fsl_dma.c 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995
  1. /*
  2. * Freescale DMA ALSA SoC PCM driver
  3. *
  4. * Author: Timur Tabi <timur@freescale.com>
  5. *
  6. * Copyright 2007-2010 Freescale Semiconductor, Inc.
  7. *
  8. * This file is licensed under the terms of the GNU General Public License
  9. * version 2. This program is licensed "as is" without any warranty of any
  10. * kind, whether express or implied.
  11. *
  12. * This driver implements ASoC support for the Elo DMA controller, which is
  13. * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
  14. * the PCM driver is what handles the DMA buffer.
  15. */
  16. #include <linux/module.h>
  17. #include <linux/init.h>
  18. #include <linux/platform_device.h>
  19. #include <linux/dma-mapping.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/delay.h>
  22. #include <linux/gfp.h>
  23. #include <linux/of_address.h>
  24. #include <linux/of_irq.h>
  25. #include <linux/of_platform.h>
  26. #include <linux/list.h>
  27. #include <linux/slab.h>
  28. #include <sound/core.h>
  29. #include <sound/pcm.h>
  30. #include <sound/pcm_params.h>
  31. #include <sound/soc.h>
  32. #include <asm/io.h>
  33. #include "fsl_dma.h"
  34. #include "fsl_ssi.h" /* For the offset of stx0 and srx0 */
  35. /*
  36. * The formats that the DMA controller supports, which is anything
  37. * that is 8, 16, or 32 bits.
  38. */
  39. #define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 | \
  40. SNDRV_PCM_FMTBIT_U8 | \
  41. SNDRV_PCM_FMTBIT_S16_LE | \
  42. SNDRV_PCM_FMTBIT_S16_BE | \
  43. SNDRV_PCM_FMTBIT_U16_LE | \
  44. SNDRV_PCM_FMTBIT_U16_BE | \
  45. SNDRV_PCM_FMTBIT_S24_LE | \
  46. SNDRV_PCM_FMTBIT_S24_BE | \
  47. SNDRV_PCM_FMTBIT_U24_LE | \
  48. SNDRV_PCM_FMTBIT_U24_BE | \
  49. SNDRV_PCM_FMTBIT_S32_LE | \
  50. SNDRV_PCM_FMTBIT_S32_BE | \
  51. SNDRV_PCM_FMTBIT_U32_LE | \
  52. SNDRV_PCM_FMTBIT_U32_BE)
  53. #define FSLDMA_PCM_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
  54. SNDRV_PCM_RATE_CONTINUOUS)
  55. struct dma_object {
  56. struct snd_soc_platform_driver dai;
  57. dma_addr_t ssi_stx_phys;
  58. dma_addr_t ssi_srx_phys;
  59. unsigned int ssi_fifo_depth;
  60. struct ccsr_dma_channel __iomem *channel;
  61. unsigned int irq;
  62. bool assigned;
  63. char path[1];
  64. };
  65. /*
  66. * The number of DMA links to use. Two is the bare minimum, but if you
  67. * have really small links you might need more.
  68. */
  69. #define NUM_DMA_LINKS 2
  70. /** fsl_dma_private: p-substream DMA data
  71. *
  72. * Each substream has a 1-to-1 association with a DMA channel.
  73. *
  74. * The link[] array is first because it needs to be aligned on a 32-byte
  75. * boundary, so putting it first will ensure alignment without padding the
  76. * structure.
  77. *
  78. * @link[]: array of link descriptors
  79. * @dma_channel: pointer to the DMA channel's registers
  80. * @irq: IRQ for this DMA channel
  81. * @substream: pointer to the substream object, needed by the ISR
  82. * @ssi_sxx_phys: bus address of the STX or SRX register to use
  83. * @ld_buf_phys: physical address of the LD buffer
  84. * @current_link: index into link[] of the link currently being processed
  85. * @dma_buf_phys: physical address of the DMA buffer
  86. * @dma_buf_next: physical address of the next period to process
  87. * @dma_buf_end: physical address of the byte after the end of the DMA
  88. * @buffer period_size: the size of a single period
  89. * @num_periods: the number of periods in the DMA buffer
  90. */
  91. struct fsl_dma_private {
  92. struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
  93. struct ccsr_dma_channel __iomem *dma_channel;
  94. unsigned int irq;
  95. struct snd_pcm_substream *substream;
  96. dma_addr_t ssi_sxx_phys;
  97. unsigned int ssi_fifo_depth;
  98. dma_addr_t ld_buf_phys;
  99. unsigned int current_link;
  100. dma_addr_t dma_buf_phys;
  101. dma_addr_t dma_buf_next;
  102. dma_addr_t dma_buf_end;
  103. size_t period_size;
  104. unsigned int num_periods;
  105. };
  106. /**
  107. * fsl_dma_hardare: define characteristics of the PCM hardware.
