we'd be overwriting them. */
- assert(dev->desc->config_len == 0 && dev->desc->feature_len == 0);
- memcpy(device_config(dev), &vq->config, sizeof(vq->config));
- dev->desc->num_vq++;
- verbose("Virtqueue page %#lx\n", to_guest_phys(p));
- /* Add to tail of list, so dev->vq is first vq, dev->vq->next is
- * second. */
- for (i = &dev->vq; *i; i = &(*i)->next);
- *i = vq;
- /* Set the routine to call when the Guest does something to this
- * virtqueue. */
- vq->handle_output = handle_output;
- /* As an optimization, set the advisory "Don't Notify Me" flag if we
- * don't have a handler */
- if (!handle_output)
- vq->vring.used->flags = VRING_USED_F_NO_NOTIFY;
- }
- /* The first half of the feature bitmask is for us to advertise features. The
- * second half is for the Guest to accept features. */
- static void add_feature(struct device *dev, unsigned bit)
- {
- u8 *features = get_feature_bits(dev);
- /* We can't extend the feature bits once we've added config bytes */
- if (dev->desc->feature_len <= bit / CHAR_BIT) {
- assert(dev->desc->config_len == 0);
- dev->desc->feature_len = (bit / CHAR_BIT) + 1;
- }
- features[bit / CHAR_BIT] |= (1 << (bit % CHAR_BIT));
- }
- /* This routine sets the configuration fields for an existing device's
- * descriptor. It only works for the last device, but that's OK because that's
- * how we use it. */
- static void set_config(struct device *dev, unsigned len, const void *conf)
- {
- /* Check we haven't overflowed our single page. */
- if (device_config(dev) + len > devices.descpage + getpagesize())
- errx(1, "Too many devices");
- /* Copy in the config information, and store the length. */
- memcpy(device_config(dev), conf, len);
- dev->desc->config_len = len;
- }
- /* This routine does all the creation and setup of a new device, including
- * calling new_dev_desc() to allocate the descriptor and device memory.
- *
- * See what I mean about userspace being boring? */
- static struct device *new_device(const char *name, u16 type, int fd,
- bool (*handle_input)(int, struct device *))
- {
- struct device *dev = malloc(sizeof(*dev));
- /* Now we populate the fields one at a time. */
- dev->fd = fd;
- /* If we have an input handler for this file descriptor, then we add it
- * to the device_list's fdset and maxfd. */
- if (handle_input)
- add_device_fd(dev->fd);
- dev->desc = new_dev_desc(type);
- dev->handle_input = handle_input;
- dev->name = name;
- dev->vq = NULL;
- dev->ready = NULL;
- /* Append to device list. Prepending to a single-linked list is
- * easier, but the user expects the devices to be arranged on the bus
- * in command-line order. The first network device on the command line
- * is eth0, the first block device /dev/vda, etc. */
- if (devices.lastdev)
- devices.lastdev->next = dev;
- else
- devices.dev = dev;
- devices.lastdev = dev;
- return dev;
- }
- /* Our first setup routine is the console. It's a fairly simple device, but
- * UNIX tty handling makes it uglier than it could be. */
- static void setup_console(void)
- {
- struct device *dev;
- /* If we can save the initial standard input settings... */
- if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
- struct termios term = orig_term;
- /* Then we turn off echo, line buffering and ^C etc. We want a
- * raw input stream to the Guest. */
- term.c_lflag &= ~(ISIG|ICANON|ECHO);
- tcsetattr(STDIN_FILENO, TCSANOW, &term);
- /* If we exit gracefully, the original settings will be
- * restored so the user can see what they're typing. */
- atexit(restore_term);
- }
- dev = new_device("console", VIRTIO_ID_CONSOLE,
- STDIN_FILENO, handle_console_input);
- /* We store the console state in dev->priv, and initialize it. */
- dev->priv = malloc(sizeof(struct console_abort));
- ((struct console_abort *)dev->priv)->count = 0;
- /* The console needs two virtqueues: the input then the output. When
- * they put something the input queue, we make sure we're listening to
- * stdin. When they put something in the output queue, we write it to
- * stdout. */
- add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
- add_virtqueue(dev, VIRTQUEUE_NUM, handle_console_output);
- verbose("device %u: console\n", devices.device_num++);
- }
- /*:*/
- static void timeout_alarm(int sig)
- {
- write(timeoutpipe[1], "", 1);
- }
- static void setup_timeout(void)
- {
- if (pipe(timeoutpipe) != 0)
- err(1, "Creating timeout pipe");
- if (fcntl(timeoutpipe[1], F_SETFL,
- fcntl(timeoutpipe[1], F_GETFL) | O_NONBLOCK) != 0)
- err(1, "Making timeout pipe nonblocking");
- add_device_fd(timeoutpipe[0]);
- signal(SIGALRM, timeout_alarm);
- }
- /*M:010 Inter-guest networking is an interesting area. Simplest is to have a
- * --sharenet=<name> option which opens or creates a named pipe. This can be
- * used to send packets to another guest in a 1:1 manner.
