x86.c 143 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Amit Shah <amit.shah@qumranet.com>
  14. * Ben-Ami Yassour <benami@il.ibm.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include <linux/kvm_host.h>
  21. #include "irq.h"
  22. #include "mmu.h"
  23. #include "i8254.h"
  24. #include "tss.h"
  25. #include "kvm_cache_regs.h"
  26. #include "x86.h"
  27. #include <linux/clocksource.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/kvm.h>
  30. #include <linux/fs.h>
  31. #include <linux/vmalloc.h>
  32. #include <linux/module.h>
  33. #include <linux/mman.h>
  34. #include <linux/highmem.h>
  35. #include <linux/iommu.h>
  36. #include <linux/intel-iommu.h>
  37. #include <linux/cpufreq.h>
  38. #include <linux/user-return-notifier.h>
  39. #include <linux/srcu.h>
  40. #include <linux/slab.h>
  41. #include <linux/perf_event.h>
  42. #include <trace/events/kvm.h>
  43. #undef TRACE_INCLUDE_FILE
  44. #define CREATE_TRACE_POINTS
  45. #include "trace.h"
  46. #include <asm/debugreg.h>
  47. #include <asm/uaccess.h>
  48. #include <asm/msr.h>
  49. #include <asm/desc.h>
  50. #include <asm/mtrr.h>
  51. #include <asm/mce.h>
  52. #define MAX_IO_MSRS 256
  53. #define CR0_RESERVED_BITS \
  54. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  55. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  56. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  57. #define CR4_RESERVED_BITS \
  58. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  59. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  60. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  61. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  62. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  63. #define KVM_MAX_MCE_BANKS 32
  64. #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
  65. /* EFER defaults:
  66. * - enable syscall per default because its emulated by KVM
  67. * - enable LME and LMA per default on 64 bit KVM
  68. */
  69. #ifdef CONFIG_X86_64
  70. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  71. #else
  72. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  73. #endif
  74. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  75. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  76. static void update_cr8_intercept(struct kvm_vcpu *vcpu);
  77. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  78. struct kvm_cpuid_entry2 __user *entries);
  79. struct kvm_x86_ops *kvm_x86_ops;
  80. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  81. int ignore_msrs = 0;
  82. module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
  83. #define KVM_NR_SHARED_MSRS 16
  84. struct kvm_shared_msrs_global {
  85. int nr;
  86. u32 msrs[KVM_NR_SHARED_MSRS];
  87. };
  88. struct kvm_shared_msrs {
  89. struct user_return_notifier urn;
  90. bool registered;
  91. struct kvm_shared_msr_values {
  92. u64 host;
  93. u64 curr;
  94. } values[KVM_NR_SHARED_MSRS];
  95. };
  96. static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
  97. static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
  98. struct kvm_stats_debugfs_item debugfs_entries[] = {
  99. { "pf_fixed", VCPU_STAT(pf_fixed) },
  100. { "pf_guest", VCPU_STAT(pf_guest) },
  101. { "tlb_flush", VCPU_STAT(tlb_flush) },
  102. { "invlpg", VCPU_STAT(invlpg) },
  103. { "exits", VCPU_STAT(exits) },
  104. { "io_exits", VCPU_STAT(io_exits) },
  105. { "mmio_exits", VCPU_STAT(mmio_exits) },
  106. { "signal_exits", VCPU_STAT(signal_exits) },
  107. { "irq_window", VCPU_STAT(irq_window_exits) },
  108. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  109. { "halt_exits", VCPU_STAT(halt_exits) },
  110. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  111. { "hypercalls", VCPU_STAT(hypercalls) },
  112. { "request_irq", VCPU_STAT(request_irq_exits) },
  113. { "irq_exits", VCPU_STAT(irq_exits) },
  114. { "host_state_reload", VCPU_STAT(host_state_reload) },
  115. { "efer_reload", VCPU_STAT(efer_reload) },
  116. { "fpu_reload", VCPU_STAT(fpu_reload) },
  117. { "insn_emulation", VCPU_STAT(insn_emulation) },
  118. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  119. { "irq_injections", VCPU_STAT(irq_injections) },
  120. { "nmi_injections", VCPU_STAT(nmi_injections) },
  121. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  122. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  123. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  124. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  125. { "mmu_flooded", VM_STAT(mmu_flooded) },
  126. { "mmu_recycled", VM_STAT(mmu_recycled) },
  127. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  128. { "mmu_unsync", VM_STAT(mmu_unsync) },
  129. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  130. { "largepages", VM_STAT(lpages) },
  131. { NULL }
  132. };
  133. static void kvm_on_user_return(struct user_return_notifier *urn)
  134. {
  135. unsigned slot;
  136. struct kvm_shared_msrs *locals
  137. = container_of(urn, struct kvm_shared_msrs, urn);
  138. struct kvm_shared_msr_values *values;
  139. for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
  140. values = &locals->values[slot];
  141. if (values->host != values->curr) {
  142. wrmsrl(shared_msrs_global.msrs[slot], values->host);
  143. values->curr = values->host;
  144. }
  145. }
  146. locals->registered = false;
  147. user_return_notifier_unregister(urn);
  148. }
  149. static void shared_msr_update(unsigned slot, u32 msr)
  150. {
  151. struct kvm_shared_msrs *smsr;
  152. u64 value;
  153. smsr = &__get_cpu_var(shared_msrs);
  154. /* only read, and nobody should modify it at this time,
  155. * so don't need lock */
  156. if (slot >= shared_msrs_global.nr) {
  157. printk(KERN_ERR "kvm: invalid MSR slot!");
  158. return;
  159. }
  160. rdmsrl_safe(msr, &value);
  161. smsr->values[slot].host = value;
  162. smsr->values[slot].curr = value;
  163. }
  164. void kvm_define_shared_msr(unsigned slot, u32 msr)
  165. {
  166. if (slot >= shared_msrs_global.nr)
  167. shared_msrs_global.nr = slot + 1;
  168. shared_msrs_global.msrs[slot] = msr;
  169. /* we need ensured the shared_msr_global have been updated */
  170. smp_wmb();
  171. }
  172. EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
  173. static void kvm_shared_msr_cpu_online(void)
  174. {
  175. unsigned i;
  176. for (i = 0; i < shared_msrs_global.nr; ++i)
  177. shared_msr_update(i, shared_msrs_global.msrs[i]);
  178. }
  179. void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
  180. {
  181. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  182. if (((value ^ smsr->values[slot].curr) & mask) == 0)
  183. return;
  184. smsr->values[slot].curr = value;
  185. wrmsrl(shared_msrs_global.msrs[slot], value);
  186. if (!smsr->registered) {
  187. smsr->urn.on_user_return = kvm_on_user_return;
  188. user_return_notifier_register(&smsr->urn);
  189. smsr->registered = true;
  190. }
  191. }
  192. EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
  193. static void drop_user_return_notifiers(void *ignore)
  194. {
  195. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  196. if (smsr->registered)
  197. kvm_on_user_return(&smsr->urn);
  198. }
  199. unsigned long segment_base(u16 selector)
  200. {
  201. struct descriptor_table gdt;
  202. struct desc_struct *d;
  203. unsigned long table_base;
  204. unsigned long v;
  205. if (selector == 0)
  206. return 0;
  207. kvm_get_gdt(&gdt);
  208. table_base = gdt.base;
  209. if (selector & 4) { /* from ldt */
  210. u16 ldt_selector = kvm_read_ldt();
  211. table_base = segment_base(ldt_selector);
  212. }
  213. d = (struct desc_struct *)(table_base + (selector & ~7));
  214. v = get_desc_base(d);
  215. #ifdef CONFIG_X86_64
  216. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  217. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  218. #endif
  219. return v;
  220. }
  221. EXPORT_SYMBOL_GPL(segment_base);
  222. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  223. {
  224. if (irqchip_in_kernel(vcpu->kvm))
  225. return vcpu->arch.apic_base;
  226. else
  227. return vcpu->arch.apic_base;
  228. }
  229. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  230. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  231. {
  232. /* TODO: reserve bits check */
  233. if (irqchip_in_kernel(vcpu->kvm))
  234. kvm_lapic_set_base(vcpu, data);
  235. else
  236. vcpu->arch.apic_base = data;
  237. }
  238. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  239. #define EXCPT_BENIGN 0
  240. #define EXCPT_CONTRIBUTORY 1
  241. #define EXCPT_PF 2
  242. static int exception_class(int vector)
  243. {
  244. switch (vector) {
  245. case PF_VECTOR:
  246. return EXCPT_PF;
  247. case DE_VECTOR:
  248. case TS_VECTOR:
  249. case NP_VECTOR:
  250. case SS_VECTOR:
  251. case GP_VECTOR:
  252. return EXCPT_CONTRIBUTORY;
  253. default:
  254. break;
  255. }
  256. return EXCPT_BENIGN;
  257. }
  258. static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
  259. unsigned nr, bool has_error, u32 error_code)
  260. {
  261. u32 prev_nr;
  262. int class1, class2;
  263. if (!vcpu->arch.exception.pending) {
  264. queue:
  265. vcpu->arch.exception.pending = true;
  266. vcpu->arch.exception.has_error_code = has_error;
  267. vcpu->arch.exception.nr = nr;
  268. vcpu->arch.exception.error_code = error_code;
  269. return;
  270. }
  271. /* to check exception */
  272. prev_nr = vcpu->arch.exception.nr;
  273. if (prev_nr == DF_VECTOR) {
  274. /* triple fault -> shutdown */
  275. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  276. return;
  277. }
  278. class1 = exception_class(prev_nr);
  279. class2 = exception_class(nr);
  280. if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
  281. || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
  282. /* generate double fault per SDM Table 5-5 */
  283. vcpu->arch.exception.pending = true;
  284. vcpu->arch.exception.has_error_code = true;
  285. vcpu->arch.exception.nr = DF_VECTOR;
  286. vcpu->arch.exception.error_code = 0;
  287. } else
  288. /* replace previous exception with a new one in a hope
  289. that instruction re-execution will regenerate lost
  290. exception */
  291. goto queue;
  292. }
  293. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  294. {
  295. kvm_multiple_exception(vcpu, nr, false, 0);
  296. }
  297. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  298. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  299. u32 error_code)
  300. {
  301. ++vcpu->stat.pf_guest;
  302. vcpu->arch.cr2 = addr;
  303. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  304. }
  305. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  306. {
  307. vcpu->arch.nmi_pending = 1;
  308. }
  309. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  310. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  311. {
  312. kvm_multiple_exception(vcpu, nr, true, error_code);
  313. }
  314. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  315. /*
  316. * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
  317. * a #GP and return false.
  318. */
  319. bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
  320. {
  321. if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
  322. return true;
  323. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  324. return false;
  325. }
  326. EXPORT_SYMBOL_GPL(kvm_require_cpl);
  327. /*
  328. * Load the pae pdptrs. Return true is they are all valid.
  329. */
  330. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  331. {
  332. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  333. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  334. int i;
  335. int ret;
  336. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  337. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  338. offset * sizeof(u64), sizeof(pdpte));
  339. if (ret < 0) {
  340. ret = 0;
  341. goto out;
  342. }
  343. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  344. if (is_present_gpte(pdpte[i]) &&
  345. (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
  346. ret = 0;
  347. goto out;
  348. }
  349. }
  350. ret = 1;
  351. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  352. __set_bit(VCPU_EXREG_PDPTR,
  353. (unsigned long *)&vcpu->arch.regs_avail);
  354. __set_bit(VCPU_EXREG_PDPTR,
  355. (unsigned long *)&vcpu->arch.regs_dirty);
  356. out:
  357. return ret;
  358. }
  359. EXPORT_SYMBOL_GPL(load_pdptrs);
  360. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  361. {
  362. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  363. bool changed = true;
  364. int r;
  365. if (is_long_mode(vcpu) || !is_pae(vcpu))
  366. return false;
  367. if (!test_bit(VCPU_EXREG_PDPTR,
  368. (unsigned long *)&vcpu->arch.regs_avail))
  369. return true;
  370. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  371. if (r < 0)
  372. goto out;
  373. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  374. out:
  375. return changed;
  376. }
  377. void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  378. {
  379. cr0 |= X86_CR0_ET;
  380. #ifdef CONFIG_X86_64
  381. if (cr0 & 0xffffffff00000000UL) {
  382. kvm_inject_gp(vcpu, 0);
  383. return;
  384. }
  385. #endif
  386. cr0 &= ~CR0_RESERVED_BITS;
  387. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  388. kvm_inject_gp(vcpu, 0);
  389. return;
  390. }
  391. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  392. kvm_inject_gp(vcpu, 0);
  393. return;
  394. }
  395. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  396. #ifdef CONFIG_X86_64
  397. if ((vcpu->arch.efer & EFER_LME)) {
  398. int cs_db, cs_l;
  399. if (!is_pae(vcpu)) {
  400. kvm_inject_gp(vcpu, 0);
  401. return;
  402. }
  403. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  404. if (cs_l) {
  405. kvm_inject_gp(vcpu, 0);
  406. return;
  407. }
  408. } else
  409. #endif
  410. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  411. kvm_inject_gp(vcpu, 0);
  412. return;
  413. }
  414. }
  415. kvm_x86_ops->set_cr0(vcpu, cr0);
  416. vcpu->arch.cr0 = cr0;
  417. kvm_mmu_reset_context(vcpu);
  418. return;
  419. }
  420. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  421. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  422. {
  423. kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0ful) | (msw & 0x0f));
  424. }
  425. EXPORT_SYMBOL_GPL(kvm_lmsw);
  426. void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  427. {
  428. unsigned long old_cr4 = kvm_read_cr4(vcpu);
  429. unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
  430. if (cr4 & CR4_RESERVED_BITS) {
  431. kvm_inject_gp(vcpu, 0);
  432. return;
  433. }
  434. if (is_long_mode(vcpu)) {
  435. if (!(cr4 & X86_CR4_PAE)) {
  436. kvm_inject_gp(vcpu, 0);
  437. return;
  438. }
  439. } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
  440. && ((cr4 ^ old_cr4) & pdptr_bits)
  441. && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  442. kvm_inject_gp(vcpu, 0);
  443. return;
  444. }
  445. if (cr4 & X86_CR4_VMXE) {
  446. kvm_inject_gp(vcpu, 0);
  447. return;
  448. }
  449. kvm_x86_ops->set_cr4(vcpu, cr4);
  450. vcpu->arch.cr4 = cr4;
  451. vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
  452. kvm_mmu_reset_context(vcpu);
  453. }
  454. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  455. void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  456. {
  457. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  458. kvm_mmu_sync_roots(vcpu);
  459. kvm_mmu_flush_tlb(vcpu);
  460. return;
  461. }
  462. if (is_long_mode(vcpu)) {
  463. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  464. kvm_inject_gp(vcpu, 0);
  465. return;
  466. }
  467. } else {
  468. if (is_pae(vcpu)) {
  469. if (cr3 & CR3_PAE_RESERVED_BITS) {
  470. kvm_inject_gp(vcpu, 0);
  471. return;
  472. }
  473. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  474. kvm_inject_gp(vcpu, 0);
  475. return;
  476. }
  477. }
  478. /*
  479. * We don't check reserved bits in nonpae mode, because
  480. * this isn't enforced, and VMware depends on this.
  481. */
  482. }
  483. /*
  484. * Does the new cr3 value map to physical memory? (Note, we
  485. * catch an invalid cr3 even in real-mode, because it would
  486. * cause trouble later on when we turn on paging anyway.)
  487. *
  488. * A real CPU would silently accept an invalid cr3 and would
  489. * attempt to use it - with largely undefined (and often hard
  490. * to debug) behavior on the guest side.
  491. */
  492. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  493. kvm_inject_gp(vcpu, 0);
  494. else {
  495. vcpu->arch.cr3 = cr3;
  496. vcpu->arch.mmu.new_cr3(vcpu);
  497. }
  498. }
  499. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  500. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  501. {
  502. if (cr8 & CR8_RESERVED_BITS) {
  503. kvm_inject_gp(vcpu, 0);
  504. return;
  505. }
  506. if (irqchip_in_kernel(vcpu->kvm))
  507. kvm_lapic_set_tpr(vcpu, cr8);
  508. else
  509. vcpu->arch.cr8 = cr8;
  510. }
  511. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  512. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  513. {
  514. if (irqchip_in_kernel(vcpu->kvm))
  515. return kvm_lapic_get_cr8(vcpu);
  516. else
  517. return vcpu->arch.cr8;
  518. }
  519. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  520. static inline u32 bit(int bitno)
  521. {
  522. return 1 << (bitno & 31);
  523. }
  524. /*
  525. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  526. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  527. *
  528. * This list is modified at module load time to reflect the
  529. * capabilities of the host cpu. This capabilities test skips MSRs that are
  530. * kvm-specific. Those are put in the beginning of the list.
  531. */
  532. #define KVM_SAVE_MSRS_BEGIN 5
  533. static u32 msrs_to_save[] = {
  534. MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  535. HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
  536. HV_X64_MSR_APIC_ASSIST_PAGE,
  537. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  538. MSR_K6_STAR,
  539. #ifdef CONFIG_X86_64
  540. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  541. #endif
  542. MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  543. };
  544. static unsigned num_msrs_to_save;
  545. static u32 emulated_msrs[] = {
  546. MSR_IA32_MISC_ENABLE,
  547. };
  548. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  549. {
  550. if (efer & efer_reserved_bits) {
  551. kvm_inject_gp(vcpu, 0);
  552. return;
  553. }
  554. if (is_paging(vcpu)
  555. && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) {
  556. kvm_inject_gp(vcpu, 0);
  557. return;
  558. }
  559. if (efer & EFER_FFXSR) {
  560. struct kvm_cpuid_entry2 *feat;
  561. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  562. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
  563. kvm_inject_gp(vcpu, 0);
  564. return;
  565. }
  566. }
  567. if (efer & EFER_SVME) {
  568. struct kvm_cpuid_entry2 *feat;
  569. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  570. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
  571. kvm_inject_gp(vcpu, 0);
  572. return;
  573. }
  574. }
  575. kvm_x86_ops->set_efer(vcpu, efer);
  576. efer &= ~EFER_LMA;
  577. efer |= vcpu->arch.efer & EFER_LMA;
  578. vcpu->arch.efer = efer;
  579. vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
  580. kvm_mmu_reset_context(vcpu);
  581. }
  582. void kvm_enable_efer_bits(u64 mask)
  583. {
  584. efer_reserved_bits &= ~mask;
  585. }
  586. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  587. /*
  588. * Writes msr value into into the appropriate "register".
  589. * Returns 0 on success, non-0 otherwise.
  590. * Assumes vcpu_load() was already called.
  591. */
  592. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  593. {
  594. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  595. }
  596. /*
  597. * Adapt set_msr() to msr_io()'s calling convention
  598. */
  599. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  600. {
  601. return kvm_set_msr(vcpu, index, *data);
  602. }
  603. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  604. {
  605. static int version;
  606. struct pvclock_wall_clock wc;
  607. struct timespec boot;
  608. if (!wall_clock)
  609. return;
  610. version++;
  611. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  612. /*
  613. * The guest calculates current wall clock time by adding
  614. * system time (updated by kvm_write_guest_time below) to the
  615. * wall clock specified here. guest system time equals host
  616. * system time for us, thus we must fill in host boot time here.
  617. */
  618. getboottime(&boot);
  619. wc.sec = boot.tv_sec;
  620. wc.nsec = boot.tv_nsec;
  621. wc.version = version;
  622. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  623. version++;
  624. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  625. }
  626. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  627. {
  628. uint32_t quotient, remainder;
  629. /* Don't try to replace with do_div(), this one calculates
  630. * "(dividend << 32) / divisor" */
  631. __asm__ ( "divl %4"
  632. : "=a" (quotient), "=d" (remainder)
  633. : "0" (0), "1" (dividend), "r" (divisor) );
  634. return quotient;
  635. }
  636. static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
  637. {
  638. uint64_t nsecs = 1000000000LL;
  639. int32_t shift = 0;
  640. uint64_t tps64;
  641. uint32_t tps32;
  642. tps64 = tsc_khz * 1000LL;
  643. while (tps64 > nsecs*2) {
  644. tps64 >>= 1;
  645. shift--;
  646. }
  647. tps32 = (uint32_t)tps64;
  648. while (tps32 <= (uint32_t)nsecs) {
  649. tps32 <<= 1;
  650. shift++;
  651. }
  652. hv_clock->tsc_shift = shift;
  653. hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
  654. pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
  655. __func__, tsc_khz, hv_clock->tsc_shift,
  656. hv_clock->tsc_to_system_mul);
  657. }
  658. static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
  659. static void kvm_write_guest_time(struct kvm_vcpu *v)
  660. {
  661. struct timespec ts;
  662. unsigned long flags;
  663. struct kvm_vcpu_arch *vcpu = &v->arch;
  664. void *shared_kaddr;
  665. unsigned long this_tsc_khz;
  666. if ((!vcpu->time_page))
  667. return;
  668. this_tsc_khz = get_cpu_var(cpu_tsc_khz);
  669. if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
  670. kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
  671. vcpu->hv_clock_tsc_khz = this_tsc_khz;
  672. }
  673. put_cpu_var(cpu_tsc_khz);
  674. /* Keep irq disabled to prevent changes to the clock */
  675. local_irq_save(flags);
  676. kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
  677. ktime_get_ts(&ts);
  678. monotonic_to_bootbased(&ts);
  679. local_irq_restore(flags);
  680. /* With all the info we got, fill in the values */
  681. vcpu->hv_clock.system_time = ts.tv_nsec +
  682. (NSEC_PER_SEC * (u64)ts.tv_sec) + v->kvm->arch.kvmclock_offset;
  683. /*
  684. * The interface expects us to write an even number signaling that the
  685. * update is finished. Since the guest won't see the intermediate
  686. * state, we just increase by 2 at the end.
