disk-io.c 104 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/crc32c.h>
  29. #include <linux/slab.h>
  30. #include <linux/migrate.h>
  31. #include <linux/ratelimit.h>
  32. #include <asm/unaligned.h>
  33. #include "compat.h"
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "volumes.h"
  39. #include "print-tree.h"
  40. #include "async-thread.h"
  41. #include "locking.h"
  42. #include "tree-log.h"
  43. #include "free-space-cache.h"
  44. #include "inode-map.h"
  45. #include "check-integrity.h"
  46. #include "rcu-string.h"
  47. #ifdef CONFIG_X86
  48. #include <asm/cpufeature.h>
  49. #endif
  50. static struct extent_io_ops btree_extent_io_ops;
  51. static void end_workqueue_fn(struct btrfs_work *work);
  52. static void free_fs_root(struct btrfs_root *root);
  53. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  54. int read_only);
  55. static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
  56. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  57. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  58. struct btrfs_root *root);
  59. static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
  60. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  61. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  62. struct extent_io_tree *dirty_pages,
  63. int mark);
  64. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  65. struct extent_io_tree *pinned_extents);
  66. /*
  67. * end_io_wq structs are used to do processing in task context when an IO is
  68. * complete. This is used during reads to verify checksums, and it is used
  69. * by writes to insert metadata for new file extents after IO is complete.
  70. */
  71. struct end_io_wq {
  72. struct bio *bio;
  73. bio_end_io_t *end_io;
  74. void *private;
  75. struct btrfs_fs_info *info;
  76. int error;
  77. int metadata;
  78. struct list_head list;
  79. struct btrfs_work work;
  80. };
  81. /*
  82. * async submit bios are used to offload expensive checksumming
  83. * onto the worker threads. They checksum file and metadata bios
  84. * just before they are sent down the IO stack.
  85. */
  86. struct async_submit_bio {
  87. struct inode *inode;
  88. struct bio *bio;
  89. struct list_head list;
  90. extent_submit_bio_hook_t *submit_bio_start;
  91. extent_submit_bio_hook_t *submit_bio_done;
  92. int rw;
  93. int mirror_num;
  94. unsigned long bio_flags;
  95. /*
  96. * bio_offset is optional, can be used if the pages in the bio
  97. * can't tell us where in the file the bio should go
  98. */
  99. u64 bio_offset;
  100. struct btrfs_work work;
  101. int error;
  102. };
  103. /*
  104. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  105. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  106. * the level the eb occupies in the tree.
  107. *
  108. * Different roots are used for different purposes and may nest inside each
  109. * other and they require separate keysets. As lockdep keys should be
  110. * static, assign keysets according to the purpose of the root as indicated
  111. * by btrfs_root->objectid. This ensures that all special purpose roots
  112. * have separate keysets.
  113. *
  114. * Lock-nesting across peer nodes is always done with the immediate parent
  115. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  116. * subclass to avoid triggering lockdep warning in such cases.
  117. *
  118. * The key is set by the readpage_end_io_hook after the buffer has passed
  119. * csum validation but before the pages are unlocked. It is also set by
  120. * btrfs_init_new_buffer on freshly allocated blocks.
  121. *
  122. * We also add a check to make sure the highest level of the tree is the
  123. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  124. * needs update as well.
  125. */
  126. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  127. # if BTRFS_MAX_LEVEL != 8
  128. # error
  129. # endif
  130. static struct btrfs_lockdep_keyset {
  131. u64 id; /* root objectid */
  132. const char *name_stem; /* lock name stem */
  133. char names[BTRFS_MAX_LEVEL + 1][20];
  134. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  135. } btrfs_lockdep_keysets[] = {
  136. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  137. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  138. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  139. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  140. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  141. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  142. { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
  143. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  144. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  145. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  146. { .id = 0, .name_stem = "tree" },
  147. };
  148. void __init btrfs_init_lockdep(void)
  149. {
  150. int i, j;
  151. /* initialize lockdep class names */
  152. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  153. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  154. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  155. snprintf(ks->names[j], sizeof(ks->names[j]),
  156. "btrfs-%s-%02d", ks->name_stem, j);
  157. }
  158. }
  159. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  160. int level)
  161. {
  162. struct btrfs_lockdep_keyset *ks;
  163. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  164. /* find the matching keyset, id 0 is the default entry */
  165. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  166. if (ks->id == objectid)
  167. break;
  168. lockdep_set_class_and_name(&eb->lock,
  169. &ks->keys[level], ks->names[level]);
  170. }
  171. #endif
  172. /*
  173. * extents on the btree inode are pretty simple, there's one extent
  174. * that covers the entire device
  175. */
  176. static struct extent_map *btree_get_extent(struct inode *inode,
  177. struct page *page, size_t pg_offset, u64 start, u64 len,
  178. int create)
  179. {
  180. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  181. struct extent_map *em;
  182. int ret;
  183. read_lock(&em_tree->lock);
  184. em = lookup_extent_mapping(em_tree, start, len);
  185. if (em) {
  186. em->bdev =
  187. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  188. read_unlock(&em_tree->lock);
  189. goto out;
  190. }
  191. read_unlock(&em_tree->lock);
  192. em = alloc_extent_map();
  193. if (!em) {
  194. em = ERR_PTR(-ENOMEM);
  195. goto out;
  196. }
  197. em->start = 0;
  198. em->len = (u64)-1;
  199. em->block_len = (u64)-1;
  200. em->block_start = 0;
  201. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  202. write_lock(&em_tree->lock);
  203. ret = add_extent_mapping(em_tree, em);
  204. if (ret == -EEXIST) {
  205. free_extent_map(em);
  206. em = lookup_extent_mapping(em_tree, start, len);
  207. if (!em)
  208. em = ERR_PTR(-EIO);
  209. } else if (ret) {
  210. free_extent_map(em);
  211. em = ERR_PTR(ret);
  212. }
  213. write_unlock(&em_tree->lock);
  214. out:
  215. return em;
  216. }
  217. u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
  218. {
  219. return crc32c(seed, data, len);
  220. }
  221. void btrfs_csum_final(u32 crc, char *result)
  222. {
  223. put_unaligned_le32(~crc, result);
  224. }
  225. /*
  226. * compute the csum for a btree block, and either verify it or write it
  227. * into the csum field of the block.
  228. */
  229. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  230. int verify)
  231. {
  232. u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  233. char *result = NULL;
  234. unsigned long len;
  235. unsigned long cur_len;
  236. unsigned long offset = BTRFS_CSUM_SIZE;
  237. char *kaddr;
  238. unsigned long map_start;
  239. unsigned long map_len;
  240. int err;
  241. u32 crc = ~(u32)0;
  242. unsigned long inline_result;
  243. len = buf->len - offset;
  244. while (len > 0) {
  245. err = map_private_extent_buffer(buf, offset, 32,
  246. &kaddr, &map_start, &map_len);
  247. if (err)
  248. return 1;
  249. cur_len = min(len, map_len - (offset - map_start));
  250. crc = btrfs_csum_data(root, kaddr + offset - map_start,
  251. crc, cur_len);
  252. len -= cur_len;
  253. offset += cur_len;
  254. }
  255. if (csum_size > sizeof(inline_result)) {
  256. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  257. if (!result)
  258. return 1;
  259. } else {
  260. result = (char *)&inline_result;
  261. }
  262. btrfs_csum_final(crc, result);
  263. if (verify) {
  264. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  265. u32 val;
  266. u32 found = 0;
  267. memcpy(&found, result, csum_size);
  268. read_extent_buffer(buf, &val, 0, csum_size);
  269. printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
  270. "failed on %llu wanted %X found %X "
  271. "level %d\n",
  272. root->fs_info->sb->s_id,
  273. (unsigned long long)buf->start, val, found,
  274. btrfs_header_level(buf));
  275. if (result != (char *)&inline_result)
  276. kfree(result);
  277. return 1;
  278. }
  279. } else {
  280. write_extent_buffer(buf, result, 0, csum_size);
  281. }
  282. if (result != (char *)&inline_result)
  283. kfree(result);
  284. return 0;
  285. }
  286. /*
  287. * we can't consider a given block up to date unless the transid of the
  288. * block matches the transid in the parent node's pointer. This is how we
  289. * detect blocks that either didn't get written at all or got written
  290. * in the wrong place.
  291. */
  292. static int verify_parent_transid(struct extent_io_tree *io_tree,
  293. struct extent_buffer *eb, u64 parent_transid,
  294. int atomic)
  295. {
  296. struct extent_state *cached_state = NULL;
  297. int ret;
  298. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  299. return 0;
  300. if (atomic)
  301. return -EAGAIN;
  302. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  303. 0, &cached_state);
  304. if (extent_buffer_uptodate(eb) &&
  305. btrfs_header_generation(eb) == parent_transid) {
  306. ret = 0;
  307. goto out;
  308. }
  309. printk_ratelimited("parent transid verify failed on %llu wanted %llu "
  310. "found %llu\n",
  311. (unsigned long long)eb->start,
  312. (unsigned long long)parent_transid,
  313. (unsigned long long)btrfs_header_generation(eb));
  314. ret = 1;
  315. clear_extent_buffer_uptodate(eb);
  316. out:
  317. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  318. &cached_state, GFP_NOFS);
  319. return ret;
  320. }
  321. /*
  322. * helper to read a given tree block, doing retries as required when
  323. * the checksums don't match and we have alternate mirrors to try.
  324. */
  325. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  326. struct extent_buffer *eb,
  327. u64 start, u64 parent_transid)
  328. {
  329. struct extent_io_tree *io_tree;
  330. int failed = 0;
  331. int ret;
  332. int num_copies = 0;
  333. int mirror_num = 0;
  334. int failed_mirror = 0;
  335. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  336. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  337. while (1) {
  338. ret = read_extent_buffer_pages(io_tree, eb, start,
  339. WAIT_COMPLETE,
  340. btree_get_extent, mirror_num);
  341. if (!ret) {
  342. if (!verify_parent_transid(io_tree, eb,
  343. parent_transid, 0))
  344. break;
  345. else
  346. ret = -EIO;
  347. }
  348. /*
  349. * This buffer's crc is fine, but its contents are corrupted, so
  350. * there is no reason to read the other copies, they won't be
  351. * any less wrong.
  352. */
  353. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  354. break;
  355. num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
  356. eb->start, eb->len);
  357. if (num_copies == 1)
  358. break;
  359. if (!failed_mirror) {
  360. failed = 1;
  361. failed_mirror = eb->read_mirror;
  362. }
  363. mirror_num++;
  364. if (mirror_num == failed_mirror)
  365. mirror_num++;
  366. if (mirror_num > num_copies)
  367. break;
  368. }
  369. if (failed && !ret && failed_mirror)
  370. repair_eb_io_failure(root, eb, failed_mirror);
  371. return ret;
  372. }
  373. /*
  374. * checksum a dirty tree block before IO. This has extra checks to make sure
  375. * we only fill in the checksum field in the first page of a multi-page block
  376. */
  377. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  378. {
  379. struct extent_io_tree *tree;
  380. u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
  381. u64 found_start;
  382. struct extent_buffer *eb;
  383. tree = &BTRFS_I(page->mapping->host)->io_tree;
  384. eb = (struct extent_buffer *)page->private;
  385. if (page != eb->pages[0])
  386. return 0;
  387. found_start = btrfs_header_bytenr(eb);
  388. if (found_start != start) {
  389. WARN_ON(1);
  390. return 0;
  391. }
  392. if (eb->pages[0] != page) {
  393. WARN_ON(1);
  394. return 0;
  395. }
  396. if (!PageUptodate(page)) {
  397. WARN_ON(1);
  398. return 0;
  399. }
  400. csum_tree_block(root, eb, 0);
  401. return 0;
  402. }
  403. static int check_tree_block_fsid(struct btrfs_root *root,
  404. struct extent_buffer *eb)
  405. {
  406. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  407. u8 fsid[BTRFS_UUID_SIZE];
  408. int ret = 1;
  409. read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
  410. BTRFS_FSID_SIZE);
  411. while (fs_devices) {
  412. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  413. ret = 0;
  414. break;
  415. }
  416. fs_devices = fs_devices->seed;
  417. }
  418. return ret;
  419. }
  420. #define CORRUPT(reason, eb, root, slot) \
  421. printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
  422. "root=%llu, slot=%d\n", reason, \
  423. (unsigned long long)btrfs_header_bytenr(eb), \
  424. (unsigned long long)root->objectid, slot)
  425. static noinline int check_leaf(struct btrfs_root *root,
  426. struct extent_buffer *leaf)
  427. {
  428. struct btrfs_key key;
  429. struct btrfs_key leaf_key;
  430. u32 nritems = btrfs_header_nritems(leaf);
  431. int slot;
  432. if (nritems == 0)
  433. return 0;
  434. /* Check the 0 item */
  435. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  436. BTRFS_LEAF_DATA_SIZE(root)) {
  437. CORRUPT("invalid item offset size pair", leaf, root, 0);
  438. return -EIO;
  439. }
  440. /*
  441. * Check to make sure each items keys are in the correct order and their
  442. * offsets make sense. We only have to loop through nritems-1 because
  443. * we check the current slot against the next slot, which verifies the
  444. * next slot's offset+size makes sense and that the current's slot
  445. * offset is correct.
  446. */
  447. for (slot = 0; slot < nritems - 1; slot++) {
  448. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  449. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  450. /* Make sure the keys are in the right order */
  451. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  452. CORRUPT("bad key order", leaf, root, slot);
  453. return -EIO;
  454. }
  455. /*
  456. * Make sure the offset and ends are right, remember that the
  457. * item data starts at the end of the leaf and grows towards the
  458. * front.
  459. */
  460. if (btrfs_item_offset_nr(leaf, slot) !=
  461. btrfs_item_end_nr(leaf, slot + 1)) {
  462. CORRUPT("slot offset bad", leaf, root, slot);
  463. return -EIO;
  464. }
  465. /*
  466. * Check to make sure that we don't point outside of the leaf,
  467. * just incase all the items are consistent to eachother, but
  468. * all point outside of the leaf.
  469. */
  470. if (btrfs_item_end_nr(leaf, slot) >
  471. BTRFS_LEAF_DATA_SIZE(root)) {
  472. CORRUPT("slot end outside of leaf", leaf, root, slot);
  473. return -EIO;
  474. }
  475. }
  476. return 0;
  477. }
  478. struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
  479. struct page *page, int max_walk)
  480. {
  481. struct extent_buffer *eb;
  482. u64 start = page_offset(page);
  483. u64 target = start;
  484. u64 min_start;
  485. if (start < max_walk)
  486. min_start = 0;
  487. else
  488. min_start = start - max_walk;
  489. while (start >= min_start) {
  490. eb = find_extent_buffer(tree, start, 0);
  491. if (eb) {
  492. /*
  493. * we found an extent buffer and it contains our page
  494. * horray!
