audit.c 39 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514
  1. /* audit.c -- Auditing support
  2. * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
  3. * System-call specific features have moved to auditsc.c
  4. *
  5. * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
  6. * All Rights Reserved.
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  21. *
  22. * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  23. *
  24. * Goals: 1) Integrate fully with Security Modules.
  25. * 2) Minimal run-time overhead:
  26. * a) Minimal when syscall auditing is disabled (audit_enable=0).
  27. * b) Small when syscall auditing is enabled and no audit record
  28. * is generated (defer as much work as possible to record
  29. * generation time):
  30. * i) context is allocated,
  31. * ii) names from getname are stored without a copy, and
  32. * iii) inode information stored from path_lookup.
  33. * 3) Ability to disable syscall auditing at boot time (audit=0).
  34. * 4) Usable by other parts of the kernel (if audit_log* is called,
  35. * then a syscall record will be generated automatically for the
  36. * current syscall).
  37. * 5) Netlink interface to user-space.
  38. * 6) Support low-overhead kernel-based filtering to minimize the
  39. * information that must be passed to user-space.
  40. *
  41. * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
  42. */
  43. #include <linux/init.h>
  44. #include <asm/types.h>
  45. #include <asm/atomic.h>
  46. #include <linux/mm.h>
  47. #include <linux/module.h>
  48. #include <linux/slab.h>
  49. #include <linux/err.h>
  50. #include <linux/kthread.h>
  51. #include <linux/audit.h>
  52. #include <net/sock.h>
  53. #include <net/netlink.h>
  54. #include <linux/skbuff.h>
  55. #include <linux/netlink.h>
  56. #include <linux/inotify.h>
  57. #include <linux/freezer.h>
  58. #include <linux/tty.h>
  59. #include "audit.h"
  60. /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
  61. * (Initialization happens after skb_init is called.) */
  62. #define AUDIT_DISABLED -1
  63. #define AUDIT_UNINITIALIZED 0
  64. #define AUDIT_INITIALIZED 1
  65. static int audit_initialized;
  66. #define AUDIT_OFF 0
  67. #define AUDIT_ON 1
  68. #define AUDIT_LOCKED 2
  69. int audit_enabled;
  70. int audit_ever_enabled;
  71. /* Default state when kernel boots without any parameters. */
  72. static int audit_default;
  73. /* If auditing cannot proceed, audit_failure selects what happens. */
  74. static int audit_failure = AUDIT_FAIL_PRINTK;
  75. /*
  76. * If audit records are to be written to the netlink socket, audit_pid
  77. * contains the pid of the auditd process and audit_nlk_pid contains
  78. * the pid to use to send netlink messages to that process.
  79. */
  80. int audit_pid;
  81. static int audit_nlk_pid;
  82. /* If audit_rate_limit is non-zero, limit the rate of sending audit records
  83. * to that number per second. This prevents DoS attacks, but results in
  84. * audit records being dropped. */
  85. static int audit_rate_limit;
  86. /* Number of outstanding audit_buffers allowed. */
  87. static int audit_backlog_limit = 64;
  88. static int audit_backlog_wait_time = 60 * HZ;
  89. static int audit_backlog_wait_overflow = 0;
  90. /* The identity of the user shutting down the audit system. */
  91. uid_t audit_sig_uid = -1;
  92. pid_t audit_sig_pid = -1;
  93. u32 audit_sig_sid = 0;
  94. /* Records can be lost in several ways:
  95. 0) [suppressed in audit_alloc]
  96. 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
  97. 2) out of memory in audit_log_move [alloc_skb]
  98. 3) suppressed due to audit_rate_limit
  99. 4) suppressed due to audit_backlog_limit
  100. */
  101. static atomic_t audit_lost = ATOMIC_INIT(0);
  102. /* The netlink socket. */
  103. static struct sock *audit_sock;
  104. /* Hash for inode-based rules */
  105. struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
  106. /* The audit_freelist is a list of pre-allocated audit buffers (if more
  107. * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
  108. * being placed on the freelist). */
  109. static DEFINE_SPINLOCK(audit_freelist_lock);
  110. static int audit_freelist_count;
  111. static LIST_HEAD(audit_freelist);
  112. static struct sk_buff_head audit_skb_queue;
  113. /* queue of skbs to send to auditd when/if it comes back */
  114. static struct sk_buff_head audit_skb_hold_queue;
  115. static struct task_struct *kauditd_task;
  116. static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
  117. static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
  118. /* Serialize requests from userspace. */
  119. DEFINE_MUTEX(audit_cmd_mutex);
  120. /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
  121. * audit records. Since printk uses a 1024 byte buffer, this buffer
  122. * should be at least that large. */
  123. #define AUDIT_BUFSIZ 1024
  124. /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
  125. * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */
  126. #define AUDIT_MAXFREE (2*NR_CPUS)
  127. /* The audit_buffer is used when formatting an audit record. The caller
  128. * locks briefly to get the record off the freelist or to allocate the
  129. * buffer, and locks briefly to send the buffer to the netlink layer or
  130. * to place it on a transmit queue. Multiple audit_buffers can be in
  131. * use simultaneously. */
  132. struct audit_buffer {
  133. struct list_head list;
  134. struct sk_buff *skb; /* formatted skb ready to send */
  135. struct audit_context *ctx; /* NULL or associated context */
  136. gfp_t gfp_mask;
  137. };
  138. struct audit_reply {
  139. int pid;
  140. struct sk_buff *skb;
  141. };
  142. static void audit_set_pid(struct audit_buffer *ab, pid_t pid)
  143. {
  144. if (ab) {
  145. struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
  146. nlh->nlmsg_pid = pid;
  147. }
  148. }
  149. void audit_panic(const char *message)
  150. {
  151. switch (audit_failure)
  152. {
  153. case AUDIT_FAIL_SILENT:
  154. break;
  155. case AUDIT_FAIL_PRINTK:
  156. if (printk_ratelimit())
  157. printk(KERN_ERR "audit: %s\n", message);
  158. break;
  159. case AUDIT_FAIL_PANIC:
  160. /* test audit_pid since printk is always losey, why bother? */
  161. if (audit_pid)
  162. panic("audit: %s\n", message);
  163. break;
  164. }
  165. }
  166. static inline int audit_rate_check(void)
  167. {
  168. static unsigned long last_check = 0;
  169. static int messages = 0;
  170. static DEFINE_SPINLOCK(lock);
  171. unsigned long flags;
  172. unsigned long now;
  173. unsigned long elapsed;
  174. int retval = 0;
  175. if (!audit_rate_limit) return 1;
  176. spin_lock_irqsave(&lock, flags);
  177. if (++messages < audit_rate_limit) {
  178. retval = 1;
  179. } else {
  180. now = jiffies;
  181. elapsed = now - last_check;
  182. if (elapsed > HZ) {
  183. last_check = now;
  184. messages = 0;
  185. retval = 1;
  186. }
  187. }
  188. spin_unlock_irqrestore(&lock, flags);
  189. return retval;
  190. }
  191. /**
  192. * audit_log_lost - conditionally log lost audit message event
  193. * @message: the message stating reason for lost audit message
  194. *
  195. * Emit at least 1 message per second, even if audit_rate_check is
  196. * throttling.