  687. */
  688. vcpu->hv_clock.version += 2;
  689. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  690. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  691. sizeof(vcpu->hv_clock));
  692. kunmap_atomic(shared_kaddr, KM_USER0);
  693. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  694. }
  695. static int kvm_request_guest_time_update(struct kvm_vcpu *v)
  696. {
  697. struct kvm_vcpu_arch *vcpu = &v->arch;
  698. if (!vcpu->time_page)
  699. return 0;
  700. set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
  701. return 1;
  702. }
  703. static bool msr_mtrr_valid(unsigned msr)
  704. {
  705. switch (msr) {
  706. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  707. case MSR_MTRRfix64K_00000:
  708. case MSR_MTRRfix16K_80000:
  709. case MSR_MTRRfix16K_A0000:
  710. case MSR_MTRRfix4K_C0000:
  711. case MSR_MTRRfix4K_C8000:
  712. case MSR_MTRRfix4K_D0000:
  713. case MSR_MTRRfix4K_D8000:
  714. case MSR_MTRRfix4K_E0000:
  715. case MSR_MTRRfix4K_E8000:
  716. case MSR_MTRRfix4K_F0000:
  717. case MSR_MTRRfix4K_F8000:
  718. case MSR_MTRRdefType:
  719. case MSR_IA32_CR_PAT:
  720. return true;
  721. case 0x2f8:
  722. return true;
  723. }
  724. return false;
  725. }
  726. static bool valid_pat_type(unsigned t)
  727. {
  728. return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
  729. }
  730. static bool valid_mtrr_type(unsigned t)
  731. {
  732. return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
  733. }
  734. static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  735. {
  736. int i;
  737. if (!msr_mtrr_valid(msr))
  738. return false;
  739. if (msr == MSR_IA32_CR_PAT) {
  740. for (i = 0; i < 8; i++)
  741. if (!valid_pat_type((data >> (i * 8)) & 0xff))
  742. return false;
  743. return true;
  744. } else if (msr == MSR_MTRRdefType) {
  745. if (data & ~0xcff)
  746. return false;
  747. return valid_mtrr_type(data & 0xff);
  748. } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
  749. for (i = 0; i < 8 ; i++)
  750. if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
  751. return false;
  752. return true;
  753. }
  754. /* variable MTRRs */
  755. return valid_mtrr_type(data & 0xff);
  756. }
  757. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  758. {
  759. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  760. if (!mtrr_valid(vcpu, msr, data))
  761. return 1;
  762. if (msr == MSR_MTRRdefType) {
  763. vcpu->arch.mtrr_state.def_type = data;
  764. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  765. } else if (msr == MSR_MTRRfix64K_00000)
  766. p[0] = data;
  767. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  768. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  769. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  770. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  771. else if (msr == MSR_IA32_CR_PAT)
  772. vcpu->arch.pat = data;
  773. else { /* Variable MTRRs */
  774. int idx, is_mtrr_mask;
  775. u64 *pt;
  776. idx = (msr - 0x200) / 2;
  777. is_mtrr_mask = msr - 0x200 - 2 * idx;
  778. if (!is_mtrr_mask)
  779. pt =
  780. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  781. else
  782. pt =
  783. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  784. *pt = data;
  785. }
  786. kvm_mmu_reset_context(vcpu);
  787. return 0;
  788. }
  789. static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  790. {
  791. u64 mcg_cap = vcpu->arch.mcg_cap;
  792. unsigned bank_num = mcg_cap & 0xff;
  793. switch (msr) {
  794. case MSR_IA32_MCG_STATUS:
  795. vcpu->arch.mcg_status = data;
  796. break;
  797. case MSR_IA32_MCG_CTL:
  798. if (!(mcg_cap & MCG_CTL_P))
  799. return 1;
  800. if (data != 0 && data != ~(u64)0)
  801. return -1;
  802. vcpu->arch.mcg_ctl = data;
  803. break;
  804. default:
  805. if (msr >= MSR_IA32_MC0_CTL &&
  806. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  807. u32 offset = msr - MSR_IA32_MC0_CTL;
  808. /* only 0 or all 1s can be written to IA32_MCi_CTL
  809. * some Linux kernels though clear bit 10 in bank 4 to
  810. * workaround a BIOS/GART TBL issue on AMD K8s, ignore
  811. * this to avoid an uncatched #GP in the guest
  812. */
  813. if ((offset & 0x3) == 0 &&
  814. data != 0 && (data | (1 << 10)) != ~(u64)0)
  815. return -1;
  816. vcpu->arch.mce_banks[offset] = data;
  817. break;
  818. }
  819. return 1;
  820. }
  821. return 0;
  822. }
  823. static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
  824. {
  825. struct kvm *kvm = vcpu->kvm;
  826. int lm = is_long_mode(vcpu);
  827. u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
  828. : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
  829. u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
  830. : kvm->arch.xen_hvm_config.blob_size_32;
  831. u32 page_num = data & ~PAGE_MASK;
  832. u64 page_addr = data & PAGE_MASK;
  833. u8 *page;
  834. int r;
  835. r = -E2BIG;
  836. if (page_num >= blob_size)
  837. goto out;
  838. r = -ENOMEM;
  839. page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  840. if (!page)
  841. goto out;
  842. r = -EFAULT;
  843. if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
  844. goto out_free;
  845. if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
  846. goto out_free;
  847. r = 0;
  848. out_free:
  849. kfree(page);
  850. out:
  851. return r;
  852. }
  853. static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
  854. {
  855. return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
  856. }
  857. static bool kvm_hv_msr_partition_wide(u32 msr)
  858. {
  859. bool r = false;
  860. switch (msr) {
  861. case HV_X64_MSR_GUEST_OS_ID:
  862. case HV_X64_MSR_HYPERCALL:
  863. r = true;
  864. break;
  865. }
  866. return r;
  867. }
  868. static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  869. {
  870. struct kvm *kvm = vcpu->kvm;
  871. switch (msr) {
  872. case HV_X64_MSR_GUEST_OS_ID:
  873. kvm->arch.hv_guest_os_id = data;
  874. /* setting guest os id to zero disables hypercall page */
  875. if (!kvm->arch.hv_guest_os_id)
  876. kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
  877. break;
  878. case HV_X64_MSR_HYPERCALL: {
  879. u64 gfn;
  880. unsigned long addr;
  881. u8 instructions[4];
  882. /* if guest os id is not set hypercall should remain disabled */
  883. if (!kvm->arch.hv_guest_os_id)
  884. break;
  885. if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
  886. kvm->arch.hv_hypercall = data;
  887. break;
  888. }
  889. gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
  890. addr = gfn_to_hva(kvm, gfn);
  891. if (kvm_is_error_hva(addr))
  892. return 1;
  893. kvm_x86_ops->patch_hypercall(vcpu, instructions);
  894. ((unsigned char *)instructions)[3] = 0xc3; /* ret */
  895. if (copy_to_user((void __user *)addr, instructions, 4))
  896. return 1;
  897. kvm->arch.hv_hypercall = data;
  898. break;
  899. }
  900. default:
  901. pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  902. "data 0x%llx\n", msr, data);
  903. return 1;
  904. }
  905. return 0;
  906. }
  907. static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  908. {
  909. switch (msr) {
  910. case HV_X64_MSR_APIC_ASSIST_PAGE: {
  911. unsigned long addr;
  912. if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
  913. vcpu->arch.hv_vapic = data;
  914. break;
  915. }
  916. addr = gfn_to_hva(vcpu->kvm, data >>
  917. HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
  918. if (kvm_is_error_hva(addr))
  919. return 1;
  920. if (clear_user((void __user *)addr, PAGE_SIZE))
  921. return 1;
  922. vcpu->arch.hv_vapic = data;
  923. break;
  924. }
  925. case HV_X64_MSR_EOI:
  926. return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
  927. case HV_X64_MSR_ICR:
  928. return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
  929. case HV_X64_MSR_TPR:
  930. return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
  931. default:
  932. pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  933. "data 0x%llx\n", msr, data);
  934. return 1;
  935. }
  936. return 0;
  937. }
  938. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  939. {
  940. switch (msr) {
  941. case MSR_EFER:
  942. set_efer(vcpu, data);
  943. break;
  944. case MSR_K7_HWCR:
  945. data &= ~(u64)0x40; /* ignore flush filter disable */
  946. if (data != 0) {
  947. pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
  948. data);
  949. return 1;
  950. }
  951. break;
  952. case MSR_FAM10H_MMIO_CONF_BASE:
  953. if (data != 0) {
  954. pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
  955. "0x%llx\n", data);
  956. return 1;
  957. }
  958. break;
  959. case MSR_AMD64_NB_CFG:
  960. break;
  961. case MSR_IA32_DEBUGCTLMSR:
  962. if (!data) {
  963. /* We support the non-activated case already */
  964. break;
  965. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  966. /* Values other than LBR and BTF are vendor-specific,
  967. thus reserved and should throw a #GP */
  968. return 1;
  969. }
  970. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  971. __func__, data);
  972. break;
  973. case MSR_IA32_UCODE_REV:
  974. case MSR_IA32_UCODE_WRITE:
  975. case MSR_VM_HSAVE_PA:
  976. case MSR_AMD64_PATCH_LOADER:
  977. break;
  978. case 0x200 ... 0x2ff:
  979. return set_msr_mtrr(vcpu, msr, data);
  980. case MSR_IA32_APICBASE:
  981. kvm_set_apic_base(vcpu, data);
  982. break;
  983. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  984. return kvm_x2apic_msr_write(vcpu, msr, data);
  985. case MSR_IA32_MISC_ENABLE:
  986. vcpu->arch.ia32_misc_enable_msr = data;
  987. break;
  988. case MSR_KVM_WALL_CLOCK:
  989. vcpu->kvm->arch.wall_clock = data;
  990. kvm_write_wall_clock(vcpu->kvm, data);
  991. break;
  992. case MSR_KVM_SYSTEM_TIME: {
  993. if (vcpu->arch.time_page) {
  994. kvm_release_page_dirty(vcpu->arch.time_page);
  995. vcpu->arch.time_page = NULL;
  996. }
  997. vcpu->arch.time = data;
  998. /* we verify if the enable bit is set... */
  999. if (!(data & 1))
  1000. break;
  1001. /* ...but clean it before doing the actual write */
  1002. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  1003. vcpu->arch.time_page =
  1004. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  1005. if (is_error_page(vcpu->arch.time_page)) {
  1006. kvm_release_page_clean(vcpu->arch.time_page);
  1007. vcpu->arch.time_page = NULL;
  1008. }
  1009. kvm_request_guest_time_update(vcpu);
  1010. break;
  1011. }
  1012. case MSR_IA32_MCG_CTL:
  1013. case MSR_IA32_MCG_STATUS:
  1014. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1015. return set_msr_mce(vcpu, msr, data);
  1016. /* Performance counters are not protected by a CPUID bit,
  1017. * so we should check all of them in the generic path for the sake of
  1018. * cross vendor migration.
  1019. * Writing a zero into the event select MSRs disables them,
  1020. * which we perfectly emulate ;-). Any other value should be at least
  1021. * reported, some guests depend on them.
  1022. */
  1023. case MSR_P6_EVNTSEL0:
  1024. case MSR_P6_EVNTSEL1:
  1025. case MSR_K7_EVNTSEL0:
  1026. case MSR_K7_EVNTSEL1:
  1027. case MSR_K7_EVNTSEL2:
  1028. case MSR_K7_EVNTSEL3:
  1029. if (data != 0)
  1030. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1031. "0x%x data 0x%llx\n", msr, data);
  1032. break;
  1033. /* at least RHEL 4 unconditionally writes to the perfctr registers,
  1034. * so we ignore writes to make it happy.
  1035. */
  1036. case MSR_P6_PERFCTR0:
  1037. case MSR_P6_PERFCTR1:
  1038. case MSR_K7_PERFCTR0:
  1039. case MSR_K7_PERFCTR1:
  1040. case MSR_K7_PERFCTR2:
  1041. case MSR_K7_PERFCTR3:
  1042. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1043. "0x%x data 0x%llx\n", msr, data);
  1044. break;
  1045. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1046. if (kvm_hv_msr_partition_wide(msr)) {
  1047. int r;
  1048. mutex_lock(&vcpu->kvm->lock);
  1049. r = set_msr_hyperv_pw(vcpu, msr, data);
  1050. mutex_unlock(&vcpu->kvm->lock);
  1051. return r;
  1052. } else
  1053. return set_msr_hyperv(vcpu, msr, data);
  1054. break;
  1055. default:
  1056. if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
  1057. return xen_hvm_config(vcpu, data);
  1058. if (!ignore_msrs) {
  1059. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
  1060. msr, data);
  1061. return 1;
  1062. } else {
  1063. pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
  1064. msr, data);
  1065. break;
  1066. }
  1067. }
  1068. return 0;
  1069. }
  1070. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1071. /*
  1072. * Reads an msr value (of 'msr_index') into 'pdata'.
  1073. * Returns 0 on success, non-0 otherwise.
  1074. * Assumes vcpu_load() was already called.
  1075. */
  1076. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1077. {
  1078. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  1079. }
  1080. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1081. {
  1082. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  1083. if (!msr_mtrr_valid(msr))
  1084. return 1;
  1085. if (msr == MSR_MTRRdefType)
  1086. *pdata = vcpu->arch.mtrr_state.def_type +
  1087. (vcpu->arch.mtrr_state.enabled << 10);
  1088. else if (msr == MSR_MTRRfix64K_00000)
  1089. *pdata = p[0];
  1090. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  1091. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  1092. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  1093. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  1094. else if (msr == MSR_IA32_CR_PAT)
  1095. *pdata = vcpu->arch.pat;
  1096. else { /* Variable MTRRs */
  1097. int idx, is_mtrr_mask;
  1098. u64 *pt;
  1099. idx = (msr - 0x200) / 2;
  1100. is_mtrr_mask = msr - 0x200 - 2 * idx;
  1101. if (!is_mtrr_mask)
  1102. pt =
  1103. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  1104. else
  1105. pt =
  1106. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  1107. *pdata = *pt;
  1108. }
  1109. return 0;
  1110. }
  1111. static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1112. {
  1113. u64 data;
  1114. u64 mcg_cap = vcpu->arch.mcg_cap;
  1115. unsigned bank_num = mcg_cap & 0xff;
  1116. switch (msr) {
  1117. case MSR_IA32_P5_MC_ADDR:
  1118. case MSR_IA32_P5_MC_TYPE:
  1119. data = 0;
  1120. break;
  1121. case MSR_IA32_MCG_CAP:
  1122. data = vcpu->arch.mcg_cap;
  1123. break;
  1124. case MSR_IA32_MCG_CTL:
  1125. if (!(mcg_cap & MCG_CTL_P))
  1126. return 1;
  1127. data = vcpu->arch.mcg_ctl;
  1128. break;
  1129. case MSR_IA32_MCG_STATUS:
  1130. data = vcpu->arch.mcg_status;
  1131. break;
  1132. default:
  1133. if (msr >= MSR_IA32_MC0_CTL &&
  1134. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  1135. u32 offset = msr - MSR_IA32_MC0_CTL;
  1136. data = vcpu->arch.mce_banks[offset];
  1137. break;
  1138. }
  1139. return 1;
  1140. }
  1141. *pdata = data;
  1142. return 0;
  1143. }
  1144. static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1145. {
  1146. u64 data = 0;
  1147. struct kvm *kvm = vcpu->kvm;
  1148. switch (msr) {
  1149. case HV_X64_MSR_GUEST_OS_ID:
  1150. data = kvm->arch.hv_guest_os_id;
  1151. break;
  1152. case HV_X64_MSR_HYPERCALL:
  1153. data = kvm->arch.hv_hypercall;
  1154. break;
  1155. default:
  1156. pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1157. return 1;
  1158. }
  1159. *pdata = data;
  1160. return 0;
  1161. }
  1162. static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1163. {
  1164. u64 data = 0;
  1165. switch (msr) {
  1166. case HV_X64_MSR_VP_INDEX: {
  1167. int r;
  1168. struct kvm_vcpu *v;
  1169. kvm_for_each_vcpu(r, v, vcpu->kvm)
  1170. if (v == vcpu)
  1171. data = r;
  1172. break;
  1173. }
  1174. case HV_X64_MSR_EOI:
  1175. return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
  1176. case HV_X64_MSR_ICR:
  1177. return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
  1178. case HV_X64_MSR_TPR:
  1179. return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
  1180. default:
  1181. pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1182. return 1;
  1183. }
  1184. *pdata = data;
  1185. return 0;
  1186. }
  1187. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1188. {
  1189. u64 data;
  1190. switch (msr) {
  1191. case MSR_IA32_PLATFORM_ID:
  1192. case MSR_IA32_UCODE_REV:
  1193. case MSR_IA32_EBL_CR_POWERON:
  1194. case MSR_IA32_DEBUGCTLMSR:
  1195. case MSR_IA32_LASTBRANCHFROMIP:
  1196. case MSR_IA32_LASTBRANCHTOIP:
  1197. case MSR_IA32_LASTINTFROMIP:
  1198. case MSR_IA32_LASTINTTOIP:
  1199. case MSR_K8_SYSCFG:
  1200. case MSR_K7_HWCR:
  1201. case MSR_VM_HSAVE_PA:
  1202. case MSR_P6_PERFCTR0:
  1203. case MSR_P6_PERFCTR1:
  1204. case MSR_P6_EVNTSEL0:
  1205. case MSR_P6_EVNTSEL1:
  1206. case MSR_K7_EVNTSEL0:
  1207. case MSR_K7_PERFCTR0:
  1208. case MSR_K8_INT_PENDING_MSG:
  1209. case MSR_AMD64_NB_CFG:
  1210. case MSR_FAM10H_MMIO_CONF_BASE:
  1211. data = 0;
  1212. break;
  1213. case MSR_MTRRcap:
  1214. data = 0x500 | KVM_NR_VAR_MTRR;
  1215. break;
  1216. case 0x200 ... 0x2ff:
  1217. return get_msr_mtrr(vcpu, msr, pdata);
  1218. case 0xcd: /* fsb frequency */
  1219. data = 3;
  1220. break;
  1221. case MSR_IA32_APICBASE:
  1222. data = kvm_get_apic_base(vcpu);
  1223. break;
  1224. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1225. return kvm_x2apic_msr_read(vcpu, msr, pdata);
  1226. break;
  1227. case MSR_IA32_MISC_ENABLE:
  1228. data = vcpu->arch.ia32_misc_enable_msr;
  1229. break;
  1230. case MSR_IA32_PERF_STATUS:
  1231. /* TSC increment by tick */
  1232. data = 1000ULL;
  1233. /* CPU multiplier */
  1234. data |= (((uint64_t)4ULL) << 40);
  1235. break;
  1236. case MSR_EFER:
  1237. data = vcpu->arch.efer;
  1238. break;
  1239. case MSR_KVM_WALL_CLOCK:
  1240. data = vcpu->kvm->arch.wall_clock;
  1241. break;
  1242. case MSR_KVM_SYSTEM_TIME:
  1243. data = vcpu->arch.time;
  1244. break;
  1245. case MSR_IA32_P5_MC_ADDR:
  1246. case MSR_IA32_P5_MC_TYPE:
  1247. case MSR_IA32_MCG_CAP:
  1248. case MSR_IA32_MCG_CTL:
  1249. case MSR_IA32_MCG_STATUS:
  1250. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1251. return get_msr_mce(vcpu, msr, pdata);
  1252. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1253. if (kvm_hv_msr_partition_wide(msr)) {
  1254. int r;
  1255. mutex_lock(&vcpu->kvm->lock);
  1256. r = get_msr_hyperv_pw(vcpu, msr, pdata);
  1257. mutex_unlock(&vcpu->kvm->lock);
  1258. return r;
  1259. } else
  1260. return get_msr_hyperv(vcpu, msr, pdata);
  1261. break;
  1262. default:
  1263. if (!ignore_msrs) {
  1264. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1265. return 1;
  1266. } else {
  1267. pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
  1268. data = 0;
  1269. }
  1270. break;
  1271. }
  1272. *pdata = data;
  1273. return 0;
  1274. }
  1275. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1276. /*
  1277. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1278. *
  1279. * @return number of msrs set successfully.
  1280. */
  1281. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1282. struct kvm_msr_entry *entries,
  1283. int (*do_msr)(struct kvm_vcpu *vcpu,
  1284. unsigned index, u64 *data))
  1285. {
  1286. int i, idx;
  1287. vcpu_load(vcpu);
  1288. idx = srcu_read_lock(&vcpu->kvm->srcu);
  1289. for (i = 0; i < msrs->nmsrs; ++i)
  1290. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1291. break;
  1292. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  1293. vcpu_put(vcpu);
  1294. return i;
  1295. }
  1296. /*
  1297. * Read or write a bunch of msrs. Parameters are user addresses.
  1298. *
  1299. * @return number of msrs set successfully.