  495. */
  496. if (eb->start <= target &&
  497. eb->start + eb->len > target)
  498. return eb;
  499. /* we found an extent buffer that wasn't for us */
  500. free_extent_buffer(eb);
  501. return NULL;
  502. }
  503. if (start == 0)
  504. break;
  505. start -= PAGE_CACHE_SIZE;
  506. }
  507. return NULL;
  508. }
  509. static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  510. struct extent_state *state, int mirror)
  511. {
  512. struct extent_io_tree *tree;
  513. u64 found_start;
  514. int found_level;
  515. struct extent_buffer *eb;
  516. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  517. int ret = 0;
  518. int reads_done;
  519. if (!page->private)
  520. goto out;
  521. tree = &BTRFS_I(page->mapping->host)->io_tree;
  522. eb = (struct extent_buffer *)page->private;
  523. /* the pending IO might have been the only thing that kept this buffer
  524. * in memory. Make sure we have a ref for all this other checks
  525. */
  526. extent_buffer_get(eb);
  527. reads_done = atomic_dec_and_test(&eb->io_pages);
  528. if (!reads_done)
  529. goto err;
  530. eb->read_mirror = mirror;
  531. if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
  532. ret = -EIO;
  533. goto err;
  534. }
  535. found_start = btrfs_header_bytenr(eb);
  536. if (found_start != eb->start) {
  537. printk_ratelimited(KERN_INFO "btrfs bad tree block start "
  538. "%llu %llu\n",
  539. (unsigned long long)found_start,
  540. (unsigned long long)eb->start);
  541. ret = -EIO;
  542. goto err;
  543. }
  544. if (check_tree_block_fsid(root, eb)) {
  545. printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
  546. (unsigned long long)eb->start);
  547. ret = -EIO;
  548. goto err;
  549. }
  550. found_level = btrfs_header_level(eb);
  551. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  552. eb, found_level);
  553. ret = csum_tree_block(root, eb, 1);
  554. if (ret) {
  555. ret = -EIO;
  556. goto err;
  557. }
  558. /*
  559. * If this is a leaf block and it is corrupt, set the corrupt bit so
  560. * that we don't try and read the other copies of this block, just
  561. * return -EIO.
  562. */
  563. if (found_level == 0 && check_leaf(root, eb)) {
  564. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  565. ret = -EIO;
  566. }
  567. if (!ret)
  568. set_extent_buffer_uptodate(eb);
  569. err:
  570. if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
  571. clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
  572. btree_readahead_hook(root, eb, eb->start, ret);
  573. }
  574. if (ret)
  575. clear_extent_buffer_uptodate(eb);
  576. free_extent_buffer(eb);
  577. out:
  578. return ret;
  579. }
  580. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  581. {
  582. struct extent_buffer *eb;
  583. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  584. eb = (struct extent_buffer *)page->private;
  585. set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
  586. eb->read_mirror = failed_mirror;
  587. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  588. btree_readahead_hook(root, eb, eb->start, -EIO);
  589. return -EIO; /* we fixed nothing */
  590. }
  591. static void end_workqueue_bio(struct bio *bio, int err)
  592. {
  593. struct end_io_wq *end_io_wq = bio->bi_private;
  594. struct btrfs_fs_info *fs_info;
  595. fs_info = end_io_wq->info;
  596. end_io_wq->error = err;
  597. end_io_wq->work.func = end_workqueue_fn;
  598. end_io_wq->work.flags = 0;
  599. if (bio->bi_rw & REQ_WRITE) {
  600. if (end_io_wq->metadata == 1)
  601. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  602. &end_io_wq->work);
  603. else if (end_io_wq->metadata == 2)
  604. btrfs_queue_worker(&fs_info->endio_freespace_worker,
  605. &end_io_wq->work);
  606. else
  607. btrfs_queue_worker(&fs_info->endio_write_workers,
  608. &end_io_wq->work);
  609. } else {
  610. if (end_io_wq->metadata)
  611. btrfs_queue_worker(&fs_info->endio_meta_workers,
  612. &end_io_wq->work);
  613. else
  614. btrfs_queue_worker(&fs_info->endio_workers,
  615. &end_io_wq->work);
  616. }
  617. }
  618. /*
  619. * For the metadata arg you want
  620. *
  621. * 0 - if data
  622. * 1 - if normal metadta
  623. * 2 - if writing to the free space cache area
  624. */
  625. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  626. int metadata)
  627. {
  628. struct end_io_wq *end_io_wq;
  629. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  630. if (!end_io_wq)
  631. return -ENOMEM;
  632. end_io_wq->private = bio->bi_private;
  633. end_io_wq->end_io = bio->bi_end_io;
  634. end_io_wq->info = info;
  635. end_io_wq->error = 0;
  636. end_io_wq->bio = bio;
  637. end_io_wq->metadata = metadata;
  638. bio->bi_private = end_io_wq;
  639. bio->bi_end_io = end_workqueue_bio;
  640. return 0;
  641. }
  642. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  643. {
  644. unsigned long limit = min_t(unsigned long,
  645. info->workers.max_workers,
  646. info->fs_devices->open_devices);
  647. return 256 * limit;
  648. }
  649. static void run_one_async_start(struct btrfs_work *work)
  650. {
  651. struct async_submit_bio *async;
  652. int ret;
  653. async = container_of(work, struct async_submit_bio, work);
  654. ret = async->submit_bio_start(async->inode, async->rw, async->bio,
  655. async->mirror_num, async->bio_flags,
  656. async->bio_offset);
  657. if (ret)
  658. async->error = ret;
  659. }
  660. static void run_one_async_done(struct btrfs_work *work)
  661. {
  662. struct btrfs_fs_info *fs_info;
  663. struct async_submit_bio *async;
  664. int limit;
  665. async = container_of(work, struct async_submit_bio, work);
  666. fs_info = BTRFS_I(async->inode)->root->fs_info;
  667. limit = btrfs_async_submit_limit(fs_info);
  668. limit = limit * 2 / 3;
  669. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  670. waitqueue_active(&fs_info->async_submit_wait))
  671. wake_up(&fs_info->async_submit_wait);
  672. /* If an error occured we just want to clean up the bio and move on */
  673. if (async->error) {
  674. bio_endio(async->bio, async->error);
  675. return;
  676. }
  677. async->submit_bio_done(async->inode, async->rw, async->bio,
  678. async->mirror_num, async->bio_flags,
  679. async->bio_offset);
  680. }
  681. static void run_one_async_free(struct btrfs_work *work)
  682. {
  683. struct async_submit_bio *async;
  684. async = container_of(work, struct async_submit_bio, work);
  685. kfree(async);
  686. }
  687. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  688. int rw, struct bio *bio, int mirror_num,
  689. unsigned long bio_flags,
  690. u64 bio_offset,
  691. extent_submit_bio_hook_t *submit_bio_start,
  692. extent_submit_bio_hook_t *submit_bio_done)
  693. {
  694. struct async_submit_bio *async;
  695. async = kmalloc(sizeof(*async), GFP_NOFS);
  696. if (!async)
  697. return -ENOMEM;
  698. async->inode = inode;
  699. async->rw = rw;
  700. async->bio = bio;
  701. async->mirror_num = mirror_num;
  702. async->submit_bio_start = submit_bio_start;
  703. async->submit_bio_done = submit_bio_done;
  704. async->work.func = run_one_async_start;
  705. async->work.ordered_func = run_one_async_done;
  706. async->work.ordered_free = run_one_async_free;
  707. async->work.flags = 0;
  708. async->bio_flags = bio_flags;
  709. async->bio_offset = bio_offset;
  710. async->error = 0;
  711. atomic_inc(&fs_info->nr_async_submits);
  712. if (rw & REQ_SYNC)
  713. btrfs_set_work_high_prio(&async->work);
  714. btrfs_queue_worker(&fs_info->workers, &async->work);
  715. while (atomic_read(&fs_info->async_submit_draining) &&
  716. atomic_read(&fs_info->nr_async_submits)) {
  717. wait_event(fs_info->async_submit_wait,
  718. (atomic_read(&fs_info->nr_async_submits) == 0));
  719. }
  720. return 0;
  721. }
  722. static int btree_csum_one_bio(struct bio *bio)
  723. {
  724. struct bio_vec *bvec = bio->bi_io_vec;
  725. int bio_index = 0;
  726. struct btrfs_root *root;
  727. int ret = 0;
  728. WARN_ON(bio->bi_vcnt <= 0);
  729. while (bio_index < bio->bi_vcnt) {
  730. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  731. ret = csum_dirty_buffer(root, bvec->bv_page);
  732. if (ret)
  733. break;
  734. bio_index++;
  735. bvec++;
  736. }
  737. return ret;
  738. }
  739. static int __btree_submit_bio_start(struct inode *inode, int rw,
  740. struct bio *bio, int mirror_num,
  741. unsigned long bio_flags,
  742. u64 bio_offset)
  743. {
  744. /*
  745. * when we're called for a write, we're already in the async
  746. * submission context. Just jump into btrfs_map_bio
  747. */
  748. return btree_csum_one_bio(bio);
  749. }
  750. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  751. int mirror_num, unsigned long bio_flags,
  752. u64 bio_offset)
  753. {
  754. /*
  755. * when we're called for a write, we're already in the async
  756. * submission context. Just jump into btrfs_map_bio
  757. */
  758. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  759. }
  760. static int check_async_write(struct inode *inode, unsigned long bio_flags)
  761. {
  762. if (bio_flags & EXTENT_BIO_TREE_LOG)
  763. return 0;
  764. #ifdef CONFIG_X86
  765. if (cpu_has_xmm4_2)
  766. return 0;
  767. #endif
  768. return 1;
  769. }
  770. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  771. int mirror_num, unsigned long bio_flags,
  772. u64 bio_offset)
  773. {
  774. int async = check_async_write(inode, bio_flags);
  775. int ret;
  776. if (!(rw & REQ_WRITE)) {
  777. /*
  778. * called for a read, do the setup so that checksum validation
  779. * can happen in the async kernel threads
  780. */
  781. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  782. bio, 1);
  783. if (ret)
  784. return ret;
  785. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  786. mirror_num, 0);
  787. } else if (!async) {
  788. ret = btree_csum_one_bio(bio);
  789. if (ret)
  790. return ret;
  791. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  792. mirror_num, 0);
  793. }
  794. /*
  795. * kthread helpers are used to submit writes so that checksumming
  796. * can happen in parallel across all CPUs
  797. */
  798. return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  799. inode, rw, bio, mirror_num, 0,
  800. bio_offset,
  801. __btree_submit_bio_start,
  802. __btree_submit_bio_done);
  803. }
  804. #ifdef CONFIG_MIGRATION
  805. static int btree_migratepage(struct address_space *mapping,
  806. struct page *newpage, struct page *page,
  807. enum migrate_mode mode)
  808. {
  809. /*
  810. * we can't safely write a btree page from here,
  811. * we haven't done the locking hook
  812. */
  813. if (PageDirty(page))
  814. return -EAGAIN;
  815. /*
  816. * Buffers may be managed in a filesystem specific way.
  817. * We must have no buffers or drop them.
  818. */
  819. if (page_has_private(page) &&
  820. !try_to_release_page(page, GFP_KERNEL))
  821. return -EAGAIN;
  822. return migrate_page(mapping, newpage, page, mode);
  823. }
  824. #endif
  825. static int btree_writepages(struct address_space *mapping,
  826. struct writeback_control *wbc)
  827. {
  828. struct extent_io_tree *tree;
  829. tree = &BTRFS_I(mapping->host)->io_tree;
  830. if (wbc->sync_mode == WB_SYNC_NONE) {
  831. struct btrfs_root *root = BTRFS_I(mapping->host)->root;
  832. u64 num_dirty;
  833. unsigned long thresh = 32 * 1024 * 1024;
  834. if (wbc->for_kupdate)
  835. return 0;
  836. /* this is a bit racy, but that's ok */
  837. num_dirty = root->fs_info->dirty_metadata_bytes;
  838. if (num_dirty < thresh)
  839. return 0;
  840. }
  841. return btree_write_cache_pages(mapping, wbc);
  842. }
  843. static int btree_readpage(struct file *file, struct page *page)
  844. {
  845. struct extent_io_tree *tree;
  846. tree = &BTRFS_I(page->mapping->host)->io_tree;
  847. return extent_read_full_page(tree, page, btree_get_extent, 0);
  848. }
  849. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  850. {
  851. if (PageWriteback(page) || PageDirty(page))
  852. return 0;
  853. /*
  854. * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
  855. * slab allocation from alloc_extent_state down the callchain where
  856. * it'd hit a BUG_ON as those flags are not allowed.
