rmap.c 40 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422
  1. /*
  2. * mm/rmap.c - physical to virtual reverse mappings
  3. *
  4. * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
  5. * Released under the General Public License (GPL).
  6. *
  7. * Simple, low overhead reverse mapping scheme.
  8. * Please try to keep this thing as modular as possible.
  9. *
  10. * Provides methods for unmapping each kind of mapped page:
  11. * the anon methods track anonymous pages, and
  12. * the file methods track pages belonging to an inode.
  13. *
  14. * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15. * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16. * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17. * Contributions by Hugh Dickins 2003, 2004
  18. */
  19. /*
  20. * Lock ordering in mm:
  21. *
  22. * inode->i_mutex (while writing or truncating, not reading or faulting)
  23. * inode->i_alloc_sem (vmtruncate_range)
  24. * mm->mmap_sem
  25. * page->flags PG_locked (lock_page)
  26. * mapping->i_mmap_lock
  27. * anon_vma->lock
  28. * mm->page_table_lock or pte_lock
  29. * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
  30. * swap_lock (in swap_duplicate, swap_info_get)
  31. * mmlist_lock (in mmput, drain_mmlist and others)
  32. * mapping->private_lock (in __set_page_dirty_buffers)
  33. * inode_lock (in set_page_dirty's __mark_inode_dirty)
  34. * sb_lock (within inode_lock in fs/fs-writeback.c)
  35. * mapping->tree_lock (widely used, in set_page_dirty,
  36. * in arch-dependent flush_dcache_mmap_lock,
  37. * within inode_lock in __sync_single_inode)
  38. *
  39. * (code doesn't rely on that order so it could be switched around)
  40. * ->tasklist_lock
  41. * anon_vma->lock (memory_failure, collect_procs_anon)
  42. * pte map lock
  43. */
  44. #include <linux/mm.h>
  45. #include <linux/pagemap.h>
  46. #include <linux/swap.h>
  47. #include <linux/swapops.h>
  48. #include <linux/slab.h>
  49. #include <linux/init.h>
  50. #include <linux/ksm.h>
  51. #include <linux/rmap.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/module.h>
  54. #include <linux/memcontrol.h>
  55. #include <linux/mmu_notifier.h>
  56. #include <linux/migrate.h>
  57. #include <asm/tlbflush.h>
  58. #include "internal.h"
  59. static struct kmem_cache *anon_vma_cachep;
  60. static struct kmem_cache *anon_vma_chain_cachep;
  61. static inline struct anon_vma *anon_vma_alloc(void)
  62. {
  63. return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  64. }
  65. void anon_vma_free(struct anon_vma *anon_vma)
  66. {
  67. kmem_cache_free(anon_vma_cachep, anon_vma);
  68. }
  69. static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
  70. {
  71. return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
  72. }
  73. void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
  74. {
  75. kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
  76. }
  77. /**
  78. * anon_vma_prepare - attach an anon_vma to a memory region
  79. * @vma: the memory region in question
  80. *
  81. * This makes sure the memory mapping described by 'vma' has
  82. * an 'anon_vma' attached to it, so that we can associate the
  83. * anonymous pages mapped into it with that anon_vma.
  84. *
  85. * The common case will be that we already have one, but if
  86. * if not we either need to find an adjacent mapping that we
  87. * can re-use the anon_vma from (very common when the only
  88. * reason for splitting a vma has been mprotect()), or we
  89. * allocate a new one.
  90. *
  91. * Anon-vma allocations are very subtle, because we may have
  92. * optimistically looked up an anon_vma in page_lock_anon_vma()
  93. * and that may actually touch the spinlock even in the newly
  94. * allocated vma (it depends on RCU to make sure that the
  95. * anon_vma isn't actually destroyed).
  96. *
  97. * As a result, we need to do proper anon_vma locking even
  98. * for the new allocation. At the same time, we do not want
  99. * to do any locking for the common case of already having
  100. * an anon_vma.
  101. *
  102. * This must be called with the mmap_sem held for reading.
  103. */
  104. int anon_vma_prepare(struct vm_area_struct *vma)
  105. {
  106. struct anon_vma *anon_vma = vma->anon_vma;
  107. struct anon_vma_chain *avc;
  108. might_sleep();
  109. if (unlikely(!anon_vma)) {
  110. struct mm_struct *mm = vma->vm_mm;
  111. struct anon_vma *allocated;
  112. avc = anon_vma_chain_alloc();
  113. if (!avc)
  114. goto out_enomem;
  115. anon_vma = find_mergeable_anon_vma(vma);
  116. allocated = NULL;
  117. if (!anon_vma) {
  118. anon_vma = anon_vma_alloc();
  119. if (unlikely(!anon_vma))
  120. goto out_enomem_free_avc;
  121. allocated = anon_vma;
  122. }
  123. spin_lock(&anon_vma->lock);
  124. /* page_table_lock to protect against threads */
  125. spin_lock(&mm->page_table_lock);
  126. if (likely(!vma->anon_vma)) {
  127. vma->anon_vma = anon_vma;
  128. avc->anon_vma = anon_vma;
  129. avc->vma = vma;
  130. list_add(&avc->same_vma, &vma->anon_vma_chain);
  131. list_add(&avc->same_anon_vma, &anon_vma->head);
  132. allocated = NULL;
  133. avc = NULL;
  134. }
  135. spin_unlock(&mm->page_table_lock);
  136. spin_unlock(&anon_vma->lock);
  137. if (unlikely(allocated))
  138. anon_vma_free(allocated);
  139. if (unlikely(avc))
  140. anon_vma_chain_free(avc);
  141. }
  142. return 0;
  143. out_enomem_free_avc:
  144. anon_vma_chain_free(avc);
  145. out_enomem:
  146. return -ENOMEM;
  147. }
  148. static void anon_vma_chain_link(struct vm_area_struct *vma,
  149. struct anon_vma_chain *avc,
  150. struct anon_vma *anon_vma)
  151. {
  152. avc->vma = vma;
  153. avc->anon_vma = anon_vma;
  154. list_add(&avc->same_vma, &vma->anon_vma_chain);
  155. spin_lock(&anon_vma->lock);
  156. list_add_tail(&avc->same_anon_vma, &anon_vma->head);
  157. spin_unlock(&anon_vma->lock);
  158. }
  159. /*
  160. * Attach the anon_vmas from src to dst.