  108. *
  109. * The PCM hardware is the Freescale DMA controller. This structure defines
  110. * the capabilities of that hardware.
  111. *
  112. * Since the sampling rate and data format are not controlled by the DMA
  113. * controller, we specify no limits for those values. The only exception is
  114. * period_bytes_min, which is set to a reasonably low value to prevent the
  115. * DMA controller from generating too many interrupts per second.
  116. *
  117. * Since each link descriptor has a 32-bit byte count field, we set
  118. * period_bytes_max to the largest 32-bit number. We also have no maximum
  119. * number of periods.
  120. *
  121. * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
  122. * limitation in the SSI driver requires the sample rates for playback and
  123. * capture to be the same.
  124. */
  125. static const struct snd_pcm_hardware fsl_dma_hardware = {
  126. .info = SNDRV_PCM_INFO_INTERLEAVED |
  127. SNDRV_PCM_INFO_MMAP |
  128. SNDRV_PCM_INFO_MMAP_VALID |
  129. SNDRV_PCM_INFO_JOINT_DUPLEX |
  130. SNDRV_PCM_INFO_PAUSE,
  131. .formats = FSLDMA_PCM_FORMATS,
  132. .rates = FSLDMA_PCM_RATES,
  133. .rate_min = 5512,
  134. .rate_max = 192000,
  135. .period_bytes_min = 512, /* A reasonable limit */
  136. .period_bytes_max = (u32) -1,
  137. .periods_min = NUM_DMA_LINKS,
  138. .periods_max = (unsigned int) -1,
  139. .buffer_bytes_max = 128 * 1024, /* A reasonable limit */
  140. };
  141. /**
  142. * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
  143. *
  144. * This function should be called by the ISR whenever the DMA controller
  145. * halts data transfer.
  146. */
  147. static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
  148. {
  149. unsigned long flags;
  150. snd_pcm_stream_lock_irqsave(substream, flags);
  151. if (snd_pcm_running(substream))
  152. snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
  153. snd_pcm_stream_unlock_irqrestore(substream, flags);
  154. }
  155. /**
  156. * fsl_dma_update_pointers - update LD pointers to point to the next period
  157. *
  158. * As each period is completed, this function changes the the link
  159. * descriptor pointers for that period to point to the next period.
  160. */
  161. static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
  162. {
  163. struct fsl_dma_link_descriptor *link =
  164. &dma_private->link[dma_private->current_link];
  165. /* Update our link descriptors to point to the next period. On a 36-bit
  166. * system, we also need to update the ESAD bits. We also set (keep) the
  167. * snoop bits. See the comments in fsl_dma_hw_params() about snooping.
  168. */
  169. if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
  170. link->source_addr = cpu_to_be32(dma_private->dma_buf_next);
  171. #ifdef CONFIG_PHYS_64BIT
  172. link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
  173. upper_32_bits(dma_private->dma_buf_next));
  174. #endif
  175. } else {
  176. link->dest_addr = cpu_to_be32(dma_private->dma_buf_next);
  177. #ifdef CONFIG_PHYS_64BIT
  178. link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
  179. upper_32_bits(dma_private->dma_buf_next));
  180. #endif
  181. }
  182. /* Update our variables for next time */
  183. dma_private->dma_buf_next += dma_private->period_size;
  184. if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
  185. dma_private->dma_buf_next = dma_private->dma_buf_phys;
  186. if (++dma_private->current_link >= NUM_DMA_LINKS)
  187. dma_private->current_link = 0;
  188. }
  189. /**
  190. * fsl_dma_isr: interrupt handler for the DMA controller
  191. *
  192. * @irq: IRQ of the DMA channel
  193. * @dev_id: pointer to the dma_private structure for this DMA channel
  194. */
  195. static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
  196. {
  197. struct fsl_dma_private *dma_private = dev_id;
  198. struct snd_pcm_substream *substream = dma_private->substream;
  199. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  200. struct device *dev = rtd->platform->dev;
  201. struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
  202. irqreturn_t ret = IRQ_NONE;
  203. u32 sr, sr2 = 0;
  204. /* We got an interrupt, so read the status register to see what we
  205. were interrupted for.