  857. */
  858. gfp_flags &= ~GFP_SLAB_BUG_MASK;
  859. return try_release_extent_buffer(page, gfp_flags);
  860. }
  861. static void btree_invalidatepage(struct page *page, unsigned long offset)
  862. {
  863. struct extent_io_tree *tree;
  864. tree = &BTRFS_I(page->mapping->host)->io_tree;
  865. extent_invalidatepage(tree, page, offset);
  866. btree_releasepage(page, GFP_NOFS);
  867. if (PagePrivate(page)) {
  868. printk(KERN_WARNING "btrfs warning page private not zero "
  869. "on page %llu\n", (unsigned long long)page_offset(page));
  870. ClearPagePrivate(page);
  871. set_page_private(page, 0);
  872. page_cache_release(page);
  873. }
  874. }
  875. static int btree_set_page_dirty(struct page *page)
  876. {
  877. struct extent_buffer *eb;
  878. BUG_ON(!PagePrivate(page));
  879. eb = (struct extent_buffer *)page->private;
  880. BUG_ON(!eb);
  881. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  882. BUG_ON(!atomic_read(&eb->refs));
  883. btrfs_assert_tree_locked(eb);
  884. return __set_page_dirty_nobuffers(page);
  885. }
  886. static const struct address_space_operations btree_aops = {
  887. .readpage = btree_readpage,
  888. .writepages = btree_writepages,
  889. .releasepage = btree_releasepage,
  890. .invalidatepage = btree_invalidatepage,
  891. #ifdef CONFIG_MIGRATION
  892. .migratepage = btree_migratepage,
  893. #endif
  894. .set_page_dirty = btree_set_page_dirty,
  895. };
  896. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  897. u64 parent_transid)
  898. {
  899. struct extent_buffer *buf = NULL;
  900. struct inode *btree_inode = root->fs_info->btree_inode;
  901. int ret = 0;
  902. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  903. if (!buf)
  904. return 0;
  905. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  906. buf, 0, WAIT_NONE, btree_get_extent, 0);
  907. free_extent_buffer(buf);
  908. return ret;
  909. }
  910. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  911. int mirror_num, struct extent_buffer **eb)
  912. {
  913. struct extent_buffer *buf = NULL;
  914. struct inode *btree_inode = root->fs_info->btree_inode;
  915. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  916. int ret;
  917. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  918. if (!buf)
  919. return 0;
  920. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  921. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  922. btree_get_extent, mirror_num);
  923. if (ret) {
  924. free_extent_buffer(buf);
  925. return ret;
  926. }
  927. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  928. free_extent_buffer(buf);
  929. return -EIO;
  930. } else if (extent_buffer_uptodate(buf)) {
  931. *eb = buf;
  932. } else {
  933. free_extent_buffer(buf);
  934. }
  935. return 0;
  936. }
  937. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  938. u64 bytenr, u32 blocksize)
  939. {
  940. struct inode *btree_inode = root->fs_info->btree_inode;
  941. struct extent_buffer *eb;
  942. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  943. bytenr, blocksize);
  944. return eb;
  945. }
  946. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  947. u64 bytenr, u32 blocksize)
  948. {
  949. struct inode *btree_inode = root->fs_info->btree_inode;
  950. struct extent_buffer *eb;
  951. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  952. bytenr, blocksize);
  953. return eb;
  954. }
  955. int btrfs_write_tree_block(struct extent_buffer *buf)
  956. {
  957. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  958. buf->start + buf->len - 1);
  959. }
  960. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  961. {
  962. return filemap_fdatawait_range(buf->pages[0]->mapping,
  963. buf->start, buf->start + buf->len - 1);
  964. }
  965. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  966. u32 blocksize, u64 parent_transid)
  967. {
  968. struct extent_buffer *buf = NULL;
  969. int ret;
  970. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  971. if (!buf)
  972. return NULL;
  973. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  974. return buf;
  975. }
  976. void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  977. struct extent_buffer *buf)
  978. {
  979. if (btrfs_header_generation(buf) ==
  980. root->fs_info->running_transaction->transid) {
  981. btrfs_assert_tree_locked(buf);
  982. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  983. spin_lock(&root->fs_info->delalloc_lock);
  984. if (root->fs_info->dirty_metadata_bytes >= buf->len)
  985. root->fs_info->dirty_metadata_bytes -= buf->len;
  986. else {
  987. spin_unlock(&root->fs_info->delalloc_lock);
  988. btrfs_panic(root->fs_info, -EOVERFLOW,
  989. "Can't clear %lu bytes from "
  990. " dirty_mdatadata_bytes (%llu)",
  991. buf->len,
  992. root->fs_info->dirty_metadata_bytes);
  993. }
  994. spin_unlock(&root->fs_info->delalloc_lock);
  995. }
  996. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  997. btrfs_set_lock_blocking(buf);
  998. clear_extent_buffer_dirty(buf);
  999. }
  1000. }
  1001. static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  1002. u32 stripesize, struct btrfs_root *root,
  1003. struct btrfs_fs_info *fs_info,
  1004. u64 objectid)
  1005. {
  1006. root->node = NULL;
  1007. root->commit_root = NULL;
  1008. root->sectorsize = sectorsize;
  1009. root->nodesize = nodesize;
  1010. root->leafsize = leafsize;
  1011. root->stripesize = stripesize;
  1012. root->ref_cows = 0;
  1013. root->track_dirty = 0;
  1014. root->in_radix = 0;
  1015. root->orphan_item_inserted = 0;
  1016. root->orphan_cleanup_state = 0;
  1017. root->objectid = objectid;
  1018. root->last_trans = 0;
  1019. root->highest_objectid = 0;
  1020. root->name = NULL;
  1021. root->inode_tree = RB_ROOT;
  1022. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1023. root->block_rsv = NULL;
  1024. root->orphan_block_rsv = NULL;
  1025. INIT_LIST_HEAD(&root->dirty_list);
  1026. INIT_LIST_HEAD(&root->root_list);
  1027. spin_lock_init(&root->orphan_lock);
  1028. spin_lock_init(&root->inode_lock);
  1029. spin_lock_init(&root->accounting_lock);
  1030. mutex_init(&root->objectid_mutex);
  1031. mutex_init(&root->log_mutex);
  1032. init_waitqueue_head(&root->log_writer_wait);
  1033. init_waitqueue_head(&root->log_commit_wait[0]);
  1034. init_waitqueue_head(&root->log_commit_wait[1]);
  1035. atomic_set(&root->log_commit[0], 0);
  1036. atomic_set(&root->log_commit[1], 0);
  1037. atomic_set(&root->log_writers, 0);
  1038. atomic_set(&root->log_batch, 0);
  1039. atomic_set(&root->orphan_inodes, 0);
  1040. root->log_transid = 0;
  1041. root->last_log_commit = 0;
  1042. extent_io_tree_init(&root->dirty_log_pages,
  1043. fs_info->btree_inode->i_mapping);
  1044. memset(&root->root_key, 0, sizeof(root->root_key));
  1045. memset(&root->root_item, 0, sizeof(root->root_item));
  1046. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1047. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  1048. root->defrag_trans_start = fs_info->generation;
  1049. init_completion(&root->kobj_unregister);
  1050. root->defrag_running = 0;
  1051. root->root_key.objectid = objectid;
  1052. root->anon_dev = 0;
  1053. spin_lock_init(&root->root_times_lock);
  1054. }
  1055. static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
  1056. struct btrfs_fs_info *fs_info,
  1057. u64 objectid,
  1058. struct btrfs_root *root)
  1059. {
  1060. int ret;
  1061. u32 blocksize;
  1062. u64 generation;
  1063. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1064. tree_root->sectorsize, tree_root->stripesize,
  1065. root, fs_info, objectid);
  1066. ret = btrfs_find_last_root(tree_root, objectid,
  1067. &root->root_item, &root->root_key);
  1068. if (ret > 0)
  1069. return -ENOENT;
  1070. else if (ret < 0)
  1071. return ret;
  1072. generation = btrfs_root_generation(&root->root_item);
  1073. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1074. root->commit_root = NULL;
  1075. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1076. blocksize, generation);
  1077. if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
  1078. free_extent_buffer(root->node);
  1079. root->node = NULL;
  1080. return -EIO;
  1081. }
  1082. root->commit_root = btrfs_root_node(root);
  1083. return 0;
  1084. }
  1085. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
  1086. {
  1087. struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
  1088. if (root)
  1089. root->fs_info = fs_info;
  1090. return root;
  1091. }
  1092. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1093. struct btrfs_fs_info *fs_info,
  1094. u64 objectid)
  1095. {
  1096. struct extent_buffer *leaf;
  1097. struct btrfs_root *tree_root = fs_info->tree_root;
  1098. struct btrfs_root *root;
  1099. struct btrfs_key key;
  1100. int ret = 0;
  1101. u64 bytenr;
  1102. root = btrfs_alloc_root(fs_info);
  1103. if (!root)
  1104. return ERR_PTR(-ENOMEM);
  1105. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1106. tree_root->sectorsize, tree_root->stripesize,
  1107. root, fs_info, objectid);
  1108. root->root_key.objectid = objectid;
  1109. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1110. root->root_key.offset = 0;
  1111. leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
  1112. 0, objectid, NULL, 0, 0, 0);
  1113. if (IS_ERR(leaf)) {
  1114. ret = PTR_ERR(leaf);
  1115. goto fail;
  1116. }
  1117. bytenr = leaf->start;
  1118. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1119. btrfs_set_header_bytenr(leaf, leaf->start);
  1120. btrfs_set_header_generation(leaf, trans->transid);
  1121. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1122. btrfs_set_header_owner(leaf, objectid);
  1123. root->node = leaf;
  1124. write_extent_buffer(leaf, fs_info->fsid,
  1125. (unsigned long)btrfs_header_fsid(leaf),
  1126. BTRFS_FSID_SIZE);
  1127. write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
  1128. (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
  1129. BTRFS_UUID_SIZE);
  1130. btrfs_mark_buffer_dirty(leaf);
  1131. root->commit_root = btrfs_root_node(root);
  1132. root->track_dirty = 1;
  1133. root->root_item.flags = 0;
  1134. root->root_item.byte_limit = 0;
  1135. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1136. btrfs_set_root_generation(&root->root_item, trans->transid);
  1137. btrfs_set_root_level(&root->root_item, 0);
  1138. btrfs_set_root_refs(&root->root_item, 1);
  1139. btrfs_set_root_used(&root->root_item, leaf->len);
  1140. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1141. btrfs_set_root_dirid(&root->root_item, 0);
  1142. root->root_item.drop_level = 0;
  1143. key.objectid = objectid;
  1144. key.type = BTRFS_ROOT_ITEM_KEY;
  1145. key.offset = 0;
  1146. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1147. if (ret)
  1148. goto fail;
  1149. btrfs_tree_unlock(leaf);
  1150. fail:
  1151. if (ret)
  1152. return ERR_PTR(ret);
  1153. return root;
  1154. }
  1155. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1156. struct btrfs_fs_info *fs_info)
  1157. {
  1158. struct btrfs_root *root;
  1159. struct btrfs_root *tree_root = fs_info->tree_root;
  1160. struct extent_buffer *leaf;
  1161. root = btrfs_alloc_root(fs_info);
  1162. if (!root)
  1163. return ERR_PTR(-ENOMEM);
  1164. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1165. tree_root->sectorsize, tree_root->stripesize,
  1166. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1167. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1168. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1169. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1170. /*
  1171. * log trees do not get reference counted because they go away
  1172. * before a real commit is actually done. They do store pointers
  1173. * to file data extents, and those reference counts still get
  1174. * updated (along with back refs to the log tree).
  1175. */
  1176. root->ref_cows = 0;
  1177. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  1178. BTRFS_TREE_LOG_OBJECTID, NULL,
  1179. 0, 0, 0);
  1180. if (IS_ERR(leaf)) {
  1181. kfree(root);
  1182. return ERR_CAST(leaf);
  1183. }
  1184. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1185. btrfs_set_header_bytenr(leaf, leaf->start);
  1186. btrfs_set_header_generation(leaf, trans->transid);
  1187. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1188. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1189. root->node = leaf;
  1190. write_extent_buffer(root->node, root->fs_info->fsid,
  1191. (unsigned long)btrfs_header_fsid(root->node),
  1192. BTRFS_FSID_SIZE);
  1193. btrfs_mark_buffer_dirty(root->node);
  1194. btrfs_tree_unlock(root->node);
  1195. return root;
  1196. }
  1197. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1198. struct btrfs_fs_info *fs_info)
  1199. {
  1200. struct btrfs_root *log_root;
  1201. log_root = alloc_log_tree(trans, fs_info);
  1202. if (IS_ERR(log_root))
  1203. return PTR_ERR(log_root);
  1204. WARN_ON(fs_info->log_root_tree);
  1205. fs_info->log_root_tree = log_root;
  1206. return 0;
  1207. }
  1208. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1209. struct btrfs_root *root)
  1210. {
  1211. struct btrfs_root *log_root;
  1212. struct btrfs_inode_item *inode_item;
  1213. log_root = alloc_log_tree(trans, root->fs_info);
  1214. if (IS_ERR(log_root))
  1215. return PTR_ERR(log_root);
  1216. log_root->last_trans = trans->transid;
  1217. log_root->root_key.offset = root->root_key.objectid;
  1218. inode_item = &log_root->root_item.inode;
  1219. inode_item->generation = cpu_to_le64(1);
  1220. inode_item->size = cpu_to_le64(3);
  1221. inode_item->nlink = cpu_to_le32(1);
  1222. inode_item->nbytes = cpu_to_le64(root->leafsize);
  1223. inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
  1224. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1225. WARN_ON(root->log_root);
  1226. root->log_root = log_root;
  1227. root->log_transid = 0;
  1228. root->last_log_commit = 0;
  1229. return 0;
  1230. }
  1231. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
  1232. struct btrfs_key *location)
  1233. {
  1234. struct btrfs_root *root;
  1235. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1236. struct btrfs_path *path;
  1237. struct extent_buffer *l;
  1238. u64 generation;
  1239. u32 blocksize;
  1240. int ret = 0;
  1241. int slot;
  1242. root = btrfs_alloc_root(fs_info);
  1243. if (!root)
  1244. return ERR_PTR(-ENOMEM);
  1245. if (location->offset == (u64)-1) {
  1246. ret = find_and_setup_root(tree_root, fs_info,
  1247. location->objectid, root);
  1248. if (ret) {
  1249. kfree(root);
  1250. return ERR_PTR(ret);
  1251. }
  1252. goto out;
  1253. }
  1254. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1255. tree_root->sectorsize, tree_root->stripesize,
  1256. root, fs_info, location->objectid);
  1257. path = btrfs_alloc_path();
  1258. if (!path) {
  1259. kfree(root);
  1260. return ERR_PTR(-ENOMEM);
  1261. }
  1262. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  1263. if (ret == 0) {
  1264. l = path->nodes[0];
  1265. slot = path->slots[0];
  1266. btrfs_read_root_item(tree_root, l, slot, &root->root_item);
  1267. memcpy(&root->root_key, location, sizeof(*location));
  1268. }
  1269. btrfs_free_path(path);
  1270. if (ret) {
  1271. kfree(root);
  1272. if (ret > 0)
  1273. ret = -ENOENT;
  1274. return ERR_PTR(ret);
  1275. }
  1276. generation = btrfs_root_generation(&root->root_item);
  1277. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1278. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1279. blocksize, generation);
  1280. root->commit_root = btrfs_root_node(root);
  1281. BUG_ON(!root->node); /* -ENOMEM */
  1282. out:
  1283. if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
  1284. root->ref_cows = 1;
  1285. btrfs_check_and_init_root_item(&root->root_item);
  1286. }
  1287. return root;
  1288. }
  1289. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  1290. struct btrfs_key *location)
  1291. {
  1292. struct btrfs_root *root;
  1293. int ret;
  1294. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1295. return fs_info->tree_root;
  1296. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1297. return fs_info->extent_root;
  1298. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1299. return fs_info->chunk_root;
  1300. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1301. return fs_info->dev_root;
  1302. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1303. return fs_info->csum_root;
  1304. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1305. return fs_info->quota_root ? fs_info->quota_root :
  1306. ERR_PTR(-ENOENT);
  1307. again:
  1308. spin_lock(&fs_info->fs_roots_radix_lock);
  1309. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1310. (unsigned long)location->objectid);
  1311. spin_unlock(&fs_info->fs_roots_radix_lock);
  1312. if (root)
  1313. return root;
  1314. root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
  1315. if (IS_ERR(root))
  1316. return root;
  1317. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1318. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1319. GFP_NOFS);
  1320. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1321. ret = -ENOMEM;
  1322. goto fail;
  1323. }
  1324. btrfs_init_free_ino_ctl(root);
  1325. mutex_init(&root->fs_commit_mutex);
  1326. spin_lock_init(&root->cache_lock);
  1327. init_waitqueue_head(&root->cache_wait);
  1328. ret = get_anon_bdev(&root->anon_dev);
  1329. if (ret)
  1330. goto fail;
  1331. if (btrfs_root_refs(&root->root_item) == 0) {
  1332. ret = -ENOENT;
  1333. goto fail;
  1334. }
  1335. ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
  1336. if (ret < 0)
  1337. goto fail;
  1338. if (ret == 0)
  1339. root->orphan_item_inserted = 1;
  1340. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1341. if (ret)
  1342. goto fail;
  1343. spin_lock(&fs_info->fs_roots_radix_lock);
  1344. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1345. (unsigned long)root->root_key.objectid,
  1346. root);
  1347. if (ret == 0)
  1348. root->in_radix = 1;
  1349. spin_unlock(&fs_info->fs_roots_radix_lock);
  1350. radix_tree_preload_end();
  1351. if (ret) {
  1352. if (ret == -EEXIST) {
  1353. free_fs_root(root);
  1354. goto again;
  1355. }
  1356. goto fail;
  1357. }
  1358. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1359. root->root_key.objectid);
  1360. WARN_ON(ret);
  1361. return root;
  1362. fail:
  1363. free_fs_root(root);
  1364. return ERR_PTR(ret);
  1365. }
  1366. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1367. {
  1368. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1369. int ret = 0;
  1370. struct btrfs_device *device;
  1371. struct backing_dev_info *bdi;
  1372. rcu_read_lock();
  1373. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1374. if (!device->bdev)
  1375. continue;
  1376. bdi = blk_get_backing_dev_info(device->bdev);
  1377. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1378. ret = 1;
  1379. break;
  1380. }
  1381. }
  1382. rcu_read_unlock();
  1383. return ret;
  1384. }
  1385. /*
  1386. * If this fails, caller must call bdi_destroy() to get rid of the
  1387. * bdi again.
  1388. */
  1389. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1390. {
  1391. int err;
  1392. bdi->capabilities = BDI_CAP_MAP_COPY;
  1393. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1394. if (err)
  1395. return err;
  1396. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1397. bdi->congested_fn = btrfs_congested_fn;
  1398. bdi->congested_data = info;
  1399. return 0;
  1400. }
  1401. /*
  1402. * called by the kthread helper functions to finally call the bio end_io
  1403. * functions. This is where read checksum verification actually happens
  1404. */
  1405. static void end_workqueue_fn(struct btrfs_work *work)
  1406. {
  1407. struct bio *bio;
  1408. struct end_io_wq *end_io_wq;
  1409. struct btrfs_fs_info *fs_info;
  1410. int error;
  1411. end_io_wq = container_of(work, struct end_io_wq, work);
  1412. bio = end_io_wq->bio;
  1413. fs_info = end_io_wq->info;
  1414. error = end_io_wq->error;
  1415. bio->bi_private = end_io_wq->private;
  1416. bio->bi_end_io = end_io_wq->end_io;
  1417. kfree(end_io_wq);
  1418. bio_endio(bio, error);
  1419. }
  1420. static int cleaner_kthread(void *arg)
  1421. {
  1422. struct btrfs_root *root = arg;
  1423. do {
  1424. if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
  1425. mutex_trylock(&root->fs_info->cleaner_mutex)) {
  1426. btrfs_run_delayed_iputs(root);
  1427. btrfs_clean_old_snapshots(root);
  1428. mutex_unlock(&root->fs_info->cleaner_mutex);
  1429. btrfs_run_defrag_inodes(root->fs_info);
  1430. }
  1431. if (!try_to_freeze()) {
  1432. set_current_state(TASK_INTERRUPTIBLE);
  1433. if (!kthread_should_stop())
  1434. schedule();
  1435. __set_current_state(TASK_RUNNING);
  1436. }
  1437. } while (!kthread_should_stop());
  1438. return 0;
  1439. }
  1440. static int transaction_kthread(void *arg)
  1441. {
  1442. struct btrfs_root *root = arg;
  1443. struct btrfs_trans_handle *trans;
  1444. struct btrfs_transaction *cur;
  1445. u64 transid;
  1446. unsigned long now;
  1447. unsigned long delay;
  1448. bool cannot_commit;
  1449. do {
  1450. cannot_commit = false;
  1451. delay = HZ * 30;
  1452. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1453. spin_lock(&root->fs_info->trans_lock);
  1454. cur = root->fs_info->running_transaction;
  1455. if (!cur) {
  1456. spin_unlock(&root->fs_info->trans_lock);
  1457. goto sleep;
  1458. }
  1459. now = get_seconds();
  1460. if (!cur->blocked &&
  1461. (now < cur->start_time || now - cur->start_time < 30)) {
  1462. spin_unlock(&root->fs_info->trans_lock);
  1463. delay = HZ * 5;
  1464. goto sleep;
  1465. }
  1466. transid = cur->transid;
  1467. spin_unlock(&root->fs_info->trans_lock);
  1468. /* If the file system is aborted, this will always fail. */
  1469. trans = btrfs_attach_transaction(root);
  1470. if (IS_ERR(trans)) {
  1471. if (PTR_ERR(trans) != -ENOENT)
  1472. cannot_commit = true;
  1473. goto sleep;
  1474. }
  1475. if (transid == trans->transid) {
  1476. btrfs_commit_transaction(trans, root);
  1477. } else {
  1478. btrfs_end_transaction(trans, root);
  1479. }
  1480. sleep:
  1481. wake_up_process(root->fs_info->cleaner_kthread);
  1482. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1483. if (!try_to_freeze()) {
  1484. set_current_state(TASK_INTERRUPTIBLE);
  1485. if (!kthread_should_stop() &&
  1486. (!btrfs_transaction_blocked(root->fs_info) ||
  1487. cannot_commit))
  1488. schedule_timeout(delay);
  1489. __set_current_state(TASK_RUNNING);
  1490. }
  1491. } while (!kthread_should_stop());
  1492. return 0;
  1493. }
  1494. /*
  1495. * this will find the highest generation in the array of
  1496. * root backups. The index of the highest array is returned,
  1497. * or -1 if we can't find anything.
  1498. *
  1499. * We check to make sure the array is valid by comparing the
  1500. * generation of the latest root in the array with the generation
  1501. * in the super block. If they don't match we pitch it.
  1502. */
  1503. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1504. {
  1505. u64 cur;
  1506. int newest_index = -1;
  1507. struct btrfs_root_backup *root_backup;
  1508. int i;
  1509. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1510. root_backup = info->super_copy->super_roots + i;
  1511. cur = btrfs_backup_tree_root_gen(root_backup);
  1512. if (cur == newest_gen)
  1513. newest_index = i;
  1514. }
  1515. /* check to see if we actually wrapped around */
  1516. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1517. root_backup = info->super_copy->super_roots;
  1518. cur = btrfs_backup_tree_root_gen(root_backup);
  1519. if (cur == newest_gen)
  1520. newest_index = 0;
  1521. }
  1522. return newest_index;
  1523. }
  1524. /*
  1525. * find the oldest backup so we know where to store new entries
  1526. * in the backup array. This will set the backup_root_index
  1527. * field in the fs_info struct
  1528. */
  1529. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1530. u64 newest_gen)
  1531. {
  1532. int newest_index = -1;
  1533. newest_index = find_newest_super_backup(info, newest_gen);
  1534. /* if there was garbage in there, just move along */
  1535. if (newest_index == -1) {
  1536. info->backup_root_index = 0;
  1537. } else {
  1538. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1539. }
  1540. }
  1541. /*
  1542. * copy all the root pointers into the super backup array.
  1543. * this will bump the backup pointer by one when it is
  1544. * done
  1545. */
  1546. static void backup_super_roots(struct btrfs_fs_info *info)
  1547. {
  1548. int next_backup;
  1549. struct btrfs_root_backup *root_backup;
  1550. int last_backup;
  1551. next_backup = info->backup_root_index;
  1552. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1553. BTRFS_NUM_BACKUP_ROOTS;
  1554. /*
  1555. * just overwrite the last backup if we're at the same generation
  1556. * this happens only at umount
  1557. */
  1558. root_backup = info->super_for_commit->super_roots + last_backup;
  1559. if (btrfs_backup_tree_root_gen(root_backup) ==
  1560. btrfs_header_generation(info->tree_root->node))
  1561. next_backup = last_backup;
  1562. root_backup = info->super_for_commit->super_roots + next_backup;
  1563. /*
  1564. * make sure all of our padding and empty slots get zero filled
  1565. * regardless of which ones we use today
  1566. */
  1567. memset(root_backup, 0, sizeof(*root_backup));
  1568. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1569. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1570. btrfs_set_backup_tree_root_gen(root_backup,
  1571. btrfs_header_generation(info->tree_root->node));
  1572. btrfs_set_backup_tree_root_level(root_backup,
  1573. btrfs_header_level(info->tree_root->node));
  1574. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1575. btrfs_set_backup_chunk_root_gen(root_backup,
  1576. btrfs_header_generation(info->chunk_root->node));
  1577. btrfs_set_backup_chunk_root_level(root_backup,
  1578. btrfs_header_level(info->chunk_root->node));
  1579. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1580. btrfs_set_backup_extent_root_gen(root_backup,
  1581. btrfs_header_generation(info->extent_root->node));
  1582. btrfs_set_backup_extent_root_level(root_backup,
  1583. btrfs_header_level(info->extent_root->node));
  1584. /*
  1585. * we might commit during log recovery, which happens before we set
  1586. * the fs_root. Make sure it is valid before we fill it in.
  1587. */
  1588. if (info->fs_root && info->fs_root->node) {
  1589. btrfs_set_backup_fs_root(root_backup,
  1590. info->fs_root->node->start);
  1591. btrfs_set_backup_fs_root_gen(root_backup,
  1592. btrfs_header_generation(info->fs_root->node));
  1593. btrfs_set_backup_fs_root_level(root_backup,
  1594. btrfs_header_level(info->fs_root->node));
  1595. }
  1596. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1597. btrfs_set_backup_dev_root_gen(root_backup,
  1598. btrfs_header_generation(info->dev_root->node));
  1599. btrfs_set_backup_dev_root_level(root_backup,
  1600. btrfs_header_level(info->dev_root->node));
  1601. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1602. btrfs_set_backup_csum_root_gen(root_backup,
  1603. btrfs_header_generation(info->csum_root->node));
  1604. btrfs_set_backup_csum_root_level(root_backup,
  1605. btrfs_header_level(info->csum_root->node));
  1606. btrfs_set_backup_total_bytes(root_backup,
  1607. btrfs_super_total_bytes(info->super_copy));
  1608. btrfs_set_backup_bytes_used(root_backup,
  1609. btrfs_super_bytes_used(info->super_copy));
  1610. btrfs_set_backup_num_devices(root_backup,
  1611. btrfs_super_num_devices(info->super_copy));
  1612. /*
  1613. * if we don't copy this out to the super_copy, it won't get remembered
  1614. * for the next commit
  1615. */
  1616. memcpy(&info->super_copy->super_roots,
  1617. &info->super_for_commit->super_roots,
  1618. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1619. }
  1620. /*
  1621. * this copies info out of the root backup array and back into
  1622. * the in-memory super block. It is meant to help iterate through
  1623. * the array, so you send it the number of backups you've already
  1624. * tried and the last backup index you used.
  1625. *
  1626. * this returns -1 when it has tried all the backups
  1627. */
  1628. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1629. struct btrfs_super_block *super,
  1630. int *num_backups_tried, int *backup_index)
  1631. {
  1632. struct btrfs_root_backup *root_backup;
  1633. int newest = *backup_index;
  1634. if (*num_backups_tried == 0) {
  1635. u64 gen = btrfs_super_generation(super);
  1636. newest = find_newest_super_backup(info, gen);
  1637. if (newest == -1)
  1638. return -1;
  1639. *backup_index = newest;
  1640. *num_backups_tried = 1;
  1641. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1642. /* we've tried all the backups, all done */
  1643. return -1;
  1644. } else {
  1645. /* jump to the next oldest backup */
  1646. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1647. BTRFS_NUM_BACKUP_ROOTS;
  1648. *backup_index = newest;
  1649. *num_backups_tried += 1;
  1650. }
  1651. root_backup = super->super_roots + newest;
  1652. btrfs_set_super_generation(super,
  1653. btrfs_backup_tree_root_gen(root_backup));
  1654. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1655. btrfs_set_super_root_level(super,
  1656. btrfs_backup_tree_root_level(root_backup));
  1657. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1658. /*
  1659. * fixme: the total bytes and num_devices need to match or we should
  1660. * need a fsck
  1661. */
  1662. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1663. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1664. return 0;
  1665. }
  1666. /* helper to cleanup tree roots */
  1667. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1668. {
  1669. free_extent_buffer(info->tree_root->node);
  1670. free_extent_buffer(info->tree_root->commit_root);
  1671. free_extent_buffer(info->dev_root->node);
  1672. free_extent_buffer(info->dev_root->commit_root);
  1673. free_extent_buffer(info->extent_root->node);
  1674. free_extent_buffer(info->extent_root->commit_root);
  1675. free_extent_buffer(info->csum_root->node);
  1676. free_extent_buffer(info->csum_root->commit_root);
  1677. if (info->quota_root) {
  1678. free_extent_buffer(info->quota_root->node);
  1679. free_extent_buffer(info->quota_root->commit_root);
  1680. }
  1681. info->tree_root->node = NULL;
  1682. info->tree_root->commit_root = NULL;
  1683. info->dev_root->node = NULL;
  1684. info->dev_root->commit_root = NULL;
  1685. info->extent_root->node = NULL;
  1686. info->extent_root->commit_root = NULL;
  1687. info->csum_root->node = NULL;
  1688. info->csum_root->commit_root = NULL;
  1689. if (info->quota_root) {
  1690. info->quota_root->node = NULL;
  1691. info->quota_root->commit_root = NULL;
  1692. }
  1693. if (chunk_root) {
  1694. free_extent_buffer(info->chunk_root->node);
  1695. free_extent_buffer(info->chunk_root->commit_root);
  1696. info->chunk_root->node = NULL;
  1697. info->chunk_root->commit_root = NULL;
  1698. }
  1699. }
  1700. int open_ctree(struct super_block *sb,
  1701. struct btrfs_fs_devices *fs_devices,
  1702. char *options)
  1703. {
  1704. u32 sectorsize;
  1705. u32 nodesize;
  1706. u32 leafsize;
  1707. u32 blocksize;
  1708. u32 stripesize;
  1709. u64 generation;
  1710. u64 features;
  1711. struct btrfs_key location;
  1712. struct buffer_head *bh;
  1713. struct btrfs_super_block *disk_super;
  1714. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  1715. struct btrfs_root *tree_root;
  1716. struct btrfs_root *extent_root;
  1717. struct btrfs_root *csum_root;
  1718. struct btrfs_root *chunk_root;
  1719. struct btrfs_root *dev_root;
  1720. struct btrfs_root *quota_root;
  1721. struct btrfs_root *log_tree_root;
  1722. int ret;
  1723. int err = -EINVAL;
  1724. int num_backups_tried = 0;
  1725. int backup_index = 0;
  1726. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
  1727. extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
  1728. csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
  1729. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
  1730. dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
  1731. quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
  1732. if (!tree_root || !extent_root || !csum_root ||
  1733. !chunk_root || !dev_root || !quota_root) {
  1734. err = -ENOMEM;
  1735. goto fail;
  1736. }
  1737. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1738. if (ret) {
  1739. err = ret;
  1740. goto fail;
  1741. }
  1742. ret = setup_bdi(fs_info, &fs_info->bdi);
  1743. if (ret) {
  1744. err = ret;
  1745. goto fail_srcu;
  1746. }
  1747. fs_info->btree_inode = new_inode(sb);
  1748. if (!fs_info->btree_inode) {
  1749. err = -ENOMEM;
  1750. goto fail_bdi;
  1751. }
  1752. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  1753. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1754. INIT_LIST_HEAD(&fs_info->trans_list);
  1755. INIT_LIST_HEAD(&fs_info->dead_roots);
  1756. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1757. INIT_LIST_HEAD(&fs_info->delalloc_inodes);
  1758. INIT_LIST_HEAD(&fs_info->ordered_operations);
  1759. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1760. spin_lock_init(&fs_info->delalloc_lock);
  1761. spin_lock_init(&fs_info->trans_lock);
  1762. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1763. spin_lock_init(&fs_info->delayed_iput_lock);
  1764. spin_lock_init(&fs_info->defrag_inodes_lock);
  1765. spin_lock_init(&fs_info->free_chunk_lock);
  1766. spin_lock_init(&fs_info->tree_mod_seq_lock);
  1767. rwlock_init(&fs_info->tree_mod_log_lock);
  1768. mutex_init(&fs_info->reloc_mutex);
  1769. init_completion(&fs_info->kobj_unregister);
  1770. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1771. INIT_LIST_HEAD(&fs_info->space_info);
  1772. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  1773. btrfs_mapping_init(&fs_info->mapping_tree);
  1774. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  1775. BTRFS_BLOCK_RSV_GLOBAL);
  1776. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  1777. BTRFS_BLOCK_RSV_DELALLOC);
  1778. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  1779. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  1780. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  1781. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  1782. BTRFS_BLOCK_RSV_DELOPS);
  1783. atomic_set(&fs_info->nr_async_submits, 0);
  1784. atomic_set(&fs_info->async_delalloc_pages, 0);
  1785. atomic_set(&fs_info->async_submit_draining, 0);
  1786. atomic_set(&fs_info->nr_async_bios, 0);
  1787. atomic_set(&fs_info->defrag_running, 0);
  1788. atomic_set(&fs_info->tree_mod_seq, 0);
  1789. fs_info->sb = sb;
  1790. fs_info->max_inline = 8192 * 1024;
  1791. fs_info->metadata_ratio = 0;
  1792. fs_info->defrag_inodes = RB_ROOT;
  1793. fs_info->trans_no_join = 0;
  1794. fs_info->free_chunk_space = 0;
  1795. fs_info->tree_mod_log = RB_ROOT;
  1796. /* readahead state */
  1797. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
  1798. spin_lock_init(&fs_info->reada_lock);
  1799. fs_info->thread_pool_size = min_t(unsigned long,
  1800. num_online_cpus() + 2, 8);
  1801. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1802. spin_lock_init(&fs_info->ordered_extent_lock);
  1803. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  1804. GFP_NOFS);
  1805. if (!fs_info->delayed_root) {
  1806. err = -ENOMEM;
  1807. goto fail_iput;
  1808. }
  1809. btrfs_init_delayed_root(fs_info->delayed_root);
  1810. mutex_init(&fs_info->scrub_lock);
  1811. atomic_set(&fs_info->scrubs_running, 0);
  1812. atomic_set(&fs_info->scrub_pause_req, 0);
  1813. atomic_set(&fs_info->scrubs_paused, 0);
  1814. atomic_set(&fs_info->scrub_cancel_req, 0);
  1815. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1816. init_rwsem(&fs_info->scrub_super_lock);
  1817. fs_info->scrub_workers_refcnt = 0;
  1818. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  1819. fs_info->check_integrity_print_mask = 0;
  1820. #endif
  1821. spin_lock_init(&fs_info->balance_lock);
  1822. mutex_init(&fs_info->balance_mutex);
  1823. atomic_set(&fs_info->balance_running, 0);
  1824. atomic_set(&fs_info->balance_pause_req, 0);
  1825. atomic_set(&fs_info->balance_cancel_req, 0);
  1826. fs_info->balance_ctl = NULL;
  1827. init_waitqueue_head(&fs_info->balance_wait_q);
  1828. sb->s_blocksize = 4096;
  1829. sb->s_blocksize_bits = blksize_bits(4096);
  1830. sb->s_bdi = &fs_info->bdi;
  1831. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1832. set_nlink(fs_info->btree_inode, 1);
  1833. /*
  1834. * we set the i_size on the btree inode to the max possible int.
  1835. * the real end of the address space is determined by all of
  1836. * the devices in the system
  1837. */
  1838. fs_info->btree_inode->i_size = OFFSET_MAX;
  1839. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1840. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1841. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1842. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1843. fs_info->btree_inode->i_mapping);
  1844. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  1845. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1846. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1847. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1848. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1849. sizeof(struct btrfs_key));
  1850. set_bit(BTRFS_INODE_DUMMY,
  1851. &BTRFS_I(fs_info->btree_inode)->runtime_flags);
  1852. insert_inode_hash(fs_info->btree_inode);
  1853. spin_lock_init(&fs_info->block_group_cache_lock);
  1854. fs_info->block_group_cache_tree = RB_ROOT;
  1855. extent_io_tree_init(&fs_info->freed_extents[0],
  1856. fs_info->btree_inode->i_mapping);
  1857. extent_io_tree_init(&fs_info->freed_extents[1],
  1858. fs_info->btree_inode->i_mapping);
  1859. fs_info->pinned_extents = &fs_info->freed_extents[0];
  1860. fs_info->do_barriers = 1;
  1861. mutex_init(&fs_info->ordered_operations_mutex);
  1862. mutex_init(&fs_info->tree_log_mutex);
  1863. mutex_init(&fs_info->chunk_mutex);
  1864. mutex_init(&fs_info->transaction_kthread_mutex);
  1865. mutex_init(&fs_info->cleaner_mutex);
  1866. mutex_init(&fs_info->volume_mutex);
  1867. init_rwsem(&fs_info->extent_commit_sem);
  1868. init_rwsem(&fs_info->cleanup_work_sem);
  1869. init_rwsem(&fs_info->subvol_sem);
  1870. spin_lock_init(&fs_info->qgroup_lock);
  1871. fs_info->qgroup_tree = RB_ROOT;
  1872. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  1873. fs_info->qgroup_seq = 1;
  1874. fs_info->quota_enabled = 0;
  1875. fs_info->pending_quota_state = 0;
  1876. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  1877. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  1878. init_waitqueue_head(&fs_info->transaction_throttle);
  1879. init_waitqueue_head(&fs_info->transaction_wait);
  1880. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  1881. init_waitqueue_head(&fs_info->async_submit_wait);
  1882. __setup_root(4096, 4096, 4096, 4096, tree_root,
  1883. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1884. invalidate_bdev(fs_devices->latest_bdev);
  1885. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  1886. if (!bh) {
  1887. err = -EINVAL;
  1888. goto fail_alloc;
  1889. }
  1890. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  1891. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  1892. sizeof(*fs_info->super_for_commit));
  1893. brelse(bh);
  1894. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  1895. disk_super = fs_info->super_copy;
  1896. if (!btrfs_super_root(disk_super))
  1897. goto fail_alloc;
  1898. /* check FS state, whether FS is broken. */
  1899. fs_info->fs_state |= btrfs_super_flags(disk_super);
  1900. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  1901. if (ret) {
  1902. printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
  1903. err = ret;
  1904. goto fail_alloc;
  1905. }
  1906. /*
  1907. * run through our array of backup supers and setup
  1908. * our ring pointer to the oldest one
  1909. */
  1910. generation = btrfs_super_generation(disk_super);
  1911. find_oldest_super_backup(fs_info, generation);
  1912. /*
  1913. * In the long term, we'll store the compression type in the super
  1914. * block, and it'll be used for per file compression control.
  1915. */
  1916. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  1917. ret = btrfs_parse_options(tree_root, options);
  1918. if (ret) {
  1919. err = ret;
  1920. goto fail_alloc;
  1921. }
  1922. features = btrfs_super_incompat_flags(disk_super) &
  1923. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  1924. if (features) {
  1925. printk(KERN_ERR "BTRFS: couldn't mount because of "
  1926. "unsupported optional features (%Lx).\n",
  1927. (unsigned long long)features);
  1928. err = -EINVAL;
  1929. goto fail_alloc;
  1930. }
  1931. if (btrfs_super_leafsize(disk_super) !=
  1932. btrfs_super_nodesize(disk_super)) {
  1933. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  1934. "blocksizes don't match. node %d leaf %d\n",
  1935. btrfs_super_nodesize(disk_super),
  1936. btrfs_super_leafsize(disk_super));
  1937. err = -EINVAL;
  1938. goto fail_alloc;
  1939. }
  1940. if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
  1941. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  1942. "blocksize (%d) was too large\n",
  1943. btrfs_super_leafsize(disk_super));
  1944. err = -EINVAL;
  1945. goto fail_alloc;
  1946. }
  1947. features = btrfs_super_incompat_flags(disk_super);
  1948. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  1949. if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
  1950. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  1951. /*
  1952. * flag our filesystem as having big metadata blocks if
  1953. * they are bigger than the page size
  1954. */
  1955. if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
  1956. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  1957. printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
  1958. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  1959. }
  1960. nodesize = btrfs_super_nodesize(disk_super);
  1961. leafsize = btrfs_super_leafsize(disk_super);
  1962. sectorsize = btrfs_super_sectorsize(disk_super);
  1963. stripesize = btrfs_super_stripesize(disk_super);
  1964. /*
  1965. * mixed block groups end up with duplicate but slightly offset
  1966. * extent buffers for the same range. It leads to corruptions
  1967. */
  1968. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  1969. (sectorsize != leafsize)) {
  1970. printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
  1971. "are not allowed for mixed block groups on %s\n",
  1972. sb->s_id);
  1973. goto fail_alloc;
  1974. }
  1975. btrfs_set_super_incompat_flags(disk_super, features);
  1976. features = btrfs_super_compat_ro_flags(disk_super) &
  1977. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  1978. if (!(sb->s_flags & MS_RDONLY) && features) {
  1979. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  1980. "unsupported option features (%Lx).\n",
  1981. (unsigned long long)features);
  1982. err = -EINVAL;
  1983. goto fail_alloc;
  1984. }
  1985. btrfs_init_workers(&fs_info->generic_worker,
  1986. "genwork", 1, NULL);
  1987. btrfs_init_workers(&fs_info->workers, "worker",
  1988. fs_info->thread_pool_size,
  1989. &fs_info->generic_worker);
  1990. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  1991. fs_info->thread_pool_size,
  1992. &fs_info->generic_worker);
  1993. btrfs_init_workers(&fs_info->submit_workers, "submit",
  1994. min_t(u64, fs_devices->num_devices,
  1995. fs_info->thread_pool_size),
  1996. &fs_info->generic_worker);
  1997. btrfs_init_workers(&fs_info->caching_workers, "cache",
  1998. 2, &fs_info->generic_worker);
  1999. /* a higher idle thresh on the submit workers makes it much more
  2000. * likely that bios will be send down in a sane order to the
  2001. * devices
  2002. */
  2003. fs_info->submit_workers.idle_thresh = 64;
  2004. fs_info->workers.idle_thresh = 16;
  2005. fs_info->workers.ordered = 1;
  2006. fs_info->delalloc_workers.idle_thresh = 2;
  2007. fs_info->delalloc_workers.ordered = 1;
  2008. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
  2009. &fs_info->generic_worker);
  2010. btrfs_init_workers(&fs_info->endio_workers, "endio",
  2011. fs_info->thread_pool_size,
  2012. &fs_info->generic_worker);
  2013. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  2014. fs_info->thread_pool_size,
  2015. &fs_info->generic_worker);
  2016. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  2017. "endio-meta-write", fs_info->thread_pool_size,
  2018. &fs_info->generic_worker);
  2019. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  2020. fs_info->thread_pool_size,
  2021. &fs_info->generic_worker);
  2022. btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
  2023. 1, &fs_info->generic_worker);
  2024. btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
  2025. fs_info->thread_pool_size,
  2026. &fs_info->generic_worker);
  2027. btrfs_init_workers(&fs_info->readahead_workers, "readahead",
  2028. fs_info->thread_pool_size,
  2029. &fs_info->generic_worker);
  2030. /*
  2031. * endios are largely parallel and should have a very
  2032. * low idle thresh
  2033. */
  2034. fs_info->endio_workers.idle_thresh = 4;
  2035. fs_info->endio_meta_workers.idle_thresh = 4;
  2036. fs_info->endio_write_workers.idle_thresh = 2;
  2037. fs_info->endio_meta_write_workers.idle_thresh = 2;
  2038. fs_info->readahead_workers.idle_thresh = 2;
  2039. /*
  2040. * btrfs_start_workers can really only fail because of ENOMEM so just
  2041. * return -ENOMEM if any of these fail.
  2042. */
  2043. ret = btrfs_start_workers(&fs_info->workers);
  2044. ret |= btrfs_start_workers(&fs_info->generic_worker);
  2045. ret |= btrfs_start_workers(&fs_info->submit_workers);
  2046. ret |= btrfs_start_workers(&fs_info->delalloc_workers);
  2047. ret |= btrfs_start_workers(&fs_info->fixup_workers);
  2048. ret |= btrfs_start_workers(&fs_info->endio_workers);
  2049. ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
  2050. ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
  2051. ret |= btrfs_start_workers(&fs_info->endio_write_workers);
  2052. ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
  2053. ret |= btrfs_start_workers(&fs_info->delayed_workers);
  2054. ret |= btrfs_start_workers(&fs_info->caching_workers);
  2055. ret |= btrfs_start_workers(&fs_info->readahead_workers);
  2056. if (ret) {
  2057. err = -ENOMEM;
  2058. goto fail_sb_buffer;
  2059. }
  2060. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2061. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2062. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  2063. tree_root->nodesize = nodesize;
  2064. tree_root->leafsize = leafsize;
  2065. tree_root->sectorsize = sectorsize;
  2066. tree_root->stripesize = stripesize;
  2067. sb->s_blocksize = sectorsize;
  2068. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2069. if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
  2070. sizeof(disk_super->magic))) {
  2071. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  2072. goto fail_sb_buffer;
  2073. }
  2074. if (sectorsize != PAGE_SIZE) {
  2075. printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
  2076. "found on %s\n", (unsigned long)sectorsize, sb->s_id);
  2077. goto fail_sb_buffer;
  2078. }
  2079. mutex_lock(&fs_info->chunk_mutex);
  2080. ret = btrfs_read_sys_array(tree_root);
  2081. mutex_unlock(&fs_info->chunk_mutex);
  2082. if (ret) {
  2083. printk(KERN_WARNING "btrfs: failed to read the system "
  2084. "array on %s\n", sb->s_id);
  2085. goto fail_sb_buffer;
  2086. }
  2087. blocksize = btrfs_level_size(tree_root,
  2088. btrfs_super_chunk_root_level(disk_super));
  2089. generation = btrfs_super_chunk_root_generation(disk_super);
  2090. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2091. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2092. chunk_root->node = read_tree_block(chunk_root,
  2093. btrfs_super_chunk_root(disk_super),
  2094. blocksize, generation);
  2095. BUG_ON(!chunk_root->node); /* -ENOMEM */
  2096. if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  2097. printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
  2098. sb->s_id);
  2099. goto fail_tree_roots;
  2100. }
  2101. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2102. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2103. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2104. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  2105. BTRFS_UUID_SIZE);
  2106. ret = btrfs_read_chunk_tree(chunk_root);
  2107. if (ret) {
  2108. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  2109. sb->s_id);
  2110. goto fail_tree_roots;
  2111. }
  2112. btrfs_close_extra_devices(fs_devices);
  2113. if (!fs_devices->latest_bdev) {
  2114. printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
  2115. sb->s_id);
  2116. goto fail_tree_roots;
  2117. }
  2118. retry_root_backup:
  2119. blocksize = btrfs_level_size(tree_root,
  2120. btrfs_super_root_level(disk_super));
  2121. generation = btrfs_super_generation(disk_super);
  2122. tree_root->node = read_tree_block(tree_root,
  2123. btrfs_super_root(disk_super),
  2124. blocksize, generation);
  2125. if (!tree_root->node ||
  2126. !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  2127. printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
  2128. sb->s_id);
  2129. goto recovery_tree_root;
  2130. }
  2131. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2132. tree_root->commit_root = btrfs_root_node(tree_root);
  2133. ret = find_and_setup_root(tree_root, fs_info,
  2134. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  2135. if (ret)
  2136. goto recovery_tree_root;
  2137. extent_root->track_dirty = 1;
  2138. ret = find_and_setup_root(tree_root, fs_info,
  2139. BTRFS_DEV_TREE_OBJECTID, dev_root);
  2140. if (ret)
  2141. goto recovery_tree_root;
  2142. dev_root->track_dirty = 1;
  2143. ret = find_and_setup_root(tree_root, fs_info,
  2144. BTRFS_CSUM_TREE_OBJECTID, csum_root);
  2145. if (ret)
  2146. goto recovery_tree_root;
  2147. csum_root->track_dirty = 1;
  2148. ret = find_and_setup_root(tree_root, fs_info,
  2149. BTRFS_QUOTA_TREE_OBJECTID, quota_root);
  2150. if (ret) {
  2151. kfree(quota_root);
  2152. quota_root = fs_info->quota_root = NULL;
  2153. } else {
  2154. quota_root->track_dirty = 1;
  2155. fs_info->quota_enabled = 1;
  2156. fs_info->pending_quota_state = 1;
  2157. }
  2158. fs_info->generation = generation;
  2159. fs_info->last_trans_committed = generation;
  2160. ret = btrfs_recover_balance(fs_info);
  2161. if (ret) {
  2162. printk(KERN_WARNING "btrfs: failed to recover balance\n");
  2163. goto fail_block_groups;
  2164. }
  2165. ret = btrfs_init_dev_stats(fs_info);
  2166. if (ret) {
  2167. printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
  2168. ret);
  2169. goto fail_block_groups;
  2170. }
  2171. ret = btrfs_init_space_info(fs_info);
  2172. if (ret) {
  2173. printk(KERN_ERR "Failed to initial space info: %d\n", ret);
  2174. goto fail_block_groups;
  2175. }
  2176. ret = btrfs_read_block_groups(extent_root);
  2177. if (ret) {
  2178. printk(KERN_ERR "Failed to read block groups: %d\n", ret);
  2179. goto fail_block_groups;
  2180. }
  2181. fs_info->num_tolerated_disk_barrier_failures =
  2182. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2183. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2184. "btrfs-cleaner");
  2185. if (IS_ERR(fs_info->cleaner_kthread))
  2186. goto fail_block_groups;
  2187. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2188. tree_root,
  2189. "btrfs-transaction");
  2190. if (IS_ERR(fs_info->transaction_kthread))
  2191. goto fail_cleaner;
  2192. if (!btrfs_test_opt(tree_root, SSD) &&
  2193. !btrfs_test_opt(tree_root, NOSSD) &&
  2194. !fs_info->fs_devices->rotating) {
  2195. printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
  2196. "mode\n");
  2197. btrfs_set_opt(fs_info->mount_opt, SSD);
  2198. }
  2199. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2200. if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
  2201. ret = btrfsic_mount(tree_root, fs_devices,
  2202. btrfs_test_opt(tree_root,
  2203. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2204. 1 : 0,
  2205. fs_info->check_integrity_print_mask);
  2206. if (ret)
  2207. printk(KERN_WARNING "btrfs: failed to initialize"
  2208. " integrity check module %s\n", sb->s_id);
  2209. }
  2210. #endif
  2211. ret = btrfs_read_qgroup_config(fs_info);
  2212. if (ret)
  2213. goto fail_trans_kthread;
  2214. /* do not make disk changes in broken FS */
  2215. if (btrfs_super_log_root(disk_super) != 0) {
  2216. u64 bytenr = btrfs_super_log_root(disk_super);
  2217. if (fs_devices->rw_devices == 0) {
  2218. printk(KERN_WARNING "Btrfs log replay required "
  2219. "on RO media\n");
  2220. err = -EIO;
  2221. goto fail_qgroup;
  2222. }
  2223. blocksize =
  2224. btrfs_level_size(tree_root,
  2225. btrfs_super_log_root_level(disk_super));
  2226. log_tree_root = btrfs_alloc_root(fs_info);
  2227. if (!log_tree_root) {
  2228. err = -ENOMEM;
  2229. goto fail_qgroup;
  2230. }
  2231. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2232. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  2233. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2234. blocksize,
  2235. generation + 1);
  2236. /* returns with log_tree_root freed on success */
  2237. ret = btrfs_recover_log_trees(log_tree_root);
  2238. if (ret) {
  2239. btrfs_error(tree_root->fs_info, ret,
  2240. "Failed to recover log tree");
  2241. free_extent_buffer(log_tree_root->node);
  2242. kfree(log_tree_root);
  2243. goto fail_trans_kthread;
  2244. }
  2245. if (sb->s_flags & MS_RDONLY) {
  2246. ret = btrfs_commit_super(tree_root);
  2247. if (ret)
  2248. goto fail_trans_kthread;
  2249. }
  2250. }
  2251. ret = btrfs_find_orphan_roots(tree_root);
  2252. if (ret)
  2253. goto fail_trans_kthread;
  2254. if (!(sb->s_flags & MS_RDONLY)) {
  2255. ret = btrfs_cleanup_fs_roots(fs_info);
  2256. if (ret)
  2257. goto fail_trans_kthread;
  2258. ret = btrfs_recover_relocation(tree_root);
  2259. if (ret < 0) {
  2260. printk(KERN_WARNING
  2261. "btrfs: failed to recover relocation\n");
  2262. err = -EINVAL;
  2263. goto fail_qgroup;
  2264. }
  2265. }
  2266. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2267. location.type = BTRFS_ROOT_ITEM_KEY;
  2268. location.offset = (u64)-1;
  2269. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2270. if (!fs_info->fs_root)
  2271. goto fail_qgroup;
  2272. if (IS_ERR(fs_info->fs_root)) {
  2273. err = PTR_ERR(fs_info->fs_root);
  2274. goto fail_qgroup;
  2275. }
  2276. if (sb->s_flags & MS_RDONLY)
  2277. return 0;
  2278. down_read(&fs_info->cleanup_work_sem);
  2279. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2280. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2281. up_read(&fs_info->cleanup_work_sem);
  2282. close_ctree(tree_root);
  2283. return ret;
  2284. }
  2285. up_read(&fs_info->cleanup_work_sem);
  2286. ret = btrfs_resume_balance_async(fs_info);
  2287. if (ret) {
  2288. printk(KERN_WARNING "btrfs: failed to resume balance\n");
  2289. close_ctree(tree_root);
  2290. return ret;
  2291. }
  2292. return 0;
  2293. fail_qgroup:
  2294. btrfs_free_qgroup_config(fs_info);
  2295. fail_trans_kthread:
  2296. kthread_stop(fs_info->transaction_kthread);
  2297. fail_cleaner:
  2298. kthread_stop(fs_info->cleaner_kthread);
  2299. /*
  2300. * make sure we're done with the btree inode before we stop our
  2301. * kthreads
  2302. */
  2303. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2304. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2305. fail_block_groups:
  2306. btrfs_free_block_groups(fs_info);
  2307. fail_tree_roots:
  2308. free_root_pointers(fs_info, 1);
  2309. fail_sb_buffer:
  2310. btrfs_stop_workers(&fs_info->generic_worker);
  2311. btrfs_stop_workers(&fs_info->readahead_workers);
  2312. btrfs_stop_workers(&fs_info->fixup_workers);
  2313. btrfs_stop_workers(&fs_info->delalloc_workers);
  2314. btrfs_stop_workers(&fs_info->workers);
  2315. btrfs_stop_workers(&fs_info->endio_workers);
  2316. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2317. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2318. btrfs_stop_workers(&fs_info->endio_write_workers);
  2319. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  2320. btrfs_stop_workers(&fs_info->submit_workers);
  2321. btrfs_stop_workers(&fs_info->delayed_workers);
  2322. btrfs_stop_workers(&fs_info->caching_workers);
  2323. fail_alloc:
  2324. fail_iput:
  2325. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2326. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2327. iput(fs_info->btree_inode);
  2328. fail_bdi:
  2329. bdi_destroy(&fs_info->bdi);
  2330. fail_srcu:
  2331. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2332. fail:
  2333. btrfs_close_devices(fs_info->fs_devices);
  2334. return err;
  2335. recovery_tree_root:
  2336. if (!btrfs_test_opt(tree_root, RECOVERY))
  2337. goto fail_tree_roots;
  2338. free_root_pointers(fs_info, 0);
  2339. /* don't use the log in recovery mode, it won't be valid */
  2340. btrfs_set_super_log_root(disk_super, 0);
  2341. /* we can't trust the free space cache either */
  2342. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2343. ret = next_root_backup(fs_info, fs_info->super_copy,
  2344. &num_backups_tried, &backup_index);
  2345. if (ret == -1)
  2346. goto fail_block_groups;
  2347. goto retry_root_backup;
  2348. }
  2349. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2350. {
  2351. if (uptodate) {
  2352. set_buffer_uptodate(bh);
  2353. } else {
  2354. struct btrfs_device *device = (struct btrfs_device *)
  2355. bh->b_private;
  2356. printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
  2357. "I/O error on %s\n",
  2358. rcu_str_deref(device->name));
  2359. /* note, we dont' set_buffer_write_io_error because we have
  2360. * our own ways of dealing with the IO errors
  2361. */
  2362. clear_buffer_uptodate(bh);
  2363. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2364. }
  2365. unlock_buffer(bh);
  2366. put_bh(bh);
  2367. }
  2368. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2369. {
  2370. struct buffer_head *bh;
  2371. struct buffer_head *latest = NULL;
  2372. struct btrfs_super_block *super;
  2373. int i;
  2374. u64 transid = 0;
  2375. u64 bytenr;
  2376. /* we would like to check all the supers, but that would make
  2377. * a btrfs mount succeed after a mkfs from a different FS.
  2378. * So, we need to add a special mount option to scan for
  2379. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2380. */
  2381. for (i = 0; i < 1; i++) {
  2382. bytenr = btrfs_sb_offset(i);
  2383. if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
  2384. break;
  2385. bh = __bread(bdev, bytenr / 4096, 4096);
  2386. if (!bh)
  2387. continue;
  2388. super = (struct btrfs_super_block *)bh->b_data;
  2389. if (btrfs_super_bytenr(super) != bytenr ||
  2390. strncmp((char *)(&super->magic), BTRFS_MAGIC,
  2391. sizeof(super->magic))) {
  2392. brelse(bh);
  2393. continue;
  2394. }
  2395. if (!latest || btrfs_super_generation(super) > transid) {
  2396. brelse(latest);
  2397. latest = bh;
  2398. transid = btrfs_super_generation(super);
  2399. } else {
  2400. brelse(bh);
  2401. }
  2402. }
  2403. return latest;
  2404. }
  2405. /*
  2406. * this should be called twice, once with wait == 0 and
  2407. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2408. * we write are pinned.
  2409. *
  2410. * They are released when wait == 1 is done.
  2411. * max_mirrors must be the same for both runs, and it indicates how
  2412. * many supers on this one device should be written.
  2413. *
  2414. * max_mirrors == 0 means to write them all.
  2415. */
  2416. static int write_dev_supers(struct btrfs_device *device,
  2417. struct btrfs_super_block *sb,
  2418. int do_barriers, int wait, int max_mirrors)
  2419. {
  2420. struct buffer_head *bh;
  2421. int i;
  2422. int ret;
  2423. int errors = 0;
  2424. u32 crc;
  2425. u64 bytenr;
  2426. if (max_mirrors == 0)
  2427. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2428. for (i = 0; i < max_mirrors; i++) {
  2429. bytenr = btrfs_sb_offset(i);
  2430. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  2431. break;
  2432. if (wait) {
  2433. bh = __find_get_block(device->bdev, bytenr / 4096,
  2434. BTRFS_SUPER_INFO_SIZE);
  2435. BUG_ON(!bh);
  2436. wait_on_buffer(bh);
  2437. if (!buffer_uptodate(bh))
  2438. errors++;
  2439. /* drop our reference */
  2440. brelse(bh);
  2441. /* drop the reference from the wait == 0 run */
  2442. brelse(bh);
  2443. continue;
  2444. } else {
  2445. btrfs_set_super_bytenr(sb, bytenr);
  2446. crc = ~(u32)0;
  2447. crc = btrfs_csum_data(NULL, (char *)sb +
  2448. BTRFS_CSUM_SIZE, crc,
  2449. BTRFS_SUPER_INFO_SIZE -
  2450. BTRFS_CSUM_SIZE);
  2451. btrfs_csum_final(crc, sb->csum);
  2452. /*
  2453. * one reference for us, and we leave it for the
  2454. * caller
  2455. */
  2456. bh = __getblk(device->bdev, bytenr / 4096,
  2457. BTRFS_SUPER_INFO_SIZE);
  2458. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2459. /* one reference for submit_bh */
  2460. get_bh(bh);
  2461. set_buffer_uptodate(bh);
  2462. lock_buffer(bh);
  2463. bh->b_end_io = btrfs_end_buffer_write_sync;
  2464. bh->b_private = device;
  2465. }
  2466. /*
  2467. * we fua the first super. The others we allow
  2468. * to go down lazy.
  2469. */
  2470. ret = btrfsic_submit_bh(WRITE_FUA, bh);
  2471. if (ret)
  2472. errors++;
  2473. }
  2474. return errors < i ? 0 : -1;
  2475. }
  2476. /*
  2477. * endio for the write_dev_flush, this will wake anyone waiting
  2478. * for the barrier when it is done
  2479. */
  2480. static void btrfs_end_empty_barrier(struct bio *bio, int err)
  2481. {
  2482. if (err) {
  2483. if (err == -EOPNOTSUPP)
  2484. set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
  2485. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2486. }
  2487. if (bio->bi_private)
  2488. complete(bio->bi_private);
  2489. bio_put(bio);
  2490. }
  2491. /*
  2492. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2493. * sent down. With wait == 1, it waits for the previous flush.
  2494. *
  2495. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2496. * capable
  2497. */
  2498. static int write_dev_flush(struct btrfs_device *device, int wait)
  2499. {
  2500. struct bio *bio;
  2501. int ret = 0;
  2502. if (device->nobarriers)
  2503. return 0;
  2504. if (wait) {
  2505. bio = device->flush_bio;
  2506. if (!bio)
  2507. return 0;
  2508. wait_for_completion(&device->flush_wait);
  2509. if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
  2510. printk_in_rcu("btrfs: disabling barriers on dev %s\n",
  2511. rcu_str_deref(device->name));
  2512. device->nobarriers = 1;
  2513. } else if (!bio_flagged(bio, BIO_UPTODATE)) {
  2514. ret = -EIO;
  2515. btrfs_dev_stat_inc_and_print(device,
  2516. BTRFS_DEV_STAT_FLUSH_ERRS);
  2517. }
  2518. /* drop the reference from the wait == 0 run */
  2519. bio_put(bio);
  2520. device->flush_bio = NULL;
  2521. return ret;
  2522. }
  2523. /*
  2524. * one reference for us, and we leave it for the
  2525. * caller
  2526. */
  2527. device->flush_bio = NULL;
  2528. bio = bio_alloc(GFP_NOFS, 0);
  2529. if (!bio)
  2530. return -ENOMEM;
  2531. bio->bi_end_io = btrfs_end_empty_barrier;
  2532. bio->bi_bdev = device->bdev;
  2533. init_completion(&device->flush_wait);
  2534. bio->bi_private = &device->flush_wait;
  2535. device->flush_bio = bio;
  2536. bio_get(bio);
  2537. btrfsic_submit_bio(WRITE_FLUSH, bio);
  2538. return 0;
  2539. }
  2540. /*
  2541. * send an empty flush down to each device in parallel,
  2542. * then wait for them
  2543. */
  2544. static int barrier_all_devices(struct btrfs_fs_info *info)
  2545. {
  2546. struct list_head *head;
  2547. struct btrfs_device *dev;
  2548. int errors_send = 0;
  2549. int errors_wait = 0;
  2550. int ret;
  2551. /* send down all the barriers */
  2552. head = &info->fs_devices->devices;
  2553. list_for_each_entry_rcu(dev, head, dev_list) {
  2554. if (!dev->bdev) {
  2555. errors_send++;
  2556. continue;
  2557. }
  2558. if (!dev->in_fs_metadata || !dev->writeable)
  2559. continue;
  2560. ret = write_dev_flush(dev, 0);
  2561. if (ret)
  2562. errors_send++;
  2563. }
  2564. /* wait for all the barriers */
  2565. list_for_each_entry_rcu(dev, head, dev_list) {
  2566. if (!dev->bdev) {
  2567. errors_wait++;
  2568. continue;
  2569. }
  2570. if (!dev->in_fs_metadata || !dev->writeable)
  2571. continue;
  2572. ret = write_dev_flush(dev, 1);
  2573. if (ret)
  2574. errors_wait++;
  2575. }
  2576. if (errors_send > info->num_tolerated_disk_barrier_failures ||
  2577. errors_wait > info->num_tolerated_disk_barrier_failures)
  2578. return -EIO;
  2579. return 0;
  2580. }
  2581. int btrfs_calc_num_tolerated_disk_barrier_failures(
  2582. struct btrfs_fs_info *fs_info)
  2583. {
  2584. struct btrfs_ioctl_space_info space;
  2585. struct btrfs_space_info *sinfo;
  2586. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  2587. BTRFS_BLOCK_GROUP_SYSTEM,
  2588. BTRFS_BLOCK_GROUP_METADATA,
  2589. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  2590. int num_types = 4;
  2591. int i;
  2592. int c;
  2593. int num_tolerated_disk_barrier_failures =
  2594. (int)fs_info->fs_devices->num_devices;
  2595. for (i = 0; i < num_types; i++) {
  2596. struct btrfs_space_info *tmp;
  2597. sinfo = NULL;
  2598. rcu_read_lock();
  2599. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  2600. if (tmp->flags == types[i]) {
  2601. sinfo = tmp;
  2602. break;
  2603. }
  2604. }
  2605. rcu_read_unlock();
  2606. if (!sinfo)
  2607. continue;
  2608. down_read(&sinfo->groups_sem);
  2609. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  2610. if (!list_empty(&sinfo->block_groups[c])) {
  2611. u64 flags;
  2612. btrfs_get_block_group_info(
  2613. &sinfo->block_groups[c], &space);
  2614. if (space.total_bytes == 0 ||
  2615. space.used_bytes == 0)
  2616. continue;
  2617. flags = space.flags;
  2618. /*
  2619. * return
  2620. * 0: if dup, single or RAID0 is configured for
  2621. * any of metadata, system or data, else
  2622. * 1: if RAID5 is configured, or if RAID1 or
  2623. * RAID10 is configured and only two mirrors
  2624. * are used, else
  2625. * 2: if RAID6 is configured, else
  2626. * num_mirrors - 1: if RAID1 or RAID10 is
  2627. * configured and more than
  2628. * 2 mirrors are used.
  2629. */
  2630. if (num_tolerated_disk_barrier_failures > 0 &&
  2631. ((flags & (BTRFS_BLOCK_GROUP_DUP |
  2632. BTRFS_BLOCK_GROUP_RAID0)) ||
  2633. ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
  2634. == 0)))
  2635. num_tolerated_disk_barrier_failures = 0;
  2636. else if (num_tolerated_disk_barrier_failures > 1
  2637. &&
  2638. (flags & (BTRFS_BLOCK_GROUP_RAID1 |
  2639. BTRFS_BLOCK_GROUP_RAID10)))
  2640. num_tolerated_disk_barrier_failures = 1;
  2641. }
  2642. }
  2643. up_read(&sinfo->groups_sem);
  2644. }
  2645. return num_tolerated_disk_barrier_failures;
  2646. }
  2647. int write_all_supers(struct btrfs_root *root, int max_mirrors)
  2648. {
  2649. struct list_head *head;
  2650. struct btrfs_device *dev;
  2651. struct btrfs_super_block *sb;
  2652. struct btrfs_dev_item *dev_item;
  2653. int ret;
  2654. int do_barriers;
  2655. int max_errors;
  2656. int total_errors = 0;
  2657. u64 flags;
  2658. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  2659. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  2660. backup_super_roots(root->fs_info);
  2661. sb = root->fs_info->super_for_commit;
  2662. dev_item = &sb->dev_item;
  2663. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2664. head = &root->fs_info->fs_devices->devices;
  2665. if (do_barriers) {
  2666. ret = barrier_all_devices(root->fs_info);
  2667. if (ret) {
  2668. mutex_unlock(
  2669. &root->fs_info->fs_devices->device_list_mutex);
  2670. btrfs_error(root->fs_info, ret,
  2671. "errors while submitting device barriers.");
  2672. return ret;
  2673. }
  2674. }
  2675. list_for_each_entry_rcu(dev, head, dev_list) {
  2676. if (!dev->bdev) {
  2677. total_errors++;
  2678. continue;
  2679. }
  2680. if (!dev->in_fs_metadata || !dev->writeable)
  2681. continue;
  2682. btrfs_set_stack_device_generation(dev_item, 0);
  2683. btrfs_set_stack_device_type(dev_item, dev->type);
  2684. btrfs_set_stack_device_id(dev_item, dev->devid);
  2685. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  2686. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  2687. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  2688. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  2689. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  2690. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  2691. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  2692. flags = btrfs_super_flags(sb);
  2693. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  2694. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  2695. if (ret)
  2696. total_errors++;
  2697. }
  2698. if (total_errors > max_errors) {
  2699. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2700. total_errors);
  2701. /* This shouldn't happen. FUA is masked off if unsupported */
  2702. BUG();
  2703. }
  2704. total_errors = 0;
  2705. list_for_each_entry_rcu(dev, head, dev_list) {
  2706. if (!dev->bdev)
  2707. continue;
  2708. if (!dev->in_fs_metadata || !dev->writeable)
  2709. continue;
  2710. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  2711. if (ret)
  2712. total_errors++;
  2713. }
  2714. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  2715. if (total_errors > max_errors) {
  2716. btrfs_error(root->fs_info, -EIO,
  2717. "%d errors while writing supers", total_errors);
  2718. return -EIO;
  2719. }
  2720. return 0;
  2721. }
  2722. int write_ctree_super(struct btrfs_trans_handle *trans,
  2723. struct btrfs_root *root, int max_mirrors)
  2724. {
  2725. int ret;
  2726. ret = write_all_supers(root, max_mirrors);
  2727. return ret;
  2728. }
  2729. void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  2730. {
  2731. spin_lock(&fs_info->fs_roots_radix_lock);
  2732. radix_tree_delete(&fs_info->fs_roots_radix,
  2733. (unsigned long)root->root_key.objectid);
  2734. spin_unlock(&fs_info->fs_roots_radix_lock);
  2735. if (btrfs_root_refs(&root->root_item) == 0)
  2736. synchronize_srcu(&fs_info->subvol_srcu);
  2737. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  2738. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  2739. free_fs_root(root);
  2740. }
  2741. static void free_fs_root(struct btrfs_root *root)
  2742. {
  2743. iput(root->cache_inode);
  2744. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  2745. if (root->anon_dev)
  2746. free_anon_bdev(root->anon_dev);
  2747. free_extent_buffer(root->node);
  2748. free_extent_buffer(root->commit_root);
  2749. kfree(root->free_ino_ctl);
  2750. kfree(root->free_ino_pinned);
  2751. kfree(root->name);
  2752. kfree(root);
  2753. }
  2754. static void del_fs_roots(struct btrfs_fs_info *fs_info)
  2755. {
  2756. int ret;
  2757. struct btrfs_root *gang[8];
  2758. int i;
  2759. while (!list_empty(&fs_info->dead_roots)) {
  2760. gang[0] = list_entry(fs_info->dead_roots.next,
  2761. struct btrfs_root, root_list);
  2762. list_del(&gang[0]->root_list);
  2763. if (gang[0]->in_radix) {
  2764. btrfs_free_fs_root(fs_info, gang[0]);
  2765. } else {
  2766. free_extent_buffer(gang[0]->node);
  2767. free_extent_buffer(gang[0]->commit_root);
  2768. kfree(gang[0]);
  2769. }
  2770. }
  2771. while (1) {
  2772. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2773. (void **)gang, 0,
  2774. ARRAY_SIZE(gang));
  2775. if (!ret)
  2776. break;
  2777. for (i = 0; i < ret; i++)
  2778. btrfs_free_fs_root(fs_info, gang[i]);
  2779. }
  2780. }
  2781. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  2782. {
  2783. u64 root_objectid = 0;
  2784. struct btrfs_root *gang[8];
  2785. int i;
  2786. int ret;
  2787. while (1) {
  2788. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2789. (void **)gang, root_objectid,
  2790. ARRAY_SIZE(gang));
  2791. if (!ret)
  2792. break;
  2793. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  2794. for (i = 0; i < ret; i++) {
  2795. int err;
  2796. root_objectid = gang[i]->root_key.objectid;
  2797. err = btrfs_orphan_cleanup(gang[i]);
  2798. if (err)
  2799. return err;
  2800. }
  2801. root_objectid++;
  2802. }
  2803. return 0;
  2804. }
  2805. int btrfs_commit_super(struct btrfs_root *root)
  2806. {
  2807. struct btrfs_trans_handle *trans;
  2808. int ret;
  2809. mutex_lock(&root->fs_info->cleaner_mutex);
  2810. btrfs_run_delayed_iputs(root);
  2811. btrfs_clean_old_snapshots(root);
  2812. mutex_unlock(&root->fs_info->cleaner_mutex);
  2813. /* wait until ongoing cleanup work done */
  2814. down_write(&root->fs_info->cleanup_work_sem);
  2815. up_write(&root->fs_info->cleanup_work_sem);
  2816. trans = btrfs_join_transaction(root);
  2817. if (IS_ERR(trans))
  2818. return PTR_ERR(trans);
  2819. ret = btrfs_commit_transaction(trans, root);
  2820. if (ret)
  2821. return ret;
  2822. /* run commit again to drop the original snapshot */
  2823. trans = btrfs_join_transaction(root);
  2824. if (IS_ERR(trans))
  2825. return PTR_ERR(trans);
  2826. ret = btrfs_commit_transaction(trans, root);
  2827. if (ret)
  2828. return ret;
  2829. ret = btrfs_write_and_wait_transaction(NULL, root);
  2830. if (ret) {
  2831. btrfs_error(root->fs_info, ret,
  2832. "Failed to sync btree inode to disk.");
  2833. return ret;
  2834. }
  2835. ret = write_ctree_super(NULL, root, 0);
  2836. return ret;
  2837. }
  2838. int close_ctree(struct btrfs_root *root)
  2839. {
  2840. struct btrfs_fs_info *fs_info = root->fs_info;
  2841. int ret;
  2842. fs_info->closing = 1;
  2843. smp_mb();
  2844. /* pause restriper - we want to resume on mount */
  2845. btrfs_pause_balance(root->fs_info);
  2846. btrfs_scrub_cancel(root);
  2847. /* wait for any defraggers to finish */
  2848. wait_event(fs_info->transaction_wait,
  2849. (atomic_read(&fs_info->defrag_running) == 0));
  2850. /* clear out the rbtree of defraggable inodes */
  2851. btrfs_run_defrag_inodes(fs_info);
  2852. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  2853. ret = btrfs_commit_super(root);
  2854. if (ret)
  2855. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2856. }
  2857. if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
  2858. btrfs_error_commit_super(root);
  2859. btrfs_put_block_group_cache(fs_info);
  2860. kthread_stop(fs_info->transaction_kthread);
  2861. kthread_stop(fs_info->cleaner_kthread);
  2862. fs_info->closing = 2;
  2863. smp_mb();
  2864. btrfs_free_qgroup_config(root->fs_info);
  2865. if (fs_info->delalloc_bytes) {
  2866. printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
  2867. (unsigned long long)fs_info->delalloc_bytes);
  2868. }
  2869. free_extent_buffer(fs_info->extent_root->node);
  2870. free_extent_buffer(fs_info->extent_root->commit_root);
  2871. free_extent_buffer(fs_info->tree_root->node);
  2872. free_extent_buffer(fs_info->tree_root->commit_root);
  2873. free_extent_buffer(fs_info->chunk_root->node);
  2874. free_extent_buffer(fs_info->chunk_root->commit_root);
  2875. free_extent_buffer(fs_info->dev_root->node);
  2876. free_extent_buffer(fs_info->dev_root->commit_root);
  2877. free_extent_buffer(fs_info->csum_root->node);
  2878. free_extent_buffer(fs_info->csum_root->commit_root);
  2879. if (fs_info->quota_root) {
  2880. free_extent_buffer(fs_info->quota_root->node);
  2881. free_extent_buffer(fs_info->quota_root->commit_root);
  2882. }
  2883. btrfs_free_block_groups(fs_info);
  2884. del_fs_roots(fs_info);
  2885. iput(fs_info->btree_inode);
  2886. btrfs_stop_workers(&fs_info->generic_worker);
  2887. btrfs_stop_workers(&fs_info->fixup_workers);
  2888. btrfs_stop_workers(&fs_info->delalloc_workers);
  2889. btrfs_stop_workers(&fs_info->workers);
  2890. btrfs_stop_workers(&fs_info->endio_workers);
  2891. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2892. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2893. btrfs_stop_workers(&fs_info->endio_write_workers);
  2894. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  2895. btrfs_stop_workers(&fs_info->submit_workers);
  2896. btrfs_stop_workers(&fs_info->delayed_workers);
  2897. btrfs_stop_workers(&fs_info->caching_workers);
  2898. btrfs_stop_workers(&fs_info->readahead_workers);
  2899. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2900. if (btrfs_test_opt(root, CHECK_INTEGRITY))
  2901. btrfsic_unmount(root, fs_info->fs_devices);
  2902. #endif
  2903. btrfs_close_devices(fs_info->fs_devices);
  2904. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2905. bdi_destroy(&fs_info->bdi);
  2906. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2907. return 0;
  2908. }
  2909. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  2910. int atomic)
  2911. {
  2912. int ret;
  2913. struct inode *btree_inode = buf->pages[0]->mapping->host;
  2914. ret = extent_buffer_uptodate(buf);
  2915. if (!ret)
  2916. return ret;
  2917. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  2918. parent_transid, atomic);
  2919. if (ret == -EAGAIN)
  2920. return ret;
  2921. return !ret;
  2922. }
  2923. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  2924. {
  2925. return set_extent_buffer_uptodate(buf);
  2926. }
  2927. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  2928. {
  2929. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  2930. u64 transid = btrfs_header_generation(buf);
  2931. int was_dirty;
  2932. btrfs_assert_tree_locked(buf);
  2933. if (transid != root->fs_info->generation) {
  2934. printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
  2935. "found %llu running %llu\n",
  2936. (unsigned long long)buf->start,
  2937. (unsigned long long)transid,
  2938. (unsigned long long)root->fs_info->generation);
  2939. WARN_ON(1);
  2940. }
  2941. was_dirty = set_extent_buffer_dirty(buf);
  2942. if (!was_dirty) {
  2943. spin_lock(&root->fs_info->delalloc_lock);
  2944. root->fs_info->dirty_metadata_bytes += buf->len;
  2945. spin_unlock(&root->fs_info->delalloc_lock);
  2946. }
  2947. }
  2948. void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  2949. {
  2950. /*
  2951. * looks as though older kernels can get into trouble with
  2952. * this code, they end up stuck in balance_dirty_pages forever
  2953. */
  2954. u64 num_dirty;
  2955. unsigned long thresh = 32 * 1024 * 1024;
  2956. if (current->flags & PF_MEMALLOC)
  2957. return;
  2958. btrfs_balance_delayed_items(root);
  2959. num_dirty = root->fs_info->dirty_metadata_bytes;
  2960. if (num_dirty > thresh) {
  2961. balance_dirty_pages_ratelimited_nr(
  2962. root->fs_info->btree_inode->i_mapping, 1);
  2963. }
  2964. return;
  2965. }
  2966. void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  2967. {
  2968. /*
  2969. * looks as though older kernels can get into trouble with
  2970. * this code, they end up stuck in balance_dirty_pages forever
  2971. */
  2972. u64 num_dirty;
  2973. unsigned long thresh = 32 * 1024 * 1024;
  2974. if (current->flags & PF_MEMALLOC)
  2975. return;
  2976. num_dirty = root->fs_info->dirty_metadata_bytes;
  2977. if (num_dirty > thresh) {
  2978. balance_dirty_pages_ratelimited_nr(
  2979. root->fs_info->btree_inode->i_mapping, 1);
  2980. }
  2981. return;
  2982. }
  2983. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  2984. {
  2985. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  2986. return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  2987. }
  2988. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  2989. int read_only)
  2990. {
  2991. if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
  2992. printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
  2993. return -EINVAL;
  2994. }
  2995. if (read_only)
  2996. return 0;
  2997. return 0;
  2998. }
  2999. void btrfs_error_commit_super(struct btrfs_root *root)
  3000. {
  3001. mutex_lock(&root->fs_info->cleaner_mutex);
  3002. btrfs_run_delayed_iputs(root);
  3003. mutex_unlock(&root->fs_info->cleaner_mutex);
  3004. down_write(&root->fs_info->cleanup_work_sem);
  3005. up_write(&root->fs_info->cleanup_work_sem);
  3006. /* cleanup FS via transaction */
  3007. btrfs_cleanup_transaction(root);
  3008. }
  3009. static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
  3010. {
  3011. struct btrfs_inode *btrfs_inode;
  3012. struct list_head splice;
  3013. INIT_LIST_HEAD(&splice);
  3014. mutex_lock(&root->fs_info->ordered_operations_mutex);
  3015. spin_lock(&root->fs_info->ordered_extent_lock);
  3016. list_splice_init(&root->fs_info->ordered_operations, &splice);
  3017. while (!list_empty(&splice)) {
  3018. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  3019. ordered_operations);
  3020. list_del_init(&btrfs_inode->ordered_operations);
  3021. btrfs_invalidate_inodes(btrfs_inode->root);
  3022. }
  3023. spin_unlock(&root->fs_info->ordered_extent_lock);
  3024. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  3025. }
  3026. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3027. {
  3028. struct list_head splice;
  3029. struct btrfs_ordered_extent *ordered;
  3030. struct inode *inode;
  3031. INIT_LIST_HEAD(&splice);
  3032. spin_lock(&root->fs_info->ordered_extent_lock);
  3033. list_splice_init(&root->fs_info->ordered_extents, &splice);
  3034. while (!list_empty(&splice)) {
  3035. ordered = list_entry(splice.next, struct btrfs_ordered_extent,
  3036. root_extent_list);
  3037. list_del_init(&ordered->root_extent_list);
  3038. atomic_inc(&ordered->refs);
  3039. /* the inode may be getting freed (in sys_unlink path). */
  3040. inode = igrab(ordered->inode);
  3041. spin_unlock(&root->fs_info->ordered_extent_lock);
  3042. if (inode)
  3043. iput(inode);
  3044. atomic_set(&ordered->refs, 1);
  3045. btrfs_put_ordered_extent(ordered);
  3046. spin_lock(&root->fs_info->ordered_extent_lock);
  3047. }
  3048. spin_unlock(&root->fs_info->ordered_extent_lock);
  3049. }
  3050. int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3051. struct btrfs_root *root)
  3052. {
  3053. struct rb_node *node;
  3054. struct btrfs_delayed_ref_root *delayed_refs;
  3055. struct btrfs_delayed_ref_node *ref;
  3056. int ret = 0;
  3057. delayed_refs = &trans->delayed_refs;
  3058. spin_lock(&delayed_refs->lock);
  3059. if (delayed_refs->num_entries == 0) {
  3060. spin_unlock(&delayed_refs->lock);
  3061. printk(KERN_INFO "delayed_refs has NO entry\n");
  3062. return ret;
  3063. }
  3064. while ((node = rb_first(&delayed_refs->root)) != NULL) {
  3065. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  3066. atomic_set(&ref->refs, 1);
  3067. if (btrfs_delayed_ref_is_head(ref)) {
  3068. struct btrfs_delayed_ref_head *head;
  3069. head = btrfs_delayed_node_to_head(ref);
  3070. if (!mutex_trylock(&head->mutex)) {
  3071. atomic_inc(&ref->refs);
  3072. spin_unlock(&delayed_refs->lock);
  3073. /* Need to wait for the delayed ref to run */
  3074. mutex_lock(&head->mutex);
  3075. mutex_unlock(&head->mutex);
  3076. btrfs_put_delayed_ref(ref);
  3077. spin_lock(&delayed_refs->lock);
  3078. continue;
  3079. }
  3080. kfree(head->extent_op);
  3081. delayed_refs->num_heads--;
  3082. if (list_empty(&head->cluster))
  3083. delayed_refs->num_heads_ready--;
  3084. list_del_init(&head->cluster);
  3085. }
  3086. ref->in_tree = 0;
  3087. rb_erase(&ref->rb_node, &delayed_refs->root);
  3088. delayed_refs->num_entries--;
  3089. spin_unlock(&delayed_refs->lock);
  3090. btrfs_put_delayed_ref(ref);
  3091. cond_resched();
  3092. spin_lock(&delayed_refs->lock);
  3093. }
  3094. spin_unlock(&delayed_refs->lock);
  3095. return ret;
  3096. }
  3097. static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
  3098. {
  3099. struct btrfs_pending_snapshot *snapshot;
  3100. struct list_head splice;
  3101. INIT_LIST_HEAD(&splice);
  3102. list_splice_init(&t->pending_snapshots, &splice);
  3103. while (!list_empty(&splice)) {
  3104. snapshot = list_entry(splice.next,
  3105. struct btrfs_pending_snapshot,
  3106. list);
  3107. list_del_init(&snapshot->list);
  3108. kfree(snapshot);
  3109. }
  3110. }
  3111. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3112. {
  3113. struct btrfs_inode *btrfs_inode;
  3114. struct list_head splice;
  3115. INIT_LIST_HEAD(&splice);
  3116. spin_lock(&root->fs_info->delalloc_lock);
  3117. list_splice_init(&root->fs_info->delalloc_inodes, &splice);
  3118. while (!list_empty(&splice)) {
  3119. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  3120. delalloc_inodes);
  3121. list_del_init(&btrfs_inode->delalloc_inodes);
  3122. btrfs_invalidate_inodes(btrfs_inode->root);
  3123. }
  3124. spin_unlock(&root->fs_info->delalloc_lock);
  3125. }
  3126. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3127. struct extent_io_tree *dirty_pages,
  3128. int mark)
  3129. {
  3130. int ret;
  3131. struct page *page;
  3132. struct inode *btree_inode = root->fs_info->btree_inode;
  3133. struct extent_buffer *eb;
  3134. u64 start = 0;
  3135. u64 end;
  3136. u64 offset;
  3137. unsigned long index;
  3138. while (1) {
  3139. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3140. mark, NULL);
  3141. if (ret)
  3142. break;
  3143. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  3144. while (start <= end) {
  3145. index = start >> PAGE_CACHE_SHIFT;
  3146. start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
  3147. page = find_get_page(btree_inode->i_mapping, index);
  3148. if (!page)
  3149. continue;
  3150. offset = page_offset(page);
  3151. spin_lock(&dirty_pages->buffer_lock);
  3152. eb = radix_tree_lookup(
  3153. &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
  3154. offset >> PAGE_CACHE_SHIFT);
  3155. spin_unlock(&dirty_pages->buffer_lock);
  3156. if (eb)
  3157. ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3158. &eb->bflags);
  3159. if (PageWriteback(page))
  3160. end_page_writeback(page);
  3161. lock_page(page);
  3162. if (PageDirty(page)) {
  3163. clear_page_dirty_for_io(page);
  3164. spin_lock_irq(&page->mapping->tree_lock);
  3165. radix_tree_tag_clear(&page->mapping->page_tree,
  3166. page_index(page),
  3167. PAGECACHE_TAG_DIRTY);
  3168. spin_unlock_irq(&page->mapping->tree_lock);
  3169. }
  3170. unlock_page(page);
  3171. page_cache_release(page);
  3172. }
  3173. }
  3174. return ret;
  3175. }
  3176. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3177. struct extent_io_tree *pinned_extents)
  3178. {
  3179. struct extent_io_tree *unpin;
  3180. u64 start;
  3181. u64 end;
  3182. int ret;
  3183. bool loop = true;
  3184. unpin = pinned_extents;
  3185. again:
  3186. while (1) {
  3187. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3188. EXTENT_DIRTY, NULL);
  3189. if (ret)
  3190. break;
  3191. /* opt_discard */
  3192. if (btrfs_test_opt(root, DISCARD))
  3193. ret = btrfs_error_discard_extent(root, start,
  3194. end + 1 - start,
  3195. NULL);
  3196. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  3197. btrfs_error_unpin_extent_range(root, start, end);
  3198. cond_resched();
  3199. }
  3200. if (loop) {
  3201. if (unpin == &root->fs_info->freed_extents[0])
  3202. unpin = &root->fs_info->freed_extents[1];
  3203. else
  3204. unpin = &root->fs_info->freed_extents[0];
  3205. loop = false;
  3206. goto again;
  3207. }
  3208. return 0;
  3209. }
  3210. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3211. struct btrfs_root *root)
  3212. {
  3213. btrfs_destroy_delayed_refs(cur_trans, root);
  3214. btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
  3215. cur_trans->dirty_pages.dirty_bytes);
  3216. /* FIXME: cleanup wait for commit */
  3217. cur_trans->in_commit = 1;
  3218. cur_trans->blocked = 1;
  3219. wake_up(&root->fs_info->transaction_blocked_wait);
  3220. cur_trans->blocked = 0;
  3221. wake_up(&root->fs_info->transaction_wait);
  3222. cur_trans->commit_done = 1;
  3223. wake_up(&cur_trans->commit_wait);
  3224. btrfs_destroy_delayed_inodes(root);
  3225. btrfs_assert_delayed_root_empty(root);
  3226. btrfs_destroy_pending_snapshots(cur_trans);
  3227. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3228. EXTENT_DIRTY);
  3229. btrfs_destroy_pinned_extent(root,
  3230. root->fs_info->pinned_extents);
  3231. /*
  3232. memset(cur_trans, 0, sizeof(*cur_trans));
  3233. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3234. */
  3235. }
  3236. int btrfs_cleanup_transaction(struct btrfs_root *root)
  3237. {
  3238. struct btrfs_transaction *t;
  3239. LIST_HEAD(list);
  3240. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3241. spin_lock(&root->fs_info->trans_lock);
  3242. list_splice_init(&root->fs_info->trans_list, &list);
  3243. root->fs_info->trans_no_join = 1;
  3244. spin_unlock(&root->fs_info->trans_lock);
  3245. while (!list_empty(&list)) {
  3246. t = list_entry(list.next, struct btrfs_transaction, list);
  3247. if (!t)
  3248. break;
  3249. btrfs_destroy_ordered_operations(root);
  3250. btrfs_destroy_ordered_extents(root);
  3251. btrfs_destroy_delayed_refs(t, root);
  3252. btrfs_block_rsv_release(root,
  3253. &root->fs_info->trans_block_rsv,
  3254. t->dirty_pages.dirty_bytes);
  3255. /* FIXME: cleanup wait for commit */
  3256. t->in_commit = 1;
  3257. t->blocked = 1;
  3258. smp_mb();
  3259. if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
  3260. wake_up(&root->fs_info->transaction_blocked_wait);
  3261. t->blocked = 0;
  3262. smp_mb();
  3263. if (waitqueue_active(&root->fs_info->transaction_wait))
  3264. wake_up(&root->fs_info->transaction_wait);
  3265. t->commit_done = 1;
  3266. smp_mb();
  3267. if (waitqueue_active(&t->commit_wait))
  3268. wake_up(&t->commit_wait);
  3269. btrfs_destroy_delayed_inodes(root);
  3270. btrfs_assert_delayed_root_empty(root);
  3271. btrfs_destroy_pending_snapshots(t);
  3272. btrfs_destroy_delalloc_inodes(root);
  3273. spin_lock(&root->fs_info->trans_lock);
  3274. root->fs_info->running_transaction = NULL;
  3275. spin_unlock(&root->fs_info->trans_lock);
  3276. btrfs_destroy_marked_extents(root, &t->dirty_pages,
  3277. EXTENT_DIRTY);
  3278. btrfs_destroy_pinned_extent(root,
  3279. root->fs_info->pinned_extents);
  3280. atomic_set(&t->use_count, 0);
  3281. list_del_init(&t->list);
  3282. memset(t, 0, sizeof(*t));
  3283. kmem_cache_free(btrfs_transaction_cachep, t);
  3284. }
  3285. spin_lock(&root->fs_info->trans_lock);
  3286. root->fs_info->trans_no_join = 0;
  3287. spin_unlock(&root->fs_info->trans_lock);
  3288. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3289. return 0;
  3290. }
  3291. static struct extent_io_ops btree_extent_io_ops = {
  3292. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3293. .readpage_io_failed_hook = btree_io_failed_hook,
  3294. .submit_bio_hook = btree_submit_bio_hook,
  3295. /* note we're sharing with inode.c for the merge bio hook */
  3296. .merge_bio_hook = btrfs_merge_bio_hook,
  3297. };