inode.c 167 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743
  1. /*
  2. * linux/fs/ext4/inode.c
  3. *
  4. * Copyright (C) 1992, 1993, 1994, 1995
  5. * Remy Card (card@masi.ibp.fr)
  6. * Laboratoire MASI - Institut Blaise Pascal
  7. * Universite Pierre et Marie Curie (Paris VI)
  8. *
  9. * from
  10. *
  11. * linux/fs/minix/inode.c
  12. *
  13. * Copyright (C) 1991, 1992 Linus Torvalds
  14. *
  15. * Goal-directed block allocation by Stephen Tweedie
  16. * (sct@redhat.com), 1993, 1998
  17. * Big-endian to little-endian byte-swapping/bitmaps by
  18. * David S. Miller (davem@caip.rutgers.edu), 1995
  19. * 64-bit file support on 64-bit platforms by Jakub Jelinek
  20. * (jj@sunsite.ms.mff.cuni.cz)
  21. *
  22. * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  23. */
  24. #include <linux/module.h>
  25. #include <linux/fs.h>
  26. #include <linux/time.h>
  27. #include <linux/jbd2.h>
  28. #include <linux/highuid.h>
  29. #include <linux/pagemap.h>
  30. #include <linux/quotaops.h>
  31. #include <linux/string.h>
  32. #include <linux/buffer_head.h>
  33. #include <linux/writeback.h>
  34. #include <linux/pagevec.h>
  35. #include <linux/mpage.h>
  36. #include <linux/namei.h>
  37. #include <linux/uio.h>
  38. #include <linux/bio.h>
  39. #include <linux/workqueue.h>
  40. #include "ext4_jbd2.h"
  41. #include "xattr.h"
  42. #include "acl.h"
  43. #include "ext4_extents.h"
  44. #include <trace/events/ext4.h>
  45. #define MPAGE_DA_EXTENT_TAIL 0x01
  46. static inline int ext4_begin_ordered_truncate(struct inode *inode,
  47. loff_t new_size)
  48. {
  49. return jbd2_journal_begin_ordered_truncate(
  50. EXT4_SB(inode->i_sb)->s_journal,
  51. &EXT4_I(inode)->jinode,
  52. new_size);
  53. }
  54. static void ext4_invalidatepage(struct page *page, unsigned long offset);
  55. /*
  56. * Test whether an inode is a fast symlink.
  57. */
  58. static int ext4_inode_is_fast_symlink(struct inode *inode)
  59. {
  60. int ea_blocks = EXT4_I(inode)->i_file_acl ?
  61. (inode->i_sb->s_blocksize >> 9) : 0;
  62. return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
  63. }
  64. /*
  65. * Work out how many blocks we need to proceed with the next chunk of a
  66. * truncate transaction.
  67. */
  68. static unsigned long blocks_for_truncate(struct inode *inode)
  69. {
  70. ext4_lblk_t needed;
  71. needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
  72. /* Give ourselves just enough room to cope with inodes in which
  73. * i_blocks is corrupt: we've seen disk corruptions in the past
  74. * which resulted in random data in an inode which looked enough
  75. * like a regular file for ext4 to try to delete it. Things
  76. * will go a bit crazy if that happens, but at least we should
  77. * try not to panic the whole kernel. */
  78. if (needed < 2)
  79. needed = 2;
  80. /* But we need to bound the transaction so we don't overflow the
  81. * journal. */
  82. if (needed > EXT4_MAX_TRANS_DATA)
  83. needed = EXT4_MAX_TRANS_DATA;
  84. return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
  85. }
  86. /*
  87. * Truncate transactions can be complex and absolutely huge. So we need to
  88. * be able to restart the transaction at a conventient checkpoint to make
  89. * sure we don't overflow the journal.
  90. *
  91. * start_transaction gets us a new handle for a truncate transaction,
  92. * and extend_transaction tries to extend the existing one a bit. If
  93. * extend fails, we need to propagate the failure up and restart the
  94. * transaction in the top-level truncate loop. --sct
  95. */
  96. static handle_t *start_transaction(struct inode *inode)
  97. {
  98. handle_t *result;
  99. result = ext4_journal_start(inode, blocks_for_truncate(inode));
  100. if (!IS_ERR(result))
  101. return result;
  102. ext4_std_error(inode->i_sb, PTR_ERR(result));
  103. return result;
  104. }
  105. /*
  106. * Try to extend this transaction for the purposes of truncation.
  107. *
  108. * Returns 0 if we managed to create more room. If we can't create more
  109. * room, and the transaction must be restarted we return 1.
  110. */
  111. static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
  112. {
  113. if (!ext4_handle_valid(handle))
  114. return 0;
  115. if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
  116. return 0;
  117. if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
  118. return 0;
  119. return 1;
  120. }
  121. /*
  122. * Restart the transaction associated with *handle. This does a commit,
  123. * so before we call here everything must be consistently dirtied against
  124. * this transaction.
  125. */
  126. int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
  127. int nblocks)
  128. {
  129. int ret;
  130. /*
  131. * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
  132. * moment, get_block can be called only for blocks inside i_size since
  133. * page cache has been already dropped and writes are blocked by
  134. * i_mutex. So we can safely drop the i_data_sem here.
  135. */
  136. BUG_ON(EXT4_JOURNAL(inode) == NULL);
  137. jbd_debug(2, "restarting handle %p\n", handle);
  138. up_write(&EXT4_I(inode)->i_data_sem);
  139. ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
  140. down_write(&EXT4_I(inode)->i_data_sem);
  141. ext4_discard_preallocations(inode);
  142. return ret;
  143. }
  144. /*
  145. * Called at the last iput() if i_nlink is zero.
  146. */
  147. void ext4_delete_inode(struct inode *inode)
  148. {
  149. handle_t *handle;
  150. int err;
  151. if (ext4_should_order_data(inode))
  152. ext4_begin_ordered_truncate(inode, 0);
  153. truncate_inode_pages(&inode->i_data, 0);
  154. if (is_bad_inode(inode))
  155. goto no_delete;
  156. handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
  157. if (IS_ERR(handle)) {
  158. ext4_std_error(inode->i_sb, PTR_ERR(handle));
  159. /*
  160. * If we're going to skip the normal cleanup, we still need to
  161. * make sure that the in-core orphan linked list is properly
  162. * cleaned up.
  163. */
  164. ext4_orphan_del(NULL, inode);
  165. goto no_delete;
  166. }
  167. if (IS_SYNC(inode))
  168. ext4_handle_sync(handle);
  169. inode->i_size = 0;
  170. err = ext4_mark_inode_dirty(handle, inode);
  171. if (err) {
  172. ext4_warning(inode->i_sb, __func__,
  173. "couldn't mark inode dirty (err %d)", err);
  174. goto stop_handle;
  175. }
  176. if (inode->i_blocks)
  177. ext4_truncate(inode);
  178. /*
  179. * ext4_ext_truncate() doesn't reserve any slop when it
  180. * restarts journal transactions; therefore there may not be
  181. * enough credits left in the handle to remove the inode from
  182. * the orphan list and set the dtime field.
  183. */
  184. if (!ext4_handle_has_enough_credits(handle, 3)) {
  185. err = ext4_journal_extend(handle, 3);
  186. if (err > 0)
  187. err = ext4_journal_restart(handle, 3);
  188. if (err != 0) {
  189. ext4_warning(inode->i_sb, __func__,
  190. "couldn't extend journal (err %d)", err);
  191. stop_handle:
  192. ext4_journal_stop(handle);
  193. goto no_delete;
  194. }
  195. }
  196. /*
  197. * Kill off the orphan record which ext4_truncate created.
  198. * AKPM: I think this can be inside the above `if'.
  199. * Note that ext4_orphan_del() has to be able to cope with the
  200. * deletion of a non-existent orphan - this is because we don't
  201. * know if ext4_truncate() actually created an orphan record.
  202. * (Well, we could do this if we need to, but heck - it works)
  203. */
  204. ext4_orphan_del(handle, inode);
  205. EXT4_I(inode)->i_dtime = get_seconds();
  206. /*
  207. * One subtle ordering requirement: if anything has gone wrong
  208. * (transaction abort, IO errors, whatever), then we can still
  209. * do these next steps (the fs will already have been marked as
  210. * having errors), but we can't free the inode if the mark_dirty
  211. * fails.
  212. */
  213. if (ext4_mark_inode_dirty(handle, inode))
  214. /* If that failed, just do the required in-core inode clear. */
  215. clear_inode(inode);
  216. else
  217. ext4_free_inode(handle, inode);
  218. ext4_journal_stop(handle);
  219. return;
  220. no_delete:
  221. clear_inode(inode); /* We must guarantee clearing of inode... */
  222. }
  223. typedef struct {
  224. __le32 *p;
  225. __le32 key;
  226. struct buffer_head *bh;
  227. } Indirect;
  228. static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
  229. {
  230. p->key = *(p->p = v);
  231. p->bh = bh;
  232. }
  233. /**
  234. * ext4_block_to_path - parse the block number into array of offsets
  235. * @inode: inode in question (we are only interested in its superblock)
  236. * @i_block: block number to be parsed
  237. * @offsets: array to store the offsets in
  238. * @boundary: set this non-zero if the referred-to block is likely to be
  239. * followed (on disk) by an indirect block.
  240. *
  241. * To store the locations of file's data ext4 uses a data structure common
  242. * for UNIX filesystems - tree of pointers anchored in the inode, with
  243. * data blocks at leaves and indirect blocks in intermediate nodes.
  244. * This function translates the block number into path in that tree -
  245. * return value is the path length and @offsets[n] is the offset of
  246. * pointer to (n+1)th node in the nth one. If @block is out of range
  247. * (negative or too large) warning is printed and zero returned.
  248. *
  249. * Note: function doesn't find node addresses, so no IO is needed. All
  250. * we need to know is the capacity of indirect blocks (taken from the
  251. * inode->i_sb).
  252. */
  253. /*
  254. * Portability note: the last comparison (check that we fit into triple
  255. * indirect block) is spelled differently, because otherwise on an
  256. * architecture with 32-bit longs and 8Kb pages we might get into trouble
  257. * if our filesystem had 8Kb blocks. We might use long long, but that would
  258. * kill us on x86. Oh, well, at least the sign propagation does not matter -
  259. * i_block would have to be negative in the very beginning, so we would not
  260. * get there at all.
  261. */
  262. static int ext4_block_to_path(struct inode *inode,
  263. ext4_lblk_t i_block,
  264. ext4_lblk_t offsets[4], int *boundary)
  265. {
  266. int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
  267. int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
  268. const long direct_blocks = EXT4_NDIR_BLOCKS,
  269. indirect_blocks = ptrs,
  270. double_blocks = (1 << (ptrs_bits * 2));
  271. int n = 0;
  272. int final = 0;
  273. if (i_block < direct_blocks) {
  274. offsets[n++] = i_block;
  275. final = direct_blocks;
  276. } else if ((i_block -= direct_blocks) < indirect_blocks) {
  277. offsets[n++] = EXT4_IND_BLOCK;
  278. offsets[n++] = i_block;
  279. final = ptrs;
  280. } else if ((i_block -= indirect_blocks) < double_blocks) {
  281. offsets[n++] = EXT4_DIND_BLOCK;
  282. offsets[n++] = i_block >> ptrs_bits;
  283. offsets[n++] = i_block & (ptrs - 1);
  284. final = ptrs;
  285. } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
  286. offsets[n++] = EXT4_TIND_BLOCK;
  287. offsets[n++] = i_block >> (ptrs_bits * 2);
  288. offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
  289. offsets[n++] = i_block & (ptrs - 1);
  290. final = ptrs;
  291. } else {
  292. ext4_warning(inode->i_sb, "ext4_block_to_path",
  293. "block %lu > max in inode %lu",
  294. i_block + direct_blocks +
  295. indirect_blocks + double_blocks, inode->i_ino);
  296. }
  297. if (boundary)
  298. *boundary = final - 1 - (i_block & (ptrs - 1));
  299. return n;
  300. }
  301. static int __ext4_check_blockref(const char *function, struct inode *inode,
  302. __le32 *p, unsigned int max)
  303. {
  304. __le32 *bref = p;
  305. unsigned int blk;
  306. while (bref < p+max) {
  307. blk = le32_to_cpu(*bref++);
  308. if (blk &&
  309. unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
  310. blk, 1))) {
  311. ext4_error(inode->i_sb, function,
  312. "invalid block reference %u "
  313. "in inode #%lu", blk, inode->i_ino);
  314. return -EIO;
  315. }
  316. }
  317. return 0;
  318. }
  319. #define ext4_check_indirect_blockref(inode, bh) \
  320. __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
  321. EXT4_ADDR_PER_BLOCK((inode)->i_sb))
  322. #define ext4_check_inode_blockref(inode) \
  323. __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
  324. EXT4_NDIR_BLOCKS)
  325. /**
  326. * ext4_get_branch - read the chain of indirect blocks leading to data
  327. * @inode: inode in question
  328. * @depth: depth of the chain (1 - direct pointer, etc.)
  329. * @offsets: offsets of pointers in inode/indirect blocks
  330. * @chain: place to store the result
  331. * @err: here we store the error value
  332. *
  333. * Function fills the array of triples <key, p, bh> and returns %NULL
  334. * if everything went OK or the pointer to the last filled triple
  335. * (incomplete one) otherwise. Upon the return chain[i].key contains
  336. * the number of (i+1)-th block in the chain (as it is stored in memory,
  337. * i.e. little-endian 32-bit), chain[i].p contains the address of that
  338. * number (it points into struct inode for i==0 and into the bh->b_data
  339. * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
  340. * block for i>0 and NULL for i==0. In other words, it holds the block
  341. * numbers of the chain, addresses they were taken from (and where we can
  342. * verify that chain did not change) and buffer_heads hosting these
  343. * numbers.
  344. *
  345. * Function stops when it stumbles upon zero pointer (absent block)
  346. * (pointer to last triple returned, *@err == 0)
  347. * or when it gets an IO error reading an indirect block
  348. * (ditto, *@err == -EIO)
  349. * or when it reads all @depth-1 indirect blocks successfully and finds
  350. * the whole chain, all way to the data (returns %NULL, *err == 0).
  351. *
  352. * Need to be called with
  353. * down_read(&EXT4_I(inode)->i_data_sem)
  354. */
  355. static Indirect *ext4_get_branch(struct inode *inode, int depth,
  356. ext4_lblk_t *offsets,
  357. Indirect chain[4], int *err)
  358. {
  359. struct super_block *sb = inode->i_sb;
  360. Indirect *p = chain;
  361. struct buffer_head *bh;
  362. *err = 0;
  363. /* i_data is not going away, no lock needed */
  364. add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
  365. if (!p->key)
  366. goto no_block;
  367. while (--depth) {
  368. bh = sb_getblk(sb, le32_to_cpu(p->key));
  369. if (unlikely(!bh))
  370. goto failure;
  371. if (!bh_uptodate_or_lock(bh)) {
  372. if (bh_submit_read(bh) < 0) {
  373. put_bh(bh);
  374. goto failure;
  375. }
  376. /* validate block references */
  377. if (ext4_check_indirect_blockref(inode, bh)) {
  378. put_bh(bh);
  379. goto failure;
  380. }
  381. }
  382. add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
  383. /* Reader: end */
  384. if (!p->key)
  385. goto no_block;
  386. }
  387. return NULL;
  388. failure:
  389. *err = -EIO;
  390. no_block:
  391. return p;
  392. }
  393. /**
  394. * ext4_find_near - find a place for allocation with sufficient locality
  395. * @inode: owner
  396. * @ind: descriptor of indirect block.
  397. *
  398. * This function returns the preferred place for block allocation.
  399. * It is used when heuristic for sequential allocation fails.
  400. * Rules are:
  401. * + if there is a block to the left of our position - allocate near it.
  402. * + if pointer will live in indirect block - allocate near that block.
  403. * + if pointer will live in inode - allocate in the same
  404. * cylinder group.
  405. *
  406. * In the latter case we colour the starting block by the callers PID to
  407. * prevent it from clashing with concurrent allocations for a different inode
  408. * in the same block group. The PID is used here so that functionally related
  409. * files will be close-by on-disk.
  410. *
  411. * Caller must make sure that @ind is valid and will stay that way.
  412. */
  413. static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
  414. {
  415. struct ext4_inode_info *ei = EXT4_I(inode);
  416. __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
  417. __le32 *p;
  418. ext4_fsblk_t bg_start;
  419. ext4_fsblk_t last_block;
  420. ext4_grpblk_t colour;
  421. ext4_group_t block_group;
  422. int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
  423. /* Try to find previous block */
  424. for (p = ind->p - 1; p >= start; p--) {
  425. if (*p)
  426. return le32_to_cpu(*p);
  427. }
  428. /* No such thing, so let's try location of indirect block */
  429. if (ind->bh)
  430. return ind->bh->b_blocknr;
  431. /*
  432. * It is going to be referred to from the inode itself? OK, just put it
  433. * into the same cylinder group then.
  434. */
  435. block_group = ei->i_block_group;
  436. if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
  437. block_group &= ~(flex_size-1);
  438. if (S_ISREG(inode->i_mode))
  439. block_group++;
  440. }
  441. bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
  442. last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
  443. /*
  444. * If we are doing delayed allocation, we don't need take
  445. * colour into account.
  446. */
  447. if (test_opt(inode->i_sb, DELALLOC))
  448. return bg_start;
  449. if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
  450. colour = (current->pid % 16) *
  451. (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
  452. else
  453. colour = (current->pid % 16) * ((last_block - bg_start) / 16);
  454. return bg_start + colour;
  455. }
  456. /**
  457. * ext4_find_goal - find a preferred place for allocation.
  458. * @inode: owner
  459. * @block: block we want
  460. * @partial: pointer to the last triple within a chain
  461. *
  462. * Normally this function find the preferred place for block allocation,
  463. * returns it.
  464. * Because this is only used for non-extent files, we limit the block nr
  465. * to 32 bits.
  466. */
  467. static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
  468. Indirect *partial)
  469. {
  470. ext4_fsblk_t goal;
  471. /*
  472. * XXX need to get goal block from mballoc's data structures
  473. */
  474. goal = ext4_find_near(inode, partial);
  475. goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
  476. return goal;
  477. }
  478. /**
  479. * ext4_blks_to_allocate: Look up the block map and count the number
  480. * of direct blocks need to be allocated for the given branch.
  481. *
  482. * @branch: chain of indirect blocks
  483. * @k: number of blocks need for indirect blocks
  484. * @blks: number of data blocks to be mapped.
  485. * @blocks_to_boundary: the offset in the indirect block
  486. *
  487. * return the total number of blocks to be allocate, including the
  488. * direct and indirect blocks.
  489. */
  490. static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
  491. int blocks_to_boundary)
  492. {
  493. unsigned int count = 0;
  494. /*
  495. * Simple case, [t,d]Indirect block(s) has not allocated yet
  496. * then it's clear blocks on that path have not allocated
  497. */
  498. if (k > 0) {
  499. /* right now we don't handle cross boundary allocation */
  500. if (blks < blocks_to_boundary + 1)
  501. count += blks;
  502. else
  503. count += blocks_to_boundary + 1;
  504. return count;
  505. }
  506. count++;
  507. while (count < blks && count <= blocks_to_boundary &&
  508. le32_to_cpu(*(branch[0].p + count)) == 0) {
  509. count++;
  510. }
  511. return count;
  512. }
  513. /**
  514. * ext4_alloc_blocks: multiple allocate blocks needed for a branch
  515. * @indirect_blks: the number of blocks need to allocate for indirect
  516. * blocks
  517. *
  518. * @new_blocks: on return it will store the new block numbers for
  519. * the indirect blocks(if needed) and the first direct block,
  520. * @blks: on return it will store the total number of allocated
  521. * direct blocks
  522. */
  523. static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
  524. ext4_lblk_t iblock, ext4_fsblk_t goal,
  525. int indirect_blks, int blks,
  526. ext4_fsblk_t new_blocks[4], int *err)
  527. {
  528. struct ext4_allocation_request ar;
  529. int target, i;
  530. unsigned long count = 0, blk_allocated = 0;
  531. int index = 0;
  532. ext4_fsblk_t current_block = 0;
  533. int ret = 0;
  534. /*
  535. * Here we try to allocate the requested multiple blocks at once,
  536. * on a best-effort basis.
  537. * To build a branch, we should allocate blocks for
  538. * the indirect blocks(if not allocated yet), and at least
  539. * the first direct block of this branch. That's the
  540. * minimum number of blocks need to allocate(required)
  541. */
  542. /* first we try to allocate the indirect blocks */
  543. target = indirect_blks;
  544. while (target > 0) {
  545. count = target;
  546. /* allocating blocks for indirect blocks and direct blocks */
  547. current_block = ext4_new_meta_blocks(handle, inode,
  548. goal, &count, err);
  549. if (*err)
  550. goto failed_out;
  551. BUG_ON(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS);
  552. target -= count;
  553. /* allocate blocks for indirect blocks */
  554. while (index < indirect_blks && count) {
  555. new_blocks[index++] = current_block++;
  556. count--;
  557. }
  558. if (count > 0) {
  559. /*
  560. * save the new block number
  561. * for the first direct block
  562. */
  563. new_blocks[index] = current_block;
  564. printk(KERN_INFO "%s returned more blocks than "
  565. "requested\n", __func__);
  566. WARN_ON(1);
  567. break;
  568. }
  569. }
  570. target = blks - count ;
  571. blk_allocated = count;
  572. if (!target)
  573. goto allocated;
  574. /* Now allocate data blocks */
  575. memset(&ar, 0, sizeof(ar));
  576. ar.inode = inode;
  577. ar.goal = goal;
  578. ar.len = target;
  579. ar.logical = iblock;
  580. if (S_ISREG(inode->i_mode))
  581. /* enable in-core preallocation only for regular files */
  582. ar.flags = EXT4_MB_HINT_DATA;
  583. current_block = ext4_mb_new_blocks(handle, &ar, err);
  584. BUG_ON(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS);
  585. if (*err && (target == blks)) {
  586. /*
  587. * if the allocation failed and we didn't allocate
  588. * any blocks before
  589. */
  590. goto failed_out;
  591. }
  592. if (!*err) {
  593. if (target == blks) {
  594. /*
  595. * save the new block number
  596. * for the first direct block
  597. */
  598. new_blocks[index] = current_block;
  599. }
  600. blk_allocated += ar.len;
  601. }
  602. allocated:
  603. /* total number of blocks allocated for direct blocks */
  604. ret = blk_allocated;
  605. *err = 0;
  606. return ret;
  607. failed_out:
  608. for (i = 0; i < index; i++)
  609. ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
  610. return ret;
  611. }
  612. /**
  613. * ext4_alloc_branch - allocate and set up a chain of blocks.