- *
- * More sopisticated is to use one of the tools developed for project like UML
- * to do networking.
- *
- * Faster is to do virtio bonding in kernel. Doing this 1:1 would be
- * completely generic ("here's my vring, attach to your vring") and would work
- * for any traffic. Of course, namespace and permissions issues need to be
- * dealt with. A more sophisticated "multi-channel" virtio_net.c could hide
- * multiple inter-guest channels behind one interface, although it would
- * require some manner of hotplugging new virtio channels.
- *
- * Finally, we could implement a virtio network switch in the kernel. :*/
- static u32 str2ip(const char *ipaddr)
- {
- unsigned int b[4];
- if (sscanf(ipaddr, "%u.%u.%u.%u", &b[0], &b[1], &b[2], &b[3]) != 4)
- errx(1, "Failed to parse IP address '%s'", ipaddr);
- return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
- }
- static void str2mac(const char *macaddr, unsigned char mac[6])
- {
- unsigned int m[6];
- if (sscanf(macaddr, "%02x:%02x:%02x:%02x:%02x:%02x",
- &m[0], &m[1], &m[2], &m[3], &m[4], &m[5]) != 6)
- errx(1, "Failed to parse mac address '%s'", macaddr);
- mac[0] = m[0];
- mac[1] = m[1];
- mac[2] = m[2];
- mac[3] = m[3];
- mac[4] = m[4];
- mac[5] = m[5];
- }
- /* This code is "adapted" from libbridge: it attaches the Host end of the
- * network device to the bridge device specified by the command line.
- *
- * This is yet another James Morris contribution (I'm an IP-level guy, so I
- * dislike bridging), and I just try not to break it. */
- static void add_to_bridge(int fd, const char *if_name, const char *br_name)
- {
- int ifidx;
- struct ifreq ifr;
- if (!*br_name)
- errx(1, "must specify bridge name");
- ifidx = if_nametoindex(if_name);
- if (!ifidx)
- errx(1, "interface %s does not exist!", if_name);
- strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
- ifr.ifr_name[IFNAMSIZ-1] = '\0';
- ifr.ifr_ifindex = ifidx;
- if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
- err(1, "can't add %s to bridge %s", if_name, br_name);
- }
- /* This sets up the Host end of the network device with an IP address, brings
- * it up so packets will flow, the copies the MAC address into the hwaddr
- * pointer. */
- static void configure_device(int fd, const char *tapif, u32 ipaddr)
- {
- struct ifreq ifr;
- struct sockaddr_in *sin = (struct sockaddr_in *)&ifr.ifr_addr;
- memset(&ifr, 0, sizeof(ifr));
- strcpy(ifr.ifr_name, tapif);
- /* Don't read these incantations. Just cut & paste them like I did! */
- sin->sin_family = AF_INET;
- sin->sin_addr.s_addr = htonl(ipaddr);
- if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
- err(1, "Setting %s interface address", tapif);
- ifr.ifr_flags = IFF_UP;
- if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
- err(1, "Bringing interface %s up", tapif);
- }
- static int get_tun_device(char tapif[IFNAMSIZ])
- {
- struct ifreq ifr;
- int netfd;
- /* Start with this zeroed. Messy but sure. */
- memset(&ifr, 0, sizeof(ifr));
- /* We open the /dev/net/tun device and tell it we want a tap device. A
- * tap device is like a tun device, only somehow different. To tell
- * the truth, I completely blundered my way through this code, but it
- * works now! */
- netfd = open_or_die("/dev/net/tun", O_RDWR);
- ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_VNET_HDR;