  206. */
  207. sr = in_be32(&dma_channel->sr);
  208. if (sr & CCSR_DMA_SR_TE) {
  209. dev_err(dev, "dma transmit error\n");
  210. fsl_dma_abort_stream(substream);
  211. sr2 |= CCSR_DMA_SR_TE;
  212. ret = IRQ_HANDLED;
  213. }
  214. if (sr & CCSR_DMA_SR_CH)
  215. ret = IRQ_HANDLED;
  216. if (sr & CCSR_DMA_SR_PE) {
  217. dev_err(dev, "dma programming error\n");
  218. fsl_dma_abort_stream(substream);
  219. sr2 |= CCSR_DMA_SR_PE;
  220. ret = IRQ_HANDLED;
  221. }
  222. if (sr & CCSR_DMA_SR_EOLNI) {
  223. sr2 |= CCSR_DMA_SR_EOLNI;
  224. ret = IRQ_HANDLED;
  225. }
  226. if (sr & CCSR_DMA_SR_CB)
  227. ret = IRQ_HANDLED;
  228. if (sr & CCSR_DMA_SR_EOSI) {
  229. /* Tell ALSA we completed a period. */
  230. snd_pcm_period_elapsed(substream);
  231. /*
  232. * Update our link descriptors to point to the next period. We
  233. * only need to do this if the number of periods is not equal to
  234. * the number of links.
  235. */
  236. if (dma_private->num_periods != NUM_DMA_LINKS)
  237. fsl_dma_update_pointers(dma_private);
  238. sr2 |= CCSR_DMA_SR_EOSI;
  239. ret = IRQ_HANDLED;
  240. }
  241. if (sr & CCSR_DMA_SR_EOLSI) {
  242. sr2 |= CCSR_DMA_SR_EOLSI;
  243. ret = IRQ_HANDLED;
  244. }
  245. /* Clear the bits that we set */
  246. if (sr2)
  247. out_be32(&dma_channel->sr, sr2);
  248. return ret;
  249. }
  250. /**
  251. * fsl_dma_new: initialize this PCM driver.
  252. *
  253. * This function is called when the codec driver calls snd_soc_new_pcms(),
  254. * once for each .dai_link in the machine driver's snd_soc_card
  255. * structure.
  256. *
  257. * snd_dma_alloc_pages() is just a front-end to dma_alloc_coherent(), which
  258. * (currently) always allocates the DMA buffer in lowmem, even if GFP_HIGHMEM
  259. * is specified. Therefore, any DMA buffers we allocate will always be in low
  260. * memory, but we support for 36-bit physical addresses anyway.
  261. *
  262. * Regardless of where the memory is actually allocated, since the device can
  263. * technically DMA to any 36-bit address, we do need to set the DMA mask to 36.
  264. */
  265. static int fsl_dma_new(struct snd_soc_pcm_runtime *rtd)
  266. {
  267. struct snd_card *card = rtd->card->snd_card;
  268. struct snd_pcm *pcm = rtd->pcm;
  269. static u64 fsl_dma_dmamask = DMA_BIT_MASK(36);
  270. int ret;
  271. if (!card->dev->dma_mask)
  272. card->dev->dma_mask = &fsl_dma_dmamask;
  273. if (!card->dev->coherent_dma_mask)
  274. card->dev->coherent_dma_mask = fsl_dma_dmamask;
  275. /* Some codecs have separate DAIs for playback and capture, so we
  276. * should allocate a DMA buffer only for the streams that are valid.
  277. */
  278. if (pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream) {
  279. ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
  280. fsl_dma_hardware.buffer_bytes_max,
  281. &pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->dma_buffer);
  282. if (ret) {
  283. dev_err(card->dev, "can't alloc playback dma buffer\n");
  284. return ret;
  285. }
  286. }
  287. if (pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream) {
  288. ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
  289. fsl_dma_hardware.buffer_bytes_max,
  290. &pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream->dma_buffer);
  291. if (ret) {
  292. dev_err(card->dev, "can't alloc capture dma buffer\n");
  293. snd_dma_free_pages(&pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->dma_buffer);
  294. return ret;
  295. }
  296. }
  297. return 0;
  298. }
  299. /**
  300. * fsl_dma_open: open a new substream.
  301. *
  302. * Each substream has its own DMA buffer.
  303. *
  304. * ALSA divides the DMA buffer into N periods. We create NUM_DMA_LINKS link
  305. * descriptors that ping-pong from one period to the next. For example, if
  306. * there are six periods and two link descriptors, this is how they look
  307. * before playback starts:
  308. *
  309. * The last link descriptor
  310. * ____________ points back to the first
  311. * | |
  312. * V |
  313. * ___ ___ |
  314. * | |->| |->|
  315. * |___| |___|
  316. * | |
  317. * | |
  318. * V V
  319. * _________________________________________
  320. * | | | | | | | The DMA buffer is
  321. * | | | | | | | divided into 6 parts
  322. * |______|______|______|______|______|______|
  323. *
  324. * and here's how they look after the first period is finished playing:
  325. *
  326. * ____________
  327. * | |
  328. * V |
  329. * ___ ___ |
  330. * | |->| |->|
  331. * |___| |___|
  332. * | |
  333. * |______________
  334. * | |
  335. * V V
  336. * _________________________________________
  337. * | | | | | | |
  338. * | | | | | | |
  339. * |______|______|______|______|______|______|
  340. *
  341. * The first link descriptor now points to the third period. The DMA
  342. * controller is currently playing the second period. When it finishes, it
  343. * will jump back to the first descriptor and play the third period.