  161. * Returns 0 on success, -ENOMEM on failure.
  162. */
  163. int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
  164. {
  165. struct anon_vma_chain *avc, *pavc;
  166. list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
  167. avc = anon_vma_chain_alloc();
  168. if (!avc)
  169. goto enomem_failure;
  170. anon_vma_chain_link(dst, avc, pavc->anon_vma);
  171. }
  172. return 0;
  173. enomem_failure:
  174. unlink_anon_vmas(dst);
  175. return -ENOMEM;
  176. }
  177. /*
  178. * Attach vma to its own anon_vma, as well as to the anon_vmas that
  179. * the corresponding VMA in the parent process is attached to.
  180. * Returns 0 on success, non-zero on failure.
  181. */
  182. int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
  183. {
  184. struct anon_vma_chain *avc;
  185. struct anon_vma *anon_vma;
  186. /* Don't bother if the parent process has no anon_vma here. */
  187. if (!pvma->anon_vma)
  188. return 0;
  189. /*
  190. * First, attach the new VMA to the parent VMA's anon_vmas,
  191. * so rmap can find non-COWed pages in child processes.
  192. */
  193. if (anon_vma_clone(vma, pvma))
  194. return -ENOMEM;
  195. /* Then add our own anon_vma. */
  196. anon_vma = anon_vma_alloc();
  197. if (!anon_vma)
  198. goto out_error;
  199. avc = anon_vma_chain_alloc();
  200. if (!avc)
  201. goto out_error_free_anon_vma;
  202. anon_vma_chain_link(vma, avc, anon_vma);
  203. /* Mark this anon_vma as the one where our new (COWed) pages go. */
  204. vma->anon_vma = anon_vma;
  205. return 0;
  206. out_error_free_anon_vma:
  207. anon_vma_free(anon_vma);
  208. out_error:
  209. unlink_anon_vmas(vma);
  210. return -ENOMEM;
  211. }
  212. static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
  213. {
  214. struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
  215. int empty;
  216. /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
  217. if (!anon_vma)
  218. return;
  219. spin_lock(&anon_vma->lock);
  220. list_del(&anon_vma_chain->same_anon_vma);
  221. /* We must garbage collect the anon_vma if it's empty */
  222. empty = list_empty(&anon_vma->head) && !ksm_refcount(anon_vma);
  223. spin_unlock(&anon_vma->lock);
  224. if (empty)
  225. anon_vma_free(anon_vma);
  226. }
  227. void unlink_anon_vmas(struct vm_area_struct *vma)
  228. {
  229. struct anon_vma_chain *avc, *next;
  230. /* Unlink each anon_vma chained to the VMA. */
  231. list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
  232. anon_vma_unlink(avc);
  233. list_del(&avc->same_vma);
  234. anon_vma_chain_free(avc);
  235. }
  236. }
  237. static void anon_vma_ctor(void *data)
  238. {
  239. struct anon_vma *anon_vma = data;
  240. spin_lock_init(&anon_vma->lock);
  241. ksm_refcount_init(anon_vma);
  242. INIT_LIST_HEAD(&anon_vma->head);
  243. }
  244. void __init anon_vma_init(void)
  245. {
  246. anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
  247. 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
  248. anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
  249. }
  250. /*
  251. * Getting a lock on a stable anon_vma from a page off the LRU is
  252. * tricky: page_lock_anon_vma rely on RCU to guard against the races.
  253. */
  254. struct anon_vma *page_lock_anon_vma(struct page *page)
  255. {
  256. struct anon_vma *anon_vma;
  257. unsigned long anon_mapping;
  258. rcu_read_lock();
  259. anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
  260. if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
  261. goto out;
  262. if (!page_mapped(page))
  263. goto out;
  264. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  265. spin_lock(&anon_vma->lock);
  266. return anon_vma;
  267. out:
  268. rcu_read_unlock();
  269. return NULL;
  270. }
  271. void page_unlock_anon_vma(struct anon_vma *anon_vma)
  272. {
  273. spin_unlock(&anon_vma->lock);
  274. rcu_read_unlock();
  275. }
  276. /*
  277. * At what user virtual address is page expected in @vma?
  278. * Returns virtual address or -EFAULT if page's index/offset is not
  279. * within the range mapped the @vma.
  280. */
  281. static inline unsigned long
  282. vma_address(struct page *page, struct vm_area_struct *vma)
  283. {
  284. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  285. unsigned long address;
  286. address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
  287. if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
  288. /* page should be within @vma mapping range */
  289. return -EFAULT;
  290. }
  291. return address;
  292. }
  293. /*
  294. * At what user virtual address is page expected in vma?
  295. * checking that the page matches the vma.
  296. */
  297. unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
  298. {
  299. if (PageAnon(page)) {
  300. if (vma->anon_vma != page_anon_vma(page))
  301. return -EFAULT;
  302. } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
  303. if (!vma->vm_file ||
  304. vma->vm_file->f_mapping != page->mapping)
  305. return -EFAULT;
  306. } else
  307. return -EFAULT;
  308. return vma_address(page, vma);
  309. }
  310. /*
  311. * Check that @page is mapped at @address into @mm.
  312. *
  313. * If @sync is false, page_check_address may perform a racy check to avoid
  314. * the page table lock when the pte is not present (helpful when reclaiming
  315. * highly shared pages).
  316. *
  317. * On success returns with pte mapped and locked.