  197. * Always increment the lost messages counter.
  198. */
  199. void audit_log_lost(const char *message)
  200. {
  201. static unsigned long last_msg = 0;
  202. static DEFINE_SPINLOCK(lock);
  203. unsigned long flags;
  204. unsigned long now;
  205. int print;
  206. atomic_inc(&audit_lost);
  207. print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
  208. if (!print) {
  209. spin_lock_irqsave(&lock, flags);
  210. now = jiffies;
  211. if (now - last_msg > HZ) {
  212. print = 1;
  213. last_msg = now;
  214. }
  215. spin_unlock_irqrestore(&lock, flags);
  216. }
  217. if (print) {
  218. if (printk_ratelimit())
  219. printk(KERN_WARNING
  220. "audit: audit_lost=%d audit_rate_limit=%d "
  221. "audit_backlog_limit=%d\n",
  222. atomic_read(&audit_lost),
  223. audit_rate_limit,
  224. audit_backlog_limit);
  225. audit_panic(message);
  226. }
  227. }
  228. static int audit_log_config_change(char *function_name, int new, int old,
  229. uid_t loginuid, u32 sessionid, u32 sid,
  230. int allow_changes)
  231. {
  232. struct audit_buffer *ab;
  233. int rc = 0;
  234. ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
  235. audit_log_format(ab, "%s=%d old=%d auid=%u ses=%u", function_name, new,
  236. old, loginuid, sessionid);
  237. if (sid) {
  238. char *ctx = NULL;
  239. u32 len;
  240. rc = security_secid_to_secctx(sid, &ctx, &len);
  241. if (rc) {
  242. audit_log_format(ab, " sid=%u", sid);
  243. allow_changes = 0; /* Something weird, deny request */
  244. } else {
  245. audit_log_format(ab, " subj=%s", ctx);
  246. security_release_secctx(ctx, len);
  247. }
  248. }
  249. audit_log_format(ab, " res=%d", allow_changes);
  250. audit_log_end(ab);
  251. return rc;
  252. }
  253. static int audit_do_config_change(char *function_name, int *to_change,
  254. int new, uid_t loginuid, u32 sessionid,
  255. u32 sid)
  256. {
  257. int allow_changes, rc = 0, old = *to_change;
  258. /* check if we are locked */
  259. if (audit_enabled == AUDIT_LOCKED)
  260. allow_changes = 0;
  261. else
  262. allow_changes = 1;
  263. if (audit_enabled != AUDIT_OFF) {
  264. rc = audit_log_config_change(function_name, new, old, loginuid,
  265. sessionid, sid, allow_changes);
  266. if (rc)
  267. allow_changes = 0;
  268. }
  269. /* If we are allowed, make the change */
  270. if (allow_changes == 1)
  271. *to_change = new;
  272. /* Not allowed, update reason */
  273. else if (rc == 0)
  274. rc = -EPERM;
  275. return rc;
  276. }
  277. static int audit_set_rate_limit(int limit, uid_t loginuid, u32 sessionid,
  278. u32 sid)
  279. {
  280. return audit_do_config_change("audit_rate_limit", &audit_rate_limit,
  281. limit, loginuid, sessionid, sid);
  282. }
  283. static int audit_set_backlog_limit(int limit, uid_t loginuid, u32 sessionid,
  284. u32 sid)
  285. {
  286. return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit,
  287. limit, loginuid, sessionid, sid);
  288. }
  289. static int audit_set_enabled(int state, uid_t loginuid, u32 sessionid, u32 sid)
  290. {
  291. int rc;
  292. if (state < AUDIT_OFF || state > AUDIT_LOCKED)
  293. return -EINVAL;
  294. rc = audit_do_config_change("audit_enabled", &audit_enabled, state,
  295. loginuid, sessionid, sid);
  296. if (!rc)
  297. audit_ever_enabled |= !!state;
  298. return rc;
  299. }
  300. static int audit_set_failure(int state, uid_t loginuid, u32 sessionid, u32 sid)
  301. {
  302. if (state != AUDIT_FAIL_SILENT
  303. && state != AUDIT_FAIL_PRINTK
  304. && state != AUDIT_FAIL_PANIC)
  305. return -EINVAL;
  306. return audit_do_config_change("audit_failure", &audit_failure, state,
  307. loginuid, sessionid, sid);
  308. }
  309. /*
  310. * Queue skbs to be sent to auditd when/if it comes back. These skbs should
  311. * already have been sent via prink/syslog and so if these messages are dropped
  312. * it is not a huge concern since we already passed the audit_log_lost()
  313. * notification and stuff. This is just nice to get audit messages during
  314. * boot before auditd is running or messages generated while auditd is stopped.
  315. * This only holds messages is audit_default is set, aka booting with audit=1
  316. * or building your kernel that way.
  317. */
  318. static void audit_hold_skb(struct sk_buff *skb)
  319. {
  320. if (audit_default &&
  321. skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit)
  322. skb_queue_tail(&audit_skb_hold_queue, skb);
  323. else
  324. kfree_skb(skb);
  325. }
  326. /*
  327. * For one reason or another this nlh isn't getting delivered to the userspace
  328. * audit daemon, just send it to printk.