  344. *
  345. * There are four reasons we do this:
  346. *
  347. * 1. The only way to get the DMA controller to automatically restart the
  348. * transfer when it gets to the end of the buffer is to use chaining
  349. * mode. Basic direct mode doesn't offer that feature.
  350. * 2. We need to receive an interrupt at the end of every period. The DMA
  351. * controller can generate an interrupt at the end of every link transfer
  352. * (aka segment). Making each period into a DMA segment will give us the
  353. * interrupts we need.
  354. * 3. By creating only two link descriptors, regardless of the number of
  355. * periods, we do not need to reallocate the link descriptors if the
  356. * number of periods changes.
  357. * 4. All of the audio data is still stored in a single, contiguous DMA
  358. * buffer, which is what ALSA expects. We're just dividing it into
  359. * contiguous parts, and creating a link descriptor for each one.
  360. */
  361. static int fsl_dma_open(struct snd_pcm_substream *substream)
  362. {
  363. struct snd_pcm_runtime *runtime = substream->runtime;
  364. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  365. struct device *dev = rtd->platform->dev;
  366. struct dma_object *dma =
  367. container_of(rtd->platform->driver, struct dma_object, dai);
  368. struct fsl_dma_private *dma_private;
  369. struct ccsr_dma_channel __iomem *dma_channel;
  370. dma_addr_t ld_buf_phys;
  371. u64 temp_link; /* Pointer to next link descriptor */
  372. u32 mr;
  373. unsigned int channel;
  374. int ret = 0;
  375. unsigned int i;
  376. /*
  377. * Reject any DMA buffer whose size is not a multiple of the period
  378. * size. We need to make sure that the DMA buffer can be evenly divided
  379. * into periods.
  380. */
  381. ret = snd_pcm_hw_constraint_integer(runtime,
  382. SNDRV_PCM_HW_PARAM_PERIODS);
  383. if (ret < 0) {
  384. dev_err(dev, "invalid buffer size\n");
  385. return ret;
  386. }
  387. channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
  388. if (dma->assigned) {
  389. dev_err(dev, "dma channel already assigned\n");
  390. return -EBUSY;
  391. }
  392. dma_private = dma_alloc_coherent(dev, sizeof(struct fsl_dma_private),
  393. &ld_buf_phys, GFP_KERNEL);
  394. if (!dma_private) {
  395. dev_err(dev, "can't allocate dma private data\n");
  396. return -ENOMEM;
  397. }
  398. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  399. dma_private->ssi_sxx_phys = dma->ssi_stx_phys;
  400. else
  401. dma_private->ssi_sxx_phys = dma->ssi_srx_phys;
  402. dma_private->ssi_fifo_depth = dma->ssi_fifo_depth;
  403. dma_private->dma_channel = dma->channel;
  404. dma_private->irq = dma->irq;
  405. dma_private->substream = substream;
  406. dma_private->ld_buf_phys = ld_buf_phys;
  407. dma_private->dma_buf_phys = substream->dma_buffer.addr;
  408. ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "fsldma-audio",
  409. dma_private);
  410. if (ret) {
  411. dev_err(dev, "can't register ISR for IRQ %u (ret=%i)\n",
  412. dma_private->irq, ret);
  413. dma_free_coherent(dev, sizeof(struct fsl_dma_private),
  414. dma_private, dma_private->ld_buf_phys);
  415. return ret;
  416. }
  417. dma->assigned = 1;
  418. snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
  419. snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
  420. runtime->private_data = dma_private;
  421. /* Program the fixed DMA controller parameters */
  422. dma_channel = dma_private->dma_channel;
  423. temp_link = dma_private->ld_buf_phys +
  424. sizeof(struct fsl_dma_link_descriptor);
  425. for (i = 0; i < NUM_DMA_LINKS; i++) {
  426. dma_private->link[i].next = cpu_to_be64(temp_link);
  427. temp_link += sizeof(struct fsl_dma_link_descriptor);
  428. }
  429. /* The last link descriptor points to the first */
  430. dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
  431. /* Tell the DMA controller where the first link descriptor is */
  432. out_be32(&dma_channel->clndar,
  433. CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
  434. out_be32(&dma_channel->eclndar,
  435. CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
  436. /* The manual says the BCR must be clear before enabling EMP */
  437. out_be32(&dma_channel->bcr, 0);
  438. /*
  439. * Program the mode register for interrupts, external master control,
  440. * and source/destination hold. Also clear the Channel Abort bit.
  441. */
  442. mr = in_be32(&dma_channel->mr) &
  443. ~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
  444. /*
  445. * We want External Master Start and External Master Pause enabled,
  446. * because the SSI is controlling the DMA controller. We want the DMA
  447. * controller to be set up in advance, and then we signal only the SSI
  448. * to start transferring.
  449. *
  450. * We want End-Of-Segment Interrupts enabled, because this will generate
  451. * an interrupt at the end of each segment (each link descriptor
  452. * represents one segment). Each DMA segment is the same thing as an
  453. * ALSA period, so this is how we get an interrupt at the end of every
  454. * period.
  455. *
  456. * We want Error Interrupt enabled, so that we can get an error if
  457. * the DMA controller is mis-programmed somehow.
  458. */
  459. mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
  460. CCSR_DMA_MR_EMS_EN;
  461. /* For playback, we want the destination address to be held. For
  462. capture, set the source address to be held. */
  463. mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
  464. CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
  465. out_be32(&dma_channel->mr, mr);
  466. return 0;
  467. }
  468. /**
  469. * fsl_dma_hw_params: continue initializing the DMA links
  470. *
  471. * This function obtains hardware parameters about the opened stream and
  472. * programs the DMA controller accordingly.
  473. *
  474. * One drawback of big-endian is that when copying integers of different
  475. * sizes to a fixed-sized register, the address to which the integer must be
  476. * copied is dependent on the size of the integer.
  477. *
  478. * For example, if P is the address of a 32-bit register, and X is a 32-bit
  479. * integer, then X should be copied to address P. However, if X is a 16-bit
  480. * integer, then it should be copied to P+2. If X is an 8-bit register,
  481. * then it should be copied to P+3.
  482. *
  483. * So for playback of 8-bit samples, the DMA controller must transfer single
  484. * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
  485. * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
  486. *
  487. * For 24-bit samples, the offset is 1 byte. However, the DMA controller
  488. * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
  489. * and 8 bytes at a time). So we do not support packed 24-bit samples.
  490. * 24-bit data must be padded to 32 bits.
  491. */
  492. static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
  493. struct snd_pcm_hw_params *hw_params)
  494. {
  495. struct snd_pcm_runtime *runtime = substream->runtime;
  496. struct fsl_dma_private *dma_private = runtime->private_data;
  497. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  498. struct device *dev = rtd->platform->dev;
  499. /* Number of bits per sample */
  500. unsigned int sample_bits =
  501. snd_pcm_format_physical_width(params_format(hw_params));
  502. /* Number of bytes per frame */
  503. unsigned int sample_bytes = sample_bits / 8;
  504. /* Bus address of SSI STX register */
  505. dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys;
  506. /* Size of the DMA buffer, in bytes */
  507. size_t buffer_size = params_buffer_bytes(hw_params);
  508. /* Number of bytes per period */
  509. size_t period_size = params_period_bytes(hw_params);
  510. /* Pointer to next period */
  511. dma_addr_t temp_addr = substream->dma_buffer.addr;
  512. /* Pointer to DMA controller */
  513. struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
  514. u32 mr; /* DMA Mode Register */
  515. unsigned int i;
  516. /* Initialize our DMA tracking variables */
  517. dma_private->period_size = period_size;
  518. dma_private->num_periods = params_periods(hw_params);
  519. dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
  520. dma_private->dma_buf_next = dma_private->dma_buf_phys +
  521. (NUM_DMA_LINKS * period_size);
  522. if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
  523. /* This happens if the number of periods == NUM_DMA_LINKS */
  524. dma_private->dma_buf_next = dma_private->dma_buf_phys;
  525. mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
  526. CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
  527. /* Due to a quirk of the SSI's STX register, the target address
  528. * for the DMA operations depends on the sample size. So we calculate
  529. * that offset here. While we're at it, also tell the DMA controller
  530. * how much data to transfer per sample.
  531. */
  532. switch (sample_bits) {
  533. case 8:
  534. mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
  535. ssi_sxx_phys += 3;
  536. break;
  537. case 16:
  538. mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
  539. ssi_sxx_phys += 2;
  540. break;
  541. case 32:
  542. mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
  543. break;
  544. default:
  545. /* We should never get here */
  546. dev_err(dev, "unsupported sample size %u\n", sample_bits);
  547. return -EINVAL;
  548. }
  549. /*
  550. * BWC determines how many bytes are sent/received before the DMA
  551. * controller checks the SSI to see if it needs to stop. BWC should
  552. * always be a multiple of the frame size, so that we always transmit
  553. * whole frames. Each frame occupies two slots in the FIFO. The
  554. * parameter for CCSR_DMA_MR_BWC() is rounded down the next power of two
  555. * (MR[BWC] can only represent even powers of two).
  556. *
  557. * To simplify the process, we set BWC to the largest value that is
  558. * less than or equal to the FIFO watermark. For playback, this ensures
  559. * that we transfer the maximum amount without overrunning the FIFO.
  560. * For capture, this ensures that we transfer the maximum amount without
  561. * underrunning the FIFO.
  562. *
  563. * f = SSI FIFO depth
  564. * w = SSI watermark value (which equals f - 2)
  565. * b = DMA bandwidth count (in bytes)
  566. * s = sample size (in bytes, which equals frame_size * 2)
  567. *
  568. * For playback, we never transmit more than the transmit FIFO
  569. * watermark, otherwise we might write more data than the FIFO can hold.
  570. * The watermark is equal to the FIFO depth minus two.
  571. *
  572. * For capture, two equations must hold:
  573. * w > f - (b / s)
  574. * w >= b / s
  575. *
  576. * So, b > 2 * s, but b must also be <= s * w. To simplify, we set
  577. * b = s * w, which is equal to
  578. * (dma_private->ssi_fifo_depth - 2) * sample_bytes.
  579. */
  580. mr |= CCSR_DMA_MR_BWC((dma_private->ssi_fifo_depth - 2) * sample_bytes);
  581. out_be32(&dma_channel->mr, mr);
  582. for (i = 0; i < NUM_DMA_LINKS; i++) {
  583. struct fsl_dma_link_descriptor *link = &dma_private->link[i];
  584. link->count = cpu_to_be32(period_size);
  585. /* The snoop bit tells the DMA controller whether it should tell
  586. * the ECM to snoop during a read or write to an address. For
  587. * audio, we use DMA to transfer data between memory and an I/O
  588. * device (the SSI's STX0 or SRX0 register). Snooping is only
  589. * needed if there is a cache, so we need to snoop memory
  590. * addresses only. For playback, that means we snoop the source
  591. * but not the destination. For capture, we snoop the
  592. * destination but not the source.
  593. *
  594. * Note that failing to snoop properly is unlikely to cause
  595. * cache incoherency if the period size is larger than the
  596. * size of L1 cache. This is because filling in one period will
  597. * flush out the data for the previous period. So if you
  598. * increased period_bytes_min to a large enough size, you might
  599. * get more performance by not snooping, and you'll still be
  600. * okay. You'll need to update fsl_dma_update_pointers() also.
  601. */
  602. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
  603. link->source_addr = cpu_to_be32(temp_addr);
  604. link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
  605. upper_32_bits(temp_addr));
  606. link->dest_addr = cpu_to_be32(ssi_sxx_phys);
  607. link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
  608. upper_32_bits(ssi_sxx_phys));
  609. } else {
  610. link->source_addr = cpu_to_be32(ssi_sxx_phys);
  611. link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
  612. upper_32_bits(ssi_sxx_phys));
  613. link->dest_addr = cpu_to_be32(temp_addr);
  614. link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
  615. upper_32_bits(temp_addr));
  616. }
  617. temp_addr += period_size;
  618. }
  619. return 0;
  620. }
  621. /**
  622. * fsl_dma_pointer: determine the current position of the DMA transfer
  623. *
  624. * This function is called by ALSA when ALSA wants to know where in the
  625. * stream buffer the hardware currently is.
  626. *
  627. * For playback, the SAR register contains the physical address of the most
  628. * recent DMA transfer. For capture, the value is in the DAR register.
  629. *
  630. * The base address of the buffer is stored in the source_addr field of the
  631. * first link descriptor.
  632. */
  633. static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
  634. {
  635. struct snd_pcm_runtime *runtime = substream->runtime;
  636. struct fsl_dma_private *dma_private = runtime->private_data;
  637. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  638. struct device *dev = rtd->platform->dev;
  639. struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
  640. dma_addr_t position;
  641. snd_pcm_uframes_t frames;
  642. /* Obtain the current DMA pointer, but don't read the ESAD bits if we
  643. * only have 32-bit DMA addresses. This function is typically called
  644. * in interrupt context, so we need to optimize it.
  645. */
  646. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
  647. position = in_be32(&dma_channel->sar);
  648. #ifdef CONFIG_PHYS_64BIT
  649. position |= (u64)(in_be32(&dma_channel->satr) &
  650. CCSR_DMA_ATR_ESAD_MASK) << 32;
  651. #endif
  652. } else {
  653. position = in_be32(&dma_channel->dar);
  654. #ifdef CONFIG_PHYS_64BIT
  655. position |= (u64)(in_be32(&dma_channel->datr) &
  656. CCSR_DMA_ATR_ESAD_MASK) << 32;
  657. #endif
  658. }
  659. /*
  660. * When capture is started, the SSI immediately starts to fill its FIFO.
  661. * This means that the DMA controller is not started until the FIFO is
  662. * full. However, ALSA calls this function before that happens, when
  663. * MR.DAR is still zero. In this case, just return zero to indicate
  664. * that nothing has been received yet.
  665. */
  666. if (!position)
  667. return 0;
  668. if ((position < dma_private->dma_buf_phys) ||
  669. (position > dma_private->dma_buf_end)) {
  670. dev_err(dev, "dma pointer is out of range, halting stream\n");
  671. return SNDRV_PCM_POS_XRUN;
  672. }
  673. frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
  674. /*
  675. * If the current address is just past the end of the buffer, wrap it
  676. * around.
  677. */
  678. if (frames == runtime->buffer_size)
  679. frames = 0;
  680. return frames;
  681. }
  682. /**
  683. * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
  684. *
  685. * Release the resources allocated in fsl_dma_hw_params() and de-program the
  686. * registers.
  687. *
  688. * This function can be called multiple times.
  689. */
  690. static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
  691. {
  692. struct snd_pcm_runtime *runtime = substream->runtime;
  693. struct fsl_dma_private *dma_private = runtime->private_data;
  694. if (dma_private) {
  695. struct ccsr_dma_channel __iomem *dma_channel;
  696. dma_channel = dma_private->dma_channel;
  697. /* Stop the DMA */
  698. out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
  699. out_be32(&dma_channel->mr, 0);
  700. /* Reset all the other registers */
  701. out_be32(&dma_channel->sr, -1);
  702. out_be32(&dma_channel->clndar, 0);
  703. out_be32(&dma_channel->eclndar, 0);
  704. out_be32(&dma_channel->satr, 0);
  705. out_be32(&dma_channel->sar, 0);
  706. out_be32(&dma_channel->datr, 0);
  707. out_be32(&dma_channel->dar, 0);
  708. out_be32(&dma_channel->bcr, 0);
  709. out_be32(&dma_channel->nlndar, 0);
  710. out_be32(&dma_channel->enlndar, 0);
  711. }
  712. return 0;
  713. }
  714. /**
  715. * fsl_dma_close: close the stream.
  716. */
  717. static int fsl_dma_close(struct snd_pcm_substream *substream)
  718. {
  719. struct snd_pcm_runtime *runtime = substream->runtime;
  720. struct fsl_dma_private *dma_private = runtime->private_data;
  721. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  722. struct device *dev = rtd->platform->dev;
  723. struct dma_object *dma =
  724. container_of(rtd->platform->driver, struct dma_object, dai);
  725. if (dma_private) {
  726. if (dma_private->irq)
  727. free_irq(dma_private->irq, dma_private);
  728. /* Deallocate the fsl_dma_private structure */
  729. dma_free_coherent(dev, sizeof(struct fsl_dma_private),
  730. dma_private, dma_private->ld_buf_phys);
  731. substream->runtime->private_data = NULL;
  732. }
  733. dma->assigned = 0;
  734. return 0;
  735. }
  736. /*
  737. * Remove this PCM driver.
  738. */
  739. static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
  740. {
  741. struct snd_pcm_substream *substream;
  742. unsigned int i;
  743. for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
  744. substream = pcm->streams[i].substream;
  745. if (substream) {
  746. snd_dma_free_pages(&substream->dma_buffer);
  747. substream->dma_buffer.area = NULL;
  748. substream->dma_buffer.addr = 0;
  749. }
  750. }
  751. }
  752. /**
  753. * find_ssi_node -- returns the SSI node that points to his DMA channel node
  754. *
  755. * Although this DMA driver attempts to operate independently of the other
  756. * devices, it still needs to determine some information about the SSI device
  757. * that it's working with. Unfortunately, the device tree does not contain
  758. * a pointer from the DMA channel node to the SSI node -- the pointer goes the
  759. * other way. So we need to scan the device tree for SSI nodes until we find
  760. * the one that points to the given DMA channel node. It's ugly, but at least
  761. * it's contained in this one function.