  318. */
  319. pte_t *page_check_address(struct page *page, struct mm_struct *mm,
  320. unsigned long address, spinlock_t **ptlp, int sync)
  321. {
  322. pgd_t *pgd;
  323. pud_t *pud;
  324. pmd_t *pmd;
  325. pte_t *pte;
  326. spinlock_t *ptl;
  327. pgd = pgd_offset(mm, address);
  328. if (!pgd_present(*pgd))
  329. return NULL;
  330. pud = pud_offset(pgd, address);
  331. if (!pud_present(*pud))
  332. return NULL;
  333. pmd = pmd_offset(pud, address);
  334. if (!pmd_present(*pmd))
  335. return NULL;
  336. pte = pte_offset_map(pmd, address);
  337. /* Make a quick check before getting the lock */
  338. if (!sync && !pte_present(*pte)) {
  339. pte_unmap(pte);
  340. return NULL;
  341. }
  342. ptl = pte_lockptr(mm, pmd);
  343. spin_lock(ptl);
  344. if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
  345. *ptlp = ptl;
  346. return pte;
  347. }
  348. pte_unmap_unlock(pte, ptl);
  349. return NULL;
  350. }
  351. /**
  352. * page_mapped_in_vma - check whether a page is really mapped in a VMA
  353. * @page: the page to test
  354. * @vma: the VMA to test
  355. *
  356. * Returns 1 if the page is mapped into the page tables of the VMA, 0
  357. * if the page is not mapped into the page tables of this VMA. Only
  358. * valid for normal file or anonymous VMAs.
  359. */
  360. int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
  361. {
  362. unsigned long address;
  363. pte_t *pte;
  364. spinlock_t *ptl;
  365. address = vma_address(page, vma);
  366. if (address == -EFAULT) /* out of vma range */
  367. return 0;
  368. pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
  369. if (!pte) /* the page is not in this mm */
  370. return 0;
  371. pte_unmap_unlock(pte, ptl);
  372. return 1;
  373. }
  374. /*
  375. * Subfunctions of page_referenced: page_referenced_one called
  376. * repeatedly from either page_referenced_anon or page_referenced_file.
  377. */
  378. int page_referenced_one(struct page *page, struct vm_area_struct *vma,
  379. unsigned long address, unsigned int *mapcount,
  380. unsigned long *vm_flags)
  381. {
  382. struct mm_struct *mm = vma->vm_mm;
  383. pte_t *pte;
  384. spinlock_t *ptl;
  385. int referenced = 0;
  386. pte = page_check_address(page, mm, address, &ptl, 0);
  387. if (!pte)
  388. goto out;
  389. /*
  390. * Don't want to elevate referenced for mlocked page that gets this far,
  391. * in order that it progresses to try_to_unmap and is moved to the
  392. * unevictable list.
  393. */
  394. if (vma->vm_flags & VM_LOCKED) {
  395. *mapcount = 1; /* break early from loop */
  396. *vm_flags |= VM_LOCKED;
  397. goto out_unmap;
  398. }
  399. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  400. /*
  401. * Don't treat a reference through a sequentially read
  402. * mapping as such. If the page has been used in
  403. * another mapping, we will catch it; if this other
  404. * mapping is already gone, the unmap path will have
  405. * set PG_referenced or activated the page.
  406. */
  407. if (likely(!VM_SequentialReadHint(vma)))
  408. referenced++;
  409. }
  410. /* Pretend the page is referenced if the task has the
  411. swap token and is in the middle of a page fault. */
  412. if (mm != current->mm && has_swap_token(mm) &&
  413. rwsem_is_locked(&mm->mmap_sem))
  414. referenced++;
  415. out_unmap:
  416. (*mapcount)--;
  417. pte_unmap_unlock(pte, ptl);
  418. if (referenced)
  419. *vm_flags |= vma->vm_flags;
  420. out:
  421. return referenced;
  422. }
  423. static int page_referenced_anon(struct page *page,
  424. struct mem_cgroup *mem_cont,
  425. unsigned long *vm_flags)
  426. {
  427. unsigned int mapcount;
  428. struct anon_vma *anon_vma;
  429. struct anon_vma_chain *avc;
  430. int referenced = 0;
  431. anon_vma = page_lock_anon_vma(page);
  432. if (!anon_vma)
  433. return referenced;
  434. mapcount = page_mapcount(page);
  435. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  436. struct vm_area_struct *vma = avc->vma;
  437. unsigned long address = vma_address(page, vma);
  438. if (address == -EFAULT)
  439. continue;
  440. /*
  441. * If we are reclaiming on behalf of a cgroup, skip
  442. * counting on behalf of references from different
  443. * cgroups
  444. */
  445. if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
  446. continue;
  447. referenced += page_referenced_one(page, vma, address,
  448. &mapcount, vm_flags);
  449. if (!mapcount)
  450. break;
  451. }
  452. page_unlock_anon_vma(anon_vma);
  453. return referenced;
  454. }
  455. /**
  456. * page_referenced_file - referenced check for object-based rmap
  457. * @page: the page we're checking references on.
  458. * @mem_cont: target memory controller
  459. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  460. *
  461. * For an object-based mapped page, find all the places it is mapped and
  462. * check/clear the referenced flag. This is done by following the page->mapping
  463. * pointer, then walking the chain of vmas it holds. It returns the number
  464. * of references it found.
  465. *
  466. * This function is only called from page_referenced for object-based pages.
  467. */
  468. static int page_referenced_file(struct page *page,
  469. struct mem_cgroup *mem_cont,
  470. unsigned long *vm_flags)
  471. {
  472. unsigned int mapcount;
  473. struct address_space *mapping = page->mapping;
  474. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  475. struct vm_area_struct *vma;
  476. struct prio_tree_iter iter;
  477. int referenced = 0;
  478. /*
  479. * The caller's checks on page->mapping and !PageAnon have made
  480. * sure that this is a file page: the check for page->mapping
  481. * excludes the case just before it gets set on an anon page.
  482. */
  483. BUG_ON(PageAnon(page));
  484. /*
  485. * The page lock not only makes sure that page->mapping cannot
  486. * suddenly be NULLified by truncation, it makes sure that the
  487. * structure at mapping cannot be freed and reused yet,
  488. * so we can safely take mapping->i_mmap_lock.
  489. */
  490. BUG_ON(!PageLocked(page));
  491. spin_lock(&mapping->i_mmap_lock);
  492. /*
  493. * i_mmap_lock does not stabilize mapcount at all, but mapcount
  494. * is more likely to be accurate if we note it after spinning.
  495. */
  496. mapcount = page_mapcount(page);
  497. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  498. unsigned long address = vma_address(page, vma);
  499. if (address == -EFAULT)
  500. continue;
  501. /*
  502. * If we are reclaiming on behalf of a cgroup, skip
  503. * counting on behalf of references from different
  504. * cgroups
  505. */
  506. if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
  507. continue;
  508. referenced += page_referenced_one(page, vma, address,
  509. &mapcount, vm_flags);
  510. if (!mapcount)
  511. break;
  512. }
  513. spin_unlock(&mapping->i_mmap_lock);
  514. return referenced;
  515. }
  516. /**
  517. * page_referenced - test if the page was referenced
  518. * @page: the page to test
  519. * @is_locked: caller holds lock on the page
  520. * @mem_cont: target memory controller
  521. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  522. *
  523. * Quick test_and_clear_referenced for all mappings to a page,
  524. * returns the number of ptes which referenced the page.
  525. */
  526. int page_referenced(struct page *page,
  527. int is_locked,
  528. struct mem_cgroup *mem_cont,
  529. unsigned long *vm_flags)
  530. {
  531. int referenced = 0;
  532. int we_locked = 0;
  533. *vm_flags = 0;
  534. if (page_mapped(page) && page_rmapping(page)) {
  535. if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
  536. we_locked = trylock_page(page);
  537. if (!we_locked) {
  538. referenced++;
  539. goto out;
  540. }
  541. }
  542. if (unlikely(PageKsm(page)))
  543. referenced += page_referenced_ksm(page, mem_cont,
  544. vm_flags);
  545. else if (PageAnon(page))
  546. referenced += page_referenced_anon(page, mem_cont,
  547. vm_flags);
  548. else if (page->mapping)
  549. referenced += page_referenced_file(page, mem_cont,
  550. vm_flags);
  551. if (we_locked)
  552. unlock_page(page);
  553. }
  554. out:
  555. if (page_test_and_clear_young(page))
  556. referenced++;
  557. return referenced;
  558. }
  559. static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
  560. unsigned long address)
  561. {
  562. struct mm_struct *mm = vma->vm_mm;
  563. pte_t *pte;
  564. spinlock_t *ptl;
  565. int ret = 0;
  566. pte = page_check_address(page, mm, address, &ptl, 1);
  567. if (!pte)
  568. goto out;
  569. if (pte_dirty(*pte) || pte_write(*pte)) {
  570. pte_t entry;
  571. flush_cache_page(vma, address, pte_pfn(*pte));
  572. entry = ptep_clear_flush_notify(vma, address, pte);
  573. entry = pte_wrprotect(entry);
  574. entry = pte_mkclean(entry);
  575. set_pte_at(mm, address, pte, entry);
  576. ret = 1;
  577. }
  578. pte_unmap_unlock(pte, ptl);
  579. out:
  580. return ret;
  581. }
  582. static int page_mkclean_file(struct address_space *mapping, struct page *page)
  583. {
  584. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  585. struct vm_area_struct *vma;
  586. struct prio_tree_iter iter;
  587. int ret = 0;
  588. BUG_ON(PageAnon(page));
  589. spin_lock(&mapping->i_mmap_lock);
  590. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  591. if (vma->vm_flags & VM_SHARED) {
  592. unsigned long address = vma_address(page, vma);
  593. if (address == -EFAULT)
  594. continue;
  595. ret += page_mkclean_one(page, vma, address);
  596. }
  597. }
  598. spin_unlock(&mapping->i_mmap_lock);
  599. return ret;
  600. }
  601. int page_mkclean(struct page *page)
  602. {
  603. int ret = 0;
  604. BUG_ON(!PageLocked(page));
  605. if (page_mapped(page)) {
  606. struct address_space *mapping = page_mapping(page);
  607. if (mapping) {
  608. ret = page_mkclean_file(mapping, page);
  609. if (page_test_dirty(page)) {
  610. page_clear_dirty(page);
  611. ret = 1;
  612. }
  613. }
  614. }
  615. return ret;
  616. }
  617. EXPORT_SYMBOL_GPL(page_mkclean);
  618. /**
  619. * page_move_anon_rmap - move a page to our anon_vma
  620. * @page: the page to move to our anon_vma
  621. * @vma: the vma the page belongs to
  622. * @address: the user virtual address mapped
  623. *
  624. * When a page belongs exclusively to one process after a COW event,
  625. * that page can be moved into the anon_vma that belongs to just that
  626. * process, so the rmap code will not search the parent or sibling
  627. * processes.
  628. */
  629. void page_move_anon_rmap(struct page *page,
  630. struct vm_area_struct *vma, unsigned long address)
  631. {
  632. struct anon_vma *anon_vma = vma->anon_vma;
  633. VM_BUG_ON(!PageLocked(page));
  634. VM_BUG_ON(!anon_vma);
  635. VM_BUG_ON(page->index != linear_page_index(vma, address));
  636. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  637. page->mapping = (struct address_space *) anon_vma;
  638. }
  639. /**
  640. * __page_set_anon_rmap - setup new anonymous rmap
  641. * @page: the page to add the mapping to
  642. * @vma: the vm area in which the mapping is added
  643. * @address: the user virtual address mapped
  644. * @exclusive: the page is exclusively owned by the current process
  645. */
  646. static void __page_set_anon_rmap(struct page *page,
  647. struct vm_area_struct *vma, unsigned long address, int exclusive)
  648. {
  649. struct anon_vma *anon_vma = vma->anon_vma;
  650. BUG_ON(!anon_vma);
  651. /*
  652. * If the page isn't exclusively mapped into this vma,
  653. * we must use the _oldest_ possible anon_vma for the
  654. * page mapping!
  655. *
  656. * So take the last AVC chain entry in the vma, which is
  657. * the deepest ancestor, and use the anon_vma from that.