  329. */
  330. static void audit_printk_skb(struct sk_buff *skb)
  331. {
  332. struct nlmsghdr *nlh = nlmsg_hdr(skb);
  333. char *data = NLMSG_DATA(nlh);
  334. if (nlh->nlmsg_type != AUDIT_EOE) {
  335. if (printk_ratelimit())
  336. printk(KERN_NOTICE "type=%d %s\n", nlh->nlmsg_type, data);
  337. else
  338. audit_log_lost("printk limit exceeded\n");
  339. }
  340. audit_hold_skb(skb);
  341. }
  342. static void kauditd_send_skb(struct sk_buff *skb)
  343. {
  344. int err;
  345. /* take a reference in case we can't send it and we want to hold it */
  346. skb_get(skb);
  347. err = netlink_unicast(audit_sock, skb, audit_nlk_pid, 0);
  348. if (err < 0) {
  349. BUG_ON(err != -ECONNREFUSED); /* Shouldn't happen */
  350. printk(KERN_ERR "audit: *NO* daemon at audit_pid=%d\n", audit_pid);
  351. audit_log_lost("auditd dissapeared\n");
  352. audit_pid = 0;
  353. /* we might get lucky and get this in the next auditd */
  354. audit_hold_skb(skb);
  355. } else
  356. /* drop the extra reference if sent ok */
  357. kfree_skb(skb);
  358. }
  359. static int kauditd_thread(void *dummy)
  360. {
  361. struct sk_buff *skb;
  362. set_freezable();
  363. while (!kthread_should_stop()) {
  364. /*
  365. * if auditd just started drain the queue of messages already
  366. * sent to syslog/printk. remember loss here is ok. we already
  367. * called audit_log_lost() if it didn't go out normally. so the
  368. * race between the skb_dequeue and the next check for audit_pid
  369. * doesn't matter.
  370. *
  371. * if you ever find kauditd to be too slow we can get a perf win
  372. * by doing our own locking and keeping better track if there
  373. * are messages in this queue. I don't see the need now, but
  374. * in 5 years when I want to play with this again I'll see this
  375. * note and still have no friggin idea what i'm thinking today.
  376. */
  377. if (audit_default && audit_pid) {
  378. skb = skb_dequeue(&audit_skb_hold_queue);
  379. if (unlikely(skb)) {
  380. while (skb && audit_pid) {
  381. kauditd_send_skb(skb);
  382. skb = skb_dequeue(&audit_skb_hold_queue);
  383. }
  384. }
  385. }
  386. skb = skb_dequeue(&audit_skb_queue);
  387. wake_up(&audit_backlog_wait);
  388. if (skb) {
  389. if (audit_pid)
  390. kauditd_send_skb(skb);
  391. else
  392. audit_printk_skb(skb);
  393. } else {
  394. DECLARE_WAITQUEUE(wait, current);
  395. set_current_state(TASK_INTERRUPTIBLE);
  396. add_wait_queue(&kauditd_wait, &wait);
  397. if (!skb_queue_len(&audit_skb_queue)) {
  398. try_to_freeze();
  399. schedule();
  400. }
  401. __set_current_state(TASK_RUNNING);
  402. remove_wait_queue(&kauditd_wait, &wait);
  403. }
  404. }
  405. return 0;
  406. }
  407. static int audit_prepare_user_tty(pid_t pid, uid_t loginuid, u32 sessionid)
  408. {
  409. struct task_struct *tsk;
  410. int err;
  411. read_lock(&tasklist_lock);
  412. tsk = find_task_by_vpid(pid);
  413. err = -ESRCH;
  414. if (!tsk)
  415. goto out;
  416. err = 0;
  417. spin_lock_irq(&tsk->sighand->siglock);
  418. if (!tsk->signal->audit_tty)
  419. err = -EPERM;
  420. spin_unlock_irq(&tsk->sighand->siglock);
  421. if (err)
  422. goto out;
  423. tty_audit_push_task(tsk, loginuid, sessionid);
  424. out:
  425. read_unlock(&tasklist_lock);
  426. return err;
  427. }
  428. int audit_send_list(void *_dest)
  429. {
  430. struct audit_netlink_list *dest = _dest;
  431. int pid = dest->pid;
  432. struct sk_buff *skb;
  433. /* wait for parent to finish and send an ACK */
  434. mutex_lock(&audit_cmd_mutex);
  435. mutex_unlock(&audit_cmd_mutex);
  436. while ((skb = __skb_dequeue(&dest->q)) != NULL)
  437. netlink_unicast(audit_sock, skb, pid, 0);
  438. kfree(dest);
  439. return 0;
  440. }
  441. struct sk_buff *audit_make_reply(int pid, int seq, int type, int done,
  442. int multi, void *payload, int size)
  443. {
  444. struct sk_buff *skb;
  445. struct nlmsghdr *nlh;
  446. void *data;
  447. int flags = multi ? NLM_F_MULTI : 0;
  448. int t = done ? NLMSG_DONE : type;
  449. skb = nlmsg_new(size, GFP_KERNEL);
  450. if (!skb)
  451. return NULL;
  452. nlh = NLMSG_NEW(skb, pid, seq, t, size, flags);
  453. data = NLMSG_DATA(nlh);
  454. memcpy(data, payload, size);
  455. return skb;
  456. nlmsg_failure: /* Used by NLMSG_NEW */
  457. if (skb)
  458. kfree_skb(skb);
  459. return NULL;
  460. }
  461. static int audit_send_reply_thread(void *arg)
  462. {
  463. struct audit_reply *reply = (struct audit_reply *)arg;
  464. mutex_lock(&audit_cmd_mutex);
  465. mutex_unlock(&audit_cmd_mutex);
  466. /* Ignore failure. It'll only happen if the sender goes away,
  467. because our timeout is set to infinite. */
  468. netlink_unicast(audit_sock, reply->skb, reply->pid, 0);
  469. kfree(reply);
  470. return 0;
  471. }
  472. /**
  473. * audit_send_reply - send an audit reply message via netlink
  474. * @pid: process id to send reply to
  475. * @seq: sequence number
  476. * @type: audit message type
  477. * @done: done (last) flag
  478. * @multi: multi-part message flag
  479. * @payload: payload data
  480. * @size: payload size
  481. *
  482. * Allocates an skb, builds the netlink message, and sends it to the pid.
  483. * No failure notifications.
  484. */
  485. void audit_send_reply(int pid, int seq, int type, int done, int multi,
  486. void *payload, int size)
  487. {
  488. struct sk_buff *skb;
  489. struct task_struct *tsk;
  490. struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
  491. GFP_KERNEL);
  492. if (!reply)
  493. return;
  494. skb = audit_make_reply(pid, seq, type, done, multi, payload, size);
  495. if (!skb)
  496. goto out;
  497. reply->pid = pid;
  498. reply->skb = skb;
  499. tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
  500. if (!IS_ERR(tsk))
  501. return;
  502. kfree_skb(skb);
  503. out:
  504. kfree(reply);
  505. }
  506. /*
  507. * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
  508. * control messages.
  509. */
  510. static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
  511. {
  512. int err = 0;
  513. switch (msg_type) {
  514. case AUDIT_GET:
  515. case AUDIT_LIST:
  516. case AUDIT_LIST_RULES:
  517. case AUDIT_SET:
  518. case AUDIT_ADD:
  519. case AUDIT_ADD_RULE:
  520. case AUDIT_DEL:
  521. case AUDIT_DEL_RULE:
  522. case AUDIT_SIGNAL_INFO:
  523. case AUDIT_TTY_GET:
  524. case AUDIT_TTY_SET:
  525. case AUDIT_TRIM:
  526. case AUDIT_MAKE_EQUIV:
  527. if (security_netlink_recv(skb, CAP_AUDIT_CONTROL))
  528. err = -EPERM;
  529. break;
  530. case AUDIT_USER:
  531. case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
  532. case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
  533. if (security_netlink_recv(skb, CAP_AUDIT_WRITE))
  534. err = -EPERM;
  535. break;
  536. default: /* bad msg */
  537. err = -EINVAL;
  538. }
  539. return err;
  540. }
  541. static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type,
  542. u32 pid, u32 uid, uid_t auid, u32 ses,
  543. u32 sid)
  544. {
  545. int rc = 0;
  546. char *ctx = NULL;
  547. u32 len;
  548. if (!audit_enabled) {
  549. *ab = NULL;
  550. return rc;
  551. }
  552. *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
  553. audit_log_format(*ab, "user pid=%d uid=%u auid=%u ses=%u",
  554. pid, uid, auid, ses);
  555. if (sid) {
  556. rc = security_secid_to_secctx(sid, &ctx, &len);
  557. if (rc)
  558. audit_log_format(*ab, " ssid=%u", sid);
  559. else {
  560. audit_log_format(*ab, " subj=%s", ctx);
  561. security_release_secctx(ctx, len);
  562. }
  563. }
  564. return rc;
  565. }
  566. static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
  567. {
  568. u32 uid, pid, seq, sid;
  569. void *data;
  570. struct audit_status *status_get, status_set;
  571. int err;
  572. struct audit_buffer *ab;
  573. u16 msg_type = nlh->nlmsg_type;
  574. uid_t loginuid; /* loginuid of sender */
  575. u32 sessionid;
  576. struct audit_sig_info *sig_data;
  577. char *ctx = NULL;
  578. u32 len;
  579. err = audit_netlink_ok(skb, msg_type);
  580. if (err)
  581. return err;
  582. /* As soon as there's any sign of userspace auditd,
  583. * start kauditd to talk to it */
  584. if (!kauditd_task)
  585. kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
  586. if (IS_ERR(kauditd_task)) {
  587. err = PTR_ERR(kauditd_task);
  588. kauditd_task = NULL;
  589. return err;
  590. }
  591. pid = NETLINK_CREDS(skb)->pid;
  592. uid = NETLINK_CREDS(skb)->uid;
  593. loginuid = NETLINK_CB(skb).loginuid;
  594. sessionid = NETLINK_CB(skb).sessionid;
  595. sid = NETLINK_CB(skb).sid;
  596. seq = nlh->nlmsg_seq;
  597. data = NLMSG_DATA(nlh);
  598. switch (msg_type) {
  599. case AUDIT_GET:
  600. status_set.enabled = audit_enabled;
  601. status_set.failure = audit_failure;
  602. status_set.pid = audit_pid;
  603. status_set.rate_limit = audit_rate_limit;
  604. status_set.backlog_limit = audit_backlog_limit;
  605. status_set.lost = atomic_read(&audit_lost);
  606. status_set.backlog = skb_queue_len(&audit_skb_queue);
  607. audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_GET, 0, 0,
  608. &status_set, sizeof(status_set));
  609. break;
  610. case AUDIT_SET:
  611. if (nlh->nlmsg_len < sizeof(struct audit_status))
  612. return -EINVAL;
  613. status_get = (struct audit_status *)data;
  614. if (status_get->mask & AUDIT_STATUS_ENABLED) {
  615. err = audit_set_enabled(status_get->enabled,
  616. loginuid, sessionid, sid);
  617. if (err < 0)
  618. return err;
  619. }
  620. if (status_get->mask & AUDIT_STATUS_FAILURE) {
  621. err = audit_set_failure(status_get->failure,
  622. loginuid, sessionid, sid);
  623. if (err < 0)
  624. return err;
  625. }
  626. if (status_get->mask & AUDIT_STATUS_PID) {
  627. int new_pid = status_get->pid;
  628. if (audit_enabled != AUDIT_OFF)
  629. audit_log_config_change("audit_pid", new_pid,
  630. audit_pid, loginuid,
  631. sessionid, sid, 1);
  632. audit_pid = new_pid;
  633. audit_nlk_pid = NETLINK_CB(skb).pid;
  634. }
  635. if (status_get->mask & AUDIT_STATUS_RATE_LIMIT) {
  636. err = audit_set_rate_limit(status_get->rate_limit,
  637. loginuid, sessionid, sid);
  638. if (err < 0)
  639. return err;
  640. }
  641. if (status_get->mask & AUDIT_STATUS_BACKLOG_LIMIT)
  642. err = audit_set_backlog_limit(status_get->backlog_limit,
  643. loginuid, sessionid, sid);
  644. break;
  645. case AUDIT_USER:
  646. case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
  647. case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
  648. if (!audit_enabled && msg_type != AUDIT_USER_AVC)
  649. return 0;
  650. err = audit_filter_user(&NETLINK_CB(skb));
  651. if (err == 1) {
  652. err = 0;
  653. if (msg_type == AUDIT_USER_TTY) {
  654. err = audit_prepare_user_tty(pid, loginuid,
  655. sessionid);
  656. if (err)
  657. break;
  658. }
  659. audit_log_common_recv_msg(&ab, msg_type, pid, uid,
  660. loginuid, sessionid, sid);
  661. if (msg_type != AUDIT_USER_TTY)
  662. audit_log_format(ab, " msg='%.1024s'",
  663. (char *)data);
  664. else {
  665. int size;
  666. audit_log_format(ab, " msg=");
  667. size = nlmsg_len(nlh);
  668. if (size > 0 &&
  669. ((unsigned char *)data)[size - 1] == '\0')
  670. size--;
  671. audit_log_n_untrustedstring(ab, data, size);
  672. }
  673. audit_set_pid(ab, pid);
  674. audit_log_end(ab);
  675. }
  676. break;
  677. case AUDIT_ADD:
  678. case AUDIT_DEL:
  679. if (nlmsg_len(nlh) < sizeof(struct audit_rule))
  680. return -EINVAL;
  681. if (audit_enabled == AUDIT_LOCKED) {
  682. audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
  683. uid, loginuid, sessionid, sid);
  684. audit_log_format(ab, " audit_enabled=%d res=0",
  685. audit_enabled);
  686. audit_log_end(ab);
  687. return -EPERM;
  688. }
  689. /* fallthrough */
  690. case AUDIT_LIST:
  691. err = audit_receive_filter(msg_type, NETLINK_CB(skb).pid,
  692. uid, seq, data, nlmsg_len(nlh),
  693. loginuid, sessionid, sid);
  694. break;
  695. case AUDIT_ADD_RULE:
  696. case AUDIT_DEL_RULE:
  697. if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
  698. return -EINVAL;
  699. if (audit_enabled == AUDIT_LOCKED) {
  700. audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
  701. uid, loginuid, sessionid, sid);
  702. audit_log_format(ab, " audit_enabled=%d res=0",
  703. audit_enabled);
  704. audit_log_end(ab);
  705. return -EPERM;
  706. }
  707. /* fallthrough */
  708. case AUDIT_LIST_RULES:
  709. err = audit_receive_filter(msg_type, NETLINK_CB(skb).pid,
  710. uid, seq, data, nlmsg_len(nlh),
  711. loginuid, sessionid, sid);
  712. break;
  713. case AUDIT_TRIM:
  714. audit_trim_trees();
  715. audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
  716. uid, loginuid, sessionid, sid);
  717. audit_log_format(ab, " op=trim res=1");
  718. audit_log_end(ab);
  719. break;
  720. case AUDIT_MAKE_EQUIV: {
  721. void *bufp = data;
  722. u32 sizes[2];
  723. size_t msglen = nlmsg_len(nlh);
  724. char *old, *new;
  725. err = -EINVAL;
  726. if (msglen < 2 * sizeof(u32))
  727. break;
  728. memcpy(sizes, bufp, 2 * sizeof(u32));
  729. bufp += 2 * sizeof(u32);
  730. msglen -= 2 * sizeof(u32);
  731. old = audit_unpack_string(&bufp, &msglen, sizes[0]);
  732. if (IS_ERR(old)) {
  733. err = PTR_ERR(old);
  734. break;
  735. }
  736. new = audit_unpack_string(&bufp, &msglen, sizes[1]);
  737. if (IS_ERR(new)) {
  738. err = PTR_ERR(new);
  739. kfree(old);
  740. break;
  741. }
  742. /* OK, here comes... */
  743. err = audit_tag_tree(old, new);
  744. audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
  745. uid, loginuid, sessionid, sid);
  746. audit_log_format(ab, " op=make_equiv old=");
  747. audit_log_untrustedstring(ab, old);
  748. audit_log_format(ab, " new=");
  749. audit_log_untrustedstring(ab, new);
  750. audit_log_format(ab, " res=%d", !err);
  751. audit_log_end(ab);
  752. kfree(old);
  753. kfree(new);
  754. break;
  755. }
  756. case AUDIT_SIGNAL_INFO:
  757. len = 0;
  758. if (audit_sig_sid) {
  759. err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
  760. if (err)
  761. return err;
  762. }
  763. sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
  764. if (!sig_data) {
  765. if (audit_sig_sid)
  766. security_release_secctx(ctx, len);
  767. return -ENOMEM;
  768. }
  769. sig_data->uid = audit_sig_uid;
  770. sig_data->pid = audit_sig_pid;
  771. if (audit_sig_sid) {
  772. memcpy(sig_data->ctx, ctx, len);
  773. security_release_secctx(ctx, len);
  774. }
  775. audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_SIGNAL_INFO,
  776. 0, 0, sig_data, sizeof(*sig_data) + len);
  777. kfree(sig_data);
  778. break;
  779. case AUDIT_TTY_GET: {
  780. struct audit_tty_status s;
  781. struct task_struct *tsk;
  782. read_lock(&tasklist_lock);
  783. tsk = find_task_by_vpid(pid);
  784. if (!tsk)
  785. err = -ESRCH;
  786. else {
  787. spin_lock_irq(&tsk->sighand->siglock);
  788. s.enabled = tsk->signal->audit_tty != 0;
  789. spin_unlock_irq(&tsk->sighand->siglock);
  790. }
  791. read_unlock(&tasklist_lock);
  792. audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_TTY_GET, 0, 0,
  793. &s, sizeof(s));
  794. break;
  795. }
  796. case AUDIT_TTY_SET: {
  797. struct audit_tty_status *s;
  798. struct task_struct *tsk;
  799. if (nlh->nlmsg_len < sizeof(struct audit_tty_status))
  800. return -EINVAL;
  801. s = data;
  802. if (s->enabled != 0 && s->enabled != 1)
  803. return -EINVAL;
  804. read_lock(&tasklist_lock);
  805. tsk = find_task_by_vpid(pid);
  806. if (!tsk)
  807. err = -ESRCH;
  808. else {
  809. spin_lock_irq(&tsk->sighand->siglock);
  810. tsk->signal->audit_tty = s->enabled != 0;
  811. spin_unlock_irq(&tsk->sighand->siglock);
  812. }
  813. read_unlock(&tasklist_lock);
  814. break;
  815. }
  816. default:
  817. err = -EINVAL;
  818. break;
  819. }
  820. return err < 0 ? err : 0;
  821. }
  822. /*
  823. * Get message from skb. Each message is processed by audit_receive_msg.
  824. * Malformed skbs with wrong length are discarded silently.
  825. */
  826. static void audit_receive_skb(struct sk_buff *skb)
  827. {
  828. struct nlmsghdr *nlh;
  829. /*
  830. * len MUST be signed for NLMSG_NEXT to be able to dec it below 0
  831. * if the nlmsg_len was not aligned
  832. */
  833. int len;
  834. int err;
  835. nlh = nlmsg_hdr(skb);
  836. len = skb->len;
  837. while (NLMSG_OK(nlh, len)) {
  838. err = audit_receive_msg(skb, nlh);
  839. /* if err or if this message says it wants a response */
  840. if (err || (nlh->nlmsg_flags & NLM_F_ACK))
  841. netlink_ack(skb, nlh, err);
  842. nlh = NLMSG_NEXT(nlh, len);
  843. }
  844. }
  845. /* Receive messages from netlink socket. */
  846. static void audit_receive(struct sk_buff *skb)
  847. {
  848. mutex_lock(&audit_cmd_mutex);
  849. audit_receive_skb(skb);
  850. mutex_unlock(&audit_cmd_mutex);
  851. }
  852. /* Initialize audit support at boot time. */
  853. static int __init audit_init(void)
  854. {
  855. int i;
  856. if (audit_initialized == AUDIT_DISABLED)
  857. return 0;
  858. printk(KERN_INFO "audit: initializing netlink socket (%s)\n",
  859. audit_default ? "enabled" : "disabled");
  860. audit_sock = netlink_kernel_create(&init_net, NETLINK_AUDIT, 0,
  861. audit_receive, NULL, THIS_MODULE);
  862. if (!audit_sock)
  863. audit_panic("cannot initialize netlink socket");
  864. else
  865. audit_sock->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
  866. skb_queue_head_init(&audit_skb_queue);
  867. skb_queue_head_init(&audit_skb_hold_queue);
  868. audit_initialized = AUDIT_INITIALIZED;
  869. audit_enabled = audit_default;
  870. audit_ever_enabled |= !!audit_default;
  871. audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
  872. for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
  873. INIT_LIST_HEAD(&audit_inode_hash[i]);
  874. return 0;
  875. }
  876. __initcall(audit_init);
  877. /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */
  878. static int __init audit_enable(char *str)
  879. {
  880. audit_default = !!simple_strtol(str, NULL, 0);
  881. if (!audit_default)
  882. audit_initialized = AUDIT_DISABLED;
  883. printk(KERN_INFO "audit: %s", audit_default ? "enabled" : "disabled");
  884. if (audit_initialized == AUDIT_INITIALIZED) {
  885. audit_enabled = audit_default;
  886. audit_ever_enabled |= !!audit_default;
  887. } else if (audit_initialized == AUDIT_UNINITIALIZED) {
  888. printk(" (after initialization)");
  889. } else {
  890. printk(" (until reboot)");
  891. }
  892. printk("\n");
  893. return 1;
  894. }
  895. __setup("audit=", audit_enable);
  896. static void audit_buffer_free(struct audit_buffer *ab)
  897. {
  898. unsigned long flags;
  899. if (!ab)
  900. return;
  901. if (ab->skb)
  902. kfree_skb(ab->skb);
  903. spin_lock_irqsave(&audit_freelist_lock, flags);
  904. if (audit_freelist_count > AUDIT_MAXFREE)
  905. kfree(ab);
  906. else {
  907. audit_freelist_count++;
  908. list_add(&ab->list, &audit_freelist);
  909. }
  910. spin_unlock_irqrestore(&audit_freelist_lock, flags);
  911. }
  912. static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
  913. gfp_t gfp_mask, int type)
  914. {
  915. unsigned long flags;
  916. struct audit_buffer *ab = NULL;
  917. struct nlmsghdr *nlh;
  918. spin_lock_irqsave(&audit_freelist_lock, flags);
  919. if (!list_empty(&audit_freelist)) {
  920. ab = list_entry(audit_freelist.next,
  921. struct audit_buffer, list);
  922. list_del(&ab->list);
  923. --audit_freelist_count;
  924. }
  925. spin_unlock_irqrestore(&audit_freelist_lock, flags);
  926. if (!ab) {
  927. ab = kmalloc(sizeof(*ab), gfp_mask);
  928. if (!ab)
  929. goto err;
  930. }
  931. ab->ctx = ctx;
  932. ab->gfp_mask = gfp_mask;
  933. ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
  934. if (!ab->skb)
  935. goto nlmsg_failure;
  936. nlh = NLMSG_NEW(ab->skb, 0, 0, type, 0, 0);
  937. return ab;
  938. nlmsg_failure: /* Used by NLMSG_NEW */
  939. kfree_skb(ab->skb);
  940. ab->skb = NULL;
  941. err:
  942. audit_buffer_free(ab);
  943. return NULL;
  944. }
  945. /**
  946. * audit_serial - compute a serial number for the audit record
  947. *
  948. * Compute a serial number for the audit record. Audit records are
  949. * written to user-space as soon as they are generated, so a complete
  950. * audit record may be written in several pieces. The timestamp of the
  951. * record and this serial number are used by the user-space tools to
  952. * determine which pieces belong to the same audit record. The
  953. * (timestamp,serial) tuple is unique for each syscall and is live from
  954. * syscall entry to syscall exit.
  955. *
  956. * NOTE: Another possibility is to store the formatted records off the
  957. * audit context (for those records that have a context), and emit them
  958. * all at syscall exit. However, this could delay the reporting of
  959. * significant errors until syscall exit (or never, if the system
  960. * halts).
  961. */
  962. unsigned int audit_serial(void)
  963. {
  964. static DEFINE_SPINLOCK(serial_lock);
  965. static unsigned int serial = 0;
  966. unsigned long flags;
  967. unsigned int ret;
  968. spin_lock_irqsave(&serial_lock, flags);
  969. do {
  970. ret = ++serial;
  971. } while (unlikely(!ret));
  972. spin_unlock_irqrestore(&serial_lock, flags);
  973. return ret;
  974. }
  975. static inline void audit_get_stamp(struct audit_context *ctx,
  976. struct timespec *t, unsigned int *serial)
  977. {
  978. if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
  979. *t = CURRENT_TIME;
  980. *serial = audit_serial();
  981. }
  982. }
  983. /* Obtain an audit buffer. This routine does locking to obtain the
  984. * audit buffer, but then no locking is required for calls to
  985. * audit_log_*format. If the tsk is a task that is currently in a
  986. * syscall, then the syscall is marked as auditable and an audit record
  987. * will be written at syscall exit. If there is no associated task, tsk
  988. * should be NULL. */
  989. /**
  990. * audit_log_start - obtain an audit buffer
  991. * @ctx: audit_context (may be NULL)
  992. * @gfp_mask: type of allocation
  993. * @type: audit message type
  994. *
  995. * Returns audit_buffer pointer on success or NULL on error.
  996. *
  997. * Obtain an audit buffer. This routine does locking to obtain the
  998. * audit buffer, but then no locking is required for calls to
  999. * audit_log_*format. If the task (ctx) is a task that is currently in a
  1000. * syscall, then the syscall is marked as auditable and an audit record
  1001. * will be written at syscall exit. If there is no associated task, then
  1002. * task context (ctx) should be NULL.
  1003. */
  1004. struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
  1005. int type)
  1006. {
  1007. struct audit_buffer *ab = NULL;
  1008. struct timespec t;
  1009. unsigned int uninitialized_var(serial);
  1010. int reserve;
  1011. unsigned long timeout_start = jiffies;
  1012. if (audit_initialized != AUDIT_INITIALIZED)
  1013. return NULL;
  1014. if (unlikely(audit_filter_type(type)))
  1015. return NULL;
  1016. if (gfp_mask & __GFP_WAIT)
  1017. reserve = 0;
  1018. else
  1019. reserve = 5; /* Allow atomic callers to go up to five
  1020. entries over the normal backlog limit */
  1021. while (audit_backlog_limit
  1022. && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
  1023. if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time
  1024. && time_before(jiffies, timeout_start + audit_backlog_wait_time)) {
  1025. /* Wait for auditd to drain the queue a little */
  1026. DECLARE_WAITQUEUE(wait, current);
  1027. set_current_state(TASK_INTERRUPTIBLE);
  1028. add_wait_queue(&audit_backlog_wait, &wait);
  1029. if (audit_backlog_limit &&
  1030. skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
  1031. schedule_timeout(timeout_start + audit_backlog_wait_time - jiffies);
  1032. __set_current_state(TASK_RUNNING);
  1033. remove_wait_queue(&audit_backlog_wait, &wait);
  1034. continue;
  1035. }
  1036. if (audit_rate_check() && printk_ratelimit())
  1037. printk(KERN_WARNING
  1038. "audit: audit_backlog=%d > "
  1039. "audit_backlog_limit=%d\n",
  1040. skb_queue_len(&audit_skb_queue),
  1041. audit_backlog_limit);
  1042. audit_log_lost("backlog limit exceeded");
  1043. audit_backlog_wait_time = audit_backlog_wait_overflow;
  1044. wake_up(&audit_backlog_wait);
  1045. return NULL;
  1046. }
  1047. ab = audit_buffer_alloc(ctx, gfp_mask, type);
  1048. if (!ab) {
  1049. audit_log_lost("out of memory in audit_log_start");
  1050. return NULL;
  1051. }
  1052. audit_get_stamp(ab->ctx, &t, &serial);
  1053. audit_log_format(ab, "audit(%lu.%03lu:%u): ",
  1054. t.tv_sec, t.tv_nsec/1000000, serial);
  1055. return ab;
  1056. }
  1057. /**
  1058. * audit_expand - expand skb in the audit buffer
  1059. * @ab: audit_buffer
  1060. * @extra: space to add at tail of the skb
  1061. *
  1062. * Returns 0 (no space) on failed expansion, or available space if
  1063. * successful.
  1064. */
  1065. static inline int audit_expand(struct audit_buffer *ab, int extra)
  1066. {
  1067. struct sk_buff *skb = ab->skb;
  1068. int oldtail = skb_tailroom(skb);
  1069. int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
  1070. int newtail = skb_tailroom(skb);
  1071. if (ret < 0) {
  1072. audit_log_lost("out of memory in audit_expand");
  1073. return 0;
  1074. }
  1075. skb->truesize += newtail - oldtail;
  1076. return newtail;
  1077. }
  1078. /*
  1079. * Format an audit message into the audit buffer. If there isn't enough
  1080. * room in the audit buffer, more room will be allocated and vsnprint
  1081. * will be called a second time. Currently, we assume that a printk
  1082. * can't format message larger than 1024 bytes, so we don't either.
  1083. */
  1084. static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
  1085. va_list args)
  1086. {
  1087. int len, avail;
  1088. struct sk_buff *skb;
  1089. va_list args2;
  1090. if (!ab)
  1091. return;
  1092. BUG_ON(!ab->skb);
  1093. skb = ab->skb;
  1094. avail = skb_tailroom(skb);
  1095. if (avail == 0) {
  1096. avail = audit_expand(ab, AUDIT_BUFSIZ);
  1097. if (!avail)
  1098. goto out;
  1099. }
  1100. va_copy(args2, args);
  1101. len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
  1102. if (len >= avail) {
  1103. /* The printk buffer is 1024 bytes long, so if we get
  1104. * here and AUDIT_BUFSIZ is at least 1024, then we can
  1105. * log everything that printk could have logged. */
  1106. avail = audit_expand(ab,
  1107. max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
  1108. if (!avail)
  1109. goto out;
  1110. len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
  1111. }
  1112. va_end(args2);
  1113. if (len > 0)
  1114. skb_put(skb, len);
  1115. out:
  1116. return;
  1117. }
  1118. /**
  1119. * audit_log_format - format a message into the audit buffer.
  1120. * @ab: audit_buffer
  1121. * @fmt: format string
  1122. * @...: optional parameters matching @fmt string
  1123. *
  1124. * All the work is done in audit_log_vformat.
  1125. */
  1126. void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
  1127. {
  1128. va_list args;
  1129. if (!ab)
  1130. return;
  1131. va_start(args, fmt);
  1132. audit_log_vformat(ab, fmt, args);
  1133. va_end(args);
  1134. }
  1135. /**
  1136. * audit_log_hex - convert a buffer to hex and append it to the audit skb
  1137. * @ab: the audit_buffer
  1138. * @buf: buffer to convert to hex
  1139. * @len: length of @buf to be converted
  1140. *
  1141. * No return value; failure to expand is silently ignored.
  1142. *
  1143. * This function will take the passed buf and convert it into a string of
  1144. * ascii hex digits. The new string is placed onto the skb.
  1145. */
  1146. void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
  1147. size_t len)
  1148. {
  1149. int i, avail, new_len;
  1150. unsigned char *ptr;
  1151. struct sk_buff *skb;
  1152. static const unsigned char *hex = "0123456789ABCDEF";
  1153. if (!ab)
  1154. return;
  1155. BUG_ON(!ab->skb);
  1156. skb = ab->skb;
  1157. avail = skb_tailroom(skb);
  1158. new_len = len<<1;
  1159. if (new_len >= avail) {
  1160. /* Round the buffer request up to the next multiple */
  1161. new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
  1162. avail = audit_expand(ab, new_len);
  1163. if (!avail)
  1164. return;
  1165. }
  1166. ptr = skb_tail_pointer(skb);
  1167. for (i=0; i<len; i++) {
  1168. *ptr++ = hex[(buf[i] & 0xF0)>>4]; /* Upper nibble */
  1169. *ptr++ = hex[buf[i] & 0x0F]; /* Lower nibble */
  1170. }
  1171. *ptr = 0;
  1172. skb_put(skb, len << 1); /* new string is twice the old string */
  1173. }
  1174. /*
  1175. * Format a string of no more than slen characters into the audit buffer,
  1176. * enclosed in quote marks.