  762. */
  763. static struct device_node *find_ssi_node(struct device_node *dma_channel_np)
  764. {
  765. struct device_node *ssi_np, *np;
  766. for_each_compatible_node(ssi_np, NULL, "fsl,mpc8610-ssi") {
  767. /* Check each DMA phandle to see if it points to us. We
  768. * assume that device_node pointers are a valid comparison.
  769. */
  770. np = of_parse_phandle(ssi_np, "fsl,playback-dma", 0);
  771. of_node_put(np);
  772. if (np == dma_channel_np)
  773. return ssi_np;
  774. np = of_parse_phandle(ssi_np, "fsl,capture-dma", 0);
  775. of_node_put(np);
  776. if (np == dma_channel_np)
  777. return ssi_np;
  778. }
  779. return NULL;
  780. }
  781. static struct snd_pcm_ops fsl_dma_ops = {
  782. .open = fsl_dma_open,
  783. .close = fsl_dma_close,
  784. .ioctl = snd_pcm_lib_ioctl,
  785. .hw_params = fsl_dma_hw_params,
  786. .hw_free = fsl_dma_hw_free,
  787. .pointer = fsl_dma_pointer,
  788. };
  789. static int fsl_soc_dma_probe(struct platform_device *pdev)
  790. {
  791. struct dma_object *dma;
  792. struct device_node *np = pdev->dev.of_node;
  793. struct device_node *ssi_np;
  794. struct resource res;
  795. const uint32_t *iprop;
  796. int ret;
  797. /* Find the SSI node that points to us. */
  798. ssi_np = find_ssi_node(np);
  799. if (!ssi_np) {
  800. dev_err(&pdev->dev, "cannot find parent SSI node\n");
  801. return -ENODEV;
  802. }
  803. ret = of_address_to_resource(ssi_np, 0, &res);
  804. if (ret) {
  805. dev_err(&pdev->dev, "could not determine resources for %s\n",
  806. ssi_np->full_name);
  807. of_node_put(ssi_np);
  808. return ret;
  809. }
  810. dma = kzalloc(sizeof(*dma) + strlen(np->full_name), GFP_KERNEL);
  811. if (!dma) {
  812. dev_err(&pdev->dev, "could not allocate dma object\n");
  813. of_node_put(ssi_np);
  814. return -ENOMEM;
  815. }
  816. strcpy(dma->path, np->full_name);
  817. dma->dai.ops = &fsl_dma_ops;
  818. dma->dai.pcm_new = fsl_dma_new;
  819. dma->dai.pcm_free = fsl_dma_free_dma_buffers;
  820. /* Store the SSI-specific information that we need */
  821. dma->ssi_stx_phys = res.start + offsetof(struct ccsr_ssi, stx0);
  822. dma->ssi_srx_phys = res.start + offsetof(struct ccsr_ssi, srx0);
  823. iprop = of_get_property(ssi_np, "fsl,fifo-depth", NULL);
  824. if (iprop)
  825. dma->ssi_fifo_depth = be32_to_cpup(iprop);
  826. else
  827. /* Older 8610 DTs didn't have the fifo-depth property */
  828. dma->ssi_fifo_depth = 8;
  829. of_node_put(ssi_np);
  830. ret = snd_soc_register_platform(&pdev->dev, &dma->dai);
  831. if (ret) {
  832. dev_err(&pdev->dev, "could not register platform\n");
  833. kfree(dma);
  834. return ret;
  835. }
  836. dma->channel = of_iomap(np, 0);
  837. dma->irq = irq_of_parse_and_map(np, 0);
  838. dev_set_drvdata(&pdev->dev, dma);
  839. return 0;
  840. }
  841. static int fsl_soc_dma_remove(struct platform_device *pdev)
  842. {
  843. struct dma_object *dma = dev_get_drvdata(&pdev->dev);
  844. snd_soc_unregister_platform(&pdev->dev);
  845. iounmap(dma->channel);
  846. irq_dispose_mapping(dma->irq);
  847. kfree(dma);
  848. return 0;
  849. }
  850. static const struct of_device_id fsl_soc_dma_ids[] = {
  851. { .compatible = "fsl,ssi-dma-channel", },
  852. {}
  853. };
  854. MODULE_DEVICE_TABLE(of, fsl_soc_dma_ids);
  855. static struct platform_driver fsl_soc_dma_driver = {
  856. .driver = {
  857. .name = "fsl-pcm-audio",
  858. .owner = THIS_MODULE,
  859. .of_match_table = fsl_soc_dma_ids,
  860. },
  861. .probe = fsl_soc_dma_probe,
  862. .remove = fsl_soc_dma_remove,
  863. };
  864. module_platform_driver(fsl_soc_dma_driver);
  865. MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
  866. MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM Driver");
  867. MODULE_LICENSE("GPL v2");