- strcpy(ifr.ifr_name, "tap%d");
- if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
- err(1, "configuring /dev/net/tun");
- if (ioctl(netfd, TUNSETOFFLOAD,
- TUN_F_CSUM|TUN_F_TSO4|TUN_F_TSO6|TUN_F_TSO_ECN) != 0)
- err(1, "Could not set features for tun device");
- /* We don't need checksums calculated for packets coming in this
- * device: trust us! */
- ioctl(netfd, TUNSETNOCSUM, 1);
- memcpy(tapif, ifr.ifr_name, IFNAMSIZ);
- return netfd;
- }
- /*L:195 Our network is a Host<->Guest network. This can either use bridging or
- * routing, but the principle is the same: it uses the "tun" device to inject
- * packets into the Host as if they came in from a normal network card. We
- * just shunt packets between the Guest and the tun device. */
- static void setup_tun_net(char *arg)
- {
- struct device *dev;
- int netfd, ipfd;
- u32 ip = INADDR_ANY;
- bool bridging = false;
- char tapif[IFNAMSIZ], *p;
- struct virtio_net_config conf;
- netfd = get_tun_device(tapif);
- /* First we create a new network device. */
- dev = new_device("net", VIRTIO_ID_NET, netfd, handle_tun_input);
- /* Network devices need a receive and a send queue, just like
- * console. */
- add_virtqueue(dev, VIRTQUEUE_NUM, net_enable_fd);
- add_virtqueue(dev, VIRTQUEUE_NUM, handle_net_output);
- /* We need a socket to perform the magic network ioctls to bring up the
- * tap interface, connect to the bridge etc. Any socket will do! */
- ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
- if (ipfd < 0)
- err(1, "opening IP socket");
- /* If the command line was --tunnet=bridge:<name> do bridging. */
- if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
- arg += strlen(BRIDGE_PFX);
- bridging = true;
- }
- /* A mac address may follow the bridge name or IP address */
- p = strchr(arg, ':');
- if (p) {
- str2mac(p+1, conf.mac);
- add_feature(dev, VIRTIO_NET_F_MAC);
- *p = '\0';
- }
- /* arg is now either an IP address or a bridge name */
- if (bridging)
- add_to_bridge(ipfd, tapif, arg);
- else
- ip = str2ip(arg);
- /* Set up the tun device. */
- configure_device(ipfd, tapif, ip);
- add_feature(dev, VIRTIO_F_NOTIFY_ON_EMPTY);
- /* Expect Guest to handle everything except UFO */
- add_feature(dev, VIRTIO_NET_F_CSUM);
- add_feature(dev, VIRTIO_NET_F_GUEST_CSUM);
- add_feature(dev, VIRTIO_NET_F_GUEST_TSO4);
- add_feature(dev, VIRTIO_NET_F_GUEST_TSO6);
- add_feature(dev, VIRTIO_NET_F_GUEST_ECN);
- add_feature(dev, VIRTIO_NET_F_HOST_TSO4);
- add_feature(dev, VIRTIO_NET_F_HOST_TSO6);
- add_feature(dev, VIRTIO_NET_F_HOST_ECN);
- set_config(dev, sizeof(conf), &conf);
- /* We don't need the socket any more; setup is done. */
- close(ipfd);
- devices.device_num++;
- if (bridging)
- verbose("device %u: tun %s attached to bridge: %s\n",
- devices.device_num, tapif, arg);
- else
- verbose("device %u: tun %s: %s\n",
- devices.device_num, tapif, arg);
- }
- /* Our block (disk) device should be really simple: the Guest asks for a block
- * number and we read or write that position in the file. Unfortunately, that
- * was amazingly slow: the Guest waits until the read is finished before
- * running anything else, even if it could have been doing useful work.
- *
- * We could use async I/O, except it's reputed to suck so hard that characters
- * actually go missing from your code when you try to use it.