  658. */
  659. if (!exclusive) {
  660. struct anon_vma_chain *avc;
  661. avc = list_entry(vma->anon_vma_chain.prev, struct anon_vma_chain, same_vma);
  662. anon_vma = avc->anon_vma;
  663. }
  664. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  665. page->mapping = (struct address_space *) anon_vma;
  666. page->index = linear_page_index(vma, address);
  667. }
  668. /**
  669. * __page_check_anon_rmap - sanity check anonymous rmap addition
  670. * @page: the page to add the mapping to
  671. * @vma: the vm area in which the mapping is added
  672. * @address: the user virtual address mapped
  673. */
  674. static void __page_check_anon_rmap(struct page *page,
  675. struct vm_area_struct *vma, unsigned long address)
  676. {
  677. #ifdef CONFIG_DEBUG_VM
  678. /*
  679. * The page's anon-rmap details (mapping and index) are guaranteed to
  680. * be set up correctly at this point.
  681. *
  682. * We have exclusion against page_add_anon_rmap because the caller
  683. * always holds the page locked, except if called from page_dup_rmap,
  684. * in which case the page is already known to be setup.
  685. *
  686. * We have exclusion against page_add_new_anon_rmap because those pages
  687. * are initially only visible via the pagetables, and the pte is locked
  688. * over the call to page_add_new_anon_rmap.
  689. */
  690. BUG_ON(page->index != linear_page_index(vma, address));
  691. #endif
  692. }
  693. /**
  694. * page_add_anon_rmap - add pte mapping to an anonymous page
  695. * @page: the page to add the mapping to
  696. * @vma: the vm area in which the mapping is added
  697. * @address: the user virtual address mapped
  698. *
  699. * The caller needs to hold the pte lock, and the page must be locked in
  700. * the anon_vma case: to serialize mapping,index checking after setting,
  701. * and to ensure that PageAnon is not being upgraded racily to PageKsm
  702. * (but PageKsm is never downgraded to PageAnon).
  703. */
  704. void page_add_anon_rmap(struct page *page,
  705. struct vm_area_struct *vma, unsigned long address)
  706. {
  707. int first = atomic_inc_and_test(&page->_mapcount);
  708. if (first)
  709. __inc_zone_page_state(page, NR_ANON_PAGES);
  710. if (unlikely(PageKsm(page)))
  711. return;
  712. VM_BUG_ON(!PageLocked(page));
  713. VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  714. if (first)
  715. __page_set_anon_rmap(page, vma, address, 0);
  716. else
  717. __page_check_anon_rmap(page, vma, address);
  718. }
  719. /**
  720. * page_add_new_anon_rmap - add pte mapping to a new anonymous page
  721. * @page: the page to add the mapping to
  722. * @vma: the vm area in which the mapping is added
  723. * @address: the user virtual address mapped
  724. *
  725. * Same as page_add_anon_rmap but must only be called on *new* pages.
  726. * This means the inc-and-test can be bypassed.
  727. * Page does not have to be locked.
  728. */
  729. void page_add_new_anon_rmap(struct page *page,
  730. struct vm_area_struct *vma, unsigned long address)
  731. {
  732. VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  733. SetPageSwapBacked(page);
  734. atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
  735. __inc_zone_page_state(page, NR_ANON_PAGES);
  736. __page_set_anon_rmap(page, vma, address, 1);
  737. if (page_evictable(page, vma))
  738. lru_cache_add_lru(page, LRU_ACTIVE_ANON);
  739. else
  740. add_page_to_unevictable_list(page);
  741. }
  742. /**
  743. * page_add_file_rmap - add pte mapping to a file page
  744. * @page: the page to add the mapping to
  745. *
  746. * The caller needs to hold the pte lock.
  747. */
  748. void page_add_file_rmap(struct page *page)
  749. {
  750. if (atomic_inc_and_test(&page->_mapcount)) {
  751. __inc_zone_page_state(page, NR_FILE_MAPPED);
  752. mem_cgroup_update_file_mapped(page, 1);
  753. }
  754. }
  755. /**
  756. * page_remove_rmap - take down pte mapping from a page
  757. * @page: page to remove mapping from
  758. *
  759. * The caller needs to hold the pte lock.
  760. */
  761. void page_remove_rmap(struct page *page)
  762. {
  763. /* page still mapped by someone else? */
  764. if (!atomic_add_negative(-1, &page->_mapcount))
  765. return;
  766. /*
  767. * Now that the last pte has gone, s390 must transfer dirty
  768. * flag from storage key to struct page. We can usually skip
  769. * this if the page is anon, so about to be freed; but perhaps
  770. * not if it's in swapcache - there might be another pte slot
  771. * containing the swap entry, but page not yet written to swap.
  772. */
  773. if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
  774. page_clear_dirty(page);
  775. set_page_dirty(page);
  776. }
  777. if (PageAnon(page)) {
  778. mem_cgroup_uncharge_page(page);
  779. __dec_zone_page_state(page, NR_ANON_PAGES);
  780. } else {
  781. __dec_zone_page_state(page, NR_FILE_MAPPED);
  782. mem_cgroup_update_file_mapped(page, -1);
  783. }
  784. /*
  785. * It would be tidy to reset the PageAnon mapping here,
  786. * but that might overwrite a racing page_add_anon_rmap
  787. * which increments mapcount after us but sets mapping
  788. * before us: so leave the reset to free_hot_cold_page,
  789. * and remember that it's only reliable while mapped.
  790. * Leaving it set also helps swapoff to reinstate ptes
  791. * faster for those pages still in swapcache.
  792. */
  793. }
  794. /*
  795. * Subfunctions of try_to_unmap: try_to_unmap_one called
  796. * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
  797. */
  798. int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
  799. unsigned long address, enum ttu_flags flags)
  800. {
  801. struct mm_struct *mm = vma->vm_mm;
  802. pte_t *pte;
  803. pte_t pteval;
  804. spinlock_t *ptl;
  805. int ret = SWAP_AGAIN;
  806. pte = page_check_address(page, mm, address, &ptl, 0);
  807. if (!pte)
  808. goto out;
  809. /*
  810. * If the page is mlock()d, we cannot swap it out.
  811. * If it's recently referenced (perhaps page_referenced
  812. * skipped over this mm) then we should reactivate it.