  1300. */
  1301. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1302. int (*do_msr)(struct kvm_vcpu *vcpu,
  1303. unsigned index, u64 *data),
  1304. int writeback)
  1305. {
  1306. struct kvm_msrs msrs;
  1307. struct kvm_msr_entry *entries;
  1308. int r, n;
  1309. unsigned size;
  1310. r = -EFAULT;
  1311. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1312. goto out;
  1313. r = -E2BIG;
  1314. if (msrs.nmsrs >= MAX_IO_MSRS)
  1315. goto out;
  1316. r = -ENOMEM;
  1317. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1318. entries = vmalloc(size);
  1319. if (!entries)
  1320. goto out;
  1321. r = -EFAULT;
  1322. if (copy_from_user(entries, user_msrs->entries, size))
  1323. goto out_free;
  1324. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1325. if (r < 0)
  1326. goto out_free;
  1327. r = -EFAULT;
  1328. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1329. goto out_free;
  1330. r = n;
  1331. out_free:
  1332. vfree(entries);
  1333. out:
  1334. return r;
  1335. }
  1336. int kvm_dev_ioctl_check_extension(long ext)
  1337. {
  1338. int r;
  1339. switch (ext) {
  1340. case KVM_CAP_IRQCHIP:
  1341. case KVM_CAP_HLT:
  1342. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  1343. case KVM_CAP_SET_TSS_ADDR:
  1344. case KVM_CAP_EXT_CPUID:
  1345. case KVM_CAP_CLOCKSOURCE:
  1346. case KVM_CAP_PIT:
  1347. case KVM_CAP_NOP_IO_DELAY:
  1348. case KVM_CAP_MP_STATE:
  1349. case KVM_CAP_SYNC_MMU:
  1350. case KVM_CAP_REINJECT_CONTROL:
  1351. case KVM_CAP_IRQ_INJECT_STATUS:
  1352. case KVM_CAP_ASSIGN_DEV_IRQ:
  1353. case KVM_CAP_IRQFD:
  1354. case KVM_CAP_IOEVENTFD:
  1355. case KVM_CAP_PIT2:
  1356. case KVM_CAP_PIT_STATE2:
  1357. case KVM_CAP_SET_IDENTITY_MAP_ADDR:
  1358. case KVM_CAP_XEN_HVM:
  1359. case KVM_CAP_ADJUST_CLOCK:
  1360. case KVM_CAP_VCPU_EVENTS:
  1361. case KVM_CAP_HYPERV:
  1362. case KVM_CAP_HYPERV_VAPIC:
  1363. case KVM_CAP_HYPERV_SPIN:
  1364. case KVM_CAP_PCI_SEGMENT:
  1365. case KVM_CAP_X86_ROBUST_SINGLESTEP:
  1366. r = 1;
  1367. break;
  1368. case KVM_CAP_COALESCED_MMIO:
  1369. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  1370. break;
  1371. case KVM_CAP_VAPIC:
  1372. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  1373. break;
  1374. case KVM_CAP_NR_VCPUS:
  1375. r = KVM_MAX_VCPUS;
  1376. break;
  1377. case KVM_CAP_NR_MEMSLOTS:
  1378. r = KVM_MEMORY_SLOTS;
  1379. break;
  1380. case KVM_CAP_PV_MMU: /* obsolete */
  1381. r = 0;
  1382. break;
  1383. case KVM_CAP_IOMMU:
  1384. r = iommu_found();
  1385. break;
  1386. case KVM_CAP_MCE:
  1387. r = KVM_MAX_MCE_BANKS;
  1388. break;
  1389. default:
  1390. r = 0;
  1391. break;
  1392. }
  1393. return r;
  1394. }
  1395. long kvm_arch_dev_ioctl(struct file *filp,
  1396. unsigned int ioctl, unsigned long arg)
  1397. {
  1398. void __user *argp = (void __user *)arg;
  1399. long r;
  1400. switch (ioctl) {
  1401. case KVM_GET_MSR_INDEX_LIST: {
  1402. struct kvm_msr_list __user *user_msr_list = argp;
  1403. struct kvm_msr_list msr_list;
  1404. unsigned n;
  1405. r = -EFAULT;
  1406. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1407. goto out;
  1408. n = msr_list.nmsrs;
  1409. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  1410. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1411. goto out;
  1412. r = -E2BIG;
  1413. if (n < msr_list.nmsrs)
  1414. goto out;
  1415. r = -EFAULT;
  1416. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1417. num_msrs_to_save * sizeof(u32)))
  1418. goto out;
  1419. if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
  1420. &emulated_msrs,
  1421. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  1422. goto out;
  1423. r = 0;
  1424. break;
  1425. }
  1426. case KVM_GET_SUPPORTED_CPUID: {
  1427. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1428. struct kvm_cpuid2 cpuid;
  1429. r = -EFAULT;
  1430. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1431. goto out;
  1432. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  1433. cpuid_arg->entries);
  1434. if (r)
  1435. goto out;
  1436. r = -EFAULT;
  1437. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1438. goto out;
  1439. r = 0;
  1440. break;
  1441. }
  1442. case KVM_X86_GET_MCE_CAP_SUPPORTED: {
  1443. u64 mce_cap;
  1444. mce_cap = KVM_MCE_CAP_SUPPORTED;
  1445. r = -EFAULT;
  1446. if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
  1447. goto out;
  1448. r = 0;
  1449. break;
  1450. }
  1451. default:
  1452. r = -EINVAL;
  1453. }
  1454. out:
  1455. return r;
  1456. }
  1457. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1458. {
  1459. kvm_x86_ops->vcpu_load(vcpu, cpu);
  1460. if (unlikely(per_cpu(cpu_tsc_khz, cpu) == 0)) {
  1461. unsigned long khz = cpufreq_quick_get(cpu);
  1462. if (!khz)
  1463. khz = tsc_khz;
  1464. per_cpu(cpu_tsc_khz, cpu) = khz;
  1465. }
  1466. kvm_request_guest_time_update(vcpu);
  1467. }
  1468. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1469. {
  1470. kvm_put_guest_fpu(vcpu);
  1471. kvm_x86_ops->vcpu_put(vcpu);
  1472. }
  1473. static int is_efer_nx(void)
  1474. {
  1475. unsigned long long efer = 0;
  1476. rdmsrl_safe(MSR_EFER, &efer);
  1477. return efer & EFER_NX;
  1478. }
  1479. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  1480. {
  1481. int i;
  1482. struct kvm_cpuid_entry2 *e, *entry;
  1483. entry = NULL;
  1484. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  1485. e = &vcpu->arch.cpuid_entries[i];
  1486. if (e->function == 0x80000001) {
  1487. entry = e;
  1488. break;
  1489. }
  1490. }
  1491. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  1492. entry->edx &= ~(1 << 20);
  1493. printk(KERN_INFO "kvm: guest NX capability removed\n");
  1494. }
  1495. }
  1496. /* when an old userspace process fills a new kernel module */
  1497. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  1498. struct kvm_cpuid *cpuid,
  1499. struct kvm_cpuid_entry __user *entries)
  1500. {
  1501. int r, i;
  1502. struct kvm_cpuid_entry *cpuid_entries;
  1503. r = -E2BIG;
  1504. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1505. goto out;
  1506. r = -ENOMEM;
  1507. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  1508. if (!cpuid_entries)
  1509. goto out;
  1510. r = -EFAULT;
  1511. if (copy_from_user(cpuid_entries, entries,
  1512. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  1513. goto out_free;
  1514. for (i = 0; i < cpuid->nent; i++) {
  1515. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  1516. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  1517. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  1518. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  1519. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  1520. vcpu->arch.cpuid_entries[i].index = 0;
  1521. vcpu->arch.cpuid_entries[i].flags = 0;
  1522. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  1523. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  1524. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  1525. }
  1526. vcpu->arch.cpuid_nent = cpuid->nent;
  1527. cpuid_fix_nx_cap(vcpu);
  1528. r = 0;
  1529. kvm_apic_set_version(vcpu);
  1530. kvm_x86_ops->cpuid_update(vcpu);
  1531. out_free:
  1532. vfree(cpuid_entries);
  1533. out:
  1534. return r;
  1535. }
  1536. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  1537. struct kvm_cpuid2 *cpuid,
  1538. struct kvm_cpuid_entry2 __user *entries)
  1539. {
  1540. int r;
  1541. r = -E2BIG;
  1542. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1543. goto out;
  1544. r = -EFAULT;
  1545. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  1546. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  1547. goto out;
  1548. vcpu->arch.cpuid_nent = cpuid->nent;
  1549. kvm_apic_set_version(vcpu);
  1550. kvm_x86_ops->cpuid_update(vcpu);
  1551. return 0;
  1552. out:
  1553. return r;
  1554. }
  1555. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  1556. struct kvm_cpuid2 *cpuid,
  1557. struct kvm_cpuid_entry2 __user *entries)
  1558. {
  1559. int r;
  1560. r = -E2BIG;
  1561. if (cpuid->nent < vcpu->arch.cpuid_nent)
  1562. goto out;
  1563. r = -EFAULT;
  1564. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  1565. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  1566. goto out;
  1567. return 0;
  1568. out:
  1569. cpuid->nent = vcpu->arch.cpuid_nent;
  1570. return r;
  1571. }
  1572. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1573. u32 index)
  1574. {
  1575. entry->function = function;
  1576. entry->index = index;
  1577. cpuid_count(entry->function, entry->index,
  1578. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  1579. entry->flags = 0;
  1580. }
  1581. #define F(x) bit(X86_FEATURE_##x)
  1582. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1583. u32 index, int *nent, int maxnent)
  1584. {
  1585. unsigned f_nx = is_efer_nx() ? F(NX) : 0;
  1586. #ifdef CONFIG_X86_64
  1587. unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
  1588. ? F(GBPAGES) : 0;
  1589. unsigned f_lm = F(LM);
  1590. #else
  1591. unsigned f_gbpages = 0;
  1592. unsigned f_lm = 0;
  1593. #endif
  1594. unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
  1595. /* cpuid 1.edx */
  1596. const u32 kvm_supported_word0_x86_features =
  1597. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1598. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1599. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
  1600. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1601. F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
  1602. 0 /* Reserved, DS, ACPI */ | F(MMX) |
  1603. F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
  1604. 0 /* HTT, TM, Reserved, PBE */;
  1605. /* cpuid 0x80000001.edx */
  1606. const u32 kvm_supported_word1_x86_features =
  1607. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1608. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1609. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
  1610. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1611. F(PAT) | F(PSE36) | 0 /* Reserved */ |
  1612. f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
  1613. F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
  1614. 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
  1615. /* cpuid 1.ecx */
  1616. const u32 kvm_supported_word4_x86_features =
  1617. F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
  1618. 0 /* DS-CPL, VMX, SMX, EST */ |
  1619. 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
  1620. 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
  1621. 0 /* Reserved, DCA */ | F(XMM4_1) |
  1622. F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
  1623. 0 /* Reserved, XSAVE, OSXSAVE */;
  1624. /* cpuid 0x80000001.ecx */
  1625. const u32 kvm_supported_word6_x86_features =
  1626. F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
  1627. F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
  1628. F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
  1629. 0 /* SKINIT */ | 0 /* WDT */;
  1630. /* all calls to cpuid_count() should be made on the same cpu */
  1631. get_cpu();
  1632. do_cpuid_1_ent(entry, function, index);
  1633. ++*nent;
  1634. switch (function) {
  1635. case 0:
  1636. entry->eax = min(entry->eax, (u32)0xb);
  1637. break;
  1638. case 1:
  1639. entry->edx &= kvm_supported_word0_x86_features;
  1640. entry->ecx &= kvm_supported_word4_x86_features;
  1641. /* we support x2apic emulation even if host does not support
  1642. * it since we emulate x2apic in software */
  1643. entry->ecx |= F(X2APIC);
  1644. break;
  1645. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  1646. * may return different values. This forces us to get_cpu() before
  1647. * issuing the first command, and also to emulate this annoying behavior
  1648. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  1649. case 2: {
  1650. int t, times = entry->eax & 0xff;
  1651. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1652. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  1653. for (t = 1; t < times && *nent < maxnent; ++t) {
  1654. do_cpuid_1_ent(&entry[t], function, 0);
  1655. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1656. ++*nent;
  1657. }
  1658. break;
  1659. }
  1660. /* function 4 and 0xb have additional index. */
  1661. case 4: {
  1662. int i, cache_type;
  1663. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1664. /* read more entries until cache_type is zero */
  1665. for (i = 1; *nent < maxnent; ++i) {
  1666. cache_type = entry[i - 1].eax & 0x1f;
  1667. if (!cache_type)
  1668. break;
  1669. do_cpuid_1_ent(&entry[i], function, i);
  1670. entry[i].flags |=
  1671. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1672. ++*nent;
  1673. }
  1674. break;
  1675. }
  1676. case 0xb: {
  1677. int i, level_type;
  1678. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1679. /* read more entries until level_type is zero */
  1680. for (i = 1; *nent < maxnent; ++i) {
  1681. level_type = entry[i - 1].ecx & 0xff00;
  1682. if (!level_type)
  1683. break;
  1684. do_cpuid_1_ent(&entry[i], function, i);
  1685. entry[i].flags |=
  1686. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1687. ++*nent;
  1688. }
  1689. break;
  1690. }
  1691. case 0x80000000:
  1692. entry->eax = min(entry->eax, 0x8000001a);
  1693. break;
  1694. case 0x80000001:
  1695. entry->edx &= kvm_supported_word1_x86_features;
  1696. entry->ecx &= kvm_supported_word6_x86_features;
  1697. break;
  1698. }
  1699. put_cpu();
  1700. }
  1701. #undef F
  1702. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  1703. struct kvm_cpuid_entry2 __user *entries)
  1704. {
  1705. struct kvm_cpuid_entry2 *cpuid_entries;
  1706. int limit, nent = 0, r = -E2BIG;
  1707. u32 func;
  1708. if (cpuid->nent < 1)
  1709. goto out;
  1710. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1711. cpuid->nent = KVM_MAX_CPUID_ENTRIES;
  1712. r = -ENOMEM;
  1713. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  1714. if (!cpuid_entries)
  1715. goto out;
  1716. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  1717. limit = cpuid_entries[0].eax;
  1718. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1719. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1720. &nent, cpuid->nent);
  1721. r = -E2BIG;
  1722. if (nent >= cpuid->nent)
  1723. goto out_free;
  1724. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1725. limit = cpuid_entries[nent - 1].eax;
  1726. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  1727. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1728. &nent, cpuid->nent);
  1729. r = -E2BIG;
  1730. if (nent >= cpuid->nent)
  1731. goto out_free;
  1732. r = -EFAULT;
  1733. if (copy_to_user(entries, cpuid_entries,
  1734. nent * sizeof(struct kvm_cpuid_entry2)))
  1735. goto out_free;
  1736. cpuid->nent = nent;
  1737. r = 0;
  1738. out_free:
  1739. vfree(cpuid_entries);
  1740. out:
  1741. return r;
  1742. }
  1743. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  1744. struct kvm_lapic_state *s)
  1745. {
  1746. vcpu_load(vcpu);
  1747. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  1748. vcpu_put(vcpu);
  1749. return 0;
  1750. }
  1751. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  1752. struct kvm_lapic_state *s)
  1753. {
  1754. vcpu_load(vcpu);
  1755. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  1756. kvm_apic_post_state_restore(vcpu);
  1757. update_cr8_intercept(vcpu);
  1758. vcpu_put(vcpu);
  1759. return 0;
  1760. }
  1761. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1762. struct kvm_interrupt *irq)
  1763. {
  1764. if (irq->irq < 0 || irq->irq >= 256)
  1765. return -EINVAL;
  1766. if (irqchip_in_kernel(vcpu->kvm))
  1767. return -ENXIO;
  1768. vcpu_load(vcpu);
  1769. kvm_queue_interrupt(vcpu, irq->irq, false);
  1770. vcpu_put(vcpu);
  1771. return 0;
  1772. }
  1773. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  1774. {
  1775. vcpu_load(vcpu);
  1776. kvm_inject_nmi(vcpu);
  1777. vcpu_put(vcpu);
  1778. return 0;
  1779. }
  1780. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  1781. struct kvm_tpr_access_ctl *tac)
  1782. {
  1783. if (tac->flags)
  1784. return -EINVAL;
  1785. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  1786. return 0;
  1787. }
  1788. static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
  1789. u64 mcg_cap)
  1790. {
  1791. int r;
  1792. unsigned bank_num = mcg_cap & 0xff, bank;
  1793. r = -EINVAL;
  1794. if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
  1795. goto out;
  1796. if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
  1797. goto out;
  1798. r = 0;
  1799. vcpu->arch.mcg_cap = mcg_cap;
  1800. /* Init IA32_MCG_CTL to all 1s */
  1801. if (mcg_cap & MCG_CTL_P)
  1802. vcpu->arch.mcg_ctl = ~(u64)0;
  1803. /* Init IA32_MCi_CTL to all 1s */
  1804. for (bank = 0; bank < bank_num; bank++)
  1805. vcpu->arch.mce_banks[bank*4] = ~(u64)0;
  1806. out:
  1807. return r;
  1808. }
  1809. static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
  1810. struct kvm_x86_mce *mce)
  1811. {
  1812. u64 mcg_cap = vcpu->arch.mcg_cap;
  1813. unsigned bank_num = mcg_cap & 0xff;
  1814. u64 *banks = vcpu->arch.mce_banks;
  1815. if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
  1816. return -EINVAL;
  1817. /*
  1818. * if IA32_MCG_CTL is not all 1s, the uncorrected error
  1819. * reporting is disabled
  1820. */
  1821. if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
  1822. vcpu->arch.mcg_ctl != ~(u64)0)
  1823. return 0;
  1824. banks += 4 * mce->bank;
  1825. /*
  1826. * if IA32_MCi_CTL is not all 1s, the uncorrected error
  1827. * reporting is disabled for the bank
  1828. */
  1829. if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
  1830. return 0;
  1831. if (mce->status & MCI_STATUS_UC) {
  1832. if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
  1833. !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
  1834. printk(KERN_DEBUG "kvm: set_mce: "
  1835. "injects mce exception while "
  1836. "previous one is in progress!\n");
  1837. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  1838. return 0;
  1839. }
  1840. if (banks[1] & MCI_STATUS_VAL)
  1841. mce->status |= MCI_STATUS_OVER;
  1842. banks[2] = mce->addr;
  1843. banks[3] = mce->misc;
  1844. vcpu->arch.mcg_status = mce->mcg_status;
  1845. banks[1] = mce->status;
  1846. kvm_queue_exception(vcpu, MC_VECTOR);
  1847. } else if (!(banks[1] & MCI_STATUS_VAL)
  1848. || !(banks[1] & MCI_STATUS_UC)) {
  1849. if (banks[1] & MCI_STATUS_VAL)
  1850. mce->status |= MCI_STATUS_OVER;
  1851. banks[2] = mce->addr;
  1852. banks[3] = mce->misc;
  1853. banks[1] = mce->status;
  1854. } else
  1855. banks[1] |= MCI_STATUS_OVER;
  1856. return 0;
  1857. }
  1858. static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
  1859. struct kvm_vcpu_events *events)
  1860. {
  1861. vcpu_load(vcpu);
  1862. events->exception.injected = vcpu->arch.exception.pending;
  1863. events->exception.nr = vcpu->arch.exception.nr;
  1864. events->exception.has_error_code = vcpu->arch.exception.has_error_code;
  1865. events->exception.error_code = vcpu->arch.exception.error_code;
  1866. events->interrupt.injected = vcpu->arch.interrupt.pending;
  1867. events->interrupt.nr = vcpu->arch.interrupt.nr;
  1868. events->interrupt.soft = vcpu->arch.interrupt.soft;
  1869. events->nmi.injected = vcpu->arch.nmi_injected;
  1870. events->nmi.pending = vcpu->arch.nmi_pending;
  1871. events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
  1872. events->sipi_vector = vcpu->arch.sipi_vector;
  1873. events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
  1874. | KVM_VCPUEVENT_VALID_SIPI_VECTOR);
  1875. vcpu_put(vcpu);
  1876. }
  1877. static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
  1878. struct kvm_vcpu_events *events)
  1879. {
  1880. if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
  1881. | KVM_VCPUEVENT_VALID_SIPI_VECTOR))
  1882. return -EINVAL;
  1883. vcpu_load(vcpu);
  1884. vcpu->arch.exception.pending = events->exception.injected;
  1885. vcpu->arch.exception.nr = events->exception.nr;
  1886. vcpu->arch.exception.has_error_code = events->exception.has_error_code;
  1887. vcpu->arch.exception.error_code = events->exception.error_code;
  1888. vcpu->arch.interrupt.pending = events->interrupt.injected;
  1889. vcpu->arch.interrupt.nr = events->interrupt.nr;
  1890. vcpu->arch.interrupt.soft = events->interrupt.soft;
  1891. if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
  1892. kvm_pic_clear_isr_ack(vcpu->kvm);
  1893. vcpu->arch.nmi_injected = events->nmi.injected;
  1894. if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
  1895. vcpu->arch.nmi_pending = events->nmi.pending;
  1896. kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
  1897. if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
  1898. vcpu->arch.sipi_vector = events->sipi_vector;
  1899. vcpu_put(vcpu);
  1900. return 0;
  1901. }
  1902. long kvm_arch_vcpu_ioctl(struct file *filp,
  1903. unsigned int ioctl, unsigned long arg)
  1904. {
  1905. struct kvm_vcpu *vcpu = filp->private_data;
  1906. void __user *argp = (void __user *)arg;
  1907. int r;
  1908. struct kvm_lapic_state *lapic = NULL;
  1909. switch (ioctl) {
  1910. case KVM_GET_LAPIC: {
  1911. r = -EINVAL;
  1912. if (!vcpu->arch.apic)
  1913. goto out;
  1914. lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1915. r = -ENOMEM;
  1916. if (!lapic)
  1917. goto out;
  1918. r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
  1919. if (r)
  1920. goto out;
  1921. r = -EFAULT;
  1922. if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
  1923. goto out;
  1924. r = 0;
  1925. break;
  1926. }
  1927. case KVM_SET_LAPIC: {
  1928. r = -EINVAL;
  1929. if (!vcpu->arch.apic)
  1930. goto out;
  1931. lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1932. r = -ENOMEM;
  1933. if (!lapic)
  1934. goto out;
  1935. r = -EFAULT;
  1936. if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
  1937. goto out;
  1938. r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
  1939. if (r)
  1940. goto out;
  1941. r = 0;
  1942. break;
  1943. }
  1944. case KVM_INTERRUPT: {
  1945. struct kvm_interrupt irq;
  1946. r = -EFAULT;
  1947. if (copy_from_user(&irq, argp, sizeof irq))
  1948. goto out;
  1949. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  1950. if (r)
  1951. goto out;
  1952. r = 0;
  1953. break;
  1954. }
  1955. case KVM_NMI: {
  1956. r = kvm_vcpu_ioctl_nmi(vcpu);
  1957. if (r)
  1958. goto out;
  1959. r = 0;
  1960. break;
  1961. }
  1962. case KVM_SET_CPUID: {
  1963. struct kvm_cpuid __user *cpuid_arg = argp;
  1964. struct kvm_cpuid cpuid;
  1965. r = -EFAULT;
  1966. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1967. goto out;
  1968. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  1969. if (r)
  1970. goto out;
  1971. break;
  1972. }
  1973. case KVM_SET_CPUID2: {
  1974. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1975. struct kvm_cpuid2 cpuid;
  1976. r = -EFAULT;
  1977. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1978. goto out;
  1979. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  1980. cpuid_arg->entries);
  1981. if (r)
  1982. goto out;
  1983. break;
  1984. }
  1985. case KVM_GET_CPUID2: {
  1986. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1987. struct kvm_cpuid2 cpuid;
  1988. r = -EFAULT;
  1989. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1990. goto out;
  1991. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  1992. cpuid_arg->entries);
  1993. if (r)
  1994. goto out;
  1995. r = -EFAULT;
  1996. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1997. goto out;
  1998. r = 0;
  1999. break;
  2000. }
  2001. case KVM_GET_MSRS:
  2002. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  2003. break;
  2004. case KVM_SET_MSRS:
  2005. r = msr_io(vcpu, argp, do_set_msr, 0);
  2006. break;
  2007. case KVM_TPR_ACCESS_REPORTING: {
  2008. struct kvm_tpr_access_ctl tac;
  2009. r = -EFAULT;
  2010. if (copy_from_user(&tac, argp, sizeof tac))
  2011. goto out;
  2012. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  2013. if (r)
  2014. goto out;
  2015. r = -EFAULT;
  2016. if (copy_to_user(argp, &tac, sizeof tac))
  2017. goto out;
  2018. r = 0;
  2019. break;
  2020. };
  2021. case KVM_SET_VAPIC_ADDR: {
  2022. struct kvm_vapic_addr va;
  2023. r = -EINVAL;
  2024. if (!irqchip_in_kernel(vcpu->kvm))
  2025. goto out;
  2026. r = -EFAULT;
  2027. if (copy_from_user(&va, argp, sizeof va))
  2028. goto out;
  2029. r = 0;
  2030. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  2031. break;
  2032. }
  2033. case KVM_X86_SETUP_MCE: {
  2034. u64 mcg_cap;
  2035. r = -EFAULT;
  2036. if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
  2037. goto out;
  2038. r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
  2039. break;
  2040. }
  2041. case KVM_X86_SET_MCE: {
  2042. struct kvm_x86_mce mce;
  2043. r = -EFAULT;
  2044. if (copy_from_user(&mce, argp, sizeof mce))
  2045. goto out;
  2046. r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
  2047. break;
  2048. }
  2049. case KVM_GET_VCPU_EVENTS: {
  2050. struct kvm_vcpu_events events;
  2051. kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
  2052. r = -EFAULT;
  2053. if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
  2054. break;
  2055. r = 0;
  2056. break;
  2057. }
  2058. case KVM_SET_VCPU_EVENTS: {
  2059. struct kvm_vcpu_events events;
  2060. r = -EFAULT;
  2061. if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
  2062. break;
  2063. r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
  2064. break;
  2065. }
  2066. default:
  2067. r = -EINVAL;
  2068. }
  2069. out:
  2070. kfree(lapic);
  2071. return r;
  2072. }
  2073. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  2074. {
  2075. int ret;
  2076. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  2077. return -1;
  2078. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  2079. return ret;
  2080. }
  2081. static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
  2082. u64 ident_addr)
  2083. {
  2084. kvm->arch.ept_identity_map_addr = ident_addr;
  2085. return 0;
  2086. }
  2087. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  2088. u32 kvm_nr_mmu_pages)
  2089. {
  2090. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  2091. return -EINVAL;
  2092. mutex_lock(&kvm->slots_lock);
  2093. spin_lock(&kvm->mmu_lock);
  2094. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  2095. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  2096. spin_unlock(&kvm->mmu_lock);
  2097. mutex_unlock(&kvm->slots_lock);
  2098. return 0;
  2099. }
  2100. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  2101. {
  2102. return kvm->arch.n_alloc_mmu_pages;
  2103. }
  2104. gfn_t unalias_gfn_instantiation(struct kvm *kvm, gfn_t gfn)
  2105. {
  2106. int i;
  2107. struct kvm_mem_alias *alias;
  2108. struct kvm_mem_aliases *aliases;
  2109. aliases = rcu_dereference(kvm->arch.aliases);
  2110. for (i = 0; i < aliases->naliases; ++i) {
  2111. alias = &aliases->aliases[i];
  2112. if (alias->flags & KVM_ALIAS_INVALID)
  2113. continue;
  2114. if (gfn >= alias->base_gfn
  2115. && gfn < alias->base_gfn + alias->npages)
  2116. return alias->target_gfn + gfn - alias->base_gfn;
  2117. }
  2118. return gfn;
  2119. }
  2120. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  2121. {
  2122. int i;
  2123. struct kvm_mem_alias *alias;
  2124. struct kvm_mem_aliases *aliases;
  2125. aliases = rcu_dereference(kvm->arch.aliases);
  2126. for (i = 0; i < aliases->naliases; ++i) {
  2127. alias = &aliases->aliases[i];
  2128. if (gfn >= alias->base_gfn
  2129. && gfn < alias->base_gfn + alias->npages)
  2130. return alias->target_gfn + gfn - alias->base_gfn;
  2131. }
  2132. return gfn;
  2133. }
  2134. /*
  2135. * Set a new alias region. Aliases map a portion of physical memory into
  2136. * another portion. This is useful for memory windows, for example the PC
  2137. * VGA region.