- *
- * So we farm the I/O out to thread, and communicate with it via a pipe. */
- /* This hangs off device->priv. */
- struct vblk_info
- {
- /* The size of the file. */
- off64_t len;
- /* The file descriptor for the file. */
- int fd;
- /* IO thread listens on this file descriptor [0]. */
- int workpipe[2];
- /* IO thread writes to this file descriptor to mark it done, then
- * Launcher triggers interrupt to Guest. */
- int done_fd;
- };
- /*L:210
- * The Disk
- *
- * Remember that the block device is handled by a separate I/O thread. We head
- * straight into the core of that thread here:
- */
- static bool service_io(struct device *dev)
- {
- struct vblk_info *vblk = dev->priv;
- unsigned int head, out_num, in_num, wlen;
- int ret;
- u8 *in;
- struct virtio_blk_outhdr *out;
- struct iovec iov[dev->vq->vring.num];
- off64_t off;
- /* See if there's a request waiting. If not, nothing to do. */
- head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
- if (head == dev->vq->vring.num)
- return false;
- /* Every block request should contain at least one output buffer
- * (detailing the location on disk and the type of request) and one
- * input buffer (to hold the result). */
- if (out_num == 0 || in_num == 0)
- errx(1, "Bad virtblk cmd %u out=%u in=%u",
- head, out_num, in_num);
- out = convert(&iov[0], struct virtio_blk_outhdr);
- in = convert(&iov[out_num+in_num-1], u8);
- off = out->sector * 512;
- /* The block device implements "barriers", where the Guest indicates
- * that it wants all previous writes to occur before this write. We
- * don't have a way of asking our kernel to do a barrier, so we just
- * synchronize all the data in the file. Pretty poor, no? */
- if (out->type & VIRTIO_BLK_T_BARRIER)
- fdatasync(vblk->fd);
- /* In general the virtio block driver is allowed to try SCSI commands.
- * It'd be nice if we supported eject, for example, but we don't. */
- if (out->type & VIRTIO_BLK_T_SCSI_CMD) {
- fprintf(stderr, "Scsi commands unsupported\n");
- *in = VIRTIO_BLK_S_UNSUPP;
- wlen = sizeof(*in);
- } else if (out->type & VIRTIO_BLK_T_OUT) {
- /* Write */
- /* Move to the right location in the block file. This can fail
- * if they try to write past end. */
- if (lseek64(vblk->fd, off, SEEK_SET) != off)
- err(1, "Bad seek to sector %llu", out->sector);
- ret = writev(vblk->fd, iov+1, out_num-1);
- verbose("WRITE to sector %llu: %i\n", out->sector, ret);
- /* Grr... Now we know how long the descriptor they sent was, we
- * make sure they didn't try to write over the end of the block
- * file (possibly extending it). */
- if (ret > 0 && off + ret > vblk->len) {
- /* Trim it back to the correct length */
- ftruncate64(vblk->fd, vblk->len);
- /* Die, bad Guest, die. */
- errx(1, "Write past end %llu+%u", off, ret);
- }
- wlen = sizeof(*in);
- *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
- } else {
- /* Read */
- /* Move to the right location in the block file. This can fail
- * if they try to read past end. */
- if (lseek64(vblk->fd, off, SEEK_SET) != off)
- err(1, "Bad seek to sector %llu", out->sector);
- ret = readv(vblk->fd, iov+1, in_num-1);
- verbose("READ from sector %llu: %i\n", out->sector, ret);
- if (ret >= 0) {
- wlen = sizeof(*in) + ret;
- *in = VIRTIO_BLK_S_OK;
- } else {
- wlen = sizeof(*in);
- *in = VIRTIO_BLK_S_IOERR;
- }
- }
- /* OK, so we noted that it was pretty poor to use an fdatasync as a
- * barrier. But Christoph Hellwig points out that we need a sync
- * *afterwards* as well: "Barriers specify no reordering to the front
- * or the back." And Jens Axboe confirmed it, so here we are: */
- if (out->type & VIRTIO_BLK_T_BARRIER)
- fdatasync(vblk->fd);
- /* We can't trigger an IRQ, because we're not the Launcher. It does
- * that when we tell it we're done. */
- add_used(dev->vq, head, wlen);
- return true;
- }
- /* This is the thread which actually services the I/O. */
- static int io_thread(void *_dev)
- {
- struct device *dev = _dev;
- struct vblk_info *vblk = dev->priv;
- char c;
- /* Close other side of workpipe so we get 0 read when main dies. */
- close(vblk->workpipe[1]);
- /* Close the other side of the done_fd pipe. */
- close(dev->fd);
- /* When this read fails, it means Launcher died, so we follow. */
- while (read(vblk->workpipe[0], &c, 1) == 1) {
- /* We acknowledge each request immediately to reduce latency,
- * rather than waiting until we've done them all. I haven't
- * measured to see if it makes any difference.
- *
- * That would be an interesting test, wouldn't it? You could
- * also try having more than one I/O thread. */
- while (service_io(dev))
- write(vblk->done_fd, &c, 1);
- }
- return 0;
- }
- /* Now we've seen the I/O thread, we return to the Launcher to see what happens
- * when that thread tells us it's completed some I/O. */
- static bool handle_io_finish(int fd, struct device *dev)
- {
- char c;
- /* If the I/O thread died, presumably it printed the error, so we
- * simply exit. */
- if (read(dev->fd, &c, 1) != 1)
- exit(1);
- /* It did some work, so trigger the irq. */
- trigger_irq(fd, dev->vq);
- return true;
- }
- /* When the Guest submits some I/O, we just need to wake the I/O thread. */
- static void handle_virtblk_output(int fd, struct virtqueue *vq, bool timeout)
- {
- struct vblk_info *vblk = vq->dev->priv;
- char c = 0;
- /* Wake up I/O thread and tell it to go to work! */
- if (write(vblk->workpipe[1], &c, 1) != 1)
- /* Presumably it indicated why it died. */
- exit(1);
- }
- /*L:198 This actually sets up a virtual block device. */
- static void setup_block_file(const char *filename)
- {
- int p[2];
- struct device *dev;
- struct vblk_info *vblk;
- void *stack;
- struct virtio_blk_config conf;
- /* This is the pipe the I/O thread will use to tell us I/O is done. */
- pipe(p);
- /* The device responds to return from I/O thread. */
- dev = new_device("block", VIRTIO_ID_BLOCK, p[0], handle_io_finish);
- /* The device has one virtqueue, where the Guest places requests. */
- add_virtqueue(dev, VIRTQUEUE_NUM, handle_virtblk_output);
- /* Allocate the room for our own bookkeeping */
- vblk = dev->priv = malloc(sizeof(*vblk));
- /* First we open the file and store the length. */
- vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
- vblk->len = lseek64(vblk->fd, 0, SEEK_END);
- /* We support barriers. */
- add_feature(dev, VIRTIO_BLK_F_BARRIER);
- /* Tell Guest how many sectors this device has. */
- conf.capacity = cpu_to_le64(vblk->len / 512);
- /* Tell Guest not to put in too many descriptors at once: two are used
- * for the in and out elements. */
- add_feature(dev, VIRTIO_BLK_F_SEG_MAX);
- conf.seg_max = cpu_to_le32(VIRTQUEUE_NUM - 2);
- set_config(dev, sizeof(conf), &conf);
- /* The I/O thread writes to this end of the pipe when done. */
- vblk->done_fd = p[1];
- /* This is the second pipe, which is how we tell the I/O thread about
- * more work. */
- pipe(vblk->workpipe);
- /* Create stack for thread and run it. Since stack grows upwards, we
- * point the stack pointer to the end of this region. */
- stack = malloc(32768);
- /* SIGCHLD - We dont "wait" for our cloned thread, so prevent it from
- * becoming a zombie. */
- if (clone(io_thread, stack + 32768, CLONE_VM | SIGCHLD, dev) == -1)
- err(1, "Creating clone");
- /* We don't need to keep the I/O thread's end of the pipes open. */
- close(vblk->done_fd);
- close(vblk->workpipe[0]);
- verbose("device %u: virtblock %llu sectors\n",
- devices.device_num, le64_to_cpu(conf.capacity));
- }
- /* Our random number generator device reads from /dev/random into the Guest's
- * input buffers. The usual case is that the Guest doesn't want random numbers
- * and so has no buffers although /dev/random is still readable, whereas
- * console is the reverse.
- *
- * The same logic applies, however. */
- static bool handle_rng_input(int fd, struct device *dev)
- {
- int len;
- unsigned int head, in_num, out_num, totlen = 0;
- struct iovec iov[dev->vq->vring.num];
- /* First we need a buffer from the Guests's virtqueue. */
- head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
- /* If they're not ready for input, stop listening to this file
- * descriptor. We'll start again once they add an input buffer. */
- if (head == dev->vq->vring.num)
- return false;
- if (out_num)
- errx(1, "Output buffers in rng?");
- /* This is why we convert to iovecs: the readv() call uses them, and so
- * it reads straight into the Guest's buffer. We loop to make sure we
- * fill it. */
- while (!iov_empty(iov, in_num)) {
- len = readv(dev->fd, iov, in_num);
- if (len <= 0)
- err(1, "Read from /dev/random gave %i", len);
- iov_consume(iov, in_num, len);
- totlen += len;
- }
- /* Tell the Guest about the new input. */
- add_used_and_trigger(fd, dev->vq, head, totlen);
- /* Everything went OK! */
- return true;
- }
- /* And this creates a "hardware" random number device for the Guest. */
- static void setup_rng(void)
- {
- struct device *dev;
- int fd;
- fd = open_or_die("/dev/random", O_RDONLY);
- /* The device responds to return from I/O thread. */
- dev = new_device("rng", VIRTIO_ID_RNG, fd, handle_rng_input);
- /* The device has one virtqueue, where the Guest places inbufs. */
- add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
- verbose("device %u: rng\n", devices.device_num++);
- }
- /* That's the end of device setup. */
- /*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */
- static void __attribute__((noreturn)) restart_guest(void)
- {
- unsigned int i;
- /* Since we don't track all open fds, we simply close everything beyond
- * stderr. */
- for (i = 3; i < FD_SETSIZE; i++)
- close(i);
- /* The exec automatically gets rid of the I/O and Waker threads. */
- execv(main_args[0], main_args);
- err(1, "Could not exec %s", main_args[0]);
- }
- /*L:220 Finally we reach the core of the Launcher which runs the Guest, serves
- * its input and output, and finally, lays it to rest. */
- static void __attribute__((noreturn)) run_guest(int lguest_fd)
- {
- for (;;) {
- unsigned long args[] = { LHREQ_BREAK, 0 };
- unsigned long notify_addr;
- int readval;
- /* We read from the /dev/lguest device to run the Guest. */
- readval = pread(lguest_fd, ¬ify_addr,
- sizeof(notify_addr), cpu_id);
- /* One unsigned long means the Guest did HCALL_NOTIFY */
- if (readval == sizeof(notify_addr)) {
- verbose("Notify on address %#lx\n", notify_addr);
- handle_output(lguest_fd, notify_addr);
- continue;
- /* ENOENT means the Guest died. Reading tells us why. */
- } else if (errno == ENOENT) {
- char reason[1024] = { 0 };
- pread(lguest_fd, reason, sizeof(reason)-1, cpu_id);
- errx(1, "%s", reason);
- /* ERESTART means that we need to reboot the guest */
- } else if (errno == ERESTART) {
- restart_guest();
- /* EAGAIN means a signal (timeout).
- * Anything else means a bug or incompatible change. */
- } else if (errno != EAGAIN)
- err(1, "Running guest failed");
- /* Only service input on thread for CPU 0. */
- if (cpu_id != 0)
- continue;
- /* Service input, then unset the BREAK to release the Waker. */
- handle_input(lguest_fd);
- if (pwrite(lguest_fd, args, sizeof(args), cpu_id) < 0)
- err(1, "Resetting break");
- }
- }
- /*L:240
- * This is the end of the Launcher. The good news: we are over halfway
- * through! The bad news: the most fiendish part of the code still lies ahead
- * of us.
- *
- * Are you ready? Take a deep breath and join me in the core of the Host, in
- * "make Host".
- :*/
- static struct option opts[] = {
- { "verbose", 0, NULL, 'v' },
- { "tunnet", 1, NULL, 't' },
- { "block", 1, NULL, 'b' },
- { "rng", 0, NULL, 'r' },
- { "initrd", 1, NULL, 'i' },
- { NULL },
- };
- static void usage(void)
- {
- errx(1, "Usage: lguest [--verbose] "
- "[--tunnet=(<ipaddr>:<macaddr>|bridge:<bridgename>:<macaddr>)\n"
- "|--block=<filename>|--initrd=<filename>]...\n"
- "<mem-in-mb> vmlinux [args...]");
- }
- /*L:105 The main routine is where the real work begins: */
- int main(int argc, char *argv[])
- {
- /* Memory, top-level pagetable, code startpoint and size of the
- * (optional) initrd. */
- unsigned long mem = 0, start, initrd_size = 0;
- /* Two temporaries and the /dev/lguest file descriptor. */
- int i, c, lguest_fd;
- /* The boot information for the Guest. */
- struct boot_params *boot;
- /* If they specify an initrd file to load. */
- const char *initrd_name = NULL;
- /* Save the args: we "reboot" by execing ourselves again. */
- main_args = argv;
- /* We don't "wait" for the children, so prevent them from becoming
- * zombies. */
- signal(SIGCHLD, SIG_IGN);
- /* First we initialize the device list. Since console and network
- * device receive input from a file descriptor, we keep an fdset
- * (infds) and the maximum fd number (max_infd) with the head of the
- * list. We also keep a pointer to the last device. Finally, we keep
- * the next interrupt number to use for devices (1: remember that 0 is
- * used by the timer). */
- FD_ZERO(&devices.infds);
- devices.max_infd = -1;
- devices.lastdev = NULL;
- devices.next_irq = 1;
- cpu_id = 0;
- /* We need to know how much memory so we can set up the device
- * descriptor and memory pages for the devices as we parse the command
- * line. So we quickly look through the arguments to find the amount
- * of memory now. */
- for (i = 1; i < argc; i++) {
- if (argv[i][0] != '-') {
- mem = atoi(argv[i]) * 1024 * 1024;
- /* We start by mapping anonymous pages over all of
- * guest-physical memory range. This fills it with 0,
- * and ensures that the Guest won't be killed when it
- * tries to access it. */
- guest_base = map_zeroed_pages(mem / getpagesize()
- + DEVICE_PAGES);
- guest_limit = mem;
- guest_max = mem + DEVICE_PAGES*getpagesize();
- devices.descpage = get_pages(1);
- break;
- }
- }
- /* The options are fairly straight-forward */
- while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
- switch (c) {
- case 'v':
- verbose = true;
- break;
- case 't':
- setup_tun_net(optarg);
- break;
- case 'b':
- setup_block_file(optarg);
- break;
- case 'r':
- setup_rng();
- break;
- case 'i':
- initrd_name = optarg;
- break;
- default:
- warnx("Unknown argument %s", argv[optind]);
- usage();
- }
- }
- /* After the other arguments we expect memory and kernel image name,
- * followed by command line arguments for the kernel. */
- if (optind + 2 > argc)
- usage();
- verbose("Guest base is at %p\n", guest_base);
- /* We always have a console device */
- setup_console();
- /* We can timeout waiting for Guest network transmit. */
- setup_timeout();
- /* Now we load the kernel */
- start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
- /* Boot information is stashed at physical address 0 */
- boot = from_guest_phys(0);
- /* Map the initrd image if requested (at top of physical memory) */
- if (initrd_name) {
- initrd_size = load_initrd(initrd_name, mem);
- /* These are the location in the Linux boot header where the
- * start and size of the initrd are expected to be found. */
- boot->hdr.ramdisk_image = mem - initrd_size;
- boot->hdr.ramdisk_size = initrd_size;
- /* The bootloader type 0xFF means "unknown"; that's OK. */
- boot->hdr.type_of_loader = 0xFF;
- }
- /* The Linux boot header contains an "E820" memory map: ours is a
- * simple, single region. */
- boot->e820_entries = 1;
- boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM });
- /* The boot header contains a command line pointer: we put the command
- * line after the boot header. */
- boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
- /* We use a simple helper to copy the arguments separated by spaces. */
- concat((char *)(boot + 1), argv+optind+2);
- /* Boot protocol version: 2.07 supports the fields for lguest. */
- boot->hdr.version = 0x207;
- /* The hardware_subarch value of "1" tells the Guest it's an lguest. */
- boot->hdr.hardware_subarch = 1;
- /* Tell the entry path not to try to reload segment registers. */
- boot->hdr.loadflags |= KEEP_SEGMENTS;
- /* We tell the kernel to initialize the Guest: this returns the open
- * /dev/lguest file descriptor. */
- lguest_fd = tell_kernel(start);
- /* We clone off a thread, which wakes the Launcher whenever one of the
- * input file descriptors needs attention. We call this the Waker, and
- * we'll cover it in a moment. */
- setup_waker(lguest_fd);
- /* Finally, run the Guest. This doesn't return. */
- run_guest(lguest_fd);
- }
- /*:*/
- /*M:999
- * Mastery is done: you now know everything I do.
- *
- * But surely you have seen code, features and bugs in your wanderings which
- * you now yearn to attack? That is the real game, and I look forward to you
- * patching and forking lguest into the Your-Name-Here-visor.
- *
- * Farewell, and good coding!
- * Rusty Russell.
- */
|