  813. */
  814. if (!(flags & TTU_IGNORE_MLOCK)) {
  815. if (vma->vm_flags & VM_LOCKED)
  816. goto out_mlock;
  817. if (TTU_ACTION(flags) == TTU_MUNLOCK)
  818. goto out_unmap;
  819. }
  820. if (!(flags & TTU_IGNORE_ACCESS)) {
  821. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  822. ret = SWAP_FAIL;
  823. goto out_unmap;
  824. }
  825. }
  826. /* Nuke the page table entry. */
  827. flush_cache_page(vma, address, page_to_pfn(page));
  828. pteval = ptep_clear_flush_notify(vma, address, pte);
  829. /* Move the dirty bit to the physical page now the pte is gone. */
  830. if (pte_dirty(pteval))
  831. set_page_dirty(page);
  832. /* Update high watermark before we lower rss */
  833. update_hiwater_rss(mm);
  834. if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
  835. if (PageAnon(page))
  836. dec_mm_counter(mm, MM_ANONPAGES);
  837. else
  838. dec_mm_counter(mm, MM_FILEPAGES);
  839. set_pte_at(mm, address, pte,
  840. swp_entry_to_pte(make_hwpoison_entry(page)));
  841. } else if (PageAnon(page)) {
  842. swp_entry_t entry = { .val = page_private(page) };
  843. if (PageSwapCache(page)) {
  844. /*
  845. * Store the swap location in the pte.
  846. * See handle_pte_fault() ...
  847. */
  848. if (swap_duplicate(entry) < 0) {
  849. set_pte_at(mm, address, pte, pteval);
  850. ret = SWAP_FAIL;
  851. goto out_unmap;
  852. }
  853. if (list_empty(&mm->mmlist)) {
  854. spin_lock(&mmlist_lock);
  855. if (list_empty(&mm->mmlist))
  856. list_add(&mm->mmlist, &init_mm.mmlist);
  857. spin_unlock(&mmlist_lock);
  858. }
  859. dec_mm_counter(mm, MM_ANONPAGES);
  860. inc_mm_counter(mm, MM_SWAPENTS);
  861. } else if (PAGE_MIGRATION) {
  862. /*
  863. * Store the pfn of the page in a special migration
  864. * pte. do_swap_page() will wait until the migration
  865. * pte is removed and then restart fault handling.
  866. */
  867. BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
  868. entry = make_migration_entry(page, pte_write(pteval));
  869. }
  870. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  871. BUG_ON(pte_file(*pte));
  872. } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
  873. /* Establish migration entry for a file page */
  874. swp_entry_t entry;
  875. entry = make_migration_entry(page, pte_write(pteval));
  876. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  877. } else
  878. dec_mm_counter(mm, MM_FILEPAGES);
  879. page_remove_rmap(page);
  880. page_cache_release(page);
  881. out_unmap:
  882. pte_unmap_unlock(pte, ptl);
  883. out:
  884. return ret;
  885. out_mlock:
  886. pte_unmap_unlock(pte, ptl);
  887. /*
  888. * We need mmap_sem locking, Otherwise VM_LOCKED check makes
  889. * unstable result and race. Plus, We can't wait here because
  890. * we now hold anon_vma->lock or mapping->i_mmap_lock.
  891. * if trylock failed, the page remain in evictable lru and later
  892. * vmscan could retry to move the page to unevictable lru if the
  893. * page is actually mlocked.
  894. */
  895. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  896. if (vma->vm_flags & VM_LOCKED) {
  897. mlock_vma_page(page);
  898. ret = SWAP_MLOCK;
  899. }
  900. up_read(&vma->vm_mm->mmap_sem);
  901. }
  902. return ret;
  903. }
  904. /*
  905. * objrmap doesn't work for nonlinear VMAs because the assumption that
  906. * offset-into-file correlates with offset-into-virtual-addresses does not hold.
  907. * Consequently, given a particular page and its ->index, we cannot locate the
  908. * ptes which are mapping that page without an exhaustive linear search.
  909. *
  910. * So what this code does is a mini "virtual scan" of each nonlinear VMA which
  911. * maps the file to which the target page belongs. The ->vm_private_data field
  912. * holds the current cursor into that scan. Successive searches will circulate
  913. * around the vma's virtual address space.
  914. *
  915. * So as more replacement pressure is applied to the pages in a nonlinear VMA,
  916. * more scanning pressure is placed against them as well. Eventually pages
  917. * will become fully unmapped and are eligible for eviction.
  918. *
  919. * For very sparsely populated VMAs this is a little inefficient - chances are
  920. * there there won't be many ptes located within the scan cluster. In this case
  921. * maybe we could scan further - to the end of the pte page, perhaps.
  922. *
  923. * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
  924. * acquire it without blocking. If vma locked, mlock the pages in the cluster,
  925. * rather than unmapping them. If we encounter the "check_page" that vmscan is
  926. * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
  927. */
  928. #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
  929. #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
  930. static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
  931. struct vm_area_struct *vma, struct page *check_page)
  932. {
  933. struct mm_struct *mm = vma->vm_mm;
  934. pgd_t *pgd;
  935. pud_t *pud;
  936. pmd_t *pmd;
  937. pte_t *pte;
  938. pte_t pteval;
  939. spinlock_t *ptl;
  940. struct page *page;
  941. unsigned long address;
  942. unsigned long end;
  943. int ret = SWAP_AGAIN;
  944. int locked_vma = 0;
  945. address = (vma->vm_start + cursor) & CLUSTER_MASK;
  946. end = address + CLUSTER_SIZE;
  947. if (address < vma->vm_start)
  948. address = vma->vm_start;
  949. if (end > vma->vm_end)
  950. end = vma->vm_end;
  951. pgd = pgd_offset(mm, address);
  952. if (!pgd_present(*pgd))
  953. return ret;
  954. pud = pud_offset(pgd, address);
  955. if (!pud_present(*pud))
  956. return ret;
  957. pmd = pmd_offset(pud, address);
  958. if (!pmd_present(*pmd))
  959. return ret;
  960. /*
  961. * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
  962. * keep the sem while scanning the cluster for mlocking pages.
  963. */
  964. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  965. locked_vma = (vma->vm_flags & VM_LOCKED);
  966. if (!locked_vma)
  967. up_read(&vma->vm_mm->mmap_sem); /* don't need it */
  968. }
  969. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  970. /* Update high watermark before we lower rss */
  971. update_hiwater_rss(mm);
  972. for (; address < end; pte++, address += PAGE_SIZE) {
  973. if (!pte_present(*pte))
  974. continue;
  975. page = vm_normal_page(vma, address, *pte);
  976. BUG_ON(!page || PageAnon(page));
  977. if (locked_vma) {
  978. mlock_vma_page(page); /* no-op if already mlocked */
  979. if (page == check_page)
  980. ret = SWAP_MLOCK;
  981. continue; /* don't unmap */
  982. }
  983. if (ptep_clear_flush_young_notify(vma, address, pte))
  984. continue;
  985. /* Nuke the page table entry. */
  986. flush_cache_page(vma, address, pte_pfn(*pte));
  987. pteval = ptep_clear_flush_notify(vma, address, pte);
  988. /* If nonlinear, store the file page offset in the pte. */
  989. if (page->index != linear_page_index(vma, address))
  990. set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
  991. /* Move the dirty bit to the physical page now the pte is gone. */
  992. if (pte_dirty(pteval))
  993. set_page_dirty(page);
  994. page_remove_rmap(page);
  995. page_cache_release(page);
  996. dec_mm_counter(mm, MM_FILEPAGES);
  997. (*mapcount)--;
  998. }
  999. pte_unmap_unlock(pte - 1, ptl);
  1000. if (locked_vma)
  1001. up_read(&vma->vm_mm->mmap_sem);
  1002. return ret;
  1003. }
  1004. /**
  1005. * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
  1006. * rmap method
  1007. * @page: the page to unmap/unlock
  1008. * @flags: action and flags
  1009. *
  1010. * Find all the mappings of a page using the mapping pointer and the vma chains
  1011. * contained in the anon_vma struct it points to.
  1012. *
  1013. * This function is only called from try_to_unmap/try_to_munlock for
  1014. * anonymous pages.
  1015. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1016. * where the page was found will be held for write. So, we won't recheck
  1017. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1018. * 'LOCKED.
  1019. */
  1020. static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
  1021. {
  1022. struct anon_vma *anon_vma;
  1023. struct anon_vma_chain *avc;
  1024. int ret = SWAP_AGAIN;
  1025. anon_vma = page_lock_anon_vma(page);
  1026. if (!anon_vma)
  1027. return ret;
  1028. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1029. struct vm_area_struct *vma = avc->vma;
  1030. unsigned long address = vma_address(page, vma);
  1031. if (address == -EFAULT)
  1032. continue;
  1033. ret = try_to_unmap_one(page, vma, address, flags);
  1034. if (ret != SWAP_AGAIN || !page_mapped(page))
  1035. break;
  1036. }
  1037. page_unlock_anon_vma(anon_vma);
  1038. return ret;
  1039. }
  1040. /**
  1041. * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
  1042. * @page: the page to unmap/unlock
  1043. * @flags: action and flags
  1044. *
  1045. * Find all the mappings of a page using the mapping pointer and the vma chains
  1046. * contained in the address_space struct it points to.
  1047. *
  1048. * This function is only called from try_to_unmap/try_to_munlock for
  1049. * object-based pages.
  1050. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1051. * where the page was found will be held for write. So, we won't recheck
  1052. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1053. * 'LOCKED.
  1054. */
  1055. static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
  1056. {
  1057. struct address_space *mapping = page->mapping;
  1058. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1059. struct vm_area_struct *vma;
  1060. struct prio_tree_iter iter;
  1061. int ret = SWAP_AGAIN;
  1062. unsigned long cursor;
  1063. unsigned long max_nl_cursor = 0;
  1064. unsigned long max_nl_size = 0;
  1065. unsigned int mapcount;
  1066. spin_lock(&mapping->i_mmap_lock);
  1067. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  1068. unsigned long address = vma_address(page, vma);
  1069. if (address == -EFAULT)
  1070. continue;
  1071. ret = try_to_unmap_one(page, vma, address, flags);
  1072. if (ret != SWAP_AGAIN || !page_mapped(page))
  1073. goto out;
  1074. }
  1075. if (list_empty(&mapping->i_mmap_nonlinear))
  1076. goto out;
  1077. /*
  1078. * We don't bother to try to find the munlocked page in nonlinears.
  1079. * It's costly. Instead, later, page reclaim logic may call
  1080. * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
  1081. */
  1082. if (TTU_ACTION(flags) == TTU_MUNLOCK)
  1083. goto out;
  1084. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  1085. shared.vm_set.list) {
  1086. cursor = (unsigned long) vma->vm_private_data;
  1087. if (cursor > max_nl_cursor)
  1088. max_nl_cursor = cursor;
  1089. cursor = vma->vm_end - vma->vm_start;
  1090. if (cursor > max_nl_size)
  1091. max_nl_size = cursor;
  1092. }
  1093. if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
  1094. ret = SWAP_FAIL;
  1095. goto out;
  1096. }
  1097. /*
  1098. * We don't try to search for this page in the nonlinear vmas,
  1099. * and page_referenced wouldn't have found it anyway. Instead
  1100. * just walk the nonlinear vmas trying to age and unmap some.
  1101. * The mapcount of the page we came in with is irrelevant,
  1102. * but even so use it as a guide to how hard we should try?
  1103. */
  1104. mapcount = page_mapcount(page);
  1105. if (!mapcount)
  1106. goto out;
  1107. cond_resched_lock(&mapping->i_mmap_lock);
  1108. max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
  1109. if (max_nl_cursor == 0)
  1110. max_nl_cursor = CLUSTER_SIZE;
  1111. do {
  1112. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  1113. shared.vm_set.list) {
  1114. cursor = (unsigned long) vma->vm_private_data;
  1115. while ( cursor < max_nl_cursor &&
  1116. cursor < vma->vm_end - vma->vm_start) {
  1117. if (try_to_unmap_cluster(cursor, &mapcount,
  1118. vma, page) == SWAP_MLOCK)
  1119. ret = SWAP_MLOCK;
  1120. cursor += CLUSTER_SIZE;
  1121. vma->vm_private_data = (void *) cursor;
  1122. if ((int)mapcount <= 0)
  1123. goto out;
  1124. }
  1125. vma->vm_private_data = (void *) max_nl_cursor;
  1126. }
  1127. cond_resched_lock(&mapping->i_mmap_lock);
  1128. max_nl_cursor += CLUSTER_SIZE;
  1129. } while (max_nl_cursor <= max_nl_size);
  1130. /*
  1131. * Don't loop forever (perhaps all the remaining pages are
  1132. * in locked vmas). Reset cursor on all unreserved nonlinear
  1133. * vmas, now forgetting on which ones it had fallen behind.
  1134. */
  1135. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  1136. vma->vm_private_data = NULL;
  1137. out:
  1138. spin_unlock(&mapping->i_mmap_lock);
  1139. return ret;
  1140. }
  1141. /**
  1142. * try_to_unmap - try to remove all page table mappings to a page
  1143. * @page: the page to get unmapped
  1144. * @flags: action and flags
  1145. *
  1146. * Tries to remove all the page table entries which are mapping this
  1147. * page, used in the pageout path. Caller must hold the page lock.
  1148. * Return values are:
  1149. *
  1150. * SWAP_SUCCESS - we succeeded in removing all mappings
  1151. * SWAP_AGAIN - we missed a mapping, try again later
  1152. * SWAP_FAIL - the page is unswappable
  1153. * SWAP_MLOCK - page is mlocked.
  1154. */
  1155. int try_to_unmap(struct page *page, enum ttu_flags flags)
  1156. {
  1157. int ret;
  1158. BUG_ON(!PageLocked(page));
  1159. if (unlikely(PageKsm(page)))
  1160. ret = try_to_unmap_ksm(page, flags);
  1161. else if (PageAnon(page))
  1162. ret = try_to_unmap_anon(page, flags);
  1163. else
  1164. ret = try_to_unmap_file(page, flags);
  1165. if (ret != SWAP_MLOCK && !page_mapped(page))
  1166. ret = SWAP_SUCCESS;
  1167. return ret;
  1168. }
  1169. /**
  1170. * try_to_munlock - try to munlock a page
  1171. * @page: the page to be munlocked
  1172. *
  1173. * Called from munlock code. Checks all of the VMAs mapping the page
  1174. * to make sure nobody else has this page mlocked. The page will be
  1175. * returned with PG_mlocked cleared if no other vmas have it mlocked.
  1176. *
  1177. * Return values are:
  1178. *
  1179. * SWAP_AGAIN - no vma is holding page mlocked, or,
  1180. * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
  1181. * SWAP_FAIL - page cannot be located at present
  1182. * SWAP_MLOCK - page is now mlocked.
  1183. */
  1184. int try_to_munlock(struct page *page)
  1185. {
  1186. VM_BUG_ON(!PageLocked(page) || PageLRU(page));
  1187. if (unlikely(PageKsm(page)))
  1188. return try_to_unmap_ksm(page, TTU_MUNLOCK);
  1189. else if (PageAnon(page))
  1190. return try_to_unmap_anon(page, TTU_MUNLOCK);
  1191. else
  1192. return try_to_unmap_file(page, TTU_MUNLOCK);
  1193. }
  1194. #ifdef CONFIG_MIGRATION
  1195. /*
  1196. * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
  1197. * Called by migrate.c to remove migration ptes, but might be used more later.
  1198. */
  1199. static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
  1200. struct vm_area_struct *, unsigned long, void *), void *arg)
  1201. {
  1202. struct anon_vma *anon_vma;
  1203. struct anon_vma_chain *avc;
  1204. int ret = SWAP_AGAIN;
  1205. /*
  1206. * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
  1207. * because that depends on page_mapped(); but not all its usages
  1208. * are holding mmap_sem, which also gave the necessary guarantee
  1209. * (that this anon_vma's slab has not already been destroyed).
  1210. * This needs to be reviewed later: avoiding page_lock_anon_vma()
  1211. * is risky, and currently limits the usefulness of rmap_walk().
  1212. */
  1213. anon_vma = page_anon_vma(page);
  1214. if (!anon_vma)
  1215. return ret;
  1216. spin_lock(&anon_vma->lock);
  1217. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1218. struct vm_area_struct *vma = avc->vma;
  1219. unsigned long address = vma_address(page, vma);
  1220. if (address == -EFAULT)
  1221. continue;
  1222. ret = rmap_one(page, vma, address, arg);
  1223. if (ret != SWAP_AGAIN)
  1224. break;
  1225. }
  1226. spin_unlock(&anon_vma->lock);
  1227. return ret;
  1228. }
  1229. static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
  1230. struct vm_area_struct *, unsigned long, void *), void *arg)
  1231. {
  1232. struct address_space *mapping = page->mapping;
  1233. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1234. struct vm_area_struct *vma;
  1235. struct prio_tree_iter iter;
  1236. int ret = SWAP_AGAIN;
  1237. if (!mapping)
  1238. return ret;
  1239. spin_lock(&mapping->i_mmap_lock);
  1240. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  1241. unsigned long address = vma_address(page, vma);
  1242. if (address == -EFAULT)
  1243. continue;
  1244. ret = rmap_one(page, vma, address, arg);
  1245. if (ret != SWAP_AGAIN)
  1246. break;
  1247. }
  1248. /*
  1249. * No nonlinear handling: being always shared, nonlinear vmas
  1250. * never contain migration ptes. Decide what to do about this
  1251. * limitation to linear when we need rmap_walk() on nonlinear.
  1252. */
  1253. spin_unlock(&mapping->i_mmap_lock);
  1254. return ret;
  1255. }
  1256. int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
  1257. struct vm_area_struct *, unsigned long, void *), void *arg)
  1258. {
  1259. VM_BUG_ON(!PageLocked(page));
  1260. if (unlikely(PageKsm(page)))
  1261. return rmap_walk_ksm(page, rmap_one, arg);
  1262. else if (PageAnon(page))
  1263. return rmap_walk_anon(page, rmap_one, arg);
  1264. else
  1265. return rmap_walk_file(page, rmap_one, arg);
  1266. }
  1267. #endif /* CONFIG_MIGRATION */