  2138. */
  2139. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  2140. struct kvm_memory_alias *alias)
  2141. {
  2142. int r, n;
  2143. struct kvm_mem_alias *p;
  2144. struct kvm_mem_aliases *aliases, *old_aliases;
  2145. r = -EINVAL;
  2146. /* General sanity checks */
  2147. if (alias->memory_size & (PAGE_SIZE - 1))
  2148. goto out;
  2149. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  2150. goto out;
  2151. if (alias->slot >= KVM_ALIAS_SLOTS)
  2152. goto out;
  2153. if (alias->guest_phys_addr + alias->memory_size
  2154. < alias->guest_phys_addr)
  2155. goto out;
  2156. if (alias->target_phys_addr + alias->memory_size
  2157. < alias->target_phys_addr)
  2158. goto out;
  2159. r = -ENOMEM;
  2160. aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
  2161. if (!aliases)
  2162. goto out;
  2163. mutex_lock(&kvm->slots_lock);
  2164. /* invalidate any gfn reference in case of deletion/shrinking */
  2165. memcpy(aliases, kvm->arch.aliases, sizeof(struct kvm_mem_aliases));
  2166. aliases->aliases[alias->slot].flags |= KVM_ALIAS_INVALID;
  2167. old_aliases = kvm->arch.aliases;
  2168. rcu_assign_pointer(kvm->arch.aliases, aliases);
  2169. synchronize_srcu_expedited(&kvm->srcu);
  2170. kvm_mmu_zap_all(kvm);
  2171. kfree(old_aliases);
  2172. r = -ENOMEM;
  2173. aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
  2174. if (!aliases)
  2175. goto out_unlock;
  2176. memcpy(aliases, kvm->arch.aliases, sizeof(struct kvm_mem_aliases));
  2177. p = &aliases->aliases[alias->slot];
  2178. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  2179. p->npages = alias->memory_size >> PAGE_SHIFT;
  2180. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  2181. p->flags &= ~(KVM_ALIAS_INVALID);
  2182. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  2183. if (aliases->aliases[n - 1].npages)
  2184. break;
  2185. aliases->naliases = n;
  2186. old_aliases = kvm->arch.aliases;
  2187. rcu_assign_pointer(kvm->arch.aliases, aliases);
  2188. synchronize_srcu_expedited(&kvm->srcu);
  2189. kfree(old_aliases);
  2190. r = 0;
  2191. out_unlock:
  2192. mutex_unlock(&kvm->slots_lock);
  2193. out:
  2194. return r;
  2195. }
  2196. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2197. {
  2198. int r;
  2199. r = 0;
  2200. switch (chip->chip_id) {
  2201. case KVM_IRQCHIP_PIC_MASTER:
  2202. memcpy(&chip->chip.pic,
  2203. &pic_irqchip(kvm)->pics[0],
  2204. sizeof(struct kvm_pic_state));
  2205. break;
  2206. case KVM_IRQCHIP_PIC_SLAVE:
  2207. memcpy(&chip->chip.pic,
  2208. &pic_irqchip(kvm)->pics[1],
  2209. sizeof(struct kvm_pic_state));
  2210. break;
  2211. case KVM_IRQCHIP_IOAPIC:
  2212. r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
  2213. break;
  2214. default:
  2215. r = -EINVAL;
  2216. break;
  2217. }
  2218. return r;
  2219. }
  2220. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2221. {
  2222. int r;
  2223. r = 0;
  2224. switch (chip->chip_id) {
  2225. case KVM_IRQCHIP_PIC_MASTER:
  2226. raw_spin_lock(&pic_irqchip(kvm)->lock);
  2227. memcpy(&pic_irqchip(kvm)->pics[0],
  2228. &chip->chip.pic,
  2229. sizeof(struct kvm_pic_state));
  2230. raw_spin_unlock(&pic_irqchip(kvm)->lock);
  2231. break;
  2232. case KVM_IRQCHIP_PIC_SLAVE:
  2233. raw_spin_lock(&pic_irqchip(kvm)->lock);
  2234. memcpy(&pic_irqchip(kvm)->pics[1],
  2235. &chip->chip.pic,
  2236. sizeof(struct kvm_pic_state));
  2237. raw_spin_unlock(&pic_irqchip(kvm)->lock);
  2238. break;
  2239. case KVM_IRQCHIP_IOAPIC:
  2240. r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
  2241. break;
  2242. default:
  2243. r = -EINVAL;
  2244. break;
  2245. }
  2246. kvm_pic_update_irq(pic_irqchip(kvm));
  2247. return r;
  2248. }
  2249. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2250. {
  2251. int r = 0;
  2252. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2253. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  2254. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2255. return r;
  2256. }
  2257. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2258. {
  2259. int r = 0;
  2260. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2261. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  2262. kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
  2263. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2264. return r;
  2265. }
  2266. static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2267. {
  2268. int r = 0;
  2269. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2270. memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
  2271. sizeof(ps->channels));
  2272. ps->flags = kvm->arch.vpit->pit_state.flags;
  2273. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2274. return r;
  2275. }
  2276. static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2277. {
  2278. int r = 0, start = 0;
  2279. u32 prev_legacy, cur_legacy;
  2280. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2281. prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2282. cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2283. if (!prev_legacy && cur_legacy)
  2284. start = 1;
  2285. memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
  2286. sizeof(kvm->arch.vpit->pit_state.channels));
  2287. kvm->arch.vpit->pit_state.flags = ps->flags;
  2288. kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
  2289. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2290. return r;
  2291. }
  2292. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  2293. struct kvm_reinject_control *control)
  2294. {
  2295. if (!kvm->arch.vpit)
  2296. return -ENXIO;
  2297. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2298. kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
  2299. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2300. return 0;
  2301. }
  2302. /*
  2303. * Get (and clear) the dirty memory log for a memory slot.
  2304. */
  2305. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  2306. struct kvm_dirty_log *log)
  2307. {
  2308. int r, i;
  2309. struct kvm_memory_slot *memslot;
  2310. unsigned long n;
  2311. unsigned long is_dirty = 0;
  2312. unsigned long *dirty_bitmap = NULL;
  2313. mutex_lock(&kvm->slots_lock);
  2314. r = -EINVAL;
  2315. if (log->slot >= KVM_MEMORY_SLOTS)
  2316. goto out;
  2317. memslot = &kvm->memslots->memslots[log->slot];
  2318. r = -ENOENT;
  2319. if (!memslot->dirty_bitmap)
  2320. goto out;
  2321. n = kvm_dirty_bitmap_bytes(memslot);
  2322. r = -ENOMEM;
  2323. dirty_bitmap = vmalloc(n);
  2324. if (!dirty_bitmap)
  2325. goto out;
  2326. memset(dirty_bitmap, 0, n);
  2327. for (i = 0; !is_dirty && i < n/sizeof(long); i++)
  2328. is_dirty = memslot->dirty_bitmap[i];
  2329. /* If nothing is dirty, don't bother messing with page tables. */
  2330. if (is_dirty) {
  2331. struct kvm_memslots *slots, *old_slots;
  2332. spin_lock(&kvm->mmu_lock);
  2333. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  2334. spin_unlock(&kvm->mmu_lock);
  2335. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  2336. if (!slots)
  2337. goto out_free;
  2338. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  2339. slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
  2340. old_slots = kvm->memslots;
  2341. rcu_assign_pointer(kvm->memslots, slots);
  2342. synchronize_srcu_expedited(&kvm->srcu);
  2343. dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
  2344. kfree(old_slots);
  2345. }
  2346. r = 0;
  2347. if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
  2348. r = -EFAULT;
  2349. out_free:
  2350. vfree(dirty_bitmap);
  2351. out:
  2352. mutex_unlock(&kvm->slots_lock);
  2353. return r;
  2354. }
  2355. long kvm_arch_vm_ioctl(struct file *filp,
  2356. unsigned int ioctl, unsigned long arg)
  2357. {
  2358. struct kvm *kvm = filp->private_data;
  2359. void __user *argp = (void __user *)arg;
  2360. int r = -ENOTTY;
  2361. /*
  2362. * This union makes it completely explicit to gcc-3.x
  2363. * that these two variables' stack usage should be
  2364. * combined, not added together.
  2365. */
  2366. union {
  2367. struct kvm_pit_state ps;
  2368. struct kvm_pit_state2 ps2;
  2369. struct kvm_memory_alias alias;
  2370. struct kvm_pit_config pit_config;
  2371. } u;
  2372. switch (ioctl) {
  2373. case KVM_SET_TSS_ADDR:
  2374. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  2375. if (r < 0)
  2376. goto out;
  2377. break;
  2378. case KVM_SET_IDENTITY_MAP_ADDR: {
  2379. u64 ident_addr;
  2380. r = -EFAULT;
  2381. if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
  2382. goto out;
  2383. r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
  2384. if (r < 0)
  2385. goto out;
  2386. break;
  2387. }
  2388. case KVM_SET_MEMORY_REGION: {
  2389. struct kvm_memory_region kvm_mem;
  2390. struct kvm_userspace_memory_region kvm_userspace_mem;
  2391. r = -EFAULT;
  2392. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  2393. goto out;
  2394. kvm_userspace_mem.slot = kvm_mem.slot;
  2395. kvm_userspace_mem.flags = kvm_mem.flags;
  2396. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  2397. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  2398. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  2399. if (r)
  2400. goto out;
  2401. break;
  2402. }
  2403. case KVM_SET_NR_MMU_PAGES:
  2404. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  2405. if (r)
  2406. goto out;
  2407. break;
  2408. case KVM_GET_NR_MMU_PAGES:
  2409. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  2410. break;
  2411. case KVM_SET_MEMORY_ALIAS:
  2412. r = -EFAULT;
  2413. if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
  2414. goto out;
  2415. r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
  2416. if (r)
  2417. goto out;
  2418. break;
  2419. case KVM_CREATE_IRQCHIP: {
  2420. struct kvm_pic *vpic;
  2421. mutex_lock(&kvm->lock);
  2422. r = -EEXIST;
  2423. if (kvm->arch.vpic)
  2424. goto create_irqchip_unlock;
  2425. r = -ENOMEM;
  2426. vpic = kvm_create_pic(kvm);
  2427. if (vpic) {
  2428. r = kvm_ioapic_init(kvm);
  2429. if (r) {
  2430. kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
  2431. &vpic->dev);
  2432. kfree(vpic);
  2433. goto create_irqchip_unlock;
  2434. }
  2435. } else
  2436. goto create_irqchip_unlock;
  2437. smp_wmb();
  2438. kvm->arch.vpic = vpic;
  2439. smp_wmb();
  2440. r = kvm_setup_default_irq_routing(kvm);
  2441. if (r) {
  2442. mutex_lock(&kvm->irq_lock);
  2443. kvm_ioapic_destroy(kvm);
  2444. kvm_destroy_pic(kvm);
  2445. mutex_unlock(&kvm->irq_lock);
  2446. }
  2447. create_irqchip_unlock:
  2448. mutex_unlock(&kvm->lock);
  2449. break;
  2450. }
  2451. case KVM_CREATE_PIT:
  2452. u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
  2453. goto create_pit;
  2454. case KVM_CREATE_PIT2:
  2455. r = -EFAULT;
  2456. if (copy_from_user(&u.pit_config, argp,
  2457. sizeof(struct kvm_pit_config)))
  2458. goto out;
  2459. create_pit:
  2460. mutex_lock(&kvm->slots_lock);
  2461. r = -EEXIST;
  2462. if (kvm->arch.vpit)
  2463. goto create_pit_unlock;
  2464. r = -ENOMEM;
  2465. kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
  2466. if (kvm->arch.vpit)
  2467. r = 0;
  2468. create_pit_unlock:
  2469. mutex_unlock(&kvm->slots_lock);
  2470. break;
  2471. case KVM_IRQ_LINE_STATUS:
  2472. case KVM_IRQ_LINE: {
  2473. struct kvm_irq_level irq_event;
  2474. r = -EFAULT;
  2475. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  2476. goto out;
  2477. if (irqchip_in_kernel(kvm)) {
  2478. __s32 status;
  2479. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  2480. irq_event.irq, irq_event.level);
  2481. if (ioctl == KVM_IRQ_LINE_STATUS) {
  2482. irq_event.status = status;
  2483. if (copy_to_user(argp, &irq_event,
  2484. sizeof irq_event))
  2485. goto out;
  2486. }
  2487. r = 0;
  2488. }
  2489. break;
  2490. }
  2491. case KVM_GET_IRQCHIP: {
  2492. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2493. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2494. r = -ENOMEM;
  2495. if (!chip)
  2496. goto out;
  2497. r = -EFAULT;
  2498. if (copy_from_user(chip, argp, sizeof *chip))
  2499. goto get_irqchip_out;
  2500. r = -ENXIO;
  2501. if (!irqchip_in_kernel(kvm))
  2502. goto get_irqchip_out;
  2503. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  2504. if (r)
  2505. goto get_irqchip_out;
  2506. r = -EFAULT;
  2507. if (copy_to_user(argp, chip, sizeof *chip))
  2508. goto get_irqchip_out;
  2509. r = 0;
  2510. get_irqchip_out:
  2511. kfree(chip);
  2512. if (r)
  2513. goto out;
  2514. break;
  2515. }
  2516. case KVM_SET_IRQCHIP: {
  2517. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2518. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2519. r = -ENOMEM;
  2520. if (!chip)
  2521. goto out;
  2522. r = -EFAULT;
  2523. if (copy_from_user(chip, argp, sizeof *chip))
  2524. goto set_irqchip_out;
  2525. r = -ENXIO;
  2526. if (!irqchip_in_kernel(kvm))
  2527. goto set_irqchip_out;
  2528. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  2529. if (r)
  2530. goto set_irqchip_out;
  2531. r = 0;
  2532. set_irqchip_out:
  2533. kfree(chip);
  2534. if (r)
  2535. goto out;
  2536. break;
  2537. }
  2538. case KVM_GET_PIT: {
  2539. r = -EFAULT;
  2540. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  2541. goto out;
  2542. r = -ENXIO;
  2543. if (!kvm->arch.vpit)
  2544. goto out;
  2545. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  2546. if (r)
  2547. goto out;
  2548. r = -EFAULT;
  2549. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  2550. goto out;
  2551. r = 0;
  2552. break;
  2553. }
  2554. case KVM_SET_PIT: {
  2555. r = -EFAULT;
  2556. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  2557. goto out;
  2558. r = -ENXIO;
  2559. if (!kvm->arch.vpit)
  2560. goto out;
  2561. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  2562. if (r)
  2563. goto out;
  2564. r = 0;
  2565. break;
  2566. }
  2567. case KVM_GET_PIT2: {
  2568. r = -ENXIO;
  2569. if (!kvm->arch.vpit)
  2570. goto out;
  2571. r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
  2572. if (r)
  2573. goto out;
  2574. r = -EFAULT;
  2575. if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
  2576. goto out;
  2577. r = 0;
  2578. break;
  2579. }
  2580. case KVM_SET_PIT2: {
  2581. r = -EFAULT;
  2582. if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
  2583. goto out;
  2584. r = -ENXIO;
  2585. if (!kvm->arch.vpit)
  2586. goto out;
  2587. r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
  2588. if (r)
  2589. goto out;
  2590. r = 0;
  2591. break;
  2592. }
  2593. case KVM_REINJECT_CONTROL: {
  2594. struct kvm_reinject_control control;
  2595. r = -EFAULT;
  2596. if (copy_from_user(&control, argp, sizeof(control)))
  2597. goto out;
  2598. r = kvm_vm_ioctl_reinject(kvm, &control);
  2599. if (r)
  2600. goto out;
  2601. r = 0;
  2602. break;
  2603. }
  2604. case KVM_XEN_HVM_CONFIG: {
  2605. r = -EFAULT;
  2606. if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
  2607. sizeof(struct kvm_xen_hvm_config)))
  2608. goto out;
  2609. r = -EINVAL;
  2610. if (kvm->arch.xen_hvm_config.flags)
  2611. goto out;
  2612. r = 0;
  2613. break;
  2614. }
  2615. case KVM_SET_CLOCK: {
  2616. struct timespec now;
  2617. struct kvm_clock_data user_ns;
  2618. u64 now_ns;
  2619. s64 delta;
  2620. r = -EFAULT;
  2621. if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
  2622. goto out;
  2623. r = -EINVAL;
  2624. if (user_ns.flags)
  2625. goto out;
  2626. r = 0;
  2627. ktime_get_ts(&now);
  2628. now_ns = timespec_to_ns(&now);
  2629. delta = user_ns.clock - now_ns;
  2630. kvm->arch.kvmclock_offset = delta;
  2631. break;
  2632. }
  2633. case KVM_GET_CLOCK: {
  2634. struct timespec now;
  2635. struct kvm_clock_data user_ns;
  2636. u64 now_ns;
  2637. ktime_get_ts(&now);
  2638. now_ns = timespec_to_ns(&now);
  2639. user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
  2640. user_ns.flags = 0;
  2641. r = -EFAULT;
  2642. if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
  2643. goto out;
  2644. r = 0;
  2645. break;
  2646. }
  2647. default:
  2648. ;
  2649. }
  2650. out:
  2651. return r;
  2652. }
  2653. static void kvm_init_msr_list(void)
  2654. {
  2655. u32 dummy[2];
  2656. unsigned i, j;
  2657. /* skip the first msrs in the list. KVM-specific */
  2658. for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
  2659. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  2660. continue;
  2661. if (j < i)
  2662. msrs_to_save[j] = msrs_to_save[i];
  2663. j++;
  2664. }
  2665. num_msrs_to_save = j;
  2666. }
  2667. static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
  2668. const void *v)
  2669. {
  2670. if (vcpu->arch.apic &&
  2671. !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
  2672. return 0;
  2673. return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
  2674. }
  2675. static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
  2676. {
  2677. if (vcpu->arch.apic &&
  2678. !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
  2679. return 0;
  2680. return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
  2681. }
  2682. gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  2683. {
  2684. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  2685. return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
  2686. }
  2687. gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  2688. {
  2689. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  2690. access |= PFERR_FETCH_MASK;
  2691. return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
  2692. }
  2693. gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  2694. {
  2695. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  2696. access |= PFERR_WRITE_MASK;
  2697. return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
  2698. }
  2699. /* uses this to access any guest's mapped memory without checking CPL */
  2700. gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  2701. {
  2702. return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, 0, error);
  2703. }
  2704. static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
  2705. struct kvm_vcpu *vcpu, u32 access,
  2706. u32 *error)
  2707. {
  2708. void *data = val;
  2709. int r = X86EMUL_CONTINUE;
  2710. while (bytes) {
  2711. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr, access, error);
  2712. unsigned offset = addr & (PAGE_SIZE-1);
  2713. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  2714. int ret;
  2715. if (gpa == UNMAPPED_GVA) {
  2716. r = X86EMUL_PROPAGATE_FAULT;
  2717. goto out;
  2718. }
  2719. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  2720. if (ret < 0) {
  2721. r = X86EMUL_UNHANDLEABLE;
  2722. goto out;
  2723. }
  2724. bytes -= toread;
  2725. data += toread;
  2726. addr += toread;
  2727. }
  2728. out:
  2729. return r;
  2730. }
  2731. /* used for instruction fetching */
  2732. static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2733. struct kvm_vcpu *vcpu, u32 *error)
  2734. {
  2735. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  2736. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
  2737. access | PFERR_FETCH_MASK, error);
  2738. }
  2739. static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2740. struct kvm_vcpu *vcpu, u32 *error)
  2741. {
  2742. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  2743. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
  2744. error);
  2745. }
  2746. static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
  2747. struct kvm_vcpu *vcpu, u32 *error)
  2748. {
  2749. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, error);
  2750. }
  2751. static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2752. struct kvm_vcpu *vcpu, u32 *error)
  2753. {
  2754. void *data = val;
  2755. int r = X86EMUL_CONTINUE;
  2756. while (bytes) {
  2757. gpa_t gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, error);
  2758. unsigned offset = addr & (PAGE_SIZE-1);
  2759. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  2760. int ret;
  2761. if (gpa == UNMAPPED_GVA) {
  2762. r = X86EMUL_PROPAGATE_FAULT;
  2763. goto out;
  2764. }
  2765. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  2766. if (ret < 0) {
  2767. r = X86EMUL_UNHANDLEABLE;
  2768. goto out;
  2769. }
  2770. bytes -= towrite;
  2771. data += towrite;
  2772. addr += towrite;
  2773. }
  2774. out:
  2775. return r;
  2776. }
  2777. static int emulator_read_emulated(unsigned long addr,
  2778. void *val,
  2779. unsigned int bytes,
  2780. struct kvm_vcpu *vcpu)
  2781. {
  2782. gpa_t gpa;
  2783. u32 error_code;
  2784. if (vcpu->mmio_read_completed) {
  2785. memcpy(val, vcpu->mmio_data, bytes);
  2786. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
  2787. vcpu->mmio_phys_addr, *(u64 *)val);
  2788. vcpu->mmio_read_completed = 0;
  2789. return X86EMUL_CONTINUE;
  2790. }
  2791. gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, &error_code);
  2792. if (gpa == UNMAPPED_GVA) {
  2793. kvm_inject_page_fault(vcpu, addr, error_code);
  2794. return X86EMUL_PROPAGATE_FAULT;
  2795. }
  2796. /* For APIC access vmexit */
  2797. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2798. goto mmio;
  2799. if (kvm_read_guest_virt(addr, val, bytes, vcpu, NULL)
  2800. == X86EMUL_CONTINUE)
  2801. return X86EMUL_CONTINUE;
  2802. mmio:
  2803. /*
  2804. * Is this MMIO handled locally?
  2805. */
  2806. if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
  2807. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
  2808. return X86EMUL_CONTINUE;
  2809. }
  2810. trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
  2811. vcpu->mmio_needed = 1;
  2812. vcpu->mmio_phys_addr = gpa;
  2813. vcpu->mmio_size = bytes;
  2814. vcpu->mmio_is_write = 0;
  2815. return X86EMUL_UNHANDLEABLE;
  2816. }
  2817. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  2818. const void *val, int bytes)
  2819. {
  2820. int ret;
  2821. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  2822. if (ret < 0)
  2823. return 0;
  2824. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  2825. return 1;
  2826. }
  2827. static int emulator_write_emulated_onepage(unsigned long addr,
  2828. const void *val,
  2829. unsigned int bytes,
  2830. struct kvm_vcpu *vcpu)
  2831. {
  2832. gpa_t gpa;
  2833. u32 error_code;
  2834. gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, &error_code);
  2835. if (gpa == UNMAPPED_GVA) {
  2836. kvm_inject_page_fault(vcpu, addr, error_code);
  2837. return X86EMUL_PROPAGATE_FAULT;
  2838. }
  2839. /* For APIC access vmexit */
  2840. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2841. goto mmio;
  2842. if (emulator_write_phys(vcpu, gpa, val, bytes))
  2843. return X86EMUL_CONTINUE;
  2844. mmio:
  2845. trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
  2846. /*
  2847. * Is this MMIO handled locally?
  2848. */
  2849. if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
  2850. return X86EMUL_CONTINUE;
  2851. vcpu->mmio_needed = 1;
  2852. vcpu->mmio_phys_addr = gpa;
  2853. vcpu->mmio_size = bytes;
  2854. vcpu->mmio_is_write = 1;
  2855. memcpy(vcpu->mmio_data, val, bytes);
  2856. return X86EMUL_CONTINUE;
  2857. }
  2858. int emulator_write_emulated(unsigned long addr,
  2859. const void *val,
  2860. unsigned int bytes,
  2861. struct kvm_vcpu *vcpu)
  2862. {
  2863. /* Crossing a page boundary? */
  2864. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  2865. int rc, now;
  2866. now = -addr & ~PAGE_MASK;
  2867. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  2868. if (rc != X86EMUL_CONTINUE)
  2869. return rc;
  2870. addr += now;
  2871. val += now;
  2872. bytes -= now;
  2873. }
  2874. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  2875. }
  2876. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  2877. static int emulator_cmpxchg_emulated(unsigned long addr,
  2878. const void *old,
  2879. const void *new,
  2880. unsigned int bytes,
  2881. struct kvm_vcpu *vcpu)
  2882. {
  2883. printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
  2884. #ifndef CONFIG_X86_64
  2885. /* guests cmpxchg8b have to be emulated atomically */
  2886. if (bytes == 8) {
  2887. gpa_t gpa;
  2888. struct page *page;
  2889. char *kaddr;
  2890. u64 val;
  2891. gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
  2892. if (gpa == UNMAPPED_GVA ||
  2893. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2894. goto emul_write;
  2895. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  2896. goto emul_write;
  2897. val = *(u64 *)new;
  2898. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2899. kaddr = kmap_atomic(page, KM_USER0);
  2900. set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
  2901. kunmap_atomic(kaddr, KM_USER0);
  2902. kvm_release_page_dirty(page);
  2903. }
  2904. emul_write:
  2905. #endif
  2906. return emulator_write_emulated(addr, new, bytes, vcpu);
  2907. }
  2908. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  2909. {
  2910. return kvm_x86_ops->get_segment_base(vcpu, seg);
  2911. }
  2912. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  2913. {
  2914. kvm_mmu_invlpg(vcpu, address);
  2915. return X86EMUL_CONTINUE;
  2916. }
  2917. int emulate_clts(struct kvm_vcpu *vcpu)
  2918. {
  2919. kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  2920. kvm_x86_ops->fpu_activate(vcpu);
  2921. return X86EMUL_CONTINUE;
  2922. }
  2923. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  2924. {
  2925. return kvm_x86_ops->get_dr(ctxt->vcpu, dr, dest);
  2926. }
  2927. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  2928. {
  2929. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  2930. return kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask);
  2931. }
  2932. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  2933. {
  2934. u8 opcodes[4];
  2935. unsigned long rip = kvm_rip_read(vcpu);
  2936. unsigned long rip_linear;
  2937. if (!printk_ratelimit())
  2938. return;
  2939. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  2940. kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu, NULL);
  2941. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  2942. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  2943. }
  2944. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  2945. static struct x86_emulate_ops emulate_ops = {
  2946. .read_std = kvm_read_guest_virt_system,
  2947. .fetch = kvm_fetch_guest_virt,
  2948. .read_emulated = emulator_read_emulated,
  2949. .write_emulated = emulator_write_emulated,
  2950. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  2951. };
  2952. static void cache_all_regs(struct kvm_vcpu *vcpu)
  2953. {
  2954. kvm_register_read(vcpu, VCPU_REGS_RAX);
  2955. kvm_register_read(vcpu, VCPU_REGS_RSP);
  2956. kvm_register_read(vcpu, VCPU_REGS_RIP);
  2957. vcpu->arch.regs_dirty = ~0;
  2958. }
  2959. int emulate_instruction(struct kvm_vcpu *vcpu,
  2960. unsigned long cr2,
  2961. u16 error_code,
  2962. int emulation_type)
  2963. {
  2964. int r, shadow_mask;
  2965. struct decode_cache *c;
  2966. struct kvm_run *run = vcpu->run;
  2967. kvm_clear_exception_queue(vcpu);
  2968. vcpu->arch.mmio_fault_cr2 = cr2;
  2969. /*
  2970. * TODO: fix emulate.c to use guest_read/write_register
  2971. * instead of direct ->regs accesses, can save hundred cycles
  2972. * on Intel for instructions that don't read/change RSP, for
  2973. * for example.
  2974. */
  2975. cache_all_regs(vcpu);
  2976. vcpu->mmio_is_write = 0;
  2977. vcpu->arch.pio.string = 0;
  2978. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  2979. int cs_db, cs_l;
  2980. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  2981. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  2982. vcpu->arch.emulate_ctxt.eflags = kvm_get_rflags(vcpu);
  2983. vcpu->arch.emulate_ctxt.mode =
  2984. (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
  2985. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  2986. ? X86EMUL_MODE_VM86 : cs_l
  2987. ? X86EMUL_MODE_PROT64 : cs_db
  2988. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  2989. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2990. /* Only allow emulation of specific instructions on #UD
  2991. * (namely VMMCALL, sysenter, sysexit, syscall)*/
  2992. c = &vcpu->arch.emulate_ctxt.decode;
  2993. if (emulation_type & EMULTYPE_TRAP_UD) {
  2994. if (!c->twobyte)
  2995. return EMULATE_FAIL;
  2996. switch (c->b) {
  2997. case 0x01: /* VMMCALL */
  2998. if (c->modrm_mod != 3 || c->modrm_rm != 1)
  2999. return EMULATE_FAIL;
  3000. break;
  3001. case 0x34: /* sysenter */
  3002. case 0x35: /* sysexit */
  3003. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  3004. return EMULATE_FAIL;
  3005. break;
  3006. case 0x05: /* syscall */
  3007. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  3008. return EMULATE_FAIL;
  3009. break;
  3010. default:
  3011. return EMULATE_FAIL;
  3012. }
  3013. if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
  3014. return EMULATE_FAIL;
  3015. }
  3016. ++vcpu->stat.insn_emulation;
  3017. if (r) {
  3018. ++vcpu->stat.insn_emulation_fail;
  3019. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  3020. return EMULATE_DONE;
  3021. return EMULATE_FAIL;
  3022. }
  3023. }
  3024. if (emulation_type & EMULTYPE_SKIP) {
  3025. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
  3026. return EMULATE_DONE;
  3027. }
  3028. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  3029. shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
  3030. if (r == 0)
  3031. kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
  3032. if (vcpu->arch.pio.string)
  3033. return EMULATE_DO_MMIO;
  3034. if ((r || vcpu->mmio_is_write) && run) {
  3035. run->exit_reason = KVM_EXIT_MMIO;
  3036. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  3037. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  3038. run->mmio.len = vcpu->mmio_size;
  3039. run->mmio.is_write = vcpu->mmio_is_write;
  3040. }
  3041. if (r) {
  3042. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  3043. return EMULATE_DONE;
  3044. if (!vcpu->mmio_needed) {
  3045. kvm_report_emulation_failure(vcpu, "mmio");
  3046. return EMULATE_FAIL;
  3047. }
  3048. return EMULATE_DO_MMIO;
  3049. }
  3050. kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  3051. if (vcpu->mmio_is_write) {
  3052. vcpu->mmio_needed = 0;
  3053. return EMULATE_DO_MMIO;
  3054. }
  3055. return EMULATE_DONE;
  3056. }
  3057. EXPORT_SYMBOL_GPL(emulate_instruction);
  3058. static int pio_copy_data(struct kvm_vcpu *vcpu)
  3059. {
  3060. void *p = vcpu->arch.pio_data;
  3061. gva_t q = vcpu->arch.pio.guest_gva;
  3062. unsigned bytes;
  3063. int ret;
  3064. u32 error_code;
  3065. bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
  3066. if (vcpu->arch.pio.in)
  3067. ret = kvm_write_guest_virt(q, p, bytes, vcpu, &error_code);
  3068. else
  3069. ret = kvm_read_guest_virt(q, p, bytes, vcpu, &error_code);
  3070. if (ret == X86EMUL_PROPAGATE_FAULT)
  3071. kvm_inject_page_fault(vcpu, q, error_code);
  3072. return ret;
  3073. }
  3074. int complete_pio(struct kvm_vcpu *vcpu)
  3075. {
  3076. struct kvm_pio_request *io = &vcpu->arch.pio;
  3077. long delta;
  3078. int r;
  3079. unsigned long val;
  3080. if (!io->string) {
  3081. if (io->in) {
  3082. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3083. memcpy(&val, vcpu->arch.pio_data, io->size);
  3084. kvm_register_write(vcpu, VCPU_REGS_RAX, val);
  3085. }
  3086. } else {
  3087. if (io->in) {
  3088. r = pio_copy_data(vcpu);
  3089. if (r)
  3090. goto out;
  3091. }
  3092. delta = 1;
  3093. if (io->rep) {
  3094. delta *= io->cur_count;
  3095. /*
  3096. * The size of the register should really depend on
  3097. * current address size.
  3098. */
  3099. val = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3100. val -= delta;
  3101. kvm_register_write(vcpu, VCPU_REGS_RCX, val);
  3102. }
  3103. if (io->down)
  3104. delta = -delta;
  3105. delta *= io->size;
  3106. if (io->in) {
  3107. val = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3108. val += delta;
  3109. kvm_register_write(vcpu, VCPU_REGS_RDI, val);
  3110. } else {
  3111. val = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3112. val += delta;
  3113. kvm_register_write(vcpu, VCPU_REGS_RSI, val);
  3114. }
  3115. }
  3116. out:
  3117. io->count -= io->cur_count;
  3118. io->cur_count = 0;
  3119. return 0;
  3120. }
  3121. static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
  3122. {
  3123. /* TODO: String I/O for in kernel device */
  3124. int r;
  3125. if (vcpu->arch.pio.in)
  3126. r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
  3127. vcpu->arch.pio.size, pd);
  3128. else
  3129. r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
  3130. vcpu->arch.pio.port, vcpu->arch.pio.size,
  3131. pd);
  3132. return r;
  3133. }
  3134. static int pio_string_write(struct kvm_vcpu *vcpu)
  3135. {
  3136. struct kvm_pio_request *io = &vcpu->arch.pio;
  3137. void *pd = vcpu->arch.pio_data;
  3138. int i, r = 0;
  3139. for (i = 0; i < io->cur_count; i++) {
  3140. if (kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
  3141. io->port, io->size, pd)) {
  3142. r = -EOPNOTSUPP;
  3143. break;
  3144. }
  3145. pd += io->size;
  3146. }
  3147. return r;
  3148. }
  3149. int kvm_emulate_pio(struct kvm_vcpu *vcpu, int in, int size, unsigned port)
  3150. {
  3151. unsigned long val;
  3152. trace_kvm_pio(!in, port, size, 1);
  3153. vcpu->run->exit_reason = KVM_EXIT_IO;
  3154. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  3155. vcpu->run->io.size = vcpu->arch.pio.size = size;
  3156. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3157. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
  3158. vcpu->run->io.port = vcpu->arch.pio.port = port;
  3159. vcpu->arch.pio.in = in;
  3160. vcpu->arch.pio.string = 0;
  3161. vcpu->arch.pio.down = 0;
  3162. vcpu->arch.pio.rep = 0;
  3163. if (!vcpu->arch.pio.in) {
  3164. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3165. memcpy(vcpu->arch.pio_data, &val, 4);
  3166. }
  3167. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  3168. complete_pio(vcpu);
  3169. return 1;
  3170. }
  3171. return 0;
  3172. }
  3173. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  3174. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, int in,
  3175. int size, unsigned long count, int down,
  3176. gva_t address, int rep, unsigned port)
  3177. {
  3178. unsigned now, in_page;
  3179. int ret = 0;
  3180. trace_kvm_pio(!in, port, size, count);
  3181. vcpu->run->exit_reason = KVM_EXIT_IO;
  3182. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  3183. vcpu->run->io.size = vcpu->arch.pio.size = size;
  3184. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3185. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
  3186. vcpu->run->io.port = vcpu->arch.pio.port = port;
  3187. vcpu->arch.pio.in = in;
  3188. vcpu->arch.pio.string = 1;
  3189. vcpu->arch.pio.down = down;
  3190. vcpu->arch.pio.rep = rep;
  3191. if (!count) {
  3192. kvm_x86_ops->skip_emulated_instruction(vcpu);
  3193. return 1;
  3194. }
  3195. if (!down)
  3196. in_page = PAGE_SIZE - offset_in_page(address);
  3197. else
  3198. in_page = offset_in_page(address) + size;
  3199. now = min(count, (unsigned long)in_page / size);
  3200. if (!now)
  3201. now = 1;
  3202. if (down) {
  3203. /*
  3204. * String I/O in reverse. Yuck. Kill the guest, fix later.
  3205. */
  3206. pr_unimpl(vcpu, "guest string pio down\n");
  3207. kvm_inject_gp(vcpu, 0);
  3208. return 1;
  3209. }
  3210. vcpu->run->io.count = now;
  3211. vcpu->arch.pio.cur_count = now;
  3212. if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
  3213. kvm_x86_ops->skip_emulated_instruction(vcpu);
  3214. vcpu->arch.pio.guest_gva = address;
  3215. if (!vcpu->arch.pio.in) {
  3216. /* string PIO write */
  3217. ret = pio_copy_data(vcpu);
  3218. if (ret == X86EMUL_PROPAGATE_FAULT)
  3219. return 1;
  3220. if (ret == 0 && !pio_string_write(vcpu)) {
  3221. complete_pio(vcpu);
  3222. if (vcpu->arch.pio.count == 0)
  3223. ret = 1;
  3224. }
  3225. }
  3226. /* no string PIO read support yet */
  3227. return ret;
  3228. }
  3229. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  3230. static void bounce_off(void *info)
  3231. {
  3232. /* nothing */
  3233. }
  3234. static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  3235. void *data)
  3236. {
  3237. struct cpufreq_freqs *freq = data;
  3238. struct kvm *kvm;
  3239. struct kvm_vcpu *vcpu;
  3240. int i, send_ipi = 0;
  3241. if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
  3242. return 0;
  3243. if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
  3244. return 0;
  3245. per_cpu(cpu_tsc_khz, freq->cpu) = freq->new;
  3246. spin_lock(&kvm_lock);
  3247. list_for_each_entry(kvm, &vm_list, vm_list) {
  3248. kvm_for_each_vcpu(i, vcpu, kvm) {
  3249. if (vcpu->cpu != freq->cpu)
  3250. continue;
  3251. if (!kvm_request_guest_time_update(vcpu))
  3252. continue;
  3253. if (vcpu->cpu != smp_processor_id())
  3254. send_ipi++;
  3255. }
  3256. }
  3257. spin_unlock(&kvm_lock);
  3258. if (freq->old < freq->new && send_ipi) {
  3259. /*
  3260. * We upscale the frequency. Must make the guest
  3261. * doesn't see old kvmclock values while running with
  3262. * the new frequency, otherwise we risk the guest sees
  3263. * time go backwards.
  3264. *
  3265. * In case we update the frequency for another cpu
  3266. * (which might be in guest context) send an interrupt
  3267. * to kick the cpu out of guest context. Next time
  3268. * guest context is entered kvmclock will be updated,
  3269. * so the guest will not see stale values.
  3270. */
  3271. smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
  3272. }
  3273. return 0;
  3274. }
  3275. static struct notifier_block kvmclock_cpufreq_notifier_block = {
  3276. .notifier_call = kvmclock_cpufreq_notifier
  3277. };
  3278. static void kvm_timer_init(void)
  3279. {
  3280. int cpu;
  3281. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  3282. cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
  3283. CPUFREQ_TRANSITION_NOTIFIER);
  3284. for_each_online_cpu(cpu) {
  3285. unsigned long khz = cpufreq_get(cpu);
  3286. if (!khz)
  3287. khz = tsc_khz;
  3288. per_cpu(cpu_tsc_khz, cpu) = khz;
  3289. }
  3290. } else {
  3291. for_each_possible_cpu(cpu)
  3292. per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
  3293. }
  3294. }
  3295. static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
  3296. static int kvm_is_in_guest(void)
  3297. {
  3298. return percpu_read(current_vcpu) != NULL;
  3299. }
  3300. static int kvm_is_user_mode(void)
  3301. {
  3302. int user_mode = 3;
  3303. if (percpu_read(current_vcpu))
  3304. user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
  3305. return user_mode != 0;
  3306. }
  3307. static unsigned long kvm_get_guest_ip(void)
  3308. {
  3309. unsigned long ip = 0;
  3310. if (percpu_read(current_vcpu))
  3311. ip = kvm_rip_read(percpu_read(current_vcpu));
  3312. return ip;
  3313. }
  3314. static struct perf_guest_info_callbacks kvm_guest_cbs = {
  3315. .is_in_guest = kvm_is_in_guest,
  3316. .is_user_mode = kvm_is_user_mode,
  3317. .get_guest_ip = kvm_get_guest_ip,
  3318. };
  3319. void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
  3320. {
  3321. percpu_write(current_vcpu, vcpu);
  3322. }
  3323. EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
  3324. void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
  3325. {
  3326. percpu_write(current_vcpu, NULL);
  3327. }
  3328. EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
  3329. int kvm_arch_init(void *opaque)
  3330. {
  3331. int r;
  3332. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  3333. if (kvm_x86_ops) {
  3334. printk(KERN_ERR "kvm: already loaded the other module\n");
  3335. r = -EEXIST;
  3336. goto out;
  3337. }
  3338. if (!ops->cpu_has_kvm_support()) {
  3339. printk(KERN_ERR "kvm: no hardware support\n");
  3340. r = -EOPNOTSUPP;
  3341. goto out;
  3342. }
  3343. if (ops->disabled_by_bios()) {
  3344. printk(KERN_ERR "kvm: disabled by bios\n");
  3345. r = -EOPNOTSUPP;
  3346. goto out;
  3347. }
  3348. r = kvm_mmu_module_init();
  3349. if (r)
  3350. goto out;
  3351. kvm_init_msr_list();
  3352. kvm_x86_ops = ops;
  3353. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  3354. kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
  3355. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  3356. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  3357. kvm_timer_init();
  3358. perf_register_guest_info_callbacks(&kvm_guest_cbs);
  3359. return 0;
  3360. out:
  3361. return r;
  3362. }
  3363. void kvm_arch_exit(void)
  3364. {
  3365. perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
  3366. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  3367. cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
  3368. CPUFREQ_TRANSITION_NOTIFIER);
  3369. kvm_x86_ops = NULL;
  3370. kvm_mmu_module_exit();
  3371. }
  3372. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  3373. {
  3374. ++vcpu->stat.halt_exits;
  3375. if (irqchip_in_kernel(vcpu->kvm)) {
  3376. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  3377. return 1;
  3378. } else {
  3379. vcpu->run->exit_reason = KVM_EXIT_HLT;
  3380. return 0;
  3381. }
  3382. }
  3383. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  3384. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  3385. unsigned long a1)
  3386. {
  3387. if (is_long_mode(vcpu))
  3388. return a0;
  3389. else
  3390. return a0 | ((gpa_t)a1 << 32);
  3391. }
  3392. int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
  3393. {
  3394. u64 param, ingpa, outgpa, ret;
  3395. uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
  3396. bool fast, longmode;
  3397. int cs_db, cs_l;
  3398. /*
  3399. * hypercall generates UD from non zero cpl and real mode
  3400. * per HYPER-V spec
  3401. */
  3402. if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
  3403. kvm_queue_exception(vcpu, UD_VECTOR);
  3404. return 0;
  3405. }
  3406. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  3407. longmode = is_long_mode(vcpu) && cs_l == 1;
  3408. if (!longmode) {
  3409. param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
  3410. (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
  3411. ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
  3412. (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
  3413. outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
  3414. (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
  3415. }
  3416. #ifdef CONFIG_X86_64
  3417. else {
  3418. param = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3419. ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3420. outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
  3421. }
  3422. #endif
  3423. code = param & 0xffff;
  3424. fast = (param >> 16) & 0x1;
  3425. rep_cnt = (param >> 32) & 0xfff;
  3426. rep_idx = (param >> 48) & 0xfff;
  3427. trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
  3428. switch (code) {
  3429. case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
  3430. kvm_vcpu_on_spin(vcpu);
  3431. break;
  3432. default:
  3433. res = HV_STATUS_INVALID_HYPERCALL_CODE;
  3434. break;
  3435. }
  3436. ret = res | (((u64)rep_done & 0xfff) << 32);
  3437. if (longmode) {
  3438. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  3439. } else {
  3440. kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
  3441. kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
  3442. }
  3443. return 1;
  3444. }
  3445. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  3446. {
  3447. unsigned long nr, a0, a1, a2, a3, ret;
  3448. int r = 1;
  3449. if (kvm_hv_hypercall_enabled(vcpu->kvm))
  3450. return kvm_hv_hypercall(vcpu);
  3451. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3452. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3453. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3454. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3455. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3456. trace_kvm_hypercall(nr, a0, a1, a2, a3);
  3457. if (!is_long_mode(vcpu)) {
  3458. nr &= 0xFFFFFFFF;
  3459. a0 &= 0xFFFFFFFF;
  3460. a1 &= 0xFFFFFFFF;
  3461. a2 &= 0xFFFFFFFF;
  3462. a3 &= 0xFFFFFFFF;
  3463. }
  3464. if (kvm_x86_ops->get_cpl(vcpu) != 0) {
  3465. ret = -KVM_EPERM;
  3466. goto out;
  3467. }
  3468. switch (nr) {
  3469. case KVM_HC_VAPIC_POLL_IRQ:
  3470. ret = 0;
  3471. break;
  3472. case KVM_HC_MMU_OP:
  3473. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  3474. break;
  3475. default:
  3476. ret = -KVM_ENOSYS;
  3477. break;
  3478. }
  3479. out:
  3480. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  3481. ++vcpu->stat.hypercalls;
  3482. return r;
  3483. }
  3484. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  3485. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  3486. {
  3487. char instruction[3];
  3488. unsigned long rip = kvm_rip_read(vcpu);
  3489. /*
  3490. * Blow out the MMU to ensure that no other VCPU has an active mapping
  3491. * to ensure that the updated hypercall appears atomically across all
  3492. * VCPUs.
  3493. */
  3494. kvm_mmu_zap_all(vcpu->kvm);
  3495. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  3496. return emulator_write_emulated(rip, instruction, 3, vcpu);
  3497. }
  3498. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  3499. {
  3500. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  3501. }
  3502. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  3503. {
  3504. struct descriptor_table dt = { limit, base };
  3505. kvm_x86_ops->set_gdt(vcpu, &dt);
  3506. }
  3507. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  3508. {
  3509. struct descriptor_table dt = { limit, base };
  3510. kvm_x86_ops->set_idt(vcpu, &dt);
  3511. }
  3512. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  3513. unsigned long *rflags)
  3514. {
  3515. kvm_lmsw(vcpu, msw);
  3516. *rflags = kvm_get_rflags(vcpu);
  3517. }
  3518. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  3519. {
  3520. unsigned long value;
  3521. switch (cr) {
  3522. case 0:
  3523. value = kvm_read_cr0(vcpu);
  3524. break;
  3525. case 2:
  3526. value = vcpu->arch.cr2;
  3527. break;
  3528. case 3:
  3529. value = vcpu->arch.cr3;
  3530. break;
  3531. case 4:
  3532. value = kvm_read_cr4(vcpu);
  3533. break;
  3534. case 8:
  3535. value = kvm_get_cr8(vcpu);
  3536. break;
  3537. default:
  3538. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3539. return 0;
  3540. }
  3541. return value;
  3542. }
  3543. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  3544. unsigned long *rflags)
  3545. {
  3546. switch (cr) {
  3547. case 0:
  3548. kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
  3549. *rflags = kvm_get_rflags(vcpu);
  3550. break;
  3551. case 2:
  3552. vcpu->arch.cr2 = val;
  3553. break;
  3554. case 3:
  3555. kvm_set_cr3(vcpu, val);
  3556. break;
  3557. case 4:
  3558. kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
  3559. break;
  3560. case 8:
  3561. kvm_set_cr8(vcpu, val & 0xfUL);
  3562. break;
  3563. default:
  3564. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3565. }
  3566. }
  3567. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  3568. {
  3569. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  3570. int j, nent = vcpu->arch.cpuid_nent;
  3571. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  3572. /* when no next entry is found, the current entry[i] is reselected */
  3573. for (j = i + 1; ; j = (j + 1) % nent) {
  3574. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  3575. if (ej->function == e->function) {
  3576. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  3577. return j;
  3578. }
  3579. }
  3580. return 0; /* silence gcc, even though control never reaches here */
  3581. }
  3582. /* find an entry with matching function, matching index (if needed), and that
  3583. * should be read next (if it's stateful) */
  3584. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  3585. u32 function, u32 index)
  3586. {
  3587. if (e->function != function)
  3588. return 0;
  3589. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  3590. return 0;
  3591. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  3592. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  3593. return 0;
  3594. return 1;
  3595. }
  3596. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  3597. u32 function, u32 index)
  3598. {
  3599. int i;
  3600. struct kvm_cpuid_entry2 *best = NULL;
  3601. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  3602. struct kvm_cpuid_entry2 *e;
  3603. e = &vcpu->arch.cpuid_entries[i];
  3604. if (is_matching_cpuid_entry(e, function, index)) {
  3605. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  3606. move_to_next_stateful_cpuid_entry(vcpu, i);
  3607. best = e;
  3608. break;
  3609. }
  3610. /*
  3611. * Both basic or both extended?
  3612. */
  3613. if (((e->function ^ function) & 0x80000000) == 0)
  3614. if (!best || e->function > best->function)
  3615. best = e;
  3616. }
  3617. return best;
  3618. }
  3619. EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
  3620. int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
  3621. {
  3622. struct kvm_cpuid_entry2 *best;
  3623. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  3624. if (best)
  3625. return best->eax & 0xff;
  3626. return 36;
  3627. }
  3628. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  3629. {
  3630. u32 function, index;
  3631. struct kvm_cpuid_entry2 *best;
  3632. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3633. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3634. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  3635. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  3636. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  3637. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  3638. best = kvm_find_cpuid_entry(vcpu, function, index);
  3639. if (best) {
  3640. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  3641. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  3642. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  3643. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  3644. }
  3645. kvm_x86_ops->skip_emulated_instruction(vcpu);
  3646. trace_kvm_cpuid(function,
  3647. kvm_register_read(vcpu, VCPU_REGS_RAX),
  3648. kvm_register_read(vcpu, VCPU_REGS_RBX),
  3649. kvm_register_read(vcpu, VCPU_REGS_RCX),
  3650. kvm_register_read(vcpu, VCPU_REGS_RDX));
  3651. }
  3652. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  3653. /*
  3654. * Check if userspace requested an interrupt window, and that the
  3655. * interrupt window is open.
  3656. *
  3657. * No need to exit to userspace if we already have an interrupt queued.
  3658. */
  3659. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
  3660. {
  3661. return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
  3662. vcpu->run->request_interrupt_window &&
  3663. kvm_arch_interrupt_allowed(vcpu));
  3664. }
  3665. static void post_kvm_run_save(struct kvm_vcpu *vcpu)
  3666. {
  3667. struct kvm_run *kvm_run = vcpu->run;
  3668. kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  3669. kvm_run->cr8 = kvm_get_cr8(vcpu);
  3670. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  3671. if (irqchip_in_kernel(vcpu->kvm))
  3672. kvm_run->ready_for_interrupt_injection = 1;
  3673. else
  3674. kvm_run->ready_for_interrupt_injection =
  3675. kvm_arch_interrupt_allowed(vcpu) &&
  3676. !kvm_cpu_has_interrupt(vcpu) &&
  3677. !kvm_event_needs_reinjection(vcpu);
  3678. }
  3679. static void vapic_enter(struct kvm_vcpu *vcpu)
  3680. {
  3681. struct kvm_lapic *apic = vcpu->arch.apic;
  3682. struct page *page;
  3683. if (!apic || !apic->vapic_addr)
  3684. return;
  3685. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  3686. vcpu->arch.apic->vapic_page = page;
  3687. }
  3688. static void vapic_exit(struct kvm_vcpu *vcpu)
  3689. {
  3690. struct kvm_lapic *apic = vcpu->arch.apic;
  3691. int idx;
  3692. if (!apic || !apic->vapic_addr)
  3693. return;
  3694. idx = srcu_read_lock(&vcpu->kvm->srcu);
  3695. kvm_release_page_dirty(apic->vapic_page);
  3696. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  3697. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  3698. }
  3699. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  3700. {
  3701. int max_irr, tpr;
  3702. if (!kvm_x86_ops->update_cr8_intercept)
  3703. return;
  3704. if (!vcpu->arch.apic)
  3705. return;
  3706. if (!vcpu->arch.apic->vapic_addr)
  3707. max_irr = kvm_lapic_find_highest_irr(vcpu);
  3708. else
  3709. max_irr = -1;
  3710. if (max_irr != -1)
  3711. max_irr >>= 4;
  3712. tpr = kvm_lapic_get_cr8(vcpu);
  3713. kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
  3714. }
  3715. static void inject_pending_event(struct kvm_vcpu *vcpu)
  3716. {
  3717. /* try to reinject previous events if any */
  3718. if (vcpu->arch.exception.pending) {
  3719. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  3720. vcpu->arch.exception.has_error_code,
  3721. vcpu->arch.exception.error_code);
  3722. return;
  3723. }
  3724. if (vcpu->arch.nmi_injected) {
  3725. kvm_x86_ops->set_nmi(vcpu);
  3726. return;
  3727. }
  3728. if (vcpu->arch.interrupt.pending) {
  3729. kvm_x86_ops->set_irq(vcpu);
  3730. return;
  3731. }
  3732. /* try to inject new event if pending */
  3733. if (vcpu->arch.nmi_pending) {
  3734. if (kvm_x86_ops->nmi_allowed(vcpu)) {
  3735. vcpu->arch.nmi_pending = false;
  3736. vcpu->arch.nmi_injected = true;
  3737. kvm_x86_ops->set_nmi(vcpu);
  3738. }
  3739. } else if (kvm_cpu_has_interrupt(vcpu)) {
  3740. if (kvm_x86_ops->interrupt_allowed(vcpu)) {
  3741. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
  3742. false);
  3743. kvm_x86_ops->set_irq(vcpu);
  3744. }
  3745. }
  3746. }
  3747. static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
  3748. {
  3749. int r;
  3750. bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
  3751. vcpu->run->request_interrupt_window;
  3752. if (vcpu->requests)
  3753. if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  3754. kvm_mmu_unload(vcpu);
  3755. r = kvm_mmu_reload(vcpu);
  3756. if (unlikely(r))
  3757. goto out;
  3758. if (vcpu->requests) {
  3759. if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
  3760. __kvm_migrate_timers(vcpu);
  3761. if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
  3762. kvm_write_guest_time(vcpu);
  3763. if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
  3764. kvm_mmu_sync_roots(vcpu);
  3765. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  3766. kvm_x86_ops->tlb_flush(vcpu);
  3767. if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
  3768. &vcpu->requests)) {
  3769. vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
  3770. r = 0;
  3771. goto out;
  3772. }
  3773. if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
  3774. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  3775. r = 0;
  3776. goto out;
  3777. }
  3778. if (test_and_clear_bit(KVM_REQ_DEACTIVATE_FPU, &vcpu->requests)) {
  3779. vcpu->fpu_active = 0;
  3780. kvm_x86_ops->fpu_deactivate(vcpu);
  3781. }
  3782. }
  3783. preempt_disable();
  3784. kvm_x86_ops->prepare_guest_switch(vcpu);
  3785. if (vcpu->fpu_active)
  3786. kvm_load_guest_fpu(vcpu);
  3787. local_irq_disable();
  3788. clear_bit(KVM_REQ_KICK, &vcpu->requests);
  3789. smp_mb__after_clear_bit();
  3790. if (vcpu->requests || need_resched() || signal_pending(current)) {
  3791. set_bit(KVM_REQ_KICK, &vcpu->requests);
  3792. local_irq_enable();
  3793. preempt_enable();
  3794. r = 1;
  3795. goto out;
  3796. }
  3797. inject_pending_event(vcpu);
  3798. /* enable NMI/IRQ window open exits if needed */
  3799. if (vcpu->arch.nmi_pending)
  3800. kvm_x86_ops->enable_nmi_window(vcpu);
  3801. else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
  3802. kvm_x86_ops->enable_irq_window(vcpu);
  3803. if (kvm_lapic_enabled(vcpu)) {
  3804. update_cr8_intercept(vcpu);
  3805. kvm_lapic_sync_to_vapic(vcpu);
  3806. }
  3807. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  3808. kvm_guest_enter();
  3809. if (unlikely(vcpu->arch.switch_db_regs)) {
  3810. set_debugreg(0, 7);
  3811. set_debugreg(vcpu->arch.eff_db[0], 0);
  3812. set_debugreg(vcpu->arch.eff_db[1], 1);
  3813. set_debugreg(vcpu->arch.eff_db[2], 2);
  3814. set_debugreg(vcpu->arch.eff_db[3], 3);
  3815. }
  3816. trace_kvm_entry(vcpu->vcpu_id);
  3817. kvm_x86_ops->run(vcpu);
  3818. /*
  3819. * If the guest has used debug registers, at least dr7
  3820. * will be disabled while returning to the host.
  3821. * If we don't have active breakpoints in the host, we don't
  3822. * care about the messed up debug address registers. But if
  3823. * we have some of them active, restore the old state.
  3824. */
  3825. if (hw_breakpoint_active())
  3826. hw_breakpoint_restore();
  3827. set_bit(KVM_REQ_KICK, &vcpu->requests);
  3828. local_irq_enable();
  3829. ++vcpu->stat.exits;
  3830. /*
  3831. * We must have an instruction between local_irq_enable() and
  3832. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  3833. * the interrupt shadow. The stat.exits increment will do nicely.
  3834. * But we need to prevent reordering, hence this barrier():
  3835. */
  3836. barrier();
  3837. kvm_guest_exit();
  3838. preempt_enable();
  3839. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  3840. /*
  3841. * Profile KVM exit RIPs:
  3842. */
  3843. if (unlikely(prof_on == KVM_PROFILING)) {
  3844. unsigned long rip = kvm_rip_read(vcpu);
  3845. profile_hit(KVM_PROFILING, (void *)rip);
  3846. }
  3847. kvm_lapic_sync_from_vapic(vcpu);
  3848. r = kvm_x86_ops->handle_exit(vcpu);
  3849. out:
  3850. return r;
  3851. }
  3852. static int __vcpu_run(struct kvm_vcpu *vcpu)
  3853. {
  3854. int r;
  3855. struct kvm *kvm = vcpu->kvm;
  3856. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  3857. pr_debug("vcpu %d received sipi with vector # %x\n",
  3858. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  3859. kvm_lapic_reset(vcpu);
  3860. r = kvm_arch_vcpu_reset(vcpu);
  3861. if (r)
  3862. return r;
  3863. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3864. }
  3865. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  3866. vapic_enter(vcpu);
  3867. r = 1;
  3868. while (r > 0) {
  3869. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
  3870. r = vcpu_enter_guest(vcpu);
  3871. else {
  3872. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  3873. kvm_vcpu_block(vcpu);
  3874. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  3875. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
  3876. {
  3877. switch(vcpu->arch.mp_state) {
  3878. case KVM_MP_STATE_HALTED:
  3879. vcpu->arch.mp_state =
  3880. KVM_MP_STATE_RUNNABLE;
  3881. case KVM_MP_STATE_RUNNABLE:
  3882. break;
  3883. case KVM_MP_STATE_SIPI_RECEIVED:
  3884. default:
  3885. r = -EINTR;
  3886. break;
  3887. }
  3888. }
  3889. }
  3890. if (r <= 0)
  3891. break;
  3892. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  3893. if (kvm_cpu_has_pending_timer(vcpu))
  3894. kvm_inject_pending_timer_irqs(vcpu);
  3895. if (dm_request_for_irq_injection(vcpu)) {
  3896. r = -EINTR;
  3897. vcpu->run->exit_reason = KVM_EXIT_INTR;
  3898. ++vcpu->stat.request_irq_exits;
  3899. }
  3900. if (signal_pending(current)) {
  3901. r = -EINTR;
  3902. vcpu->run->exit_reason = KVM_EXIT_INTR;
  3903. ++vcpu->stat.signal_exits;
  3904. }
  3905. if (need_resched()) {
  3906. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  3907. kvm_resched(vcpu);
  3908. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  3909. }
  3910. }
  3911. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  3912. post_kvm_run_save(vcpu);
  3913. vapic_exit(vcpu);
  3914. return r;
  3915. }
  3916. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  3917. {
  3918. int r;
  3919. sigset_t sigsaved;
  3920. vcpu_load(vcpu);
  3921. if (vcpu->sigset_active)
  3922. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  3923. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  3924. kvm_vcpu_block(vcpu);
  3925. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  3926. r = -EAGAIN;
  3927. goto out;
  3928. }
  3929. /* re-sync apic's tpr */
  3930. if (!irqchip_in_kernel(vcpu->kvm))
  3931. kvm_set_cr8(vcpu, kvm_run->cr8);
  3932. if (vcpu->arch.pio.cur_count) {
  3933. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  3934. r = complete_pio(vcpu);
  3935. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  3936. if (r)
  3937. goto out;
  3938. }
  3939. if (vcpu->mmio_needed) {
  3940. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  3941. vcpu->mmio_read_completed = 1;
  3942. vcpu->mmio_needed = 0;
  3943. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  3944. r = emulate_instruction(vcpu, vcpu->arch.mmio_fault_cr2, 0,
  3945. EMULTYPE_NO_DECODE);
  3946. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  3947. if (r == EMULATE_DO_MMIO) {
  3948. /*
  3949. * Read-modify-write. Back to userspace.
  3950. */
  3951. r = 0;
  3952. goto out;
  3953. }
  3954. }
  3955. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  3956. kvm_register_write(vcpu, VCPU_REGS_RAX,
  3957. kvm_run->hypercall.ret);
  3958. r = __vcpu_run(vcpu);
  3959. out:
  3960. if (vcpu->sigset_active)
  3961. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  3962. vcpu_put(vcpu);
  3963. return r;
  3964. }
  3965. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  3966. {
  3967. vcpu_load(vcpu);
  3968. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3969. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3970. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3971. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3972. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3973. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3974. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3975. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3976. #ifdef CONFIG_X86_64
  3977. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  3978. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  3979. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  3980. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  3981. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  3982. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  3983. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  3984. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  3985. #endif
  3986. regs->rip = kvm_rip_read(vcpu);
  3987. regs->rflags = kvm_get_rflags(vcpu);
  3988. vcpu_put(vcpu);
  3989. return 0;
  3990. }
  3991. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  3992. {
  3993. vcpu_load(vcpu);
  3994. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  3995. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  3996. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  3997. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  3998. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  3999. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  4000. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  4001. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  4002. #ifdef CONFIG_X86_64
  4003. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  4004. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  4005. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  4006. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  4007. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  4008. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  4009. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  4010. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  4011. #endif
  4012. kvm_rip_write(vcpu, regs->rip);
  4013. kvm_set_rflags(vcpu, regs->rflags);
  4014. vcpu->arch.exception.pending = false;
  4015. vcpu_put(vcpu);
  4016. return 0;
  4017. }
  4018. void kvm_get_segment(struct kvm_vcpu *vcpu,
  4019. struct kvm_segment *var, int seg)
  4020. {
  4021. kvm_x86_ops->get_segment(vcpu, var, seg);
  4022. }
  4023. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  4024. {
  4025. struct kvm_segment cs;
  4026. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4027. *db = cs.db;
  4028. *l = cs.l;
  4029. }
  4030. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  4031. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  4032. struct kvm_sregs *sregs)
  4033. {
  4034. struct descriptor_table dt;
  4035. vcpu_load(vcpu);
  4036. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  4037. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  4038. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  4039. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  4040. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  4041. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  4042. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  4043. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  4044. kvm_x86_ops->get_idt(vcpu, &dt);
  4045. sregs->idt.limit = dt.limit;
  4046. sregs->idt.base = dt.base;
  4047. kvm_x86_ops->get_gdt(vcpu, &dt);
  4048. sregs->gdt.limit = dt.limit;
  4049. sregs->gdt.base = dt.base;
  4050. sregs->cr0 = kvm_read_cr0(vcpu);
  4051. sregs->cr2 = vcpu->arch.cr2;
  4052. sregs->cr3 = vcpu->arch.cr3;
  4053. sregs->cr4 = kvm_read_cr4(vcpu);
  4054. sregs->cr8 = kvm_get_cr8(vcpu);
  4055. sregs->efer = vcpu->arch.efer;
  4056. sregs->apic_base = kvm_get_apic_base(vcpu);
  4057. memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
  4058. if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
  4059. set_bit(vcpu->arch.interrupt.nr,
  4060. (unsigned long *)sregs->interrupt_bitmap);
  4061. vcpu_put(vcpu);
  4062. return 0;
  4063. }
  4064. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  4065. struct kvm_mp_state *mp_state)
  4066. {
  4067. vcpu_load(vcpu);
  4068. mp_state->mp_state = vcpu->arch.mp_state;
  4069. vcpu_put(vcpu);
  4070. return 0;
  4071. }
  4072. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  4073. struct kvm_mp_state *mp_state)
  4074. {
  4075. vcpu_load(vcpu);
  4076. vcpu->arch.mp_state = mp_state->mp_state;
  4077. vcpu_put(vcpu);
  4078. return 0;
  4079. }
  4080. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  4081. struct kvm_segment *var, int seg)
  4082. {
  4083. kvm_x86_ops->set_segment(vcpu, var, seg);
  4084. }
  4085. static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
  4086. struct kvm_segment *kvm_desct)
  4087. {
  4088. kvm_desct->base = get_desc_base(seg_desc);
  4089. kvm_desct->limit = get_desc_limit(seg_desc);
  4090. if (seg_desc->g) {
  4091. kvm_desct->limit <<= 12;
  4092. kvm_desct->limit |= 0xfff;
  4093. }
  4094. kvm_desct->selector = selector;
  4095. kvm_desct->type = seg_desc->type;
  4096. kvm_desct->present = seg_desc->p;
  4097. kvm_desct->dpl = seg_desc->dpl;
  4098. kvm_desct->db = seg_desc->d;
  4099. kvm_desct->s = seg_desc->s;
  4100. kvm_desct->l = seg_desc->l;
  4101. kvm_desct->g = seg_desc->g;
  4102. kvm_desct->avl = seg_desc->avl;
  4103. if (!selector)
  4104. kvm_desct->unusable = 1;
  4105. else
  4106. kvm_desct->unusable = 0;
  4107. kvm_desct->padding = 0;
  4108. }
  4109. static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
  4110. u16 selector,
  4111. struct descriptor_table *dtable)
  4112. {
  4113. if (selector & 1 << 2) {
  4114. struct kvm_segment kvm_seg;
  4115. kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
  4116. if (kvm_seg.unusable)
  4117. dtable->limit = 0;
  4118. else
  4119. dtable->limit = kvm_seg.limit;
  4120. dtable->base = kvm_seg.base;
  4121. }
  4122. else
  4123. kvm_x86_ops->get_gdt(vcpu, dtable);
  4124. }
  4125. /* allowed just for 8 bytes segments */
  4126. static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  4127. struct desc_struct *seg_desc)
  4128. {
  4129. struct descriptor_table dtable;
  4130. u16 index = selector >> 3;
  4131. int ret;
  4132. u32 err;
  4133. gva_t addr;
  4134. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  4135. if (dtable.limit < index * 8 + 7) {
  4136. kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
  4137. return X86EMUL_PROPAGATE_FAULT;
  4138. }
  4139. addr = dtable.base + index * 8;
  4140. ret = kvm_read_guest_virt_system(addr, seg_desc, sizeof(*seg_desc),
  4141. vcpu, &err);
  4142. if (ret == X86EMUL_PROPAGATE_FAULT)
  4143. kvm_inject_page_fault(vcpu, addr, err);
  4144. return ret;
  4145. }
  4146. /* allowed just for 8 bytes segments */
  4147. static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  4148. struct desc_struct *seg_desc)
  4149. {
  4150. struct descriptor_table dtable;
  4151. u16 index = selector >> 3;
  4152. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  4153. if (dtable.limit < index * 8 + 7)
  4154. return 1;
  4155. return kvm_write_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu, NULL);
  4156. }
  4157. static gpa_t get_tss_base_addr_write(struct kvm_vcpu *vcpu,
  4158. struct desc_struct *seg_desc)
  4159. {
  4160. u32 base_addr = get_desc_base(seg_desc);
  4161. return kvm_mmu_gva_to_gpa_write(vcpu, base_addr, NULL);
  4162. }
  4163. static gpa_t get_tss_base_addr_read(struct kvm_vcpu *vcpu,
  4164. struct desc_struct *seg_desc)
  4165. {
  4166. u32 base_addr = get_desc_base(seg_desc);
  4167. return kvm_mmu_gva_to_gpa_read(vcpu, base_addr, NULL);
  4168. }
  4169. static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
  4170. {
  4171. struct kvm_segment kvm_seg;
  4172. kvm_get_segment(vcpu, &kvm_seg, seg);
  4173. return kvm_seg.selector;
  4174. }
  4175. static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
  4176. {
  4177. struct kvm_segment segvar = {
  4178. .base = selector << 4,
  4179. .limit = 0xffff,
  4180. .selector = selector,
  4181. .type = 3,
  4182. .present = 1,
  4183. .dpl = 3,
  4184. .db = 0,
  4185. .s = 1,
  4186. .l = 0,
  4187. .g = 0,
  4188. .avl = 0,
  4189. .unusable = 0,
  4190. };
  4191. kvm_x86_ops->set_segment(vcpu, &segvar, seg);
  4192. return X86EMUL_CONTINUE;
  4193. }
  4194. static int is_vm86_segment(struct kvm_vcpu *vcpu, int seg)
  4195. {
  4196. return (seg != VCPU_SREG_LDTR) &&
  4197. (seg != VCPU_SREG_TR) &&
  4198. (kvm_get_rflags(vcpu) & X86_EFLAGS_VM);
  4199. }
  4200. int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg)
  4201. {
  4202. struct kvm_segment kvm_seg;
  4203. struct desc_struct seg_desc;
  4204. u8 dpl, rpl, cpl;
  4205. unsigned err_vec = GP_VECTOR;
  4206. u32 err_code = 0;
  4207. bool null_selector = !(selector & ~0x3); /* 0000-0003 are null */
  4208. int ret;
  4209. if (is_vm86_segment(vcpu, seg) || !is_protmode(vcpu))
  4210. return kvm_load_realmode_segment(vcpu, selector, seg);
  4211. /* NULL selector is not valid for TR, CS and SS */
  4212. if ((seg == VCPU_SREG_CS || seg == VCPU_SREG_SS || seg == VCPU_SREG_TR)
  4213. && null_selector)
  4214. goto exception;
  4215. /* TR should be in GDT only */
  4216. if (seg == VCPU_SREG_TR && (selector & (1 << 2)))
  4217. goto exception;
  4218. ret = load_guest_segment_descriptor(vcpu, selector, &seg_desc);
  4219. if (ret)
  4220. return ret;
  4221. seg_desct_to_kvm_desct(&seg_desc, selector, &kvm_seg);
  4222. if (null_selector) { /* for NULL selector skip all following checks */
  4223. kvm_seg.unusable = 1;
  4224. goto load;
  4225. }
  4226. err_code = selector & 0xfffc;
  4227. err_vec = GP_VECTOR;
  4228. /* can't load system descriptor into segment selecor */
  4229. if (seg <= VCPU_SREG_GS && !kvm_seg.s)
  4230. goto exception;
  4231. if (!kvm_seg.present) {
  4232. err_vec = (seg == VCPU_SREG_SS) ? SS_VECTOR : NP_VECTOR;
  4233. goto exception;
  4234. }
  4235. rpl = selector & 3;
  4236. dpl = kvm_seg.dpl;
  4237. cpl = kvm_x86_ops->get_cpl(vcpu);
  4238. switch (seg) {
  4239. case VCPU_SREG_SS:
  4240. /*
  4241. * segment is not a writable data segment or segment
  4242. * selector's RPL != CPL or segment selector's RPL != CPL
  4243. */
  4244. if (rpl != cpl || (kvm_seg.type & 0xa) != 0x2 || dpl != cpl)
  4245. goto exception;
  4246. break;
  4247. case VCPU_SREG_CS:
  4248. if (!(kvm_seg.type & 8))
  4249. goto exception;
  4250. if (kvm_seg.type & 4) {
  4251. /* conforming */
  4252. if (dpl > cpl)
  4253. goto exception;
  4254. } else {
  4255. /* nonconforming */
  4256. if (rpl > cpl || dpl != cpl)
  4257. goto exception;
  4258. }
  4259. /* CS(RPL) <- CPL */
  4260. selector = (selector & 0xfffc) | cpl;
  4261. break;
  4262. case VCPU_SREG_TR:
  4263. if (kvm_seg.s || (kvm_seg.type != 1 && kvm_seg.type != 9))
  4264. goto exception;
  4265. break;
  4266. case VCPU_SREG_LDTR:
  4267. if (kvm_seg.s || kvm_seg.type != 2)
  4268. goto exception;
  4269. break;
  4270. default: /* DS, ES, FS, or GS */
  4271. /*
  4272. * segment is not a data or readable code segment or
  4273. * ((segment is a data or nonconforming code segment)
  4274. * and (both RPL and CPL > DPL))
  4275. */
  4276. if ((kvm_seg.type & 0xa) == 0x8 ||
  4277. (((kvm_seg.type & 0xc) != 0xc) && (rpl > dpl && cpl > dpl)))
  4278. goto exception;
  4279. break;
  4280. }
  4281. if (!kvm_seg.unusable && kvm_seg.s) {
  4282. /* mark segment as accessed */
  4283. kvm_seg.type |= 1;
  4284. seg_desc.type |= 1;
  4285. save_guest_segment_descriptor(vcpu, selector, &seg_desc);
  4286. }
  4287. load:
  4288. kvm_set_segment(vcpu, &kvm_seg, seg);
  4289. return X86EMUL_CONTINUE;
  4290. exception:
  4291. kvm_queue_exception_e(vcpu, err_vec, err_code);
  4292. return X86EMUL_PROPAGATE_FAULT;
  4293. }
  4294. static void save_state_to_tss32(struct kvm_vcpu *vcpu,
  4295. struct tss_segment_32 *tss)
  4296. {
  4297. tss->cr3 = vcpu->arch.cr3;
  4298. tss->eip = kvm_rip_read(vcpu);
  4299. tss->eflags = kvm_get_rflags(vcpu);
  4300. tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4301. tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4302. tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4303. tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  4304. tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  4305. tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  4306. tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  4307. tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  4308. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  4309. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  4310. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  4311. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  4312. tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
  4313. tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
  4314. tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  4315. }
  4316. static void kvm_load_segment_selector(struct kvm_vcpu *vcpu, u16 sel, int seg)
  4317. {
  4318. struct kvm_segment kvm_seg;
  4319. kvm_get_segment(vcpu, &kvm_seg, seg);
  4320. kvm_seg.selector = sel;
  4321. kvm_set_segment(vcpu, &kvm_seg, seg);
  4322. }
  4323. static int load_state_from_tss32(struct kvm_vcpu *vcpu,
  4324. struct tss_segment_32 *tss)
  4325. {
  4326. kvm_set_cr3(vcpu, tss->cr3);
  4327. kvm_rip_write(vcpu, tss->eip);
  4328. kvm_set_rflags(vcpu, tss->eflags | 2);
  4329. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
  4330. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
  4331. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
  4332. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
  4333. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
  4334. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
  4335. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
  4336. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
  4337. /*
  4338. * SDM says that segment selectors are loaded before segment
  4339. * descriptors
  4340. */
  4341. kvm_load_segment_selector(vcpu, tss->ldt_selector, VCPU_SREG_LDTR);
  4342. kvm_load_segment_selector(vcpu, tss->es, VCPU_SREG_ES);
  4343. kvm_load_segment_selector(vcpu, tss->cs, VCPU_SREG_CS);
  4344. kvm_load_segment_selector(vcpu, tss->ss, VCPU_SREG_SS);
  4345. kvm_load_segment_selector(vcpu, tss->ds, VCPU_SREG_DS);
  4346. kvm_load_segment_selector(vcpu, tss->fs, VCPU_SREG_FS);
  4347. kvm_load_segment_selector(vcpu, tss->gs, VCPU_SREG_GS);
  4348. /*
  4349. * Now load segment descriptors. If fault happenes at this stage
  4350. * it is handled in a context of new task
  4351. */
  4352. if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, VCPU_SREG_LDTR))
  4353. return 1;
  4354. if (kvm_load_segment_descriptor(vcpu, tss->es, VCPU_SREG_ES))
  4355. return 1;
  4356. if (kvm_load_segment_descriptor(vcpu, tss->cs, VCPU_SREG_CS))
  4357. return 1;
  4358. if (kvm_load_segment_descriptor(vcpu, tss->ss, VCPU_SREG_SS))
  4359. return 1;
  4360. if (kvm_load_segment_descriptor(vcpu, tss->ds, VCPU_SREG_DS))
  4361. return 1;
  4362. if (kvm_load_segment_descriptor(vcpu, tss->fs, VCPU_SREG_FS))
  4363. return 1;
  4364. if (kvm_load_segment_descriptor(vcpu, tss->gs, VCPU_SREG_GS))
  4365. return 1;
  4366. return 0;
  4367. }
  4368. static void save_state_to_tss16(struct kvm_vcpu *vcpu,
  4369. struct tss_segment_16 *tss)
  4370. {
  4371. tss->ip = kvm_rip_read(vcpu);
  4372. tss->flag = kvm_get_rflags(vcpu);
  4373. tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4374. tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4375. tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4376. tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  4377. tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  4378. tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  4379. tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
  4380. tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
  4381. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  4382. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  4383. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  4384. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  4385. tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  4386. }
  4387. static int load_state_from_tss16(struct kvm_vcpu *vcpu,
  4388. struct tss_segment_16 *tss)
  4389. {
  4390. kvm_rip_write(vcpu, tss->ip);
  4391. kvm_set_rflags(vcpu, tss->flag | 2);
  4392. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
  4393. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
  4394. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
  4395. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
  4396. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
  4397. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
  4398. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
  4399. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
  4400. /*
  4401. * SDM says that segment selectors are loaded before segment
  4402. * descriptors
  4403. */
  4404. kvm_load_segment_selector(vcpu, tss->ldt, VCPU_SREG_LDTR);
  4405. kvm_load_segment_selector(vcpu, tss->es, VCPU_SREG_ES);
  4406. kvm_load_segment_selector(vcpu, tss->cs, VCPU_SREG_CS);
  4407. kvm_load_segment_selector(vcpu, tss->ss, VCPU_SREG_SS);
  4408. kvm_load_segment_selector(vcpu, tss->ds, VCPU_SREG_DS);
  4409. /*
  4410. * Now load segment descriptors. If fault happenes at this stage
  4411. * it is handled in a context of new task
  4412. */
  4413. if (kvm_load_segment_descriptor(vcpu, tss->ldt, VCPU_SREG_LDTR))
  4414. return 1;
  4415. if (kvm_load_segment_descriptor(vcpu, tss->es, VCPU_SREG_ES))
  4416. return 1;
  4417. if (kvm_load_segment_descriptor(vcpu, tss->cs, VCPU_SREG_CS))
  4418. return 1;
  4419. if (kvm_load_segment_descriptor(vcpu, tss->ss, VCPU_SREG_SS))
  4420. return 1;
  4421. if (kvm_load_segment_descriptor(vcpu, tss->ds, VCPU_SREG_DS))
  4422. return 1;
  4423. return 0;
  4424. }
  4425. static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
  4426. u16 old_tss_sel, u32 old_tss_base,
  4427. struct desc_struct *nseg_desc)
  4428. {
  4429. struct tss_segment_16 tss_segment_16;
  4430. int ret = 0;
  4431. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  4432. sizeof tss_segment_16))
  4433. goto out;
  4434. save_state_to_tss16(vcpu, &tss_segment_16);
  4435. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  4436. sizeof tss_segment_16))
  4437. goto out;
  4438. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr_read(vcpu, nseg_desc),
  4439. &tss_segment_16, sizeof tss_segment_16))
  4440. goto out;
  4441. if (old_tss_sel != 0xffff) {
  4442. tss_segment_16.prev_task_link = old_tss_sel;
  4443. if (kvm_write_guest(vcpu->kvm,
  4444. get_tss_base_addr_write(vcpu, nseg_desc),
  4445. &tss_segment_16.prev_task_link,
  4446. sizeof tss_segment_16.prev_task_link))
  4447. goto out;
  4448. }
  4449. if (load_state_from_tss16(vcpu, &tss_segment_16))
  4450. goto out;
  4451. ret = 1;
  4452. out:
  4453. return ret;
  4454. }
  4455. static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
  4456. u16 old_tss_sel, u32 old_tss_base,
  4457. struct desc_struct *nseg_desc)
  4458. {
  4459. struct tss_segment_32 tss_segment_32;
  4460. int ret = 0;
  4461. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  4462. sizeof tss_segment_32))
  4463. goto out;
  4464. save_state_to_tss32(vcpu, &tss_segment_32);
  4465. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  4466. sizeof tss_segment_32))
  4467. goto out;
  4468. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr_read(vcpu, nseg_desc),
  4469. &tss_segment_32, sizeof tss_segment_32))
  4470. goto out;
  4471. if (old_tss_sel != 0xffff) {
  4472. tss_segment_32.prev_task_link = old_tss_sel;
  4473. if (kvm_write_guest(vcpu->kvm,
  4474. get_tss_base_addr_write(vcpu, nseg_desc),
  4475. &tss_segment_32.prev_task_link,
  4476. sizeof tss_segment_32.prev_task_link))
  4477. goto out;
  4478. }
  4479. if (load_state_from_tss32(vcpu, &tss_segment_32))
  4480. goto out;
  4481. ret = 1;
  4482. out:
  4483. return ret;
  4484. }
  4485. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
  4486. {
  4487. struct kvm_segment tr_seg;
  4488. struct desc_struct cseg_desc;
  4489. struct desc_struct nseg_desc;
  4490. int ret = 0;
  4491. u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
  4492. u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
  4493. u32 desc_limit;
  4494. old_tss_base = kvm_mmu_gva_to_gpa_write(vcpu, old_tss_base, NULL);
  4495. /* FIXME: Handle errors. Failure to read either TSS or their
  4496. * descriptors should generate a pagefault.
  4497. */
  4498. if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
  4499. goto out;
  4500. if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
  4501. goto out;
  4502. if (reason != TASK_SWITCH_IRET) {
  4503. int cpl;
  4504. cpl = kvm_x86_ops->get_cpl(vcpu);
  4505. if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
  4506. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  4507. return 1;
  4508. }
  4509. }
  4510. desc_limit = get_desc_limit(&nseg_desc);
  4511. if (!nseg_desc.p ||
  4512. ((desc_limit < 0x67 && (nseg_desc.type & 8)) ||
  4513. desc_limit < 0x2b)) {
  4514. kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
  4515. return 1;
  4516. }
  4517. if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
  4518. cseg_desc.type &= ~(1 << 1); //clear the B flag
  4519. save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
  4520. }
  4521. if (reason == TASK_SWITCH_IRET) {
  4522. u32 eflags = kvm_get_rflags(vcpu);
  4523. kvm_set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
  4524. }
  4525. /* set back link to prev task only if NT bit is set in eflags
  4526. note that old_tss_sel is not used afetr this point */
  4527. if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
  4528. old_tss_sel = 0xffff;
  4529. if (nseg_desc.type & 8)
  4530. ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
  4531. old_tss_base, &nseg_desc);
  4532. else
  4533. ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
  4534. old_tss_base, &nseg_desc);
  4535. if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
  4536. u32 eflags = kvm_get_rflags(vcpu);
  4537. kvm_set_rflags(vcpu, eflags | X86_EFLAGS_NT);
  4538. }
  4539. if (reason != TASK_SWITCH_IRET) {
  4540. nseg_desc.type |= (1 << 1);
  4541. save_guest_segment_descriptor(vcpu, tss_selector,
  4542. &nseg_desc);
  4543. }
  4544. kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0(vcpu) | X86_CR0_TS);
  4545. seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
  4546. tr_seg.type = 11;
  4547. kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
  4548. out:
  4549. return ret;
  4550. }
  4551. EXPORT_SYMBOL_GPL(kvm_task_switch);
  4552. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  4553. struct kvm_sregs *sregs)
  4554. {
  4555. int mmu_reset_needed = 0;
  4556. int pending_vec, max_bits;
  4557. struct descriptor_table dt;
  4558. vcpu_load(vcpu);
  4559. dt.limit = sregs->idt.limit;
  4560. dt.base = sregs->idt.base;
  4561. kvm_x86_ops->set_idt(vcpu, &dt);
  4562. dt.limit = sregs->gdt.limit;
  4563. dt.base = sregs->gdt.base;
  4564. kvm_x86_ops->set_gdt(vcpu, &dt);
  4565. vcpu->arch.cr2 = sregs->cr2;
  4566. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  4567. vcpu->arch.cr3 = sregs->cr3;
  4568. kvm_set_cr8(vcpu, sregs->cr8);
  4569. mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
  4570. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  4571. kvm_set_apic_base(vcpu, sregs->apic_base);
  4572. mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
  4573. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  4574. vcpu->arch.cr0 = sregs->cr0;
  4575. mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
  4576. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  4577. if (!is_long_mode(vcpu) && is_pae(vcpu)) {
  4578. load_pdptrs(vcpu, vcpu->arch.cr3);
  4579. mmu_reset_needed = 1;
  4580. }
  4581. if (mmu_reset_needed)
  4582. kvm_mmu_reset_context(vcpu);
  4583. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  4584. pending_vec = find_first_bit(
  4585. (const unsigned long *)sregs->interrupt_bitmap, max_bits);
  4586. if (pending_vec < max_bits) {
  4587. kvm_queue_interrupt(vcpu, pending_vec, false);
  4588. pr_debug("Set back pending irq %d\n", pending_vec);
  4589. if (irqchip_in_kernel(vcpu->kvm))
  4590. kvm_pic_clear_isr_ack(vcpu->kvm);
  4591. }
  4592. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  4593. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  4594. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  4595. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  4596. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  4597. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  4598. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  4599. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  4600. update_cr8_intercept(vcpu);
  4601. /* Older userspace won't unhalt the vcpu on reset. */
  4602. if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
  4603. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  4604. !is_protmode(vcpu))
  4605. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4606. vcpu_put(vcpu);
  4607. return 0;
  4608. }
  4609. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  4610. struct kvm_guest_debug *dbg)
  4611. {
  4612. unsigned long rflags;
  4613. int i, r;
  4614. vcpu_load(vcpu);
  4615. if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
  4616. r = -EBUSY;
  4617. if (vcpu->arch.exception.pending)
  4618. goto unlock_out;
  4619. if (dbg->control & KVM_GUESTDBG_INJECT_DB)
  4620. kvm_queue_exception(vcpu, DB_VECTOR);
  4621. else
  4622. kvm_queue_exception(vcpu, BP_VECTOR);
  4623. }
  4624. /*
  4625. * Read rflags as long as potentially injected trace flags are still
  4626. * filtered out.
  4627. */
  4628. rflags = kvm_get_rflags(vcpu);
  4629. vcpu->guest_debug = dbg->control;
  4630. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  4631. vcpu->guest_debug = 0;
  4632. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  4633. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  4634. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  4635. vcpu->arch.switch_db_regs =
  4636. (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
  4637. } else {
  4638. for (i = 0; i < KVM_NR_DB_REGS; i++)
  4639. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  4640. vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
  4641. }
  4642. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
  4643. vcpu->arch.singlestep_cs =
  4644. get_segment_selector(vcpu, VCPU_SREG_CS);
  4645. vcpu->arch.singlestep_rip = kvm_rip_read(vcpu);
  4646. }
  4647. /*
  4648. * Trigger an rflags update that will inject or remove the trace
  4649. * flags.
  4650. */
  4651. kvm_set_rflags(vcpu, rflags);
  4652. kvm_x86_ops->set_guest_debug(vcpu, dbg);
  4653. r = 0;
  4654. unlock_out:
  4655. vcpu_put(vcpu);
  4656. return r;
  4657. }
  4658. /*
  4659. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  4660. * we have asm/x86/processor.h
  4661. */
  4662. struct fxsave {
  4663. u16 cwd;
  4664. u16 swd;
  4665. u16 twd;
  4666. u16 fop;
  4667. u64 rip;
  4668. u64 rdp;
  4669. u32 mxcsr;
  4670. u32 mxcsr_mask;
  4671. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  4672. #ifdef CONFIG_X86_64
  4673. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  4674. #else
  4675. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  4676. #endif
  4677. };
  4678. /*
  4679. * Translate a guest virtual address to a guest physical address.
  4680. */
  4681. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  4682. struct kvm_translation *tr)
  4683. {
  4684. unsigned long vaddr = tr->linear_address;
  4685. gpa_t gpa;
  4686. int idx;
  4687. vcpu_load(vcpu);
  4688. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4689. gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
  4690. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4691. tr->physical_address = gpa;
  4692. tr->valid = gpa != UNMAPPED_GVA;
  4693. tr->writeable = 1;
  4694. tr->usermode = 0;
  4695. vcpu_put(vcpu);
  4696. return 0;
  4697. }
  4698. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4699. {
  4700. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  4701. vcpu_load(vcpu);
  4702. memcpy(fpu->fpr, fxsave->st_space, 128);
  4703. fpu->fcw = fxsave->cwd;
  4704. fpu->fsw = fxsave->swd;
  4705. fpu->ftwx = fxsave->twd;
  4706. fpu->last_opcode = fxsave->fop;
  4707. fpu->last_ip = fxsave->rip;
  4708. fpu->last_dp = fxsave->rdp;
  4709. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  4710. vcpu_put(vcpu);
  4711. return 0;
  4712. }
  4713. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4714. {
  4715. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  4716. vcpu_load(vcpu);
  4717. memcpy(fxsave->st_space, fpu->fpr, 128);
  4718. fxsave->cwd = fpu->fcw;
  4719. fxsave->swd = fpu->fsw;
  4720. fxsave->twd = fpu->ftwx;
  4721. fxsave->fop = fpu->last_opcode;
  4722. fxsave->rip = fpu->last_ip;
  4723. fxsave->rdp = fpu->last_dp;
  4724. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  4725. vcpu_put(vcpu);
  4726. return 0;
  4727. }
  4728. void fx_init(struct kvm_vcpu *vcpu)
  4729. {
  4730. unsigned after_mxcsr_mask;
  4731. /*
  4732. * Touch the fpu the first time in non atomic context as if
  4733. * this is the first fpu instruction the exception handler
  4734. * will fire before the instruction returns and it'll have to
  4735. * allocate ram with GFP_KERNEL.
  4736. */
  4737. if (!used_math())
  4738. kvm_fx_save(&vcpu->arch.host_fx_image);
  4739. /* Initialize guest FPU by resetting ours and saving into guest's */
  4740. preempt_disable();
  4741. kvm_fx_save(&vcpu->arch.host_fx_image);
  4742. kvm_fx_finit();
  4743. kvm_fx_save(&vcpu->arch.guest_fx_image);
  4744. kvm_fx_restore(&vcpu->arch.host_fx_image);
  4745. preempt_enable();
  4746. vcpu->arch.cr0 |= X86_CR0_ET;
  4747. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  4748. vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
  4749. memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
  4750. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  4751. }
  4752. EXPORT_SYMBOL_GPL(fx_init);
  4753. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  4754. {
  4755. if (vcpu->guest_fpu_loaded)
  4756. return;
  4757. vcpu->guest_fpu_loaded = 1;
  4758. kvm_fx_save(&vcpu->arch.host_fx_image);
  4759. kvm_fx_restore(&vcpu->arch.guest_fx_image);
  4760. trace_kvm_fpu(1);
  4761. }
  4762. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  4763. {
  4764. if (!vcpu->guest_fpu_loaded)
  4765. return;
  4766. vcpu->guest_fpu_loaded = 0;
  4767. kvm_fx_save(&vcpu->arch.guest_fx_image);
  4768. kvm_fx_restore(&vcpu->arch.host_fx_image);
  4769. ++vcpu->stat.fpu_reload;
  4770. set_bit(KVM_REQ_DEACTIVATE_FPU, &vcpu->requests);
  4771. trace_kvm_fpu(0);
  4772. }
  4773. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  4774. {
  4775. if (vcpu->arch.time_page) {
  4776. kvm_release_page_dirty(vcpu->arch.time_page);
  4777. vcpu->arch.time_page = NULL;
  4778. }
  4779. kvm_x86_ops->vcpu_free(vcpu);
  4780. }
  4781. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  4782. unsigned int id)
  4783. {
  4784. return kvm_x86_ops->vcpu_create(kvm, id);
  4785. }
  4786. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  4787. {
  4788. int r;
  4789. /* We do fxsave: this must be aligned. */
  4790. BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
  4791. vcpu->arch.mtrr_state.have_fixed = 1;
  4792. vcpu_load(vcpu);
  4793. r = kvm_arch_vcpu_reset(vcpu);
  4794. if (r == 0)
  4795. r = kvm_mmu_setup(vcpu);
  4796. vcpu_put(vcpu);
  4797. if (r < 0)
  4798. goto free_vcpu;
  4799. return 0;
  4800. free_vcpu:
  4801. kvm_x86_ops->vcpu_free(vcpu);
  4802. return r;
  4803. }
  4804. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  4805. {
  4806. vcpu_load(vcpu);
  4807. kvm_mmu_unload(vcpu);
  4808. vcpu_put(vcpu);
  4809. kvm_x86_ops->vcpu_free(vcpu);
  4810. }
  4811. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  4812. {
  4813. vcpu->arch.nmi_pending = false;
  4814. vcpu->arch.nmi_injected = false;
  4815. vcpu->arch.switch_db_regs = 0;
  4816. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  4817. vcpu->arch.dr6 = DR6_FIXED_1;
  4818. vcpu->arch.dr7 = DR7_FIXED_1;
  4819. return kvm_x86_ops->vcpu_reset(vcpu);
  4820. }
  4821. int kvm_arch_hardware_enable(void *garbage)
  4822. {
  4823. /*
  4824. * Since this may be called from a hotplug notifcation,
  4825. * we can't get the CPU frequency directly.
  4826. */
  4827. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  4828. int cpu = raw_smp_processor_id();
  4829. per_cpu(cpu_tsc_khz, cpu) = 0;
  4830. }
  4831. kvm_shared_msr_cpu_online();
  4832. return kvm_x86_ops->hardware_enable(garbage);
  4833. }
  4834. void kvm_arch_hardware_disable(void *garbage)
  4835. {
  4836. kvm_x86_ops->hardware_disable(garbage);
  4837. drop_user_return_notifiers(garbage);
  4838. }
  4839. int kvm_arch_hardware_setup(void)
  4840. {
  4841. return kvm_x86_ops->hardware_setup();
  4842. }
  4843. void kvm_arch_hardware_unsetup(void)
  4844. {
  4845. kvm_x86_ops->hardware_unsetup();
  4846. }
  4847. void kvm_arch_check_processor_compat(void *rtn)
  4848. {
  4849. kvm_x86_ops->check_processor_compatibility(rtn);
  4850. }
  4851. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  4852. {
  4853. struct page *page;
  4854. struct kvm *kvm;
  4855. int r;
  4856. BUG_ON(vcpu->kvm == NULL);
  4857. kvm = vcpu->kvm;
  4858. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  4859. if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
  4860. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4861. else
  4862. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  4863. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  4864. if (!page) {
  4865. r = -ENOMEM;
  4866. goto fail;
  4867. }
  4868. vcpu->arch.pio_data = page_address(page);
  4869. r = kvm_mmu_create(vcpu);
  4870. if (r < 0)
  4871. goto fail_free_pio_data;
  4872. if (irqchip_in_kernel(kvm)) {
  4873. r = kvm_create_lapic(vcpu);
  4874. if (r < 0)
  4875. goto fail_mmu_destroy;
  4876. }
  4877. vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
  4878. GFP_KERNEL);
  4879. if (!vcpu->arch.mce_banks) {
  4880. r = -ENOMEM;
  4881. goto fail_free_lapic;
  4882. }
  4883. vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
  4884. return 0;
  4885. fail_free_lapic:
  4886. kvm_free_lapic(vcpu);
  4887. fail_mmu_destroy:
  4888. kvm_mmu_destroy(vcpu);
  4889. fail_free_pio_data:
  4890. free_page((unsigned long)vcpu->arch.pio_data);
  4891. fail:
  4892. return r;
  4893. }
  4894. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  4895. {
  4896. int idx;
  4897. kfree(vcpu->arch.mce_banks);
  4898. kvm_free_lapic(vcpu);
  4899. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4900. kvm_mmu_destroy(vcpu);
  4901. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4902. free_page((unsigned long)vcpu->arch.pio_data);
  4903. }
  4904. struct kvm *kvm_arch_create_vm(void)
  4905. {
  4906. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  4907. if (!kvm)
  4908. return ERR_PTR(-ENOMEM);
  4909. kvm->arch.aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
  4910. if (!kvm->arch.aliases) {
  4911. kfree(kvm);
  4912. return ERR_PTR(-ENOMEM);
  4913. }
  4914. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  4915. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  4916. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  4917. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  4918. rdtscll(kvm->arch.vm_init_tsc);
  4919. return kvm;
  4920. }
  4921. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  4922. {
  4923. vcpu_load(vcpu);
  4924. kvm_mmu_unload(vcpu);
  4925. vcpu_put(vcpu);
  4926. }
  4927. static void kvm_free_vcpus(struct kvm *kvm)
  4928. {
  4929. unsigned int i;
  4930. struct kvm_vcpu *vcpu;
  4931. /*
  4932. * Unpin any mmu pages first.
  4933. */
  4934. kvm_for_each_vcpu(i, vcpu, kvm)
  4935. kvm_unload_vcpu_mmu(vcpu);
  4936. kvm_for_each_vcpu(i, vcpu, kvm)
  4937. kvm_arch_vcpu_free(vcpu);
  4938. mutex_lock(&kvm->lock);
  4939. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  4940. kvm->vcpus[i] = NULL;
  4941. atomic_set(&kvm->online_vcpus, 0);
  4942. mutex_unlock(&kvm->lock);
  4943. }
  4944. void kvm_arch_sync_events(struct kvm *kvm)
  4945. {
  4946. kvm_free_all_assigned_devices(kvm);
  4947. }
  4948. void kvm_arch_destroy_vm(struct kvm *kvm)
  4949. {
  4950. kvm_iommu_unmap_guest(kvm);
  4951. kvm_free_pit(kvm);
  4952. kfree(kvm->arch.vpic);
  4953. kfree(kvm->arch.vioapic);
  4954. kvm_free_vcpus(kvm);
  4955. kvm_free_physmem(kvm);
  4956. if (kvm->arch.apic_access_page)
  4957. put_page(kvm->arch.apic_access_page);
  4958. if (kvm->arch.ept_identity_pagetable)
  4959. put_page(kvm->arch.ept_identity_pagetable);
  4960. cleanup_srcu_struct(&kvm->srcu);
  4961. kfree(kvm->arch.aliases);
  4962. kfree(kvm);
  4963. }
  4964. int kvm_arch_prepare_memory_region(struct kvm *kvm,
  4965. struct kvm_memory_slot *memslot,
  4966. struct kvm_memory_slot old,
  4967. struct kvm_userspace_memory_region *mem,
  4968. int user_alloc)
  4969. {
  4970. int npages = memslot->npages;
  4971. /*To keep backward compatibility with older userspace,
  4972. *x86 needs to hanlde !user_alloc case.
  4973. */
  4974. if (!user_alloc) {
  4975. if (npages && !old.rmap) {
  4976. unsigned long userspace_addr;
  4977. down_write(&current->mm->mmap_sem);
  4978. userspace_addr = do_mmap(NULL, 0,
  4979. npages * PAGE_SIZE,
  4980. PROT_READ | PROT_WRITE,
  4981. MAP_PRIVATE | MAP_ANONYMOUS,
  4982. 0);
  4983. up_write(&current->mm->mmap_sem);
  4984. if (IS_ERR((void *)userspace_addr))
  4985. return PTR_ERR((void *)userspace_addr);
  4986. memslot->userspace_addr = userspace_addr;
  4987. }
  4988. }
  4989. return 0;
  4990. }
  4991. void kvm_arch_commit_memory_region(struct kvm *kvm,
  4992. struct kvm_userspace_memory_region *mem,
  4993. struct kvm_memory_slot old,
  4994. int user_alloc)
  4995. {
  4996. int npages = mem->memory_size >> PAGE_SHIFT;
  4997. if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
  4998. int ret;
  4999. down_write(&current->mm->mmap_sem);
  5000. ret = do_munmap(current->mm, old.userspace_addr,
  5001. old.npages * PAGE_SIZE);
  5002. up_write(&current->mm->mmap_sem);
  5003. if (ret < 0)
  5004. printk(KERN_WARNING
  5005. "kvm_vm_ioctl_set_memory_region: "
  5006. "failed to munmap memory\n");
  5007. }
  5008. spin_lock(&kvm->mmu_lock);
  5009. if (!kvm->arch.n_requested_mmu_pages) {
  5010. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  5011. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  5012. }
  5013. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  5014. spin_unlock(&kvm->mmu_lock);
  5015. }
  5016. void kvm_arch_flush_shadow(struct kvm *kvm)
  5017. {
  5018. kvm_mmu_zap_all(kvm);
  5019. kvm_reload_remote_mmus(kvm);
  5020. }
  5021. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  5022. {
  5023. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
  5024. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  5025. || vcpu->arch.nmi_pending ||
  5026. (kvm_arch_interrupt_allowed(vcpu) &&
  5027. kvm_cpu_has_interrupt(vcpu));
  5028. }
  5029. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  5030. {
  5031. int me;
  5032. int cpu = vcpu->cpu;
  5033. if (waitqueue_active(&vcpu->wq)) {
  5034. wake_up_interruptible(&vcpu->wq);
  5035. ++vcpu->stat.halt_wakeup;
  5036. }
  5037. me = get_cpu();
  5038. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  5039. if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
  5040. smp_send_reschedule(cpu);
  5041. put_cpu();
  5042. }
  5043. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  5044. {
  5045. return kvm_x86_ops->interrupt_allowed(vcpu);
  5046. }
  5047. unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
  5048. {
  5049. unsigned long rflags;
  5050. rflags = kvm_x86_ops->get_rflags(vcpu);
  5051. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  5052. rflags &= ~(unsigned long)(X86_EFLAGS_TF | X86_EFLAGS_RF);
  5053. return rflags;
  5054. }
  5055. EXPORT_SYMBOL_GPL(kvm_get_rflags);
  5056. void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  5057. {
  5058. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
  5059. vcpu->arch.singlestep_cs ==
  5060. get_segment_selector(vcpu, VCPU_SREG_CS) &&
  5061. vcpu->arch.singlestep_rip == kvm_rip_read(vcpu))
  5062. rflags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  5063. kvm_x86_ops->set_rflags(vcpu, rflags);
  5064. }
  5065. EXPORT_SYMBOL_GPL(kvm_set_rflags);
  5066. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
  5067. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
  5068. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
  5069. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
  5070. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
  5071. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
  5072. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
  5073. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
  5074. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
  5075. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
  5076. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);