  1177. */
  1178. void audit_log_n_string(struct audit_buffer *ab, const char *string,
  1179. size_t slen)
  1180. {
  1181. int avail, new_len;
  1182. unsigned char *ptr;
  1183. struct sk_buff *skb;
  1184. if (!ab)
  1185. return;
  1186. BUG_ON(!ab->skb);
  1187. skb = ab->skb;
  1188. avail = skb_tailroom(skb);
  1189. new_len = slen + 3; /* enclosing quotes + null terminator */
  1190. if (new_len > avail) {
  1191. avail = audit_expand(ab, new_len);
  1192. if (!avail)
  1193. return;
  1194. }
  1195. ptr = skb_tail_pointer(skb);
  1196. *ptr++ = '"';
  1197. memcpy(ptr, string, slen);
  1198. ptr += slen;
  1199. *ptr++ = '"';
  1200. *ptr = 0;
  1201. skb_put(skb, slen + 2); /* don't include null terminator */
  1202. }
  1203. /**
  1204. * audit_string_contains_control - does a string need to be logged in hex
  1205. * @string: string to be checked
  1206. * @len: max length of the string to check
  1207. */
  1208. int audit_string_contains_control(const char *string, size_t len)
  1209. {
  1210. const unsigned char *p;
  1211. for (p = string; p < (const unsigned char *)string + len; p++) {
  1212. if (*p == '"' || *p < 0x21 || *p > 0x7e)
  1213. return 1;
  1214. }
  1215. return 0;
  1216. }
  1217. /**
  1218. * audit_log_n_untrustedstring - log a string that may contain random characters
  1219. * @ab: audit_buffer
  1220. * @len: length of string (not including trailing null)
  1221. * @string: string to be logged
  1222. *
  1223. * This code will escape a string that is passed to it if the string
  1224. * contains a control character, unprintable character, double quote mark,
  1225. * or a space. Unescaped strings will start and end with a double quote mark.
  1226. * Strings that are escaped are printed in hex (2 digits per char).
  1227. *
  1228. * The caller specifies the number of characters in the string to log, which may
  1229. * or may not be the entire string.
  1230. */
  1231. void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
  1232. size_t len)
  1233. {
  1234. if (audit_string_contains_control(string, len))
  1235. audit_log_n_hex(ab, string, len);
  1236. else
  1237. audit_log_n_string(ab, string, len);
  1238. }
  1239. /**
  1240. * audit_log_untrustedstring - log a string that may contain random characters
  1241. * @ab: audit_buffer
  1242. * @string: string to be logged
  1243. *
  1244. * Same as audit_log_n_untrustedstring(), except that strlen is used to
  1245. * determine string length.
  1246. */
  1247. void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
  1248. {
  1249. audit_log_n_untrustedstring(ab, string, strlen(string));
  1250. }
  1251. /* This is a helper-function to print the escaped d_path */
  1252. void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
  1253. struct path *path)
  1254. {
  1255. char *p, *pathname;
  1256. if (prefix)
  1257. audit_log_format(ab, " %s", prefix);
  1258. /* We will allow 11 spaces for ' (deleted)' to be appended */
  1259. pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
  1260. if (!pathname) {
  1261. audit_log_string(ab, "<no_memory>");
  1262. return;
  1263. }
  1264. p = d_path(path, pathname, PATH_MAX+11);
  1265. if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
  1266. /* FIXME: can we save some information here? */
  1267. audit_log_string(ab, "<too_long>");
  1268. } else
  1269. audit_log_untrustedstring(ab, p);
  1270. kfree(pathname);
  1271. }
  1272. void audit_log_key(struct audit_buffer *ab, char *key)
  1273. {
  1274. audit_log_format(ab, " key=");
  1275. if (key)
  1276. audit_log_untrustedstring(ab, key);
  1277. else
  1278. audit_log_format(ab, "(null)");
  1279. }
  1280. /**
  1281. * audit_log_end - end one audit record
  1282. * @ab: the audit_buffer
  1283. *
  1284. * The netlink_* functions cannot be called inside an irq context, so
  1285. * the audit buffer is placed on a queue and a tasklet is scheduled to
  1286. * remove them from the queue outside the irq context. May be called in
  1287. * any context.
  1288. */
  1289. void audit_log_end(struct audit_buffer *ab)
  1290. {
  1291. if (!ab)
  1292. return;
  1293. if (!audit_rate_check()) {
  1294. audit_log_lost("rate limit exceeded");
  1295. } else {
  1296. struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
  1297. nlh->nlmsg_len = ab->skb->len - NLMSG_SPACE(0);
  1298. if (audit_pid) {
  1299. skb_queue_tail(&audit_skb_queue, ab->skb);
  1300. wake_up_interruptible(&kauditd_wait);
  1301. } else {
  1302. audit_printk_skb(ab->skb);
  1303. }
  1304. ab->skb = NULL;
  1305. }
  1306. audit_buffer_free(ab);
  1307. }
  1308. /**
  1309. * audit_log - Log an audit record
  1310. * @ctx: audit context
  1311. * @gfp_mask: type of allocation
  1312. * @type: audit message type
  1313. * @fmt: format string to use
  1314. * @...: variable parameters matching the format string
  1315. *
  1316. * This is a convenience function that calls audit_log_start,
  1317. * audit_log_vformat, and audit_log_end. It may be called
  1318. * in any context.
  1319. */
  1320. void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
  1321. const char *fmt, ...)
  1322. {
  1323. struct audit_buffer *ab;
  1324. va_list args;
  1325. ab = audit_log_start(ctx, gfp_mask, type);
  1326. if (ab) {
  1327. va_start(args, fmt);
  1328. audit_log_vformat(ab, fmt, args);
  1329. va_end(args);
  1330. audit_log_end(ab);
  1331. }
  1332. }
  1333. EXPORT_SYMBOL(audit_log_start);
  1334. EXPORT_SYMBOL(audit_log_end);
  1335. EXPORT_SYMBOL(audit_log_format);
  1336. EXPORT_SYMBOL(audit_log);