  614. * @inode: owner
  615. * @indirect_blks: number of allocated indirect blocks
  616. * @blks: number of allocated direct blocks
  617. * @offsets: offsets (in the blocks) to store the pointers to next.
  618. * @branch: place to store the chain in.
  619. *
  620. * This function allocates blocks, zeroes out all but the last one,
  621. * links them into chain and (if we are synchronous) writes them to disk.
  622. * In other words, it prepares a branch that can be spliced onto the
  623. * inode. It stores the information about that chain in the branch[], in
  624. * the same format as ext4_get_branch() would do. We are calling it after
  625. * we had read the existing part of chain and partial points to the last
  626. * triple of that (one with zero ->key). Upon the exit we have the same
  627. * picture as after the successful ext4_get_block(), except that in one
  628. * place chain is disconnected - *branch->p is still zero (we did not
  629. * set the last link), but branch->key contains the number that should
  630. * be placed into *branch->p to fill that gap.
  631. *
  632. * If allocation fails we free all blocks we've allocated (and forget
  633. * their buffer_heads) and return the error value the from failed
  634. * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
  635. * as described above and return 0.
  636. */
  637. static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
  638. ext4_lblk_t iblock, int indirect_blks,
  639. int *blks, ext4_fsblk_t goal,
  640. ext4_lblk_t *offsets, Indirect *branch)
  641. {
  642. int blocksize = inode->i_sb->s_blocksize;
  643. int i, n = 0;
  644. int err = 0;
  645. struct buffer_head *bh;
  646. int num;
  647. ext4_fsblk_t new_blocks[4];
  648. ext4_fsblk_t current_block;
  649. num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
  650. *blks, new_blocks, &err);
  651. if (err)
  652. return err;
  653. branch[0].key = cpu_to_le32(new_blocks[0]);
  654. /*
  655. * metadata blocks and data blocks are allocated.
  656. */
  657. for (n = 1; n <= indirect_blks; n++) {
  658. /*
  659. * Get buffer_head for parent block, zero it out
  660. * and set the pointer to new one, then send
  661. * parent to disk.
  662. */
  663. bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
  664. branch[n].bh = bh;
  665. lock_buffer(bh);
  666. BUFFER_TRACE(bh, "call get_create_access");
  667. err = ext4_journal_get_create_access(handle, bh);
  668. if (err) {
  669. /* Don't brelse(bh) here; it's done in
  670. * ext4_journal_forget() below */
  671. unlock_buffer(bh);
  672. goto failed;
  673. }
  674. memset(bh->b_data, 0, blocksize);
  675. branch[n].p = (__le32 *) bh->b_data + offsets[n];
  676. branch[n].key = cpu_to_le32(new_blocks[n]);
  677. *branch[n].p = branch[n].key;
  678. if (n == indirect_blks) {
  679. current_block = new_blocks[n];
  680. /*
  681. * End of chain, update the last new metablock of
  682. * the chain to point to the new allocated
  683. * data blocks numbers
  684. */
  685. for (i = 1; i < num; i++)
  686. *(branch[n].p + i) = cpu_to_le32(++current_block);
  687. }
  688. BUFFER_TRACE(bh, "marking uptodate");
  689. set_buffer_uptodate(bh);
  690. unlock_buffer(bh);
  691. BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
  692. err = ext4_handle_dirty_metadata(handle, inode, bh);
  693. if (err)
  694. goto failed;
  695. }
  696. *blks = num;
  697. return err;
  698. failed:
  699. /* Allocation failed, free what we already allocated */
  700. ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
  701. for (i = 1; i <= n ; i++) {
  702. /*
  703. * branch[i].bh is newly allocated, so there is no
  704. * need to revoke the block, which is why we don't
  705. * need to set EXT4_FREE_BLOCKS_METADATA.
  706. */
  707. ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
  708. EXT4_FREE_BLOCKS_FORGET);
  709. }
  710. for (i = n+1; i < indirect_blks; i++)
  711. ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
  712. ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
  713. return err;
  714. }
  715. /**
  716. * ext4_splice_branch - splice the allocated branch onto inode.
  717. * @inode: owner
  718. * @block: (logical) number of block we are adding
  719. * @chain: chain of indirect blocks (with a missing link - see
  720. * ext4_alloc_branch)
  721. * @where: location of missing link
  722. * @num: number of indirect blocks we are adding
  723. * @blks: number of direct blocks we are adding
  724. *
  725. * This function fills the missing link and does all housekeeping needed in
  726. * inode (->i_blocks, etc.). In case of success we end up with the full
  727. * chain to new block and return 0.
  728. */
  729. static int ext4_splice_branch(handle_t *handle, struct inode *inode,
  730. ext4_lblk_t block, Indirect *where, int num,
  731. int blks)
  732. {
  733. int i;
  734. int err = 0;
  735. ext4_fsblk_t current_block;
  736. /*
  737. * If we're splicing into a [td]indirect block (as opposed to the
  738. * inode) then we need to get write access to the [td]indirect block
  739. * before the splice.
  740. */
  741. if (where->bh) {
  742. BUFFER_TRACE(where->bh, "get_write_access");
  743. err = ext4_journal_get_write_access(handle, where->bh);
  744. if (err)
  745. goto err_out;
  746. }
  747. /* That's it */
  748. *where->p = where->key;
  749. /*
  750. * Update the host buffer_head or inode to point to more just allocated
  751. * direct blocks blocks
  752. */
  753. if (num == 0 && blks > 1) {
  754. current_block = le32_to_cpu(where->key) + 1;
  755. for (i = 1; i < blks; i++)
  756. *(where->p + i) = cpu_to_le32(current_block++);
  757. }
  758. /* We are done with atomic stuff, now do the rest of housekeeping */
  759. /* had we spliced it onto indirect block? */
  760. if (where->bh) {
  761. /*
  762. * If we spliced it onto an indirect block, we haven't
  763. * altered the inode. Note however that if it is being spliced
  764. * onto an indirect block at the very end of the file (the
  765. * file is growing) then we *will* alter the inode to reflect
  766. * the new i_size. But that is not done here - it is done in
  767. * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
  768. */
  769. jbd_debug(5, "splicing indirect only\n");
  770. BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
  771. err = ext4_handle_dirty_metadata(handle, inode, where->bh);
  772. if (err)
  773. goto err_out;
  774. } else {
  775. /*
  776. * OK, we spliced it into the inode itself on a direct block.
  777. */
  778. ext4_mark_inode_dirty(handle, inode);
  779. jbd_debug(5, "splicing direct\n");
  780. }
  781. return err;
  782. err_out:
  783. for (i = 1; i <= num; i++) {
  784. /*
  785. * branch[i].bh is newly allocated, so there is no
  786. * need to revoke the block, which is why we don't
  787. * need to set EXT4_FREE_BLOCKS_METADATA.
  788. */
  789. ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
  790. EXT4_FREE_BLOCKS_FORGET);
  791. }
  792. ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
  793. blks, 0);
  794. return err;
  795. }
  796. /*
  797. * The ext4_ind_get_blocks() function handles non-extents inodes
  798. * (i.e., using the traditional indirect/double-indirect i_blocks
  799. * scheme) for ext4_get_blocks().
  800. *
  801. * Allocation strategy is simple: if we have to allocate something, we will
  802. * have to go the whole way to leaf. So let's do it before attaching anything
  803. * to tree, set linkage between the newborn blocks, write them if sync is
  804. * required, recheck the path, free and repeat if check fails, otherwise
  805. * set the last missing link (that will protect us from any truncate-generated
  806. * removals - all blocks on the path are immune now) and possibly force the
  807. * write on the parent block.
  808. * That has a nice additional property: no special recovery from the failed
  809. * allocations is needed - we simply release blocks and do not touch anything
  810. * reachable from inode.
  811. *
  812. * `handle' can be NULL if create == 0.
  813. *
  814. * return > 0, # of blocks mapped or allocated.
  815. * return = 0, if plain lookup failed.
  816. * return < 0, error case.
  817. *
  818. * The ext4_ind_get_blocks() function should be called with
  819. * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
  820. * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
  821. * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
  822. * blocks.
  823. */
  824. static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
  825. ext4_lblk_t iblock, unsigned int maxblocks,
  826. struct buffer_head *bh_result,
  827. int flags)
  828. {
  829. int err = -EIO;
  830. ext4_lblk_t offsets[4];
  831. Indirect chain[4];
  832. Indirect *partial;
  833. ext4_fsblk_t goal;
  834. int indirect_blks;
  835. int blocks_to_boundary = 0;
  836. int depth;
  837. int count = 0;
  838. ext4_fsblk_t first_block = 0;
  839. J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
  840. J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
  841. depth = ext4_block_to_path(inode, iblock, offsets,
  842. &blocks_to_boundary);
  843. if (depth == 0)
  844. goto out;
  845. partial = ext4_get_branch(inode, depth, offsets, chain, &err);
  846. /* Simplest case - block found, no allocation needed */
  847. if (!partial) {
  848. first_block = le32_to_cpu(chain[depth - 1].key);
  849. clear_buffer_new(bh_result);
  850. count++;
  851. /*map more blocks*/
  852. while (count < maxblocks && count <= blocks_to_boundary) {
  853. ext4_fsblk_t blk;
  854. blk = le32_to_cpu(*(chain[depth-1].p + count));
  855. if (blk == first_block + count)
  856. count++;
  857. else
  858. break;
  859. }
  860. goto got_it;
  861. }
  862. /* Next simple case - plain lookup or failed read of indirect block */
  863. if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
  864. goto cleanup;
  865. /*
  866. * Okay, we need to do block allocation.
  867. */
  868. goal = ext4_find_goal(inode, iblock, partial);
  869. /* the number of blocks need to allocate for [d,t]indirect blocks */
  870. indirect_blks = (chain + depth) - partial - 1;
  871. /*
  872. * Next look up the indirect map to count the totoal number of
  873. * direct blocks to allocate for this branch.
  874. */
  875. count = ext4_blks_to_allocate(partial, indirect_blks,
  876. maxblocks, blocks_to_boundary);
  877. /*
  878. * Block out ext4_truncate while we alter the tree
  879. */
  880. err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
  881. &count, goal,
  882. offsets + (partial - chain), partial);
  883. /*
  884. * The ext4_splice_branch call will free and forget any buffers
  885. * on the new chain if there is a failure, but that risks using
  886. * up transaction credits, especially for bitmaps where the
  887. * credits cannot be returned. Can we handle this somehow? We
  888. * may need to return -EAGAIN upwards in the worst case. --sct
  889. */
  890. if (!err)
  891. err = ext4_splice_branch(handle, inode, iblock,
  892. partial, indirect_blks, count);
  893. if (err)
  894. goto cleanup;
  895. set_buffer_new(bh_result);
  896. got_it:
  897. map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
  898. if (count > blocks_to_boundary)
  899. set_buffer_boundary(bh_result);
  900. err = count;
  901. /* Clean up and exit */
  902. partial = chain + depth - 1; /* the whole chain */
  903. cleanup:
  904. while (partial > chain) {
  905. BUFFER_TRACE(partial->bh, "call brelse");
  906. brelse(partial->bh);
  907. partial--;
  908. }
  909. BUFFER_TRACE(bh_result, "returned");
  910. out:
  911. return err;
  912. }
  913. qsize_t ext4_get_reserved_space(struct inode *inode)
  914. {
  915. unsigned long long total;
  916. spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
  917. total = EXT4_I(inode)->i_reserved_data_blocks +
  918. EXT4_I(inode)->i_reserved_meta_blocks;
  919. spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
  920. return (total << inode->i_blkbits);
  921. }
  922. /*
  923. * Calculate the number of metadata blocks need to reserve
  924. * to allocate @blocks for non extent file based file
  925. */
  926. static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
  927. {
  928. int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
  929. int ind_blks, dind_blks, tind_blks;
  930. /* number of new indirect blocks needed */
  931. ind_blks = (blocks + icap - 1) / icap;
  932. dind_blks = (ind_blks + icap - 1) / icap;
  933. tind_blks = 1;
  934. return ind_blks + dind_blks + tind_blks;
  935. }
  936. /*
  937. * Calculate the number of metadata blocks need to reserve
  938. * to allocate given number of blocks
  939. */
  940. static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
  941. {
  942. if (!blocks)
  943. return 0;
  944. if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
  945. return ext4_ext_calc_metadata_amount(inode, blocks);
  946. return ext4_indirect_calc_metadata_amount(inode, blocks);
  947. }
  948. static void ext4_da_update_reserve_space(struct inode *inode, int used)
  949. {
  950. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  951. int total, mdb, mdb_free;
  952. spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
  953. /* recalculate the number of metablocks still need to be reserved */
  954. total = EXT4_I(inode)->i_reserved_data_blocks - used;
  955. mdb = ext4_calc_metadata_amount(inode, total);
  956. /* figure out how many metablocks to release */
  957. BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
  958. mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
  959. if (mdb_free) {
  960. /* Account for allocated meta_blocks */
  961. mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
  962. /* update fs dirty blocks counter */
  963. percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
  964. EXT4_I(inode)->i_allocated_meta_blocks = 0;
  965. EXT4_I(inode)->i_reserved_meta_blocks = mdb;
  966. }
  967. /* update per-inode reservations */
  968. BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
  969. EXT4_I(inode)->i_reserved_data_blocks -= used;
  970. spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
  971. /*
  972. * free those over-booking quota for metadata blocks
  973. */
  974. if (mdb_free)
  975. vfs_dq_release_reservation_block(inode, mdb_free);
  976. /*
  977. * If we have done all the pending block allocations and if
  978. * there aren't any writers on the inode, we can discard the
  979. * inode's preallocations.
  980. */
  981. if (!total && (atomic_read(&inode->i_writecount) == 0))
  982. ext4_discard_preallocations(inode);
  983. }
  984. static int check_block_validity(struct inode *inode, const char *msg,
  985. sector_t logical, sector_t phys, int len)
  986. {
  987. if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
  988. ext4_error(inode->i_sb, msg,
  989. "inode #%lu logical block %llu mapped to %llu "
  990. "(size %d)", inode->i_ino,
  991. (unsigned long long) logical,
  992. (unsigned long long) phys, len);
  993. return -EIO;
  994. }
  995. return 0;
  996. }
  997. /*
  998. * Return the number of contiguous dirty pages in a given inode
  999. * starting at page frame idx.
  1000. */
  1001. static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
  1002. unsigned int max_pages)
  1003. {
  1004. struct address_space *mapping = inode->i_mapping;
  1005. pgoff_t index;
  1006. struct pagevec pvec;
  1007. pgoff_t num = 0;
  1008. int i, nr_pages, done = 0;
  1009. if (max_pages == 0)
  1010. return 0;
  1011. pagevec_init(&pvec, 0);
  1012. while (!done) {
  1013. index = idx;
  1014. nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
  1015. PAGECACHE_TAG_DIRTY,
  1016. (pgoff_t)PAGEVEC_SIZE);
  1017. if (nr_pages == 0)
  1018. break;
  1019. for (i = 0; i < nr_pages; i++) {
  1020. struct page *page = pvec.pages[i];
  1021. struct buffer_head *bh, *head;
  1022. lock_page(page);
  1023. if (unlikely(page->mapping != mapping) ||
  1024. !PageDirty(page) ||
  1025. PageWriteback(page) ||
  1026. page->index != idx) {
  1027. done = 1;
  1028. unlock_page(page);
  1029. break;
  1030. }
  1031. if (page_has_buffers(page)) {
  1032. bh = head = page_buffers(page);
  1033. do {
  1034. if (!buffer_delay(bh) &&
  1035. !buffer_unwritten(bh))
  1036. done = 1;
  1037. bh = bh->b_this_page;
  1038. } while (!done && (bh != head));
  1039. }
  1040. unlock_page(page);
  1041. if (done)
  1042. break;
  1043. idx++;
  1044. num++;
  1045. if (num >= max_pages)
  1046. break;
  1047. }
  1048. pagevec_release(&pvec);
  1049. }
  1050. return num;
  1051. }
  1052. /*
  1053. * The ext4_get_blocks() function tries to look up the requested blocks,
  1054. * and returns if the blocks are already mapped.
  1055. *
  1056. * Otherwise it takes the write lock of the i_data_sem and allocate blocks
  1057. * and store the allocated blocks in the result buffer head and mark it
  1058. * mapped.
  1059. *
  1060. * If file type is extents based, it will call ext4_ext_get_blocks(),
  1061. * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
  1062. * based files
  1063. *
  1064. * On success, it returns the number of blocks being mapped or allocate.
  1065. * if create==0 and the blocks are pre-allocated and uninitialized block,
  1066. * the result buffer head is unmapped. If the create ==1, it will make sure
  1067. * the buffer head is mapped.
  1068. *
  1069. * It returns 0 if plain look up failed (blocks have not been allocated), in
  1070. * that casem, buffer head is unmapped
  1071. *
  1072. * It returns the error in case of allocation failure.
  1073. */
  1074. int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
  1075. unsigned int max_blocks, struct buffer_head *bh,
  1076. int flags)
  1077. {
  1078. int retval;
  1079. clear_buffer_mapped(bh);
  1080. clear_buffer_unwritten(bh);
  1081. ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u,"
  1082. "logical block %lu\n", inode->i_ino, flags, max_blocks,
  1083. (unsigned long)block);
  1084. /*
  1085. * Try to see if we can get the block without requesting a new
  1086. * file system block.
  1087. */
  1088. down_read((&EXT4_I(inode)->i_data_sem));
  1089. if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
  1090. retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
  1091. bh, 0);
  1092. } else {
  1093. retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
  1094. bh, 0);
  1095. }
  1096. up_read((&EXT4_I(inode)->i_data_sem));
  1097. if (retval > 0 && buffer_mapped(bh)) {
  1098. int ret = check_block_validity(inode, "file system corruption",
  1099. block, bh->b_blocknr, retval);
  1100. if (ret != 0)
  1101. return ret;
  1102. }
  1103. /* If it is only a block(s) look up */
  1104. if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
  1105. return retval;
  1106. /*
  1107. * Returns if the blocks have already allocated
  1108. *
  1109. * Note that if blocks have been preallocated
  1110. * ext4_ext_get_block() returns th create = 0
  1111. * with buffer head unmapped.
  1112. */
  1113. if (retval > 0 && buffer_mapped(bh))
  1114. return retval;
  1115. /*
  1116. * When we call get_blocks without the create flag, the
  1117. * BH_Unwritten flag could have gotten set if the blocks
  1118. * requested were part of a uninitialized extent. We need to
  1119. * clear this flag now that we are committed to convert all or
  1120. * part of the uninitialized extent to be an initialized
  1121. * extent. This is because we need to avoid the combination
  1122. * of BH_Unwritten and BH_Mapped flags being simultaneously
  1123. * set on the buffer_head.
  1124. */
  1125. clear_buffer_unwritten(bh);
  1126. /*
  1127. * New blocks allocate and/or writing to uninitialized extent
  1128. * will possibly result in updating i_data, so we take
  1129. * the write lock of i_data_sem, and call get_blocks()
  1130. * with create == 1 flag.
  1131. */
  1132. down_write((&EXT4_I(inode)->i_data_sem));
  1133. /*
  1134. * if the caller is from delayed allocation writeout path
  1135. * we have already reserved fs blocks for allocation
  1136. * let the underlying get_block() function know to
  1137. * avoid double accounting
  1138. */
  1139. if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
  1140. EXT4_I(inode)->i_delalloc_reserved_flag = 1;
  1141. /*
  1142. * We need to check for EXT4 here because migrate
  1143. * could have changed the inode type in between
  1144. */
  1145. if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
  1146. retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
  1147. bh, flags);
  1148. } else {
  1149. retval = ext4_ind_get_blocks(handle, inode, block,
  1150. max_blocks, bh, flags);
  1151. if (retval > 0 && buffer_new(bh)) {
  1152. /*
  1153. * We allocated new blocks which will result in
  1154. * i_data's format changing. Force the migrate
  1155. * to fail by clearing migrate flags
  1156. */
  1157. EXT4_I(inode)->i_state &= ~EXT4_STATE_EXT_MIGRATE;
  1158. }
  1159. }
  1160. if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
  1161. EXT4_I(inode)->i_delalloc_reserved_flag = 0;
  1162. /*
  1163. * Update reserved blocks/metadata blocks after successful
  1164. * block allocation which had been deferred till now.
  1165. */
  1166. if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
  1167. ext4_da_update_reserve_space(inode, retval);
  1168. up_write((&EXT4_I(inode)->i_data_sem));
  1169. if (retval > 0 && buffer_mapped(bh)) {
  1170. int ret = check_block_validity(inode, "file system "
  1171. "corruption after allocation",
  1172. block, bh->b_blocknr, retval);
  1173. if (ret != 0)
  1174. return ret;
  1175. }
  1176. return retval;
  1177. }
  1178. /* Maximum number of blocks we map for direct IO at once. */
  1179. #define DIO_MAX_BLOCKS 4096
  1180. int ext4_get_block(struct inode *inode, sector_t iblock,
  1181. struct buffer_head *bh_result, int create)
  1182. {
  1183. handle_t *handle = ext4_journal_current_handle();
  1184. int ret = 0, started = 0;
  1185. unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
  1186. int dio_credits;
  1187. if (create && !handle) {
  1188. /* Direct IO write... */
  1189. if (max_blocks > DIO_MAX_BLOCKS)
  1190. max_blocks = DIO_MAX_BLOCKS;
  1191. dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
  1192. handle = ext4_journal_start(inode, dio_credits);
  1193. if (IS_ERR(handle)) {
  1194. ret = PTR_ERR(handle);
  1195. goto out;
  1196. }
  1197. started = 1;
  1198. }
  1199. ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
  1200. create ? EXT4_GET_BLOCKS_CREATE : 0);
  1201. if (ret > 0) {
  1202. bh_result->b_size = (ret << inode->i_blkbits);
  1203. ret = 0;
  1204. }
  1205. if (started)
  1206. ext4_journal_stop(handle);
  1207. out:
  1208. return ret;
  1209. }
  1210. /*
  1211. * `handle' can be NULL if create is zero
  1212. */
  1213. struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
  1214. ext4_lblk_t block, int create, int *errp)
  1215. {
  1216. struct buffer_head dummy;
  1217. int fatal = 0, err;
  1218. int flags = 0;
  1219. J_ASSERT(handle != NULL || create == 0);
  1220. dummy.b_state = 0;
  1221. dummy.b_blocknr = -1000;
  1222. buffer_trace_init(&dummy.b_history);
  1223. if (create)
  1224. flags |= EXT4_GET_BLOCKS_CREATE;
  1225. err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
  1226. /*
  1227. * ext4_get_blocks() returns number of blocks mapped. 0 in
  1228. * case of a HOLE.
  1229. */
  1230. if (err > 0) {
  1231. if (err > 1)
  1232. WARN_ON(1);
  1233. err = 0;
  1234. }
  1235. *errp = err;
  1236. if (!err && buffer_mapped(&dummy)) {
  1237. struct buffer_head *bh;
  1238. bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
  1239. if (!bh) {
  1240. *errp = -EIO;
  1241. goto err;
  1242. }
  1243. if (buffer_new(&dummy)) {
  1244. J_ASSERT(create != 0);
  1245. J_ASSERT(handle != NULL);
  1246. /*
  1247. * Now that we do not always journal data, we should
  1248. * keep in mind whether this should always journal the
  1249. * new buffer as metadata. For now, regular file
  1250. * writes use ext4_get_block instead, so it's not a
  1251. * problem.
  1252. */
  1253. lock_buffer(bh);
  1254. BUFFER_TRACE(bh, "call get_create_access");
  1255. fatal = ext4_journal_get_create_access(handle, bh);
  1256. if (!fatal && !buffer_uptodate(bh)) {
  1257. memset(bh->b_data, 0, inode->i_sb->s_blocksize);
  1258. set_buffer_uptodate(bh);
  1259. }
  1260. unlock_buffer(bh);
  1261. BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
  1262. err = ext4_handle_dirty_metadata(handle, inode, bh);
  1263. if (!fatal)
  1264. fatal = err;
  1265. } else {
  1266. BUFFER_TRACE(bh, "not a new buffer");
  1267. }
  1268. if (fatal) {
  1269. *errp = fatal;
  1270. brelse(bh);
  1271. bh = NULL;
  1272. }
  1273. return bh;
  1274. }
  1275. err:
  1276. return NULL;
  1277. }
  1278. struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
  1279. ext4_lblk_t block, int create, int *err)
  1280. {
  1281. struct buffer_head *bh;
  1282. bh = ext4_getblk(handle, inode, block, create, err);
  1283. if (!bh)
  1284. return bh;
  1285. if (buffer_uptodate(bh))
  1286. return bh;
  1287. ll_rw_block(READ_META, 1, &bh);
  1288. wait_on_buffer(bh);
  1289. if (buffer_uptodate(bh))
  1290. return bh;
  1291. put_bh(bh);
  1292. *err = -EIO;
  1293. return NULL;
  1294. }
  1295. static int walk_page_buffers(handle_t *handle,
  1296. struct buffer_head *head,
  1297. unsigned from,
  1298. unsigned to,
  1299. int *partial,
  1300. int (*fn)(handle_t *handle,
  1301. struct buffer_head *bh))
  1302. {
  1303. struct buffer_head *bh;
  1304. unsigned block_start, block_end;
  1305. unsigned blocksize = head->b_size;
  1306. int err, ret = 0;
  1307. struct buffer_head *next;
  1308. for (bh = head, block_start = 0;
  1309. ret == 0 && (bh != head || !block_start);
  1310. block_start = block_end, bh = next) {
  1311. next = bh->b_this_page;
  1312. block_end = block_start + blocksize;
  1313. if (block_end <= from || block_start >= to) {
  1314. if (partial && !buffer_uptodate(bh))
  1315. *partial = 1;
  1316. continue;
  1317. }
  1318. err = (*fn)(handle, bh);
  1319. if (!ret)
  1320. ret = err;
  1321. }
  1322. return ret;
  1323. }
  1324. /*
  1325. * To preserve ordering, it is essential that the hole instantiation and
  1326. * the data write be encapsulated in a single transaction. We cannot
  1327. * close off a transaction and start a new one between the ext4_get_block()
  1328. * and the commit_write(). So doing the jbd2_journal_start at the start of
  1329. * prepare_write() is the right place.
  1330. *
  1331. * Also, this function can nest inside ext4_writepage() ->
  1332. * block_write_full_page(). In that case, we *know* that ext4_writepage()
  1333. * has generated enough buffer credits to do the whole page. So we won't
  1334. * block on the journal in that case, which is good, because the caller may
  1335. * be PF_MEMALLOC.
  1336. *
  1337. * By accident, ext4 can be reentered when a transaction is open via
  1338. * quota file writes. If we were to commit the transaction while thus
  1339. * reentered, there can be a deadlock - we would be holding a quota
  1340. * lock, and the commit would never complete if another thread had a
  1341. * transaction open and was blocking on the quota lock - a ranking
  1342. * violation.
  1343. *
  1344. * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
  1345. * will _not_ run commit under these circumstances because handle->h_ref
  1346. * is elevated. We'll still have enough credits for the tiny quotafile
  1347. * write.
  1348. */
  1349. static int do_journal_get_write_access(handle_t *handle,
  1350. struct buffer_head *bh)
  1351. {
  1352. if (!buffer_mapped(bh) || buffer_freed(bh))
  1353. return 0;
  1354. return ext4_journal_get_write_access(handle, bh);
  1355. }
  1356. /*
  1357. * Truncate blocks that were not used by write. We have to truncate the
  1358. * pagecache as well so that corresponding buffers get properly unmapped.
  1359. */
  1360. static void ext4_truncate_failed_write(struct inode *inode)
  1361. {
  1362. truncate_inode_pages(inode->i_mapping, inode->i_size);
  1363. ext4_truncate(inode);
  1364. }
  1365. static int ext4_write_begin(struct file *file, struct address_space *mapping,
  1366. loff_t pos, unsigned len, unsigned flags,
  1367. struct page **pagep, void **fsdata)
  1368. {
  1369. struct inode *inode = mapping->host;
  1370. int ret, needed_blocks;
  1371. handle_t *handle;
  1372. int retries = 0;
  1373. struct page *page;
  1374. pgoff_t index;
  1375. unsigned from, to;
  1376. trace_ext4_write_begin(inode, pos, len, flags);
  1377. /*
  1378. * Reserve one block more for addition to orphan list in case
  1379. * we allocate blocks but write fails for some reason
  1380. */
  1381. needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
  1382. index = pos >> PAGE_CACHE_SHIFT;
  1383. from = pos & (PAGE_CACHE_SIZE - 1);
  1384. to = from + len;
  1385. retry:
  1386. handle = ext4_journal_start(inode, needed_blocks);
  1387. if (IS_ERR(handle)) {
  1388. ret = PTR_ERR(handle);
  1389. goto out;
  1390. }
  1391. /* We cannot recurse into the filesystem as the transaction is already
  1392. * started */
  1393. flags |= AOP_FLAG_NOFS;
  1394. page = grab_cache_page_write_begin(mapping, index, flags);
  1395. if (!page) {
  1396. ext4_journal_stop(handle);
  1397. ret = -ENOMEM;
  1398. goto out;
  1399. }
  1400. *pagep = page;
  1401. ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
  1402. ext4_get_block);
  1403. if (!ret && ext4_should_journal_data(inode)) {
  1404. ret = walk_page_buffers(handle, page_buffers(page),
  1405. from, to, NULL, do_journal_get_write_access);
  1406. }
  1407. if (ret) {
  1408. unlock_page(page);
  1409. page_cache_release(page);
  1410. /*
  1411. * block_write_begin may have instantiated a few blocks
  1412. * outside i_size. Trim these off again. Don't need
  1413. * i_size_read because we hold i_mutex.
  1414. *
  1415. * Add inode to orphan list in case we crash before
  1416. * truncate finishes
  1417. */
  1418. if (pos + len > inode->i_size && ext4_can_truncate(inode))
  1419. ext4_orphan_add(handle, inode);
  1420. ext4_journal_stop(handle);
  1421. if (pos + len > inode->i_size) {
  1422. ext4_truncate_failed_write(inode);
  1423. /*
  1424. * If truncate failed early the inode might
  1425. * still be on the orphan list; we need to
  1426. * make sure the inode is removed from the
  1427. * orphan list in that case.
  1428. */
  1429. if (inode->i_nlink)
  1430. ext4_orphan_del(NULL, inode);
  1431. }
  1432. }
  1433. if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
  1434. goto retry;
  1435. out:
  1436. return ret;
  1437. }
  1438. /* For write_end() in data=journal mode */
  1439. static int write_end_fn(handle_t *handle, struct buffer_head *bh)
  1440. {
  1441. if (!buffer_mapped(bh) || buffer_freed(bh))
  1442. return 0;
  1443. set_buffer_uptodate(bh);
  1444. return ext4_handle_dirty_metadata(handle, NULL, bh);
  1445. }
  1446. static int ext4_generic_write_end(struct file *file,
  1447. struct address_space *mapping,
  1448. loff_t pos, unsigned len, unsigned copied,
  1449. struct page *page, void *fsdata)
  1450. {
  1451. int i_size_changed = 0;
  1452. struct inode *inode = mapping->host;
  1453. handle_t *handle = ext4_journal_current_handle();
  1454. copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
  1455. /*
  1456. * No need to use i_size_read() here, the i_size
  1457. * cannot change under us because we hold i_mutex.
  1458. *
  1459. * But it's important to update i_size while still holding page lock:
  1460. * page writeout could otherwise come in and zero beyond i_size.
  1461. */
  1462. if (pos + copied > inode->i_size) {
  1463. i_size_write(inode, pos + copied);
  1464. i_size_changed = 1;
  1465. }
  1466. if (pos + copied > EXT4_I(inode)->i_disksize) {
  1467. /* We need to mark inode dirty even if
  1468. * new_i_size is less that inode->i_size
  1469. * bu greater than i_disksize.(hint delalloc)
  1470. */
  1471. ext4_update_i_disksize(inode, (pos + copied));
  1472. i_size_changed = 1;
  1473. }
  1474. unlock_page(page);
  1475. page_cache_release(page);
  1476. /*
  1477. * Don't mark the inode dirty under page lock. First, it unnecessarily
  1478. * makes the holding time of page lock longer. Second, it forces lock
  1479. * ordering of page lock and transaction start for journaling
  1480. * filesystems.
  1481. */
  1482. if (i_size_changed)
  1483. ext4_mark_inode_dirty(handle, inode);
  1484. return copied;
  1485. }
  1486. /*
  1487. * We need to pick up the new inode size which generic_commit_write gave us
  1488. * `file' can be NULL - eg, when called from page_symlink().
  1489. *
  1490. * ext4 never places buffers on inode->i_mapping->private_list. metadata
  1491. * buffers are managed internally.
  1492. */
  1493. static int ext4_ordered_write_end(struct file *file,
  1494. struct address_space *mapping,
  1495. loff_t pos, unsigned len, unsigned copied,
  1496. struct page *page, void *fsdata)
  1497. {
  1498. handle_t *handle = ext4_journal_current_handle();
  1499. struct inode *inode = mapping->host;
  1500. int ret = 0, ret2;
  1501. trace_ext4_ordered_write_end(inode, pos, len, copied);
  1502. ret = ext4_jbd2_file_inode(handle, inode);
  1503. if (ret == 0) {
  1504. ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
  1505. page, fsdata);
  1506. copied = ret2;
  1507. if (pos + len > inode->i_size && ext4_can_truncate(inode))
  1508. /* if we have allocated more blocks and copied
  1509. * less. We will have blocks allocated outside
  1510. * inode->i_size. So truncate them
  1511. */
  1512. ext4_orphan_add(handle, inode);
  1513. if (ret2 < 0)
  1514. ret = ret2;
  1515. }
  1516. ret2 = ext4_journal_stop(handle);
  1517. if (!ret)
  1518. ret = ret2;
  1519. if (pos + len > inode->i_size) {
  1520. ext4_truncate_failed_write(inode);
  1521. /*
  1522. * If truncate failed early the inode might still be
  1523. * on the orphan list; we need to make sure the inode
  1524. * is removed from the orphan list in that case.
  1525. */
  1526. if (inode->i_nlink)
  1527. ext4_orphan_del(NULL, inode);
  1528. }
  1529. return ret ? ret : copied;
  1530. }
  1531. static int ext4_writeback_write_end(struct file *file,
  1532. struct address_space *mapping,
  1533. loff_t pos, unsigned len, unsigned copied,
  1534. struct page *page, void *fsdata)
  1535. {
  1536. handle_t *handle = ext4_journal_current_handle();
  1537. struct inode *inode = mapping->host;
  1538. int ret = 0, ret2;
  1539. trace_ext4_writeback_write_end(inode, pos, len, copied);
  1540. ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
  1541. page, fsdata);
  1542. copied = ret2;
  1543. if (pos + len > inode->i_size && ext4_can_truncate(inode))
  1544. /* if we have allocated more blocks and copied
  1545. * less. We will have blocks allocated outside
  1546. * inode->i_size. So truncate them
  1547. */
  1548. ext4_orphan_add(handle, inode);
  1549. if (ret2 < 0)
  1550. ret = ret2;
  1551. ret2 = ext4_journal_stop(handle);
  1552. if (!ret)
  1553. ret = ret2;
  1554. if (pos + len > inode->i_size) {
  1555. ext4_truncate_failed_write(inode);
  1556. /*
  1557. * If truncate failed early the inode might still be
  1558. * on the orphan list; we need to make sure the inode
  1559. * is removed from the orphan list in that case.
  1560. */
  1561. if (inode->i_nlink)
  1562. ext4_orphan_del(NULL, inode);
  1563. }
  1564. return ret ? ret : copied;
  1565. }
  1566. static int ext4_journalled_write_end(struct file *file,
  1567. struct address_space *mapping,
  1568. loff_t pos, unsigned len, unsigned copied,
  1569. struct page *page, void *fsdata)
  1570. {
  1571. handle_t *handle = ext4_journal_current_handle();
  1572. struct inode *inode = mapping->host;
  1573. int ret = 0, ret2;
  1574. int partial = 0;
  1575. unsigned from, to;
  1576. loff_t new_i_size;
  1577. trace_ext4_journalled_write_end(inode, pos, len, copied);
  1578. from = pos & (PAGE_CACHE_SIZE - 1);
  1579. to = from + len;
  1580. if (copied < len) {
  1581. if (!PageUptodate(page))
  1582. copied = 0;
  1583. page_zero_new_buffers(page, from+copied, to);
  1584. }
  1585. ret = walk_page_buffers(handle, page_buffers(page), from,
  1586. to, &partial, write_end_fn);
  1587. if (!partial)
  1588. SetPageUptodate(page);
  1589. new_i_size = pos + copied;
  1590. if (new_i_size > inode->i_size)
  1591. i_size_write(inode, pos+copied);
  1592. EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
  1593. if (new_i_size > EXT4_I(inode)->i_disksize) {
  1594. ext4_update_i_disksize(inode, new_i_size);
  1595. ret2 = ext4_mark_inode_dirty(handle, inode);
  1596. if (!ret)
  1597. ret = ret2;
  1598. }
  1599. unlock_page(page);
  1600. page_cache_release(page);
  1601. if (pos + len > inode->i_size && ext4_can_truncate(inode))
  1602. /* if we have allocated more blocks and copied
  1603. * less. We will have blocks allocated outside
  1604. * inode->i_size. So truncate them
  1605. */
  1606. ext4_orphan_add(handle, inode);
  1607. ret2 = ext4_journal_stop(handle);
  1608. if (!ret)
  1609. ret = ret2;
  1610. if (pos + len > inode->i_size) {
  1611. ext4_truncate_failed_write(inode);
  1612. /*
  1613. * If truncate failed early the inode might still be
  1614. * on the orphan list; we need to make sure the inode
  1615. * is removed from the orphan list in that case.
  1616. */
  1617. if (inode->i_nlink)
  1618. ext4_orphan_del(NULL, inode);
  1619. }
  1620. return ret ? ret : copied;
  1621. }
  1622. static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
  1623. {
  1624. int retries = 0;
  1625. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  1626. unsigned long md_needed, mdblocks, total = 0;
  1627. /*
  1628. * recalculate the amount of metadata blocks to reserve
  1629. * in order to allocate nrblocks
  1630. * worse case is one extent per block
  1631. */
  1632. repeat:
  1633. spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
  1634. total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
  1635. mdblocks = ext4_calc_metadata_amount(inode, total);
  1636. BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
  1637. md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
  1638. total = md_needed + nrblocks;
  1639. /*
  1640. * Make quota reservation here to prevent quota overflow
  1641. * later. Real quota accounting is done at pages writeout
  1642. * time.
  1643. */
  1644. if (vfs_dq_reserve_block(inode, total)) {
  1645. spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
  1646. return -EDQUOT;
  1647. }
  1648. if (ext4_claim_free_blocks(sbi, total)) {
  1649. spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
  1650. vfs_dq_release_reservation_block(inode, total);
  1651. if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
  1652. yield();
  1653. goto repeat;
  1654. }
  1655. return -ENOSPC;
  1656. }
  1657. EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
  1658. EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
  1659. spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
  1660. return 0; /* success */
  1661. }
  1662. static void ext4_da_release_space(struct inode *inode, int to_free)
  1663. {
  1664. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  1665. int total, mdb, mdb_free, release;
  1666. if (!to_free)
  1667. return; /* Nothing to release, exit */
  1668. spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
  1669. if (!EXT4_I(inode)->i_reserved_data_blocks) {
  1670. /*
  1671. * if there is no reserved blocks, but we try to free some
  1672. * then the counter is messed up somewhere.
  1673. * but since this function is called from invalidate
  1674. * page, it's harmless to return without any action
  1675. */
  1676. printk(KERN_INFO "ext4 delalloc try to release %d reserved "
  1677. "blocks for inode %lu, but there is no reserved "
  1678. "data blocks\n", to_free, inode->i_ino);
  1679. spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
  1680. return;
  1681. }
  1682. /* recalculate the number of metablocks still need to be reserved */
  1683. total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
  1684. mdb = ext4_calc_metadata_amount(inode, total);
  1685. /* figure out how many metablocks to release */
  1686. BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
  1687. mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
  1688. release = to_free + mdb_free;
  1689. /* update fs dirty blocks counter for truncate case */
  1690. percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
  1691. /* update per-inode reservations */
  1692. BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
  1693. EXT4_I(inode)->i_reserved_data_blocks -= to_free;
  1694. BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
  1695. EXT4_I(inode)->i_reserved_meta_blocks = mdb;
  1696. spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
  1697. vfs_dq_release_reservation_block(inode, release);
  1698. }
  1699. static void ext4_da_page_release_reservation(struct page *page,
  1700. unsigned long offset)
  1701. {
  1702. int to_release = 0;
  1703. struct buffer_head *head, *bh;
  1704. unsigned int curr_off = 0;
  1705. head = page_buffers(page);
  1706. bh = head;
  1707. do {
  1708. unsigned int next_off = curr_off + bh->b_size;
  1709. if ((offset <= curr_off) && (buffer_delay(bh))) {
  1710. to_release++;
  1711. clear_buffer_delay(bh);
  1712. }
  1713. curr_off = next_off;
  1714. } while ((bh = bh->b_this_page) != head);
  1715. ext4_da_release_space(page->mapping->host, to_release);
  1716. }
  1717. /*
  1718. * Delayed allocation stuff
  1719. */
  1720. /*
  1721. * mpage_da_submit_io - walks through extent of pages and try to write
  1722. * them with writepage() call back
  1723. *
  1724. * @mpd->inode: inode
  1725. * @mpd->first_page: first page of the extent
  1726. * @mpd->next_page: page after the last page of the extent
  1727. *
  1728. * By the time mpage_da_submit_io() is called we expect all blocks
  1729. * to be allocated. this may be wrong if allocation failed.
  1730. *
  1731. * As pages are already locked by write_cache_pages(), we can't use it
  1732. */
  1733. static int mpage_da_submit_io(struct mpage_da_data *mpd)
  1734. {
  1735. long pages_skipped;
  1736. struct pagevec pvec;
  1737. unsigned long index, end;
  1738. int ret = 0, err, nr_pages, i;
  1739. struct inode *inode = mpd->inode;
  1740. struct address_space *mapping = inode->i_mapping;
  1741. BUG_ON(mpd->next_page <= mpd->first_page);
  1742. /*
  1743. * We need to start from the first_page to the next_page - 1
  1744. * to make sure we also write the mapped dirty buffer_heads.
  1745. * If we look at mpd->b_blocknr we would only be looking
  1746. * at the currently mapped buffer_heads.
  1747. */
  1748. index = mpd->first_page;
  1749. end = mpd->next_page - 1;
  1750. pagevec_init(&pvec, 0);
  1751. while (index <= end) {
  1752. nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
  1753. if (nr_pages == 0)
  1754. break;
  1755. for (i = 0; i < nr_pages; i++) {
  1756. struct page *page = pvec.pages[i];
  1757. index = page->index;
  1758. if (index > end)
  1759. break;
  1760. index++;
  1761. BUG_ON(!PageLocked(page));
  1762. BUG_ON(PageWriteback(page));
  1763. pages_skipped = mpd->wbc->pages_skipped;
  1764. err = mapping->a_ops->writepage(page, mpd->wbc);
  1765. if (!err && (pages_skipped == mpd->wbc->pages_skipped))
  1766. /*
  1767. * have successfully written the page
  1768. * without skipping the same
  1769. */
  1770. mpd->pages_written++;
  1771. /*
  1772. * In error case, we have to continue because
  1773. * remaining pages are still locked
  1774. * XXX: unlock and re-dirty them?
  1775. */
  1776. if (ret == 0)
  1777. ret = err;
  1778. }
  1779. pagevec_release(&pvec);
  1780. }
  1781. return ret;
  1782. }
  1783. /*
  1784. * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
  1785. *
  1786. * @mpd->inode - inode to walk through
  1787. * @exbh->b_blocknr - first block on a disk
  1788. * @exbh->b_size - amount of space in bytes
  1789. * @logical - first logical block to start assignment with
  1790. *
  1791. * the function goes through all passed space and put actual disk
  1792. * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
  1793. */
  1794. static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
  1795. struct buffer_head *exbh)
  1796. {
  1797. struct inode *inode = mpd->inode;
  1798. struct address_space *mapping = inode->i_mapping;
  1799. int blocks = exbh->b_size >> inode->i_blkbits;
  1800. sector_t pblock = exbh->b_blocknr, cur_logical;
  1801. struct buffer_head *head, *bh;
  1802. pgoff_t index, end;
  1803. struct pagevec pvec;
  1804. int nr_pages, i;
  1805. index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
  1806. end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
  1807. cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
  1808. pagevec_init(&pvec, 0);
  1809. while (index <= end) {
  1810. /* XXX: optimize tail */
  1811. nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
  1812. if (nr_pages == 0)
  1813. break;
  1814. for (i = 0; i < nr_pages; i++) {
  1815. struct page *page = pvec.pages[i];
  1816. index = page->index;
  1817. if (index > end)
  1818. break;
  1819. index++;
  1820. BUG_ON(!PageLocked(page));
  1821. BUG_ON(PageWriteback(page));
  1822. BUG_ON(!page_has_buffers(page));
  1823. bh = page_buffers(page);
  1824. head = bh;
  1825. /* skip blocks out of the range */
  1826. do {
  1827. if (cur_logical >= logical)
  1828. break;
  1829. cur_logical++;
  1830. } while ((bh = bh->b_this_page) != head);
  1831. do {
  1832. if (cur_logical >= logical + blocks)
  1833. break;
  1834. if (buffer_delay(bh) ||
  1835. buffer_unwritten(bh)) {
  1836. BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
  1837. if (buffer_delay(bh)) {
  1838. clear_buffer_delay(bh);
  1839. bh->b_blocknr = pblock;
  1840. } else {
  1841. /*
  1842. * unwritten already should have
  1843. * blocknr assigned. Verify that
  1844. */
  1845. clear_buffer_unwritten(bh);
  1846. BUG_ON(bh->b_blocknr != pblock);
  1847. }
  1848. } else if (buffer_mapped(bh))
  1849. BUG_ON(bh->b_blocknr != pblock);
  1850. cur_logical++;
  1851. pblock++;
  1852. } while ((bh = bh->b_this_page) != head);
  1853. }
  1854. pagevec_release(&pvec);
  1855. }
  1856. }
  1857. /*
  1858. * __unmap_underlying_blocks - just a helper function to unmap
  1859. * set of blocks described by @bh
  1860. */
  1861. static inline void __unmap_underlying_blocks(struct inode *inode,
  1862. struct buffer_head *bh)
  1863. {
  1864. struct block_device *bdev = inode->i_sb->s_bdev;
  1865. int blocks, i;
  1866. blocks = bh->b_size >> inode->i_blkbits;
  1867. for (i = 0; i < blocks; i++)
  1868. unmap_underlying_metadata(bdev, bh->b_blocknr + i);
  1869. }
  1870. static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
  1871. sector_t logical, long blk_cnt)
  1872. {
  1873. int nr_pages, i;
  1874. pgoff_t index, end;
  1875. struct pagevec pvec;
  1876. struct inode *inode = mpd->inode;
  1877. struct address_space *mapping = inode->i_mapping;
  1878. index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
  1879. end = (logical + blk_cnt - 1) >>
  1880. (PAGE_CACHE_SHIFT - inode->i_blkbits);
  1881. while (index <= end) {
  1882. nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
  1883. if (nr_pages == 0)
  1884. break;
  1885. for (i = 0; i < nr_pages; i++) {
  1886. struct page *page = pvec.pages[i];
  1887. index = page->index;
  1888. if (index > end)
  1889. break;
  1890. index++;
  1891. BUG_ON(!PageLocked(page));
  1892. BUG_ON(PageWriteback(page));
  1893. block_invalidatepage(page, 0);
  1894. ClearPageUptodate(page);
  1895. unlock_page(page);
  1896. }
  1897. }
  1898. return;
  1899. }
  1900. static void ext4_print_free_blocks(struct inode *inode)
  1901. {
  1902. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  1903. printk(KERN_CRIT "Total free blocks count %lld\n",
  1904. ext4_count_free_blocks(inode->i_sb));
  1905. printk(KERN_CRIT "Free/Dirty block details\n");
  1906. printk(KERN_CRIT "free_blocks=%lld\n",
  1907. (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
  1908. printk(KERN_CRIT "dirty_blocks=%lld\n",
  1909. (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
  1910. printk(KERN_CRIT "Block reservation details\n");
  1911. printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
  1912. EXT4_I(inode)->i_reserved_data_blocks);
  1913. printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
  1914. EXT4_I(inode)->i_reserved_meta_blocks);
  1915. return;
  1916. }
  1917. /*
  1918. * mpage_da_map_blocks - go through given space
  1919. *
  1920. * @mpd - bh describing space
  1921. *
  1922. * The function skips space we know is already mapped to disk blocks.
  1923. *
  1924. */
  1925. static int mpage_da_map_blocks(struct mpage_da_data *mpd)
  1926. {
  1927. int err, blks, get_blocks_flags;
  1928. struct buffer_head new;
  1929. sector_t next = mpd->b_blocknr;
  1930. unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
  1931. loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
  1932. handle_t *handle = NULL;
  1933. /*
  1934. * We consider only non-mapped and non-allocated blocks
  1935. */
  1936. if ((mpd->b_state & (1 << BH_Mapped)) &&
  1937. !(mpd->b_state & (1 << BH_Delay)) &&
  1938. !(mpd->b_state & (1 << BH_Unwritten)))
  1939. return 0;
  1940. /*
  1941. * If we didn't accumulate anything to write simply return
  1942. */
  1943. if (!mpd->b_size)
  1944. return 0;
  1945. handle = ext4_journal_current_handle();
  1946. BUG_ON(!handle);
  1947. /*
  1948. * Call ext4_get_blocks() to allocate any delayed allocation
  1949. * blocks, or to convert an uninitialized extent to be
  1950. * initialized (in the case where we have written into
  1951. * one or more preallocated blocks).
  1952. *
  1953. * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
  1954. * indicate that we are on the delayed allocation path. This
  1955. * affects functions in many different parts of the allocation
  1956. * call path. This flag exists primarily because we don't
  1957. * want to change *many* call functions, so ext4_get_blocks()
  1958. * will set the magic i_delalloc_reserved_flag once the
  1959. * inode's allocation semaphore is taken.
  1960. *
  1961. * If the blocks in questions were delalloc blocks, set
  1962. * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
  1963. * variables are updated after the blocks have been allocated.
  1964. */
  1965. new.b_state = 0;
  1966. get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
  1967. EXT4_GET_BLOCKS_DELALLOC_RESERVE);
  1968. if (mpd->b_state & (1 << BH_Delay))
  1969. get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
  1970. blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
  1971. &new, get_blocks_flags);
  1972. if (blks < 0) {
  1973. err = blks;
  1974. /*
  1975. * If get block returns with error we simply
  1976. * return. Later writepage will redirty the page and
  1977. * writepages will find the dirty page again
  1978. */
  1979. if (err == -EAGAIN)
  1980. return 0;
  1981. if (err == -ENOSPC &&
  1982. ext4_count_free_blocks(mpd->inode->i_sb)) {
  1983. mpd->retval = err;
  1984. return 0;
  1985. }
  1986. /*
  1987. * get block failure will cause us to loop in
  1988. * writepages, because a_ops->writepage won't be able
  1989. * to make progress. The page will be redirtied by
  1990. * writepage and writepages will again try to write
  1991. * the same.
  1992. */
  1993. ext4_msg(mpd->inode->i_sb, KERN_CRIT,
  1994. "delayed block allocation failed for inode %lu at "
  1995. "logical offset %llu with max blocks %zd with "
  1996. "error %d\n", mpd->inode->i_ino,
  1997. (unsigned long long) next,
  1998. mpd->b_size >> mpd->inode->i_blkbits, err);
  1999. printk(KERN_CRIT "This should not happen!! "
  2000. "Data will be lost\n");
  2001. if (err == -ENOSPC) {
  2002. ext4_print_free_blocks(mpd->inode);
  2003. }
  2004. /* invalidate all the pages */
  2005. ext4_da_block_invalidatepages(mpd, next,
  2006. mpd->b_size >> mpd->inode->i_blkbits);
  2007. return err;
  2008. }
  2009. BUG_ON(blks == 0);
  2010. new.b_size = (blks << mpd->inode->i_blkbits);
  2011. if (buffer_new(&new))
  2012. __unmap_underlying_blocks(mpd->inode, &new);
  2013. /*
  2014. * If blocks are delayed marked, we need to
  2015. * put actual blocknr and drop delayed bit
  2016. */
  2017. if ((mpd->b_state & (1 << BH_Delay)) ||
  2018. (mpd->b_state & (1 << BH_Unwritten)))
  2019. mpage_put_bnr_to_bhs(mpd, next, &new);
  2020. if (ext4_should_order_data(mpd->inode)) {
  2021. err = ext4_jbd2_file_inode(handle, mpd->inode);
  2022. if (err)
  2023. return err;
  2024. }
  2025. /*
  2026. * Update on-disk size along with block allocation.
  2027. */
  2028. disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
  2029. if (disksize > i_size_read(mpd->inode))
  2030. disksize = i_size_read(mpd->inode);
  2031. if (disksize > EXT4_I(mpd->inode)->i_disksize) {
  2032. ext4_update_i_disksize(mpd->inode, disksize);
  2033. return ext4_mark_inode_dirty(handle, mpd->inode);
  2034. }
  2035. return 0;
  2036. }
  2037. #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
  2038. (1 << BH_Delay) | (1 << BH_Unwritten))
  2039. /*
  2040. * mpage_add_bh_to_extent - try to add one more block to extent of blocks
  2041. *
  2042. * @mpd->lbh - extent of blocks
  2043. * @logical - logical number of the block in the file
  2044. * @bh - bh of the block (used to access block's state)
  2045. *
  2046. * the function is used to collect contig. blocks in same state
  2047. */
  2048. static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
  2049. sector_t logical, size_t b_size,
  2050. unsigned long b_state)
  2051. {
  2052. sector_t next;
  2053. int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
  2054. /* check if thereserved journal credits might overflow */
  2055. if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
  2056. if (nrblocks >= EXT4_MAX_TRANS_DATA) {
  2057. /*
  2058. * With non-extent format we are limited by the journal
  2059. * credit available. Total credit needed to insert
  2060. * nrblocks contiguous blocks is dependent on the
  2061. * nrblocks. So limit nrblocks.
  2062. */
  2063. goto flush_it;
  2064. } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
  2065. EXT4_MAX_TRANS_DATA) {
  2066. /*
  2067. * Adding the new buffer_head would make it cross the
  2068. * allowed limit for which we have journal credit
  2069. * reserved. So limit the new bh->b_size
  2070. */
  2071. b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
  2072. mpd->inode->i_blkbits;
  2073. /* we will do mpage_da_submit_io in the next loop */
  2074. }
  2075. }
  2076. /*
  2077. * First block in the extent
  2078. */
  2079. if (mpd->b_size == 0) {
  2080. mpd->b_blocknr = logical;
  2081. mpd->b_size = b_size;
  2082. mpd->b_state = b_state & BH_FLAGS;
  2083. return;
  2084. }
  2085. next = mpd->b_blocknr + nrblocks;
  2086. /*
  2087. * Can we merge the block to our big extent?
  2088. */
  2089. if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
  2090. mpd->b_size += b_size;
  2091. return;
  2092. }
  2093. flush_it:
  2094. /*
  2095. * We couldn't merge the block to our extent, so we
  2096. * need to flush current extent and start new one
  2097. */
  2098. if (mpage_da_map_blocks(mpd) == 0)
  2099. mpage_da_submit_io(mpd);
  2100. mpd->io_done = 1;
  2101. return;
  2102. }
  2103. static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
  2104. {
  2105. return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
  2106. }
  2107. /*
  2108. * __mpage_da_writepage - finds extent of pages and blocks
  2109. *
  2110. * @page: page to consider
  2111. * @wbc: not used, we just follow rules
  2112. * @data: context
  2113. *
  2114. * The function finds extents of pages and scan them for all blocks.
  2115. */
  2116. static int __mpage_da_writepage(struct page *page,
  2117. struct writeback_control *wbc, void *data)
  2118. {
  2119. struct mpage_da_data *mpd = data;
  2120. struct inode *inode = mpd->inode;
  2121. struct buffer_head *bh, *head;
  2122. sector_t logical;
  2123. if (mpd->io_done) {
  2124. /*
  2125. * Rest of the page in the page_vec
  2126. * redirty then and skip then. We will
  2127. * try to write them again after
  2128. * starting a new transaction
  2129. */
  2130. redirty_page_for_writepage(wbc, page);
  2131. unlock_page(page);
  2132. return MPAGE_DA_EXTENT_TAIL;
  2133. }
  2134. /*
  2135. * Can we merge this page to current extent?
  2136. */
  2137. if (mpd->next_page != page->index) {
  2138. /*
  2139. * Nope, we can't. So, we map non-allocated blocks
  2140. * and start IO on them using writepage()
  2141. */
  2142. if (mpd->next_page != mpd->first_page) {
  2143. if (mpage_da_map_blocks(mpd) == 0)
  2144. mpage_da_submit_io(mpd);
  2145. /*
  2146. * skip rest of the page in the page_vec
  2147. */
  2148. mpd->io_done = 1;
  2149. redirty_page_for_writepage(wbc, page);
  2150. unlock_page(page);
  2151. return MPAGE_DA_EXTENT_TAIL;
  2152. }
  2153. /*
  2154. * Start next extent of pages ...
  2155. */
  2156. mpd->first_page = page->index;
  2157. /*
  2158. * ... and blocks
  2159. */
  2160. mpd->b_size = 0;
  2161. mpd->b_state = 0;
  2162. mpd->b_blocknr = 0;
  2163. }
  2164. mpd->next_page = page->index + 1;
  2165. logical = (sector_t) page->index <<
  2166. (PAGE_CACHE_SHIFT - inode->i_blkbits);
  2167. if (!page_has_buffers(page)) {
  2168. mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
  2169. (1 << BH_Dirty) | (1 << BH_Uptodate));
  2170. if (mpd->io_done)
  2171. return MPAGE_DA_EXTENT_TAIL;
  2172. } else {
  2173. /*
  2174. * Page with regular buffer heads, just add all dirty ones
  2175. */
  2176. head = page_buffers(page);
  2177. bh = head;
  2178. do {
  2179. BUG_ON(buffer_locked(bh));
  2180. /*
  2181. * We need to try to allocate
  2182. * unmapped blocks in the same page.
  2183. * Otherwise we won't make progress
  2184. * with the page in ext4_writepage
  2185. */
  2186. if (ext4_bh_delay_or_unwritten(NULL, bh)) {
  2187. mpage_add_bh_to_extent(mpd, logical,
  2188. bh->b_size,
  2189. bh->b_state);
  2190. if (mpd->io_done)
  2191. return MPAGE_DA_EXTENT_TAIL;
  2192. } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
  2193. /*
  2194. * mapped dirty buffer. We need to update
  2195. * the b_state because we look at
  2196. * b_state in mpage_da_map_blocks. We don't
  2197. * update b_size because if we find an
  2198. * unmapped buffer_head later we need to
  2199. * use the b_state flag of that buffer_head.
  2200. */
  2201. if (mpd->b_size == 0)
  2202. mpd->b_state = bh->b_state & BH_FLAGS;
  2203. }
  2204. logical++;
  2205. } while ((bh = bh->b_this_page) != head);
  2206. }
  2207. return 0;
  2208. }
  2209. /*
  2210. * This is a special get_blocks_t callback which is used by
  2211. * ext4_da_write_begin(). It will either return mapped block or
  2212. * reserve space for a single block.
  2213. *
  2214. * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
  2215. * We also have b_blocknr = -1 and b_bdev initialized properly
  2216. *
  2217. * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
  2218. * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
  2219. * initialized properly.
  2220. */
  2221. static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
  2222. struct buffer_head *bh_result, int create)
  2223. {
  2224. int ret = 0;
  2225. sector_t invalid_block = ~((sector_t) 0xffff);
  2226. if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
  2227. invalid_block = ~0;
  2228. BUG_ON(create == 0);
  2229. BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
  2230. /*
  2231. * first, we need to know whether the block is allocated already
  2232. * preallocated blocks are unmapped but should treated
  2233. * the same as allocated blocks.
  2234. */
  2235. ret = ext4_get_blocks(NULL, inode, iblock, 1, bh_result, 0);
  2236. if ((ret == 0) && !buffer_delay(bh_result)) {
  2237. /* the block isn't (pre)allocated yet, let's reserve space */
  2238. /*
  2239. * XXX: __block_prepare_write() unmaps passed block,
  2240. * is it OK?
  2241. */
  2242. ret = ext4_da_reserve_space(inode, 1);
  2243. if (ret)
  2244. /* not enough space to reserve */
  2245. return ret;
  2246. map_bh(bh_result, inode->i_sb, invalid_block);
  2247. set_buffer_new(bh_result);
  2248. set_buffer_delay(bh_result);
  2249. } else if (ret > 0) {
  2250. bh_result->b_size = (ret << inode->i_blkbits);
  2251. if (buffer_unwritten(bh_result)) {
  2252. /* A delayed write to unwritten bh should
  2253. * be marked new and mapped. Mapped ensures
  2254. * that we don't do get_block multiple times
  2255. * when we write to the same offset and new
  2256. * ensures that we do proper zero out for
  2257. * partial write.
  2258. */
  2259. set_buffer_new(bh_result);
  2260. set_buffer_mapped(bh_result);
  2261. }
  2262. ret = 0;
  2263. }
  2264. return ret;
  2265. }
  2266. /*
  2267. * This function is used as a standard get_block_t calback function
  2268. * when there is no desire to allocate any blocks. It is used as a
  2269. * callback function for block_prepare_write(), nobh_writepage(), and
  2270. * block_write_full_page(). These functions should only try to map a
  2271. * single block at a time.
  2272. *
  2273. * Since this function doesn't do block allocations even if the caller
  2274. * requests it by passing in create=1, it is critically important that
  2275. * any caller checks to make sure that any buffer heads are returned
  2276. * by this function are either all already mapped or marked for
  2277. * delayed allocation before calling nobh_writepage() or
  2278. * block_write_full_page(). Otherwise, b_blocknr could be left
  2279. * unitialized, and the page write functions will be taken by
  2280. * surprise.
  2281. */
  2282. static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
  2283. struct buffer_head *bh_result, int create)
  2284. {
  2285. int ret = 0;
  2286. unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
  2287. BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
  2288. /*
  2289. * we don't want to do block allocation in writepage
  2290. * so call get_block_wrap with create = 0
  2291. */
  2292. ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
  2293. if (ret > 0) {
  2294. bh_result->b_size = (ret << inode->i_blkbits);
  2295. ret = 0;
  2296. }
  2297. return ret;
  2298. }
  2299. static int bget_one(handle_t *handle, struct buffer_head *bh)
  2300. {
  2301. get_bh(bh);
  2302. return 0;
  2303. }
  2304. static int bput_one(handle_t *handle, struct buffer_head *bh)
  2305. {
  2306. put_bh(bh);
  2307. return 0;
  2308. }
  2309. static int __ext4_journalled_writepage(struct page *page,
  2310. unsigned int len)
  2311. {
  2312. struct address_space *mapping = page->mapping;
  2313. struct inode *inode = mapping->host;
  2314. struct buffer_head *page_bufs;
  2315. handle_t *handle = NULL;
  2316. int ret = 0;
  2317. int err;
  2318. page_bufs = page_buffers(page);
  2319. BUG_ON(!page_bufs);
  2320. walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
  2321. /* As soon as we unlock the page, it can go away, but we have
  2322. * references to buffers so we are safe */
  2323. unlock_page(page);
  2324. handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
  2325. if (IS_ERR(handle)) {
  2326. ret = PTR_ERR(handle);
  2327. goto out;
  2328. }
  2329. ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
  2330. do_journal_get_write_access);
  2331. err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
  2332. write_end_fn);
  2333. if (ret == 0)
  2334. ret = err;
  2335. err = ext4_journal_stop(handle);
  2336. if (!ret)
  2337. ret = err;
  2338. walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
  2339. EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
  2340. out:
  2341. return ret;
  2342. }
  2343. /*
  2344. * Note that we don't need to start a transaction unless we're journaling data
  2345. * because we should have holes filled from ext4_page_mkwrite(). We even don't
  2346. * need to file the inode to the transaction's list in ordered mode because if
  2347. * we are writing back data added by write(), the inode is already there and if
  2348. * we are writing back data modified via mmap(), noone guarantees in which
  2349. * transaction the data will hit the disk. In case we are journaling data, we
  2350. * cannot start transaction directly because transaction start ranks above page
  2351. * lock so we have to do some magic.
  2352. *
  2353. * This function can get called via...
  2354. * - ext4_da_writepages after taking page lock (have journal handle)
  2355. * - journal_submit_inode_data_buffers (no journal handle)
  2356. * - shrink_page_list via pdflush (no journal handle)
  2357. * - grab_page_cache when doing write_begin (have journal handle)
  2358. *
  2359. * We don't do any block allocation in this function. If we have page with
  2360. * multiple blocks we need to write those buffer_heads that are mapped. This
  2361. * is important for mmaped based write. So if we do with blocksize 1K
  2362. * truncate(f, 1024);
  2363. * a = mmap(f, 0, 4096);
  2364. * a[0] = 'a';
  2365. * truncate(f, 4096);
  2366. * we have in the page first buffer_head mapped via page_mkwrite call back
  2367. * but other bufer_heads would be unmapped but dirty(dirty done via the
  2368. * do_wp_page). So writepage should write the first block. If we modify
  2369. * the mmap area beyond 1024 we will again get a page_fault and the
  2370. * page_mkwrite callback will do the block allocation and mark the
  2371. * buffer_heads mapped.
  2372. *
  2373. * We redirty the page if we have any buffer_heads that is either delay or
  2374. * unwritten in the page.
  2375. *
  2376. * We can get recursively called as show below.
  2377. *
  2378. * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
  2379. * ext4_writepage()
  2380. *
  2381. * But since we don't do any block allocation we should not deadlock.
  2382. * Page also have the dirty flag cleared so we don't get recurive page_lock.
  2383. */
  2384. static int ext4_writepage(struct page *page,
  2385. struct writeback_control *wbc)
  2386. {
  2387. int ret = 0;
  2388. loff_t size;
  2389. unsigned int len;
  2390. struct buffer_head *page_bufs;
  2391. struct inode *inode = page->mapping->host;
  2392. trace_ext4_writepage(inode, page);
  2393. size = i_size_read(inode);
  2394. if (page->index == size >> PAGE_CACHE_SHIFT)
  2395. len = size & ~PAGE_CACHE_MASK;
  2396. else
  2397. len = PAGE_CACHE_SIZE;
  2398. if (page_has_buffers(page)) {
  2399. page_bufs = page_buffers(page);
  2400. if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
  2401. ext4_bh_delay_or_unwritten)) {
  2402. /*
  2403. * We don't want to do block allocation
  2404. * So redirty the page and return
  2405. * We may reach here when we do a journal commit
  2406. * via journal_submit_inode_data_buffers.
  2407. * If we don't have mapping block we just ignore
  2408. * them. We can also reach here via shrink_page_list
  2409. */
  2410. redirty_page_for_writepage(wbc, page);
  2411. unlock_page(page);
  2412. return 0;
  2413. }
  2414. } else {
  2415. /*
  2416. * The test for page_has_buffers() is subtle:
  2417. * We know the page is dirty but it lost buffers. That means
  2418. * that at some moment in time after write_begin()/write_end()
  2419. * has been called all buffers have been clean and thus they
  2420. * must have been written at least once. So they are all
  2421. * mapped and we can happily proceed with mapping them
  2422. * and writing the page.
  2423. *
  2424. * Try to initialize the buffer_heads and check whether
  2425. * all are mapped and non delay. We don't want to
  2426. * do block allocation here.
  2427. */
  2428. ret = block_prepare_write(page, 0, len,
  2429. noalloc_get_block_write);
  2430. if (!ret) {
  2431. page_bufs = page_buffers(page);
  2432. /* check whether all are mapped and non delay */
  2433. if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
  2434. ext4_bh_delay_or_unwritten)) {
  2435. redirty_page_for_writepage(wbc, page);
  2436. unlock_page(page);
  2437. return 0;
  2438. }
  2439. } else {
  2440. /*
  2441. * We can't do block allocation here
  2442. * so just redity the page and unlock
  2443. * and return
  2444. */
  2445. redirty_page_for_writepage(wbc, page);
  2446. unlock_page(page);
  2447. return 0;
  2448. }
  2449. /* now mark the buffer_heads as dirty and uptodate */
  2450. block_commit_write(page, 0, len);
  2451. }
  2452. if (PageChecked(page) && ext4_should_journal_data(inode)) {
  2453. /*
  2454. * It's mmapped pagecache. Add buffers and journal it. There
  2455. * doesn't seem much point in redirtying the page here.
  2456. */
  2457. ClearPageChecked(page);
  2458. return __ext4_journalled_writepage(page, len);
  2459. }
  2460. if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
  2461. ret = nobh_writepage(page, noalloc_get_block_write, wbc);
  2462. else
  2463. ret = block_write_full_page(page, noalloc_get_block_write,
  2464. wbc);
  2465. return ret;
  2466. }
  2467. /*
  2468. * This is called via ext4_da_writepages() to
  2469. * calulate the total number of credits to reserve to fit
  2470. * a single extent allocation into a single transaction,
  2471. * ext4_da_writpeages() will loop calling this before
  2472. * the block allocation.
  2473. */
  2474. static int ext4_da_writepages_trans_blocks(struct inode *inode)
  2475. {
  2476. int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
  2477. /*
  2478. * With non-extent format the journal credit needed to
  2479. * insert nrblocks contiguous block is dependent on
  2480. * number of contiguous block. So we will limit
  2481. * number of contiguous block to a sane value
  2482. */
  2483. if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) &&
  2484. (max_blocks > EXT4_MAX_TRANS_DATA))
  2485. max_blocks = EXT4_MAX_TRANS_DATA;
  2486. return ext4_chunk_trans_blocks(inode, max_blocks);
  2487. }
  2488. static int ext4_da_writepages(struct address_space *mapping,
  2489. struct writeback_control *wbc)
  2490. {
  2491. pgoff_t index;
  2492. int range_whole = 0;
  2493. handle_t *handle = NULL;
  2494. struct mpage_da_data mpd;
  2495. struct inode *inode = mapping->host;
  2496. int no_nrwrite_index_update;
  2497. int pages_written = 0;
  2498. long pages_skipped;
  2499. unsigned int max_pages;
  2500. int range_cyclic, cycled = 1, io_done = 0;
  2501. int needed_blocks, ret = 0;
  2502. long desired_nr_to_write, nr_to_writebump = 0;
  2503. loff_t range_start = wbc->range_start;
  2504. struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
  2505. trace_ext4_da_writepages(inode, wbc);
  2506. /*
  2507. * No pages to write? This is mainly a kludge to avoid starting
  2508. * a transaction for special inodes like journal inode on last iput()
  2509. * because that could violate lock ordering on umount
  2510. */
  2511. if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
  2512. return 0;
  2513. /*
  2514. * If the filesystem has aborted, it is read-only, so return
  2515. * right away instead of dumping stack traces later on that
  2516. * will obscure the real source of the problem. We test
  2517. * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
  2518. * the latter could be true if the filesystem is mounted
  2519. * read-only, and in that case, ext4_da_writepages should
  2520. * *never* be called, so if that ever happens, we would want
  2521. * the stack trace.
  2522. */
  2523. if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
  2524. return -EROFS;
  2525. if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
  2526. range_whole = 1;
  2527. range_cyclic = wbc->range_cyclic;
  2528. if (wbc->range_cyclic) {
  2529. index = mapping->writeback_index;
  2530. if (index)
  2531. cycled = 0;
  2532. wbc->range_start = index << PAGE_CACHE_SHIFT;
  2533. wbc->range_end = LLONG_MAX;
  2534. wbc->range_cyclic = 0;
  2535. } else
  2536. index = wbc->range_start >> PAGE_CACHE_SHIFT;
  2537. /*
  2538. * This works around two forms of stupidity. The first is in
  2539. * the writeback code, which caps the maximum number of pages
  2540. * written to be 1024 pages. This is wrong on multiple
  2541. * levels; different architectues have a different page size,
  2542. * which changes the maximum amount of data which gets
  2543. * written. Secondly, 4 megabytes is way too small. XFS
  2544. * forces this value to be 16 megabytes by multiplying
  2545. * nr_to_write parameter by four, and then relies on its
  2546. * allocator to allocate larger extents to make them
  2547. * contiguous. Unfortunately this brings us to the second
  2548. * stupidity, which is that ext4's mballoc code only allocates
  2549. * at most 2048 blocks. So we force contiguous writes up to
  2550. * the number of dirty blocks in the inode, or
  2551. * sbi->max_writeback_mb_bump whichever is smaller.
  2552. */
  2553. max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
  2554. if (!range_cyclic && range_whole)
  2555. desired_nr_to_write = wbc->nr_to_write * 8;
  2556. else
  2557. desired_nr_to_write = ext4_num_dirty_pages(inode, index,
  2558. max_pages);
  2559. if (desired_nr_to_write > max_pages)
  2560. desired_nr_to_write = max_pages;
  2561. if (wbc->nr_to_write < desired_nr_to_write) {
  2562. nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
  2563. wbc->nr_to_write = desired_nr_to_write;
  2564. }
  2565. mpd.wbc = wbc;
  2566. mpd.inode = mapping->host;
  2567. /*
  2568. * we don't want write_cache_pages to update
  2569. * nr_to_write and writeback_index
  2570. */
  2571. no_nrwrite_index_update = wbc->no_nrwrite_index_update;
  2572. wbc->no_nrwrite_index_update = 1;
  2573. pages_skipped = wbc->pages_skipped;
  2574. retry:
  2575. while (!ret && wbc->nr_to_write > 0) {
  2576. /*
  2577. * we insert one extent at a time. So we need
  2578. * credit needed for single extent allocation.
  2579. * journalled mode is currently not supported
  2580. * by delalloc
  2581. */
  2582. BUG_ON(ext4_should_journal_data(inode));
  2583. needed_blocks = ext4_da_writepages_trans_blocks(inode);
  2584. /* start a new transaction*/
  2585. handle = ext4_journal_start(inode, needed_blocks);
  2586. if (IS_ERR(handle)) {
  2587. ret = PTR_ERR(handle);
  2588. ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
  2589. "%ld pages, ino %lu; err %d\n", __func__,
  2590. wbc->nr_to_write, inode->i_ino, ret);
  2591. goto out_writepages;
  2592. }
  2593. /*
  2594. * Now call __mpage_da_writepage to find the next
  2595. * contiguous region of logical blocks that need
  2596. * blocks to be allocated by ext4. We don't actually
  2597. * submit the blocks for I/O here, even though
  2598. * write_cache_pages thinks it will, and will set the
  2599. * pages as clean for write before calling
  2600. * __mpage_da_writepage().
  2601. */
  2602. mpd.b_size = 0;
  2603. mpd.b_state = 0;
  2604. mpd.b_blocknr = 0;
  2605. mpd.first_page = 0;
  2606. mpd.next_page = 0;
  2607. mpd.io_done = 0;
  2608. mpd.pages_written = 0;
  2609. mpd.retval = 0;
  2610. ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
  2611. &mpd);
  2612. /*
  2613. * If we have a contigous extent of pages and we
  2614. * haven't done the I/O yet, map the blocks and submit
  2615. * them for I/O.
  2616. */
  2617. if (!mpd.io_done && mpd.next_page != mpd.first_page) {
  2618. if (mpage_da_map_blocks(&mpd) == 0)
  2619. mpage_da_submit_io(&mpd);
  2620. mpd.io_done = 1;
  2621. ret = MPAGE_DA_EXTENT_TAIL;
  2622. }
  2623. trace_ext4_da_write_pages(inode, &mpd);
  2624. wbc->nr_to_write -= mpd.pages_written;
  2625. ext4_journal_stop(handle);
  2626. if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
  2627. /* commit the transaction which would
  2628. * free blocks released in the transaction
  2629. * and try again
  2630. */
  2631. jbd2_journal_force_commit_nested(sbi->s_journal);
  2632. wbc->pages_skipped = pages_skipped;
  2633. ret = 0;
  2634. } else if (ret == MPAGE_DA_EXTENT_TAIL) {
  2635. /*
  2636. * got one extent now try with
  2637. * rest of the pages
  2638. */
  2639. pages_written += mpd.pages_written;
  2640. wbc->pages_skipped = pages_skipped;
  2641. ret = 0;
  2642. io_done = 1;
  2643. } else if (wbc->nr_to_write)
  2644. /*
  2645. * There is no more writeout needed
  2646. * or we requested for a noblocking writeout
  2647. * and we found the device congested
  2648. */
  2649. break;
  2650. }
  2651. if (!io_done && !cycled) {
  2652. cycled = 1;
  2653. index = 0;
  2654. wbc->range_start = index << PAGE_CACHE_SHIFT;
  2655. wbc->range_end = mapping->writeback_index - 1;
  2656. goto retry;
  2657. }
  2658. if (pages_skipped != wbc->pages_skipped)
  2659. ext4_msg(inode->i_sb, KERN_CRIT,
  2660. "This should not happen leaving %s "
  2661. "with nr_to_write = %ld ret = %d\n",
  2662. __func__, wbc->nr_to_write, ret);
  2663. /* Update index */
  2664. index += pages_written;
  2665. wbc->range_cyclic = range_cyclic;
  2666. if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
  2667. /*
  2668. * set the writeback_index so that range_cyclic
  2669. * mode will write it back later
  2670. */
  2671. mapping->writeback_index = index;
  2672. out_writepages:
  2673. if (!no_nrwrite_index_update)
  2674. wbc->no_nrwrite_index_update = 0;
  2675. if (wbc->nr_to_write > nr_to_writebump)
  2676. wbc->nr_to_write -= nr_to_writebump;
  2677. wbc->range_start = range_start;
  2678. trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
  2679. return ret;
  2680. }
  2681. #define FALL_BACK_TO_NONDELALLOC 1
  2682. static int ext4_nonda_switch(struct super_block *sb)
  2683. {
  2684. s64 free_blocks, dirty_blocks;
  2685. struct ext4_sb_info *sbi = EXT4_SB(sb);
  2686. /*
  2687. * switch to non delalloc mode if we are running low
  2688. * on free block. The free block accounting via percpu
  2689. * counters can get slightly wrong with percpu_counter_batch getting
  2690. * accumulated on each CPU without updating global counters
  2691. * Delalloc need an accurate free block accounting. So switch
  2692. * to non delalloc when we are near to error range.
  2693. */
  2694. free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
  2695. dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
  2696. if (2 * free_blocks < 3 * dirty_blocks ||
  2697. free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
  2698. /*
  2699. * free block count is less that 150% of dirty blocks
  2700. * or free blocks is less that watermark
  2701. */
  2702. return 1;
  2703. }
  2704. return 0;
  2705. }
  2706. static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
  2707. loff_t pos, unsigned len, unsigned flags,
  2708. struct page **pagep, void **fsdata)
  2709. {
  2710. int ret, retries = 0;
  2711. struct page *page;
  2712. pgoff_t index;
  2713. unsigned from, to;
  2714. struct inode *inode = mapping->host;
  2715. handle_t *handle;
  2716. index = pos >> PAGE_CACHE_SHIFT;
  2717. from = pos & (PAGE_CACHE_SIZE - 1);
  2718. to = from + len;
  2719. if (ext4_nonda_switch(inode->i_sb)) {
  2720. *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
  2721. return ext4_write_begin(file, mapping, pos,
  2722. len, flags, pagep, fsdata);
  2723. }
  2724. *fsdata = (void *)0;
  2725. trace_ext4_da_write_begin(inode, pos, len, flags);
  2726. retry:
  2727. /*
  2728. * With delayed allocation, we don't log the i_disksize update
  2729. * if there is delayed block allocation. But we still need
  2730. * to journalling the i_disksize update if writes to the end
  2731. * of file which has an already mapped buffer.
  2732. */
  2733. handle = ext4_journal_start(inode, 1);
  2734. if (IS_ERR(handle)) {
  2735. ret = PTR_ERR(handle);
  2736. goto out;
  2737. }
  2738. /* We cannot recurse into the filesystem as the transaction is already
  2739. * started */
  2740. flags |= AOP_FLAG_NOFS;
  2741. page = grab_cache_page_write_begin(mapping, index, flags);
  2742. if (!page) {
  2743. ext4_journal_stop(handle);
  2744. ret = -ENOMEM;
  2745. goto out;
  2746. }
  2747. *pagep = page;
  2748. ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
  2749. ext4_da_get_block_prep);
  2750. if (ret < 0) {
  2751. unlock_page(page);
  2752. ext4_journal_stop(handle);
  2753. page_cache_release(page);
  2754. /*
  2755. * block_write_begin may have instantiated a few blocks
  2756. * outside i_size. Trim these off again. Don't need
  2757. * i_size_read because we hold i_mutex.
  2758. */
  2759. if (pos + len > inode->i_size)
  2760. ext4_truncate_failed_write(inode);
  2761. }
  2762. if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
  2763. goto retry;
  2764. out:
  2765. return ret;
  2766. }
  2767. /*
  2768. * Check if we should update i_disksize
  2769. * when write to the end of file but not require block allocation
  2770. */
  2771. static int ext4_da_should_update_i_disksize(struct page *page,
  2772. unsigned long offset)
  2773. {
  2774. struct buffer_head *bh;
  2775. struct inode *inode = page->mapping->host;
  2776. unsigned int idx;
  2777. int i;
  2778. bh = page_buffers(page);
  2779. idx = offset >> inode->i_blkbits;
  2780. for (i = 0; i < idx; i++)
  2781. bh = bh->b_this_page;
  2782. if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
  2783. return 0;
  2784. return 1;
  2785. }
  2786. static int ext4_da_write_end(struct file *file,
  2787. struct address_space *mapping,
  2788. loff_t pos, unsigned len, unsigned copied,
  2789. struct page *page, void *fsdata)
  2790. {
  2791. struct inode *inode = mapping->host;
  2792. int ret = 0, ret2;
  2793. handle_t *handle = ext4_journal_current_handle();
  2794. loff_t new_i_size;
  2795. unsigned long start, end;
  2796. int write_mode = (int)(unsigned long)fsdata;
  2797. if (write_mode == FALL_BACK_TO_NONDELALLOC) {
  2798. if (ext4_should_order_data(inode)) {
  2799. return ext4_ordered_write_end(file, mapping, pos,
  2800. len, copied, page, fsdata);
  2801. } else if (ext4_should_writeback_data(inode)) {
  2802. return ext4_writeback_write_end(file, mapping, pos,
  2803. len, copied, page, fsdata);
  2804. } else {
  2805. BUG();
  2806. }
  2807. }
  2808. trace_ext4_da_write_end(inode, pos, len, copied);
  2809. start = pos & (PAGE_CACHE_SIZE - 1);
  2810. end = start + copied - 1;
  2811. /*
  2812. * generic_write_end() will run mark_inode_dirty() if i_size
  2813. * changes. So let's piggyback the i_disksize mark_inode_dirty
  2814. * into that.
  2815. */
  2816. new_i_size = pos + copied;
  2817. if (new_i_size > EXT4_I(inode)->i_disksize) {
  2818. if (ext4_da_should_update_i_disksize(page, end)) {
  2819. down_write(&EXT4_I(inode)->i_data_sem);
  2820. if (new_i_size > EXT4_I(inode)->i_disksize) {
  2821. /*
  2822. * Updating i_disksize when extending file
  2823. * without needing block allocation
  2824. */
  2825. if (ext4_should_order_data(inode))
  2826. ret = ext4_jbd2_file_inode(handle,
  2827. inode);
  2828. EXT4_I(inode)->i_disksize = new_i_size;
  2829. }
  2830. up_write(&EXT4_I(inode)->i_data_sem);
  2831. /* We need to mark inode dirty even if
  2832. * new_i_size is less that inode->i_size
  2833. * bu greater than i_disksize.(hint delalloc)
  2834. */
  2835. ext4_mark_inode_dirty(handle, inode);
  2836. }
  2837. }
  2838. ret2 = generic_write_end(file, mapping, pos, len, copied,
  2839. page, fsdata);
  2840. copied = ret2;
  2841. if (ret2 < 0)
  2842. ret = ret2;
  2843. ret2 = ext4_journal_stop(handle);
  2844. if (!ret)
  2845. ret = ret2;
  2846. return ret ? ret : copied;
  2847. }
  2848. static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
  2849. {
  2850. /*
  2851. * Drop reserved blocks
  2852. */
  2853. BUG_ON(!PageLocked(page));
  2854. if (!page_has_buffers(page))
  2855. goto out;
  2856. ext4_da_page_release_reservation(page, offset);
  2857. out:
  2858. ext4_invalidatepage(page, offset);
  2859. return;
  2860. }
  2861. /*
  2862. * Force all delayed allocation blocks to be allocated for a given inode.
  2863. */
  2864. int ext4_alloc_da_blocks(struct inode *inode)
  2865. {
  2866. trace_ext4_alloc_da_blocks(inode);
  2867. if (!EXT4_I(inode)->i_reserved_data_blocks &&
  2868. !EXT4_I(inode)->i_reserved_meta_blocks)
  2869. return 0;
  2870. /*
  2871. * We do something simple for now. The filemap_flush() will
  2872. * also start triggering a write of the data blocks, which is
  2873. * not strictly speaking necessary (and for users of
  2874. * laptop_mode, not even desirable). However, to do otherwise
  2875. * would require replicating code paths in:
  2876. *
  2877. * ext4_da_writepages() ->
  2878. * write_cache_pages() ---> (via passed in callback function)
  2879. * __mpage_da_writepage() -->
  2880. * mpage_add_bh_to_extent()
  2881. * mpage_da_map_blocks()
  2882. *
  2883. * The problem is that write_cache_pages(), located in
  2884. * mm/page-writeback.c, marks pages clean in preparation for
  2885. * doing I/O, which is not desirable if we're not planning on
  2886. * doing I/O at all.
  2887. *
  2888. * We could call write_cache_pages(), and then redirty all of
  2889. * the pages by calling redirty_page_for_writeback() but that
  2890. * would be ugly in the extreme. So instead we would need to
  2891. * replicate parts of the code in the above functions,
  2892. * simplifying them becuase we wouldn't actually intend to
  2893. * write out the pages, but rather only collect contiguous
  2894. * logical block extents, call the multi-block allocator, and
  2895. * then update the buffer heads with the block allocations.
  2896. *
  2897. * For now, though, we'll cheat by calling filemap_flush(),
  2898. * which will map the blocks, and start the I/O, but not
  2899. * actually wait for the I/O to complete.
  2900. */
  2901. return filemap_flush(inode->i_mapping);
  2902. }
  2903. /*
  2904. * bmap() is special. It gets used by applications such as lilo and by
  2905. * the swapper to find the on-disk block of a specific piece of data.
  2906. *
  2907. * Naturally, this is dangerous if the block concerned is still in the
  2908. * journal. If somebody makes a swapfile on an ext4 data-journaling
  2909. * filesystem and enables swap, then they may get a nasty shock when the
  2910. * data getting swapped to that swapfile suddenly gets overwritten by
  2911. * the original zero's written out previously to the journal and
  2912. * awaiting writeback in the kernel's buffer cache.
  2913. *
  2914. * So, if we see any bmap calls here on a modified, data-journaled file,
  2915. * take extra steps to flush any blocks which might be in the cache.
  2916. */
  2917. static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
  2918. {
  2919. struct inode *inode = mapping->host;
  2920. journal_t *journal;
  2921. int err;
  2922. if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
  2923. test_opt(inode->i_sb, DELALLOC)) {
  2924. /*
  2925. * With delalloc we want to sync the file
  2926. * so that we can make sure we allocate
  2927. * blocks for file
  2928. */
  2929. filemap_write_and_wait(mapping);
  2930. }
  2931. if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
  2932. /*
  2933. * This is a REALLY heavyweight approach, but the use of
  2934. * bmap on dirty files is expected to be extremely rare:
  2935. * only if we run lilo or swapon on a freshly made file
  2936. * do we expect this to happen.
  2937. *
  2938. * (bmap requires CAP_SYS_RAWIO so this does not
  2939. * represent an unprivileged user DOS attack --- we'd be
  2940. * in trouble if mortal users could trigger this path at
  2941. * will.)
  2942. *
  2943. * NB. EXT4_STATE_JDATA is not set on files other than
  2944. * regular files. If somebody wants to bmap a directory
  2945. * or symlink and gets confused because the buffer
  2946. * hasn't yet been flushed to disk, they deserve
  2947. * everything they get.
  2948. */
  2949. EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
  2950. journal = EXT4_JOURNAL(inode);
  2951. jbd2_journal_lock_updates(journal);
  2952. err = jbd2_journal_flush(journal);
  2953. jbd2_journal_unlock_updates(journal);
  2954. if (err)
  2955. return 0;
  2956. }
  2957. return generic_block_bmap(mapping, block, ext4_get_block);
  2958. }
  2959. static int ext4_readpage(struct file *file, struct page *page)
  2960. {
  2961. return mpage_readpage(page, ext4_get_block);
  2962. }
  2963. static int
  2964. ext4_readpages(struct file *file, struct address_space *mapping,
  2965. struct list_head *pages, unsigned nr_pages)
  2966. {
  2967. return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
  2968. }
  2969. static void ext4_invalidatepage(struct page *page, unsigned long offset)
  2970. {
  2971. journal_t *journal = EXT4_JOURNAL(page->mapping->host);
  2972. /*
  2973. * If it's a full truncate we just forget about the pending dirtying
  2974. */
  2975. if (offset == 0)
  2976. ClearPageChecked(page);
  2977. if (journal)
  2978. jbd2_journal_invalidatepage(journal, page, offset);
  2979. else
  2980. block_invalidatepage(page, offset);
  2981. }
  2982. static int ext4_releasepage(struct page *page, gfp_t wait)
  2983. {
  2984. journal_t *journal = EXT4_JOURNAL(page->mapping->host);
  2985. WARN_ON(PageChecked(page));
  2986. if (!page_has_buffers(page))
  2987. return 0;
  2988. if (journal)
  2989. return jbd2_journal_try_to_free_buffers(journal, page, wait);
  2990. else
  2991. return try_to_free_buffers(page);
  2992. }
  2993. /*
  2994. * O_DIRECT for ext3 (or indirect map) based files
  2995. *
  2996. * If the O_DIRECT write will extend the file then add this inode to the
  2997. * orphan list. So recovery will truncate it back to the original size
  2998. * if the machine crashes during the write.
  2999. *
  3000. * If the O_DIRECT write is intantiating holes inside i_size and the machine
  3001. * crashes then stale disk data _may_ be exposed inside the file. But current
  3002. * VFS code falls back into buffered path in that case so we are safe.
  3003. */
  3004. static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
  3005. const struct iovec *iov, loff_t offset,
  3006. unsigned long nr_segs)
  3007. {
  3008. struct file *file = iocb->ki_filp;
  3009. struct inode *inode = file->f_mapping->host;
  3010. struct ext4_inode_info *ei = EXT4_I(inode);
  3011. handle_t *handle;
  3012. ssize_t ret;
  3013. int orphan = 0;
  3014. size_t count = iov_length(iov, nr_segs);
  3015. int retries = 0;
  3016. if (rw == WRITE) {
  3017. loff_t final_size = offset + count;
  3018. if (final_size > inode->i_size) {
  3019. /* Credits for sb + inode write */
  3020. handle = ext4_journal_start(inode, 2);
  3021. if (IS_ERR(handle)) {
  3022. ret = PTR_ERR(handle);
  3023. goto out;
  3024. }
  3025. ret = ext4_orphan_add(handle, inode);
  3026. if (ret) {
  3027. ext4_journal_stop(handle);
  3028. goto out;
  3029. }
  3030. orphan = 1;
  3031. ei->i_disksize = inode->i_size;
  3032. ext4_journal_stop(handle);
  3033. }
  3034. }
  3035. retry:
  3036. ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
  3037. offset, nr_segs,
  3038. ext4_get_block, NULL);
  3039. if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
  3040. goto retry;
  3041. if (orphan) {
  3042. int err;
  3043. /* Credits for sb + inode write */
  3044. handle = ext4_journal_start(inode, 2);
  3045. if (IS_ERR(handle)) {
  3046. /* This is really bad luck. We've written the data
  3047. * but cannot extend i_size. Bail out and pretend
  3048. * the write failed... */
  3049. ret = PTR_ERR(handle);
  3050. goto out;
  3051. }
  3052. if (inode->i_nlink)
  3053. ext4_orphan_del(handle, inode);
  3054. if (ret > 0) {
  3055. loff_t end = offset + ret;
  3056. if (end > inode->i_size) {
  3057. ei->i_disksize = end;
  3058. i_size_write(inode, end);
  3059. /*
  3060. * We're going to return a positive `ret'
  3061. * here due to non-zero-length I/O, so there's
  3062. * no way of reporting error returns from
  3063. * ext4_mark_inode_dirty() to userspace. So
  3064. * ignore it.
  3065. */
  3066. ext4_mark_inode_dirty(handle, inode);
  3067. }
  3068. }
  3069. err = ext4_journal_stop(handle);
  3070. if (ret == 0)
  3071. ret = err;
  3072. }
  3073. out:
  3074. return ret;
  3075. }
  3076. static int ext4_get_block_dio_write(struct inode *inode, sector_t iblock,
  3077. struct buffer_head *bh_result, int create)
  3078. {
  3079. handle_t *handle = NULL;
  3080. int ret = 0;
  3081. unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
  3082. int dio_credits;
  3083. ext4_debug("ext4_get_block_dio_write: inode %lu, create flag %d\n",
  3084. inode->i_ino, create);
  3085. /*
  3086. * DIO VFS code passes create = 0 flag for write to
  3087. * the middle of file. It does this to avoid block
  3088. * allocation for holes, to prevent expose stale data
  3089. * out when there is parallel buffered read (which does
  3090. * not hold the i_mutex lock) while direct IO write has
  3091. * not completed. DIO request on holes finally falls back
  3092. * to buffered IO for this reason.
  3093. *
  3094. * For ext4 extent based file, since we support fallocate,
  3095. * new allocated extent as uninitialized, for holes, we
  3096. * could fallocate blocks for holes, thus parallel
  3097. * buffered IO read will zero out the page when read on
  3098. * a hole while parallel DIO write to the hole has not completed.
  3099. *
  3100. * when we come here, we know it's a direct IO write to
  3101. * to the middle of file (<i_size)
  3102. * so it's safe to override the create flag from VFS.
  3103. */
  3104. create = EXT4_GET_BLOCKS_DIO_CREATE_EXT;
  3105. if (max_blocks > DIO_MAX_BLOCKS)
  3106. max_blocks = DIO_MAX_BLOCKS;
  3107. dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
  3108. handle = ext4_journal_start(inode, dio_credits);
  3109. if (IS_ERR(handle)) {
  3110. ret = PTR_ERR(handle);
  3111. goto out;
  3112. }
  3113. ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
  3114. create);
  3115. if (ret > 0) {
  3116. bh_result->b_size = (ret << inode->i_blkbits);
  3117. ret = 0;
  3118. }
  3119. ext4_journal_stop(handle);
  3120. out:
  3121. return ret;
  3122. }
  3123. static void ext4_free_io_end(ext4_io_end_t *io)
  3124. {
  3125. BUG_ON(!io);
  3126. iput(io->inode);
  3127. kfree(io);
  3128. }
  3129. static void dump_aio_dio_list(struct inode * inode)
  3130. {
  3131. #ifdef EXT4_DEBUG
  3132. struct list_head *cur, *before, *after;
  3133. ext4_io_end_t *io, *io0, *io1;
  3134. if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
  3135. ext4_debug("inode %lu aio dio list is empty\n", inode->i_ino);
  3136. return;
  3137. }
  3138. ext4_debug("Dump inode %lu aio_dio_completed_IO list \n", inode->i_ino);
  3139. list_for_each_entry(io, &EXT4_I(inode)->i_aio_dio_complete_list, list){
  3140. cur = &io->list;
  3141. before = cur->prev;
  3142. io0 = container_of(before, ext4_io_end_t, list);
  3143. after = cur->next;
  3144. io1 = container_of(after, ext4_io_end_t, list);
  3145. ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
  3146. io, inode->i_ino, io0, io1);
  3147. }
  3148. #endif
  3149. }
  3150. /*
  3151. * check a range of space and convert unwritten extents to written.
  3152. */
  3153. static int ext4_end_aio_dio_nolock(ext4_io_end_t *io)
  3154. {
  3155. struct inode *inode = io->inode;
  3156. loff_t offset = io->offset;
  3157. size_t size = io->size;
  3158. int ret = 0;
  3159. ext4_debug("end_aio_dio_onlock: io 0x%p from inode %lu,list->next 0x%p,"
  3160. "list->prev 0x%p\n",
  3161. io, inode->i_ino, io->list.next, io->list.prev);
  3162. if (list_empty(&io->list))
  3163. return ret;
  3164. if (io->flag != DIO_AIO_UNWRITTEN)
  3165. return ret;
  3166. if (offset + size <= i_size_read(inode))
  3167. ret = ext4_convert_unwritten_extents(inode, offset, size);
  3168. if (ret < 0) {
  3169. printk(KERN_EMERG "%s: failed to convert unwritten"
  3170. "extents to written extents, error is %d"
  3171. " io is still on inode %lu aio dio list\n",
  3172. __func__, ret, inode->i_ino);
  3173. return ret;
  3174. }
  3175. /* clear the DIO AIO unwritten flag */
  3176. io->flag = 0;
  3177. return ret;
  3178. }
  3179. /*
  3180. * work on completed aio dio IO, to convert unwritten extents to extents
  3181. */
  3182. static void ext4_end_aio_dio_work(struct work_struct *work)
  3183. {
  3184. ext4_io_end_t *io = container_of(work, ext4_io_end_t, work);
  3185. struct inode *inode = io->inode;
  3186. int ret = 0;
  3187. mutex_lock(&inode->i_mutex);
  3188. ret = ext4_end_aio_dio_nolock(io);
  3189. if (ret >= 0) {
  3190. if (!list_empty(&io->list))
  3191. list_del_init(&io->list);
  3192. ext4_free_io_end(io);
  3193. }
  3194. mutex_unlock(&inode->i_mutex);
  3195. }
  3196. /*
  3197. * This function is called from ext4_sync_file().
  3198. *
  3199. * When AIO DIO IO is completed, the work to convert unwritten
  3200. * extents to written is queued on workqueue but may not get immediately
  3201. * scheduled. When fsync is called, we need to ensure the
  3202. * conversion is complete before fsync returns.
  3203. * The inode keeps track of a list of completed AIO from DIO path
  3204. * that might needs to do the conversion. This function walks through
  3205. * the list and convert the related unwritten extents to written.
  3206. */
  3207. int flush_aio_dio_completed_IO(struct inode *inode)
  3208. {
  3209. ext4_io_end_t *io;
  3210. int ret = 0;
  3211. int ret2 = 0;
  3212. if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list))
  3213. return ret;
  3214. dump_aio_dio_list(inode);
  3215. while (!list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
  3216. io = list_entry(EXT4_I(inode)->i_aio_dio_complete_list.next,
  3217. ext4_io_end_t, list);
  3218. /*
  3219. * Calling ext4_end_aio_dio_nolock() to convert completed
  3220. * IO to written.
  3221. *
  3222. * When ext4_sync_file() is called, run_queue() may already
  3223. * about to flush the work corresponding to this io structure.
  3224. * It will be upset if it founds the io structure related
  3225. * to the work-to-be schedule is freed.
  3226. *
  3227. * Thus we need to keep the io structure still valid here after
  3228. * convertion finished. The io structure has a flag to
  3229. * avoid double converting from both fsync and background work
  3230. * queue work.
  3231. */
  3232. ret = ext4_end_aio_dio_nolock(io);
  3233. if (ret < 0)
  3234. ret2 = ret;
  3235. else
  3236. list_del_init(&io->list);
  3237. }
  3238. return (ret2 < 0) ? ret2 : 0;
  3239. }
  3240. static ext4_io_end_t *ext4_init_io_end (struct inode *inode)
  3241. {
  3242. ext4_io_end_t *io = NULL;
  3243. io = kmalloc(sizeof(*io), GFP_NOFS);
  3244. if (io) {
  3245. igrab(inode);
  3246. io->inode = inode;
  3247. io->flag = 0;
  3248. io->offset = 0;
  3249. io->size = 0;
  3250. io->error = 0;
  3251. INIT_WORK(&io->work, ext4_end_aio_dio_work);
  3252. INIT_LIST_HEAD(&io->list);
  3253. }
  3254. return io;
  3255. }
  3256. static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
  3257. ssize_t size, void *private)
  3258. {
  3259. ext4_io_end_t *io_end = iocb->private;
  3260. struct workqueue_struct *wq;
  3261. /* if not async direct IO or dio with 0 bytes write, just return */
  3262. if (!io_end || !size)
  3263. return;
  3264. ext_debug("ext4_end_io_dio(): io_end 0x%p"
  3265. "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
  3266. iocb->private, io_end->inode->i_ino, iocb, offset,
  3267. size);
  3268. /* if not aio dio with unwritten extents, just free io and return */
  3269. if (io_end->flag != DIO_AIO_UNWRITTEN){
  3270. ext4_free_io_end(io_end);
  3271. iocb->private = NULL;
  3272. return;
  3273. }
  3274. io_end->offset = offset;
  3275. io_end->size = size;
  3276. wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
  3277. /* queue the work to convert unwritten extents to written */
  3278. queue_work(wq, &io_end->work);
  3279. /* Add the io_end to per-inode completed aio dio list*/
  3280. list_add_tail(&io_end->list,
  3281. &EXT4_I(io_end->inode)->i_aio_dio_complete_list);
  3282. iocb->private = NULL;
  3283. }
  3284. /*
  3285. * For ext4 extent files, ext4 will do direct-io write to holes,
  3286. * preallocated extents, and those write extend the file, no need to
  3287. * fall back to buffered IO.
  3288. *
  3289. * For holes, we fallocate those blocks, mark them as unintialized
  3290. * If those blocks were preallocated, we mark sure they are splited, but
  3291. * still keep the range to write as unintialized.
  3292. *
  3293. * The unwrritten extents will be converted to written when DIO is completed.
  3294. * For async direct IO, since the IO may still pending when return, we
  3295. * set up an end_io call back function, which will do the convertion
  3296. * when async direct IO completed.
  3297. *
  3298. * If the O_DIRECT write will extend the file then add this inode to the
  3299. * orphan list. So recovery will truncate it back to the original size
  3300. * if the machine crashes during the write.
  3301. *
  3302. */
  3303. static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
  3304. const struct iovec *iov, loff_t offset,
  3305. unsigned long nr_segs)
  3306. {
  3307. struct file *file = iocb->ki_filp;
  3308. struct inode *inode = file->f_mapping->host;
  3309. ssize_t ret;
  3310. size_t count = iov_length(iov, nr_segs);
  3311. loff_t final_size = offset + count;
  3312. if (rw == WRITE && final_size <= inode->i_size) {
  3313. /*
  3314. * We could direct write to holes and fallocate.
  3315. *
  3316. * Allocated blocks to fill the hole are marked as uninitialized
  3317. * to prevent paralel buffered read to expose the stale data
  3318. * before DIO complete the data IO.
  3319. *
  3320. * As to previously fallocated extents, ext4 get_block
  3321. * will just simply mark the buffer mapped but still
  3322. * keep the extents uninitialized.
  3323. *
  3324. * for non AIO case, we will convert those unwritten extents
  3325. * to written after return back from blockdev_direct_IO.
  3326. *
  3327. * for async DIO, the conversion needs to be defered when
  3328. * the IO is completed. The ext4 end_io callback function
  3329. * will be called to take care of the conversion work.
  3330. * Here for async case, we allocate an io_end structure to
  3331. * hook to the iocb.
  3332. */
  3333. iocb->private = NULL;
  3334. EXT4_I(inode)->cur_aio_dio = NULL;
  3335. if (!is_sync_kiocb(iocb)) {
  3336. iocb->private = ext4_init_io_end(inode);
  3337. if (!iocb->private)
  3338. return -ENOMEM;
  3339. /*
  3340. * we save the io structure for current async
  3341. * direct IO, so that later ext4_get_blocks()
  3342. * could flag the io structure whether there
  3343. * is a unwritten extents needs to be converted
  3344. * when IO is completed.
  3345. */
  3346. EXT4_I(inode)->cur_aio_dio = iocb->private;
  3347. }
  3348. ret = blockdev_direct_IO(rw, iocb, inode,
  3349. inode->i_sb->s_bdev, iov,
  3350. offset, nr_segs,
  3351. ext4_get_block_dio_write,
  3352. ext4_end_io_dio);
  3353. if (iocb->private)
  3354. EXT4_I(inode)->cur_aio_dio = NULL;
  3355. /*
  3356. * The io_end structure takes a reference to the inode,
  3357. * that structure needs to be destroyed and the
  3358. * reference to the inode need to be dropped, when IO is
  3359. * complete, even with 0 byte write, or failed.
  3360. *
  3361. * In the successful AIO DIO case, the io_end structure will be
  3362. * desctroyed and the reference to the inode will be dropped
  3363. * after the end_io call back function is called.
  3364. *
  3365. * In the case there is 0 byte write, or error case, since
  3366. * VFS direct IO won't invoke the end_io call back function,
  3367. * we need to free the end_io structure here.
  3368. */
  3369. if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
  3370. ext4_free_io_end(iocb->private);
  3371. iocb->private = NULL;
  3372. } else if (ret > 0 && (EXT4_I(inode)->i_state &
  3373. EXT4_STATE_DIO_UNWRITTEN)) {
  3374. int err;
  3375. /*
  3376. * for non AIO case, since the IO is already
  3377. * completed, we could do the convertion right here
  3378. */
  3379. err = ext4_convert_unwritten_extents(inode,
  3380. offset, ret);
  3381. if (err < 0)
  3382. ret = err;
  3383. EXT4_I(inode)->i_state &= ~EXT4_STATE_DIO_UNWRITTEN;
  3384. }
  3385. return ret;
  3386. }
  3387. /* for write the the end of file case, we fall back to old way */
  3388. return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
  3389. }
  3390. static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
  3391. const struct iovec *iov, loff_t offset,
  3392. unsigned long nr_segs)
  3393. {
  3394. struct file *file = iocb->ki_filp;
  3395. struct inode *inode = file->f_mapping->host;
  3396. if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
  3397. return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
  3398. return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
  3399. }
  3400. /*
  3401. * Pages can be marked dirty completely asynchronously from ext4's journalling
  3402. * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
  3403. * much here because ->set_page_dirty is called under VFS locks. The page is
  3404. * not necessarily locked.
  3405. *
  3406. * We cannot just dirty the page and leave attached buffers clean, because the
  3407. * buffers' dirty state is "definitive". We cannot just set the buffers dirty
  3408. * or jbddirty because all the journalling code will explode.
  3409. *
  3410. * So what we do is to mark the page "pending dirty" and next time writepage
  3411. * is called, propagate that into the buffers appropriately.
  3412. */
  3413. static int ext4_journalled_set_page_dirty(struct page *page)
  3414. {
  3415. SetPageChecked(page);
  3416. return __set_page_dirty_nobuffers(page);
  3417. }
  3418. static const struct address_space_operations ext4_ordered_aops = {
  3419. .readpage = ext4_readpage,
  3420. .readpages = ext4_readpages,
  3421. .writepage = ext4_writepage,
  3422. .sync_page = block_sync_page,
  3423. .write_begin = ext4_write_begin,
  3424. .write_end = ext4_ordered_write_end,
  3425. .bmap = ext4_bmap,
  3426. .invalidatepage = ext4_invalidatepage,
  3427. .releasepage = ext4_releasepage,
  3428. .direct_IO = ext4_direct_IO,
  3429. .migratepage = buffer_migrate_page,
  3430. .is_partially_uptodate = block_is_partially_uptodate,
  3431. .error_remove_page = generic_error_remove_page,
  3432. };
  3433. static const struct address_space_operations ext4_writeback_aops = {
  3434. .readpage = ext4_readpage,
  3435. .readpages = ext4_readpages,
  3436. .writepage = ext4_writepage,
  3437. .sync_page = block_sync_page,
  3438. .write_begin = ext4_write_begin,
  3439. .write_end = ext4_writeback_write_end,
  3440. .bmap = ext4_bmap,
  3441. .invalidatepage = ext4_invalidatepage,
  3442. .releasepage = ext4_releasepage,
  3443. .direct_IO = ext4_direct_IO,
  3444. .migratepage = buffer_migrate_page,
  3445. .is_partially_uptodate = block_is_partially_uptodate,
  3446. .error_remove_page = generic_error_remove_page,
  3447. };
  3448. static const struct address_space_operations ext4_journalled_aops = {
  3449. .readpage = ext4_readpage,
  3450. .readpages = ext4_readpages,
  3451. .writepage = ext4_writepage,
  3452. .sync_page = block_sync_page,
  3453. .write_begin = ext4_write_begin,
  3454. .write_end = ext4_journalled_write_end,
  3455. .set_page_dirty = ext4_journalled_set_page_dirty,
  3456. .bmap = ext4_bmap,
  3457. .invalidatepage = ext4_invalidatepage,
  3458. .releasepage = ext4_releasepage,
  3459. .is_partially_uptodate = block_is_partially_uptodate,
  3460. .error_remove_page = generic_error_remove_page,
  3461. };
  3462. static const struct address_space_operations ext4_da_aops = {
  3463. .readpage = ext4_readpage,
  3464. .readpages = ext4_readpages,
  3465. .writepage = ext4_writepage,
  3466. .writepages = ext4_da_writepages,
  3467. .sync_page = block_sync_page,
  3468. .write_begin = ext4_da_write_begin,
  3469. .write_end = ext4_da_write_end,
  3470. .bmap = ext4_bmap,
  3471. .invalidatepage = ext4_da_invalidatepage,
  3472. .releasepage = ext4_releasepage,
  3473. .direct_IO = ext4_direct_IO,
  3474. .migratepage = buffer_migrate_page,
  3475. .is_partially_uptodate = block_is_partially_uptodate,
  3476. .error_remove_page = generic_error_remove_page,
  3477. };
  3478. void ext4_set_aops(struct inode *inode)
  3479. {
  3480. if (ext4_should_order_data(inode) &&
  3481. test_opt(inode->i_sb, DELALLOC))
  3482. inode->i_mapping->a_ops = &ext4_da_aops;
  3483. else if (ext4_should_order_data(inode))
  3484. inode->i_mapping->a_ops = &ext4_ordered_aops;
  3485. else if (ext4_should_writeback_data(inode) &&
  3486. test_opt(inode->i_sb, DELALLOC))
  3487. inode->i_mapping->a_ops = &ext4_da_aops;
  3488. else if (ext4_should_writeback_data(inode))
  3489. inode->i_mapping->a_ops = &ext4_writeback_aops;
  3490. else
  3491. inode->i_mapping->a_ops = &ext4_journalled_aops;
  3492. }
  3493. /*
  3494. * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
  3495. * up to the end of the block which corresponds to `from'.
  3496. * This required during truncate. We need to physically zero the tail end
  3497. * of that block so it doesn't yield old data if the file is later grown.
  3498. */
  3499. int ext4_block_truncate_page(handle_t *handle,
  3500. struct address_space *mapping, loff_t from)
  3501. {
  3502. ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
  3503. unsigned offset = from & (PAGE_CACHE_SIZE-1);
  3504. unsigned blocksize, length, pos;
  3505. ext4_lblk_t iblock;
  3506. struct inode *inode = mapping->host;
  3507. struct buffer_head *bh;
  3508. struct page *page;
  3509. int err = 0;
  3510. page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
  3511. mapping_gfp_mask(mapping) & ~__GFP_FS);
  3512. if (!page)
  3513. return -EINVAL;
  3514. blocksize = inode->i_sb->s_blocksize;
  3515. length = blocksize - (offset & (blocksize - 1));
  3516. iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
  3517. /*
  3518. * For "nobh" option, we can only work if we don't need to
  3519. * read-in the page - otherwise we create buffers to do the IO.
  3520. */
  3521. if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
  3522. ext4_should_writeback_data(inode) && PageUptodate(page)) {
  3523. zero_user(page, offset, length);
  3524. set_page_dirty(page);
  3525. goto unlock;
  3526. }
  3527. if (!page_has_buffers(page))
  3528. create_empty_buffers(page, blocksize, 0);
  3529. /* Find the buffer that contains "offset" */
  3530. bh = page_buffers(page);
  3531. pos = blocksize;
  3532. while (offset >= pos) {
  3533. bh = bh->b_this_page;
  3534. iblock++;
  3535. pos += blocksize;
  3536. }
  3537. err = 0;
  3538. if (buffer_freed(bh)) {
  3539. BUFFER_TRACE(bh, "freed: skip");
  3540. goto unlock;
  3541. }
  3542. if (!buffer_mapped(bh)) {
  3543. BUFFER_TRACE(bh, "unmapped");
  3544. ext4_get_block(inode, iblock, bh, 0);
  3545. /* unmapped? It's a hole - nothing to do */
  3546. if (!buffer_mapped(bh)) {
  3547. BUFFER_TRACE(bh, "still unmapped");
  3548. goto unlock;
  3549. }
  3550. }
  3551. /* Ok, it's mapped. Make sure it's up-to-date */
  3552. if (PageUptodate(page))
  3553. set_buffer_uptodate(bh);
  3554. if (!buffer_uptodate(bh)) {
  3555. err = -EIO;
  3556. ll_rw_block(READ, 1, &bh);
  3557. wait_on_buffer(bh);
  3558. /* Uhhuh. Read error. Complain and punt. */
  3559. if (!buffer_uptodate(bh))
  3560. goto unlock;
  3561. }
  3562. if (ext4_should_journal_data(inode)) {
  3563. BUFFER_TRACE(bh, "get write access");
  3564. err = ext4_journal_get_write_access(handle, bh);
  3565. if (err)
  3566. goto unlock;
  3567. }
  3568. zero_user(page, offset, length);
  3569. BUFFER_TRACE(bh, "zeroed end of block");
  3570. err = 0;
  3571. if (ext4_should_journal_data(inode)) {
  3572. err = ext4_handle_dirty_metadata(handle, inode, bh);
  3573. } else {
  3574. if (ext4_should_order_data(inode))
  3575. err = ext4_jbd2_file_inode(handle, inode);
  3576. mark_buffer_dirty(bh);
  3577. }
  3578. unlock:
  3579. unlock_page(page);
  3580. page_cache_release(page);
  3581. return err;
  3582. }
  3583. /*
  3584. * Probably it should be a library function... search for first non-zero word
  3585. * or memcmp with zero_page, whatever is better for particular architecture.
  3586. * Linus?
  3587. */
  3588. static inline int all_zeroes(__le32 *p, __le32 *q)
  3589. {
  3590. while (p < q)
  3591. if (*p++)
  3592. return 0;
  3593. return 1;
  3594. }
  3595. /**
  3596. * ext4_find_shared - find the indirect blocks for partial truncation.
  3597. * @inode: inode in question
  3598. * @depth: depth of the affected branch
  3599. * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
  3600. * @chain: place to store the pointers to partial indirect blocks
  3601. * @top: place to the (detached) top of branch
  3602. *
  3603. * This is a helper function used by ext4_truncate().
  3604. *
  3605. * When we do truncate() we may have to clean the ends of several
  3606. * indirect blocks but leave the blocks themselves alive. Block is
  3607. * partially truncated if some data below the new i_size is refered
  3608. * from it (and it is on the path to the first completely truncated
  3609. * data block, indeed). We have to free the top of that path along
  3610. * with everything to the right of the path. Since no allocation
  3611. * past the truncation point is possible until ext4_truncate()
  3612. * finishes, we may safely do the latter, but top of branch may
  3613. * require special attention - pageout below the truncation point
  3614. * might try to populate it.
  3615. *
  3616. * We atomically detach the top of branch from the tree, store the
  3617. * block number of its root in *@top, pointers to buffer_heads of
  3618. * partially truncated blocks - in @chain[].bh and pointers to
  3619. * their last elements that should not be removed - in
  3620. * @chain[].p. Return value is the pointer to last filled element
  3621. * of @chain.
  3622. *
  3623. * The work left to caller to do the actual freeing of subtrees:
  3624. * a) free the subtree starting from *@top
  3625. * b) free the subtrees whose roots are stored in
  3626. * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
  3627. * c) free the subtrees growing from the inode past the @chain[0].
  3628. * (no partially truncated stuff there). */
  3629. static Indirect *ext4_find_shared(struct inode *inode, int depth,
  3630. ext4_lblk_t offsets[4], Indirect chain[4],
  3631. __le32 *top)
  3632. {
  3633. Indirect *partial, *p;
  3634. int k, err;
  3635. *top = 0;
  3636. /* Make k index the deepest non-null offest + 1 */
  3637. for (k = depth; k > 1 && !offsets[k-1]; k--)
  3638. ;
  3639. partial = ext4_get_branch(inode, k, offsets, chain, &err);
  3640. /* Writer: pointers */
  3641. if (!partial)
  3642. partial = chain + k-1;
  3643. /*
  3644. * If the branch acquired continuation since we've looked at it -
  3645. * fine, it should all survive and (new) top doesn't belong to us.
  3646. */
  3647. if (!partial->key && *partial->p)
  3648. /* Writer: end */
  3649. goto no_top;
  3650. for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
  3651. ;
  3652. /*
  3653. * OK, we've found the last block that must survive. The rest of our
  3654. * branch should be detached before unlocking. However, if that rest
  3655. * of branch is all ours and does not grow immediately from the inode
  3656. * it's easier to cheat and just decrement partial->p.
  3657. */
  3658. if (p == chain + k - 1 && p > chain) {
  3659. p->p--;
  3660. } else {
  3661. *top = *p->p;
  3662. /* Nope, don't do this in ext4. Must leave the tree intact */
  3663. #if 0
  3664. *p->p = 0;
  3665. #endif
  3666. }
  3667. /* Writer: end */
  3668. while (partial > p) {
  3669. brelse(partial->bh);
  3670. partial--;
  3671. }
  3672. no_top:
  3673. return partial;
  3674. }
  3675. /*
  3676. * Zero a number of block pointers in either an inode or an indirect block.
  3677. * If we restart the transaction we must again get write access to the
  3678. * indirect block for further modification.
  3679. *
  3680. * We release `count' blocks on disk, but (last - first) may be greater
  3681. * than `count' because there can be holes in there.
  3682. */
  3683. static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
  3684. struct buffer_head *bh,
  3685. ext4_fsblk_t block_to_free,
  3686. unsigned long count, __le32 *first,
  3687. __le32 *last)
  3688. {
  3689. __le32 *p;
  3690. int flags = EXT4_FREE_BLOCKS_FORGET;
  3691. if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
  3692. flags |= EXT4_FREE_BLOCKS_METADATA;
  3693. if (try_to_extend_transaction(handle, inode)) {
  3694. if (bh) {
  3695. BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
  3696. ext4_handle_dirty_metadata(handle, inode, bh);
  3697. }
  3698. ext4_mark_inode_dirty(handle, inode);
  3699. ext4_truncate_restart_trans(handle, inode,
  3700. blocks_for_truncate(inode));
  3701. if (bh) {
  3702. BUFFER_TRACE(bh, "retaking write access");
  3703. ext4_journal_get_write_access(handle, bh);
  3704. }
  3705. }
  3706. for (p = first; p < last; p++)
  3707. *p = 0;
  3708. ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
  3709. }
  3710. /**
  3711. * ext4_free_data - free a list of data blocks
  3712. * @handle: handle for this transaction
  3713. * @inode: inode we are dealing with
  3714. * @this_bh: indirect buffer_head which contains *@first and *@last
  3715. * @first: array of block numbers
  3716. * @last: points immediately past the end of array
  3717. *
  3718. * We are freeing all blocks refered from that array (numbers are stored as
  3719. * little-endian 32-bit) and updating @inode->i_blocks appropriately.
  3720. *
  3721. * We accumulate contiguous runs of blocks to free. Conveniently, if these
  3722. * blocks are contiguous then releasing them at one time will only affect one
  3723. * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
  3724. * actually use a lot of journal space.
  3725. *
  3726. * @this_bh will be %NULL if @first and @last point into the inode's direct
  3727. * block pointers.
  3728. */
  3729. static void ext4_free_data(handle_t *handle, struct inode *inode,
  3730. struct buffer_head *this_bh,
  3731. __le32 *first, __le32 *last)
  3732. {
  3733. ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
  3734. unsigned long count = 0; /* Number of blocks in the run */
  3735. __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
  3736. corresponding to
  3737. block_to_free */
  3738. ext4_fsblk_t nr; /* Current block # */
  3739. __le32 *p; /* Pointer into inode/ind
  3740. for current block */
  3741. int err;
  3742. if (this_bh) { /* For indirect block */
  3743. BUFFER_TRACE(this_bh, "get_write_access");
  3744. err = ext4_journal_get_write_access(handle, this_bh);
  3745. /* Important: if we can't update the indirect pointers
  3746. * to the blocks, we can't free them. */
  3747. if (err)
  3748. return;
  3749. }
  3750. for (p = first; p < last; p++) {
  3751. nr = le32_to_cpu(*p);
  3752. if (nr) {
  3753. /* accumulate blocks to free if they're contiguous */
  3754. if (count == 0) {
  3755. block_to_free = nr;
  3756. block_to_free_p = p;
  3757. count = 1;
  3758. } else if (nr == block_to_free + count) {
  3759. count++;
  3760. } else {
  3761. ext4_clear_blocks(handle, inode, this_bh,
  3762. block_to_free,
  3763. count, block_to_free_p, p);
  3764. block_to_free = nr;
  3765. block_to_free_p = p;
  3766. count = 1;
  3767. }
  3768. }
  3769. }
  3770. if (count > 0)
  3771. ext4_clear_blocks(handle, inode, this_bh, block_to_free,
  3772. count, block_to_free_p, p);
  3773. if (this_bh) {
  3774. BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
  3775. /*
  3776. * The buffer head should have an attached journal head at this
  3777. * point. However, if the data is corrupted and an indirect
  3778. * block pointed to itself, it would have been detached when
  3779. * the block was cleared. Check for this instead of OOPSing.
  3780. */
  3781. if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
  3782. ext4_handle_dirty_metadata(handle, inode, this_bh);
  3783. else
  3784. ext4_error(inode->i_sb, __func__,
  3785. "circular indirect block detected, "
  3786. "inode=%lu, block=%llu",
  3787. inode->i_ino,
  3788. (unsigned long long) this_bh->b_blocknr);
  3789. }
  3790. }
  3791. /**
  3792. * ext4_free_branches - free an array of branches
  3793. * @handle: JBD handle for this transaction
  3794. * @inode: inode we are dealing with
  3795. * @parent_bh: the buffer_head which contains *@first and *@last
  3796. * @first: array of block numbers
  3797. * @last: pointer immediately past the end of array
  3798. * @depth: depth of the branches to free
  3799. *
  3800. * We are freeing all blocks refered from these branches (numbers are
  3801. * stored as little-endian 32-bit) and updating @inode->i_blocks
  3802. * appropriately.
  3803. */
  3804. static void ext4_free_branches(handle_t *handle, struct inode *inode,
  3805. struct buffer_head *parent_bh,
  3806. __le32 *first, __le32 *last, int depth)
  3807. {
  3808. ext4_fsblk_t nr;
  3809. __le32 *p;
  3810. if (ext4_handle_is_aborted(handle))
  3811. return;
  3812. if (depth--) {
  3813. struct buffer_head *bh;
  3814. int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
  3815. p = last;
  3816. while (--p >= first) {
  3817. nr = le32_to_cpu(*p);
  3818. if (!nr)
  3819. continue; /* A hole */
  3820. /* Go read the buffer for the next level down */
  3821. bh = sb_bread(inode->i_sb, nr);
  3822. /*
  3823. * A read failure? Report error and clear slot
  3824. * (should be rare).
  3825. */
  3826. if (!bh) {
  3827. ext4_error(inode->i_sb, "ext4_free_branches",
  3828. "Read failure, inode=%lu, block=%llu",
  3829. inode->i_ino, nr);
  3830. continue;
  3831. }
  3832. /* This zaps the entire block. Bottom up. */
  3833. BUFFER_TRACE(bh, "free child branches");
  3834. ext4_free_branches(handle, inode, bh,
  3835. (__le32 *) bh->b_data,
  3836. (__le32 *) bh->b_data + addr_per_block,
  3837. depth);
  3838. /*
  3839. * We've probably journalled the indirect block several
  3840. * times during the truncate. But it's no longer
  3841. * needed and we now drop it from the transaction via
  3842. * jbd2_journal_revoke().
  3843. *
  3844. * That's easy if it's exclusively part of this
  3845. * transaction. But if it's part of the committing
  3846. * transaction then jbd2_journal_forget() will simply
  3847. * brelse() it. That means that if the underlying
  3848. * block is reallocated in ext4_get_block(),
  3849. * unmap_underlying_metadata() will find this block
  3850. * and will try to get rid of it. damn, damn.
  3851. *
  3852. * If this block has already been committed to the
  3853. * journal, a revoke record will be written. And
  3854. * revoke records must be emitted *before* clearing
  3855. * this block's bit in the bitmaps.
  3856. */
  3857. ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
  3858. /*
  3859. * Everything below this this pointer has been
  3860. * released. Now let this top-of-subtree go.
  3861. *
  3862. * We want the freeing of this indirect block to be
  3863. * atomic in the journal with the updating of the
  3864. * bitmap block which owns it. So make some room in
  3865. * the journal.
  3866. *
  3867. * We zero the parent pointer *after* freeing its
  3868. * pointee in the bitmaps, so if extend_transaction()
  3869. * for some reason fails to put the bitmap changes and
  3870. * the release into the same transaction, recovery
  3871. * will merely complain about releasing a free block,
  3872. * rather than leaking blocks.
  3873. */
  3874. if (ext4_handle_is_aborted(handle))
  3875. return;
  3876. if (try_to_extend_transaction(handle, inode)) {
  3877. ext4_mark_inode_dirty(handle, inode);
  3878. ext4_truncate_restart_trans(handle, inode,
  3879. blocks_for_truncate(inode));
  3880. }
  3881. ext4_free_blocks(handle, inode, 0, nr, 1,
  3882. EXT4_FREE_BLOCKS_METADATA);
  3883. if (parent_bh) {
  3884. /*
  3885. * The block which we have just freed is
  3886. * pointed to by an indirect block: journal it
  3887. */
  3888. BUFFER_TRACE(parent_bh, "get_write_access");
  3889. if (!ext4_journal_get_write_access(handle,
  3890. parent_bh)){
  3891. *p = 0;
  3892. BUFFER_TRACE(parent_bh,
  3893. "call ext4_handle_dirty_metadata");
  3894. ext4_handle_dirty_metadata(handle,
  3895. inode,
  3896. parent_bh);
  3897. }
  3898. }
  3899. }
  3900. } else {
  3901. /* We have reached the bottom of the tree. */
  3902. BUFFER_TRACE(parent_bh, "free data blocks");
  3903. ext4_free_data(handle, inode, parent_bh, first, last);
  3904. }
  3905. }
  3906. int ext4_can_truncate(struct inode *inode)
  3907. {
  3908. if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
  3909. return 0;
  3910. if (S_ISREG(inode->i_mode))
  3911. return 1;
  3912. if (S_ISDIR(inode->i_mode))
  3913. return 1;
  3914. if (S_ISLNK(inode->i_mode))
  3915. return !ext4_inode_is_fast_symlink(inode);
  3916. return 0;
  3917. }
  3918. /*
  3919. * ext4_truncate()
  3920. *
  3921. * We block out ext4_get_block() block instantiations across the entire
  3922. * transaction, and VFS/VM ensures that ext4_truncate() cannot run
  3923. * simultaneously on behalf of the same inode.
  3924. *
  3925. * As we work through the truncate and commmit bits of it to the journal there
  3926. * is one core, guiding principle: the file's tree must always be consistent on
  3927. * disk. We must be able to restart the truncate after a crash.
  3928. *
  3929. * The file's tree may be transiently inconsistent in memory (although it
  3930. * probably isn't), but whenever we close off and commit a journal transaction,
  3931. * the contents of (the filesystem + the journal) must be consistent and
  3932. * restartable. It's pretty simple, really: bottom up, right to left (although
  3933. * left-to-right works OK too).
  3934. *
  3935. * Note that at recovery time, journal replay occurs *before* the restart of
  3936. * truncate against the orphan inode list.
  3937. *
  3938. * The committed inode has the new, desired i_size (which is the same as
  3939. * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
  3940. * that this inode's truncate did not complete and it will again call
  3941. * ext4_truncate() to have another go. So there will be instantiated blocks
  3942. * to the right of the truncation point in a crashed ext4 filesystem. But
  3943. * that's fine - as long as they are linked from the inode, the post-crash
  3944. * ext4_truncate() run will find them and release them.
  3945. */
  3946. void ext4_truncate(struct inode *inode)
  3947. {
  3948. handle_t *handle;
  3949. struct ext4_inode_info *ei = EXT4_I(inode);
  3950. __le32 *i_data = ei->i_data;
  3951. int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
  3952. struct address_space *mapping = inode->i_mapping;
  3953. ext4_lblk_t offsets[4];
  3954. Indirect chain[4];
  3955. Indirect *partial;
  3956. __le32 nr = 0;
  3957. int n;
  3958. ext4_lblk_t last_block;
  3959. unsigned blocksize = inode->i_sb->s_blocksize;
  3960. if (!ext4_can_truncate(inode))
  3961. return;
  3962. if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
  3963. ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
  3964. if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
  3965. ext4_ext_truncate(inode);
  3966. return;
  3967. }
  3968. handle = start_transaction(inode);
  3969. if (IS_ERR(handle))
  3970. return; /* AKPM: return what? */
  3971. last_block = (inode->i_size + blocksize-1)
  3972. >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
  3973. if (inode->i_size & (blocksize - 1))
  3974. if (ext4_block_truncate_page(handle, mapping, inode->i_size))
  3975. goto out_stop;
  3976. n = ext4_block_to_path(inode, last_block, offsets, NULL);
  3977. if (n == 0)
  3978. goto out_stop; /* error */
  3979. /*
  3980. * OK. This truncate is going to happen. We add the inode to the
  3981. * orphan list, so that if this truncate spans multiple transactions,
  3982. * and we crash, we will resume the truncate when the filesystem
  3983. * recovers. It also marks the inode dirty, to catch the new size.
  3984. *
  3985. * Implication: the file must always be in a sane, consistent
  3986. * truncatable state while each transaction commits.
  3987. */
  3988. if (ext4_orphan_add(handle, inode))
  3989. goto out_stop;
  3990. /*
  3991. * From here we block out all ext4_get_block() callers who want to
  3992. * modify the block allocation tree.
  3993. */
  3994. down_write(&ei->i_data_sem);
  3995. ext4_discard_preallocations(inode);
  3996. /*
  3997. * The orphan list entry will now protect us from any crash which
  3998. * occurs before the truncate completes, so it is now safe to propagate
  3999. * the new, shorter inode size (held for now in i_size) into the
  4000. * on-disk inode. We do this via i_disksize, which is the value which
  4001. * ext4 *really* writes onto the disk inode.
  4002. */
  4003. ei->i_disksize = inode->i_size;
  4004. if (n == 1) { /* direct blocks */
  4005. ext4_free_data(handle, inode, NULL, i_data+offsets[0],
  4006. i_data + EXT4_NDIR_BLOCKS);
  4007. goto do_indirects;
  4008. }
  4009. partial = ext4_find_shared(inode, n, offsets, chain, &nr);
  4010. /* Kill the top of shared branch (not detached) */
  4011. if (nr) {
  4012. if (partial == chain) {
  4013. /* Shared branch grows from the inode */
  4014. ext4_free_branches(handle, inode, NULL,
  4015. &nr, &nr+1, (chain+n-1) - partial);
  4016. *partial->p = 0;
  4017. /*
  4018. * We mark the inode dirty prior to restart,
  4019. * and prior to stop. No need for it here.
  4020. */
  4021. } else {
  4022. /* Shared branch grows from an indirect block */
  4023. BUFFER_TRACE(partial->bh, "get_write_access");
  4024. ext4_free_branches(handle, inode, partial->bh,
  4025. partial->p,
  4026. partial->p+1, (chain+n-1) - partial);
  4027. }
  4028. }
  4029. /* Clear the ends of indirect blocks on the shared branch */
  4030. while (partial > chain) {
  4031. ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
  4032. (__le32*)partial->bh->b_data+addr_per_block,
  4033. (chain+n-1) - partial);
  4034. BUFFER_TRACE(partial->bh, "call brelse");
  4035. brelse(partial->bh);
  4036. partial--;
  4037. }
  4038. do_indirects:
  4039. /* Kill the remaining (whole) subtrees */
  4040. switch (offsets[0]) {
  4041. default:
  4042. nr = i_data[EXT4_IND_BLOCK];
  4043. if (nr) {
  4044. ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
  4045. i_data[EXT4_IND_BLOCK] = 0;
  4046. }
  4047. case EXT4_IND_BLOCK:
  4048. nr = i_data[EXT4_DIND_BLOCK];
  4049. if (nr) {
  4050. ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
  4051. i_data[EXT4_DIND_BLOCK] = 0;
  4052. }
  4053. case EXT4_DIND_BLOCK:
  4054. nr = i_data[EXT4_TIND_BLOCK];
  4055. if (nr) {
  4056. ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
  4057. i_data[EXT4_TIND_BLOCK] = 0;
  4058. }
  4059. case EXT4_TIND_BLOCK:
  4060. ;
  4061. }
  4062. up_write(&ei->i_data_sem);
  4063. inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
  4064. ext4_mark_inode_dirty(handle, inode);
  4065. /*
  4066. * In a multi-transaction truncate, we only make the final transaction
  4067. * synchronous
  4068. */
  4069. if (IS_SYNC(inode))
  4070. ext4_handle_sync(handle);
  4071. out_stop:
  4072. /*
  4073. * If this was a simple ftruncate(), and the file will remain alive
  4074. * then we need to clear up the orphan record which we created above.
  4075. * However, if this was a real unlink then we were called by
  4076. * ext4_delete_inode(), and we allow that function to clean up the
  4077. * orphan info for us.
  4078. */
  4079. if (inode->i_nlink)
  4080. ext4_orphan_del(handle, inode);
  4081. ext4_journal_stop(handle);
  4082. }
  4083. /*
  4084. * ext4_get_inode_loc returns with an extra refcount against the inode's
  4085. * underlying buffer_head on success. If 'in_mem' is true, we have all
  4086. * data in memory that is needed to recreate the on-disk version of this
  4087. * inode.
  4088. */
  4089. static int __ext4_get_inode_loc(struct inode *inode,
  4090. struct ext4_iloc *iloc, int in_mem)
  4091. {
  4092. struct ext4_group_desc *gdp;
  4093. struct buffer_head *bh;
  4094. struct super_block *sb = inode->i_sb;
  4095. ext4_fsblk_t block;
  4096. int inodes_per_block, inode_offset;
  4097. iloc->bh = NULL;
  4098. if (!ext4_valid_inum(sb, inode->i_ino))
  4099. return -EIO;
  4100. iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
  4101. gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
  4102. if (!gdp)
  4103. return -EIO;
  4104. /*
  4105. * Figure out the offset within the block group inode table
  4106. */
  4107. inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
  4108. inode_offset = ((inode->i_ino - 1) %
  4109. EXT4_INODES_PER_GROUP(sb));
  4110. block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
  4111. iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
  4112. bh = sb_getblk(sb, block);
  4113. if (!bh) {
  4114. ext4_error(sb, "ext4_get_inode_loc", "unable to read "
  4115. "inode block - inode=%lu, block=%llu",
  4116. inode->i_ino, block);
  4117. return -EIO;
  4118. }
  4119. if (!buffer_uptodate(bh)) {
  4120. lock_buffer(bh);
  4121. /*
  4122. * If the buffer has the write error flag, we have failed
  4123. * to write out another inode in the same block. In this
  4124. * case, we don't have to read the block because we may
  4125. * read the old inode data successfully.
  4126. */
  4127. if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
  4128. set_buffer_uptodate(bh);
  4129. if (buffer_uptodate(bh)) {
  4130. /* someone brought it uptodate while we waited */
  4131. unlock_buffer(bh);
  4132. goto has_buffer;
  4133. }
  4134. /*
  4135. * If we have all information of the inode in memory and this
  4136. * is the only valid inode in the block, we need not read the
  4137. * block.
  4138. */
  4139. if (in_mem) {
  4140. struct buffer_head *bitmap_bh;
  4141. int i, start;
  4142. start = inode_offset & ~(inodes_per_block - 1);
  4143. /* Is the inode bitmap in cache? */
  4144. bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
  4145. if (!bitmap_bh)
  4146. goto make_io;
  4147. /*
  4148. * If the inode bitmap isn't in cache then the
  4149. * optimisation may end up performing two reads instead
  4150. * of one, so skip it.
  4151. */
  4152. if (!buffer_uptodate(bitmap_bh)) {
  4153. brelse(bitmap_bh);
  4154. goto make_io;
  4155. }
  4156. for (i = start; i < start + inodes_per_block; i++) {
  4157. if (i == inode_offset)
  4158. continue;
  4159. if (ext4_test_bit(i, bitmap_bh->b_data))
  4160. break;
  4161. }
  4162. brelse(bitmap_bh);
  4163. if (i == start + inodes_per_block) {
  4164. /* all other inodes are free, so skip I/O */
  4165. memset(bh->b_data, 0, bh->b_size);
  4166. set_buffer_uptodate(bh);
  4167. unlock_buffer(bh);
  4168. goto has_buffer;
  4169. }
  4170. }
  4171. make_io:
  4172. /*
  4173. * If we need to do any I/O, try to pre-readahead extra
  4174. * blocks from the inode table.
  4175. */
  4176. if (EXT4_SB(sb)->s_inode_readahead_blks) {
  4177. ext4_fsblk_t b, end, table;
  4178. unsigned num;
  4179. table = ext4_inode_table(sb, gdp);
  4180. /* s_inode_readahead_blks is always a power of 2 */
  4181. b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
  4182. if (table > b)
  4183. b = table;
  4184. end = b + EXT4_SB(sb)->s_inode_readahead_blks;
  4185. num = EXT4_INODES_PER_GROUP(sb);
  4186. if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
  4187. EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
  4188. num -= ext4_itable_unused_count(sb, gdp);
  4189. table += num / inodes_per_block;
  4190. if (end > table)
  4191. end = table;
  4192. while (b <= end)
  4193. sb_breadahead(sb, b++);
  4194. }
  4195. /*
  4196. * There are other valid inodes in the buffer, this inode
  4197. * has in-inode xattrs, or we don't have this inode in memory.
  4198. * Read the block from disk.
  4199. */
  4200. get_bh(bh);
  4201. bh->b_end_io = end_buffer_read_sync;
  4202. submit_bh(READ_META, bh);
  4203. wait_on_buffer(bh);
  4204. if (!buffer_uptodate(bh)) {
  4205. ext4_error(sb, __func__,
  4206. "unable to read inode block - inode=%lu, "
  4207. "block=%llu", inode->i_ino, block);
  4208. brelse(bh);
  4209. return -EIO;
  4210. }
  4211. }
  4212. has_buffer:
  4213. iloc->bh = bh;
  4214. return 0;
  4215. }
  4216. int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
  4217. {
  4218. /* We have all inode data except xattrs in memory here. */
  4219. return __ext4_get_inode_loc(inode, iloc,
  4220. !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
  4221. }
  4222. void ext4_set_inode_flags(struct inode *inode)
  4223. {
  4224. unsigned int flags = EXT4_I(inode)->i_flags;
  4225. inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
  4226. if (flags & EXT4_SYNC_FL)
  4227. inode->i_flags |= S_SYNC;
  4228. if (flags & EXT4_APPEND_FL)
  4229. inode->i_flags |= S_APPEND;
  4230. if (flags & EXT4_IMMUTABLE_FL)
  4231. inode->i_flags |= S_IMMUTABLE;
  4232. if (flags & EXT4_NOATIME_FL)
  4233. inode->i_flags |= S_NOATIME;
  4234. if (flags & EXT4_DIRSYNC_FL)
  4235. inode->i_flags |= S_DIRSYNC;
  4236. }
  4237. /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
  4238. void ext4_get_inode_flags(struct ext4_inode_info *ei)
  4239. {
  4240. unsigned int flags = ei->vfs_inode.i_flags;
  4241. ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
  4242. EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
  4243. if (flags & S_SYNC)
  4244. ei->i_flags |= EXT4_SYNC_FL;
  4245. if (flags & S_APPEND)
  4246. ei->i_flags |= EXT4_APPEND_FL;
  4247. if (flags & S_IMMUTABLE)
  4248. ei->i_flags |= EXT4_IMMUTABLE_FL;
  4249. if (flags & S_NOATIME)
  4250. ei->i_flags |= EXT4_NOATIME_FL;
  4251. if (flags & S_DIRSYNC)
  4252. ei->i_flags |= EXT4_DIRSYNC_FL;
  4253. }
  4254. static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
  4255. struct ext4_inode_info *ei)
  4256. {
  4257. blkcnt_t i_blocks ;
  4258. struct inode *inode = &(ei->vfs_inode);
  4259. struct super_block *sb = inode->i_sb;
  4260. if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
  4261. EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
  4262. /* we are using combined 48 bit field */
  4263. i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
  4264. le32_to_cpu(raw_inode->i_blocks_lo);
  4265. if (ei->i_flags & EXT4_HUGE_FILE_FL) {
  4266. /* i_blocks represent file system block size */
  4267. return i_blocks << (inode->i_blkbits - 9);
  4268. } else {
  4269. return i_blocks;
  4270. }
  4271. } else {
  4272. return le32_to_cpu(raw_inode->i_blocks_lo);
  4273. }
  4274. }
  4275. struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
  4276. {
  4277. struct ext4_iloc iloc;
  4278. struct ext4_inode *raw_inode;
  4279. struct ext4_inode_info *ei;
  4280. struct inode *inode;
  4281. long ret;
  4282. int block;
  4283. inode = iget_locked(sb, ino);
  4284. if (!inode)
  4285. return ERR_PTR(-ENOMEM);
  4286. if (!(inode->i_state & I_NEW))
  4287. return inode;
  4288. ei = EXT4_I(inode);
  4289. iloc.bh = 0;
  4290. ret = __ext4_get_inode_loc(inode, &iloc, 0);
  4291. if (ret < 0)
  4292. goto bad_inode;
  4293. raw_inode = ext4_raw_inode(&iloc);
  4294. inode->i_mode = le16_to_cpu(raw_inode->i_mode);
  4295. inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
  4296. inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
  4297. if (!(test_opt(inode->i_sb, NO_UID32))) {
  4298. inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
  4299. inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
  4300. }
  4301. inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
  4302. ei->i_state = 0;
  4303. ei->i_dir_start_lookup = 0;
  4304. ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
  4305. /* We now have enough fields to check if the inode was active or not.
  4306. * This is needed because nfsd might try to access dead inodes
  4307. * the test is that same one that e2fsck uses
  4308. * NeilBrown 1999oct15
  4309. */
  4310. if (inode->i_nlink == 0) {
  4311. if (inode->i_mode == 0 ||
  4312. !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
  4313. /* this inode is deleted */
  4314. ret = -ESTALE;
  4315. goto bad_inode;
  4316. }
  4317. /* The only unlinked inodes we let through here have
  4318. * valid i_mode and are being read by the orphan
  4319. * recovery code: that's fine, we're about to complete
  4320. * the process of deleting those. */
  4321. }
  4322. ei->i_flags = le32_to_cpu(raw_inode->i_flags);
  4323. inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
  4324. ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
  4325. if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
  4326. ei->i_file_acl |=
  4327. ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
  4328. inode->i_size = ext4_isize(raw_inode);
  4329. ei->i_disksize = inode->i_size;
  4330. inode->i_generation = le32_to_cpu(raw_inode->i_generation);
  4331. ei->i_block_group = iloc.block_group;
  4332. ei->i_last_alloc_group = ~0;
  4333. /*
  4334. * NOTE! The in-memory inode i_data array is in little-endian order
  4335. * even on big-endian machines: we do NOT byteswap the block numbers!
  4336. */
  4337. for (block = 0; block < EXT4_N_BLOCKS; block++)
  4338. ei->i_data[block] = raw_inode->i_block[block];
  4339. INIT_LIST_HEAD(&ei->i_orphan);
  4340. if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
  4341. ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
  4342. if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
  4343. EXT4_INODE_SIZE(inode->i_sb)) {
  4344. ret = -EIO;
  4345. goto bad_inode;
  4346. }
  4347. if (ei->i_extra_isize == 0) {
  4348. /* The extra space is currently unused. Use it. */
  4349. ei->i_extra_isize = sizeof(struct ext4_inode) -
  4350. EXT4_GOOD_OLD_INODE_SIZE;
  4351. } else {
  4352. __le32 *magic = (void *)raw_inode +
  4353. EXT4_GOOD_OLD_INODE_SIZE +
  4354. ei->i_extra_isize;
  4355. if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
  4356. ei->i_state |= EXT4_STATE_XATTR;
  4357. }
  4358. } else
  4359. ei->i_extra_isize = 0;
  4360. EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
  4361. EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
  4362. EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
  4363. EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
  4364. inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
  4365. if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
  4366. if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
  4367. inode->i_version |=
  4368. (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
  4369. }
  4370. ret = 0;
  4371. if (ei->i_file_acl &&
  4372. !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
  4373. ext4_error(sb, __func__,
  4374. "bad extended attribute block %llu in inode #%lu",
  4375. ei->i_file_acl, inode->i_ino);
  4376. ret = -EIO;
  4377. goto bad_inode;
  4378. } else if (ei->i_flags & EXT4_EXTENTS_FL) {
  4379. if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  4380. (S_ISLNK(inode->i_mode) &&
  4381. !ext4_inode_is_fast_symlink(inode)))
  4382. /* Validate extent which is part of inode */
  4383. ret = ext4_ext_check_inode(inode);
  4384. } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  4385. (S_ISLNK(inode->i_mode) &&
  4386. !ext4_inode_is_fast_symlink(inode))) {
  4387. /* Validate block references which are part of inode */
  4388. ret = ext4_check_inode_blockref(inode);
  4389. }
  4390. if (ret)
  4391. goto bad_inode;
  4392. if (S_ISREG(inode->i_mode)) {
  4393. inode->i_op = &ext4_file_inode_operations;
  4394. inode->i_fop = &ext4_file_operations;
  4395. ext4_set_aops(inode);
  4396. } else if (S_ISDIR(inode->i_mode)) {
  4397. inode->i_op = &ext4_dir_inode_operations;
  4398. inode->i_fop = &ext4_dir_operations;
  4399. } else if (S_ISLNK(inode->i_mode)) {
  4400. if (ext4_inode_is_fast_symlink(inode)) {
  4401. inode->i_op = &ext4_fast_symlink_inode_operations;
  4402. nd_terminate_link(ei->i_data, inode->i_size,
  4403. sizeof(ei->i_data) - 1);
  4404. } else {
  4405. inode->i_op = &ext4_symlink_inode_operations;
  4406. ext4_set_aops(inode);
  4407. }
  4408. } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
  4409. S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
  4410. inode->i_op = &ext4_special_inode_operations;
  4411. if (raw_inode->i_block[0])
  4412. init_special_inode(inode, inode->i_mode,
  4413. old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
  4414. else
  4415. init_special_inode(inode, inode->i_mode,
  4416. new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
  4417. } else {
  4418. ret = -EIO;
  4419. ext4_error(inode->i_sb, __func__,
  4420. "bogus i_mode (%o) for inode=%lu",
  4421. inode->i_mode, inode->i_ino);
  4422. goto bad_inode;
  4423. }
  4424. brelse(iloc.bh);
  4425. ext4_set_inode_flags(inode);
  4426. unlock_new_inode(inode);
  4427. return inode;
  4428. bad_inode:
  4429. brelse(iloc.bh);
  4430. iget_failed(inode);
  4431. return ERR_PTR(ret);
  4432. }
  4433. static int ext4_inode_blocks_set(handle_t *handle,
  4434. struct ext4_inode *raw_inode,
  4435. struct ext4_inode_info *ei)
  4436. {
  4437. struct inode *inode = &(ei->vfs_inode);
  4438. u64 i_blocks = inode->i_blocks;
  4439. struct super_block *sb = inode->i_sb;
  4440. if (i_blocks <= ~0U) {
  4441. /*
  4442. * i_blocks can be represnted in a 32 bit variable
  4443. * as multiple of 512 bytes
  4444. */
  4445. raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
  4446. raw_inode->i_blocks_high = 0;
  4447. ei->i_flags &= ~EXT4_HUGE_FILE_FL;
  4448. return 0;
  4449. }
  4450. if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
  4451. return -EFBIG;
  4452. if (i_blocks <= 0xffffffffffffULL) {
  4453. /*
  4454. * i_blocks can be represented in a 48 bit variable
  4455. * as multiple of 512 bytes
  4456. */
  4457. raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
  4458. raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
  4459. ei->i_flags &= ~EXT4_HUGE_FILE_FL;
  4460. } else {
  4461. ei->i_flags |= EXT4_HUGE_FILE_FL;
  4462. /* i_block is stored in file system block size */
  4463. i_blocks = i_blocks >> (inode->i_blkbits - 9);
  4464. raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
  4465. raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
  4466. }
  4467. return 0;
  4468. }
  4469. /*
  4470. * Post the struct inode info into an on-disk inode location in the
  4471. * buffer-cache. This gobbles the caller's reference to the
  4472. * buffer_head in the inode location struct.
  4473. *
  4474. * The caller must have write access to iloc->bh.
  4475. */
  4476. static int ext4_do_update_inode(handle_t *handle,
  4477. struct inode *inode,
  4478. struct ext4_iloc *iloc)
  4479. {
  4480. struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
  4481. struct ext4_inode_info *ei = EXT4_I(inode);
  4482. struct buffer_head *bh = iloc->bh;
  4483. int err = 0, rc, block;
  4484. /* For fields not not tracking in the in-memory inode,
  4485. * initialise them to zero for new inodes. */
  4486. if (ei->i_state & EXT4_STATE_NEW)
  4487. memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
  4488. ext4_get_inode_flags(ei);
  4489. raw_inode->i_mode = cpu_to_le16(inode->i_mode);
  4490. if (!(test_opt(inode->i_sb, NO_UID32))) {
  4491. raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
  4492. raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
  4493. /*
  4494. * Fix up interoperability with old kernels. Otherwise, old inodes get
  4495. * re-used with the upper 16 bits of the uid/gid intact
  4496. */
  4497. if (!ei->i_dtime) {
  4498. raw_inode->i_uid_high =
  4499. cpu_to_le16(high_16_bits(inode->i_uid));
  4500. raw_inode->i_gid_high =
  4501. cpu_to_le16(high_16_bits(inode->i_gid));
  4502. } else {
  4503. raw_inode->i_uid_high = 0;
  4504. raw_inode->i_gid_high = 0;
  4505. }
  4506. } else {
  4507. raw_inode->i_uid_low =
  4508. cpu_to_le16(fs_high2lowuid(inode->i_uid));
  4509. raw_inode->i_gid_low =
  4510. cpu_to_le16(fs_high2lowgid(inode->i_gid));
  4511. raw_inode->i_uid_high = 0;
  4512. raw_inode->i_gid_high = 0;
  4513. }
  4514. raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
  4515. EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
  4516. EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
  4517. EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
  4518. EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
  4519. if (ext4_inode_blocks_set(handle, raw_inode, ei))
  4520. goto out_brelse;
  4521. raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
  4522. raw_inode->i_flags = cpu_to_le32(ei->i_flags);
  4523. if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  4524. cpu_to_le32(EXT4_OS_HURD))
  4525. raw_inode->i_file_acl_high =
  4526. cpu_to_le16(ei->i_file_acl >> 32);
  4527. raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
  4528. ext4_isize_set(raw_inode, ei->i_disksize);
  4529. if (ei->i_disksize > 0x7fffffffULL) {
  4530. struct super_block *sb = inode->i_sb;
  4531. if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
  4532. EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
  4533. EXT4_SB(sb)->s_es->s_rev_level ==
  4534. cpu_to_le32(EXT4_GOOD_OLD_REV)) {
  4535. /* If this is the first large file
  4536. * created, add a flag to the superblock.
  4537. */
  4538. err = ext4_journal_get_write_access(handle,
  4539. EXT4_SB(sb)->s_sbh);
  4540. if (err)
  4541. goto out_brelse;
  4542. ext4_update_dynamic_rev(sb);
  4543. EXT4_SET_RO_COMPAT_FEATURE(sb,
  4544. EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
  4545. sb->s_dirt = 1;
  4546. ext4_handle_sync(handle);
  4547. err = ext4_handle_dirty_metadata(handle, inode,
  4548. EXT4_SB(sb)->s_sbh);
  4549. }
  4550. }
  4551. raw_inode->i_generation = cpu_to_le32(inode->i_generation);
  4552. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  4553. if (old_valid_dev(inode->i_rdev)) {
  4554. raw_inode->i_block[0] =
  4555. cpu_to_le32(old_encode_dev(inode->i_rdev));
  4556. raw_inode->i_block[1] = 0;
  4557. } else {
  4558. raw_inode->i_block[0] = 0;
  4559. raw_inode->i_block[1] =
  4560. cpu_to_le32(new_encode_dev(inode->i_rdev));
  4561. raw_inode->i_block[2] = 0;
  4562. }
  4563. } else
  4564. for (block = 0; block < EXT4_N_BLOCKS; block++)
  4565. raw_inode->i_block[block] = ei->i_data[block];
  4566. raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
  4567. if (ei->i_extra_isize) {
  4568. if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
  4569. raw_inode->i_version_hi =
  4570. cpu_to_le32(inode->i_version >> 32);
  4571. raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
  4572. }
  4573. BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
  4574. rc = ext4_handle_dirty_metadata(handle, inode, bh);
  4575. if (!err)
  4576. err = rc;
  4577. ei->i_state &= ~EXT4_STATE_NEW;
  4578. out_brelse:
  4579. brelse(bh);
  4580. ext4_std_error(inode->i_sb, err);
  4581. return err;
  4582. }
  4583. /*
  4584. * ext4_write_inode()
  4585. *
  4586. * We are called from a few places:
  4587. *
  4588. * - Within generic_file_write() for O_SYNC files.
  4589. * Here, there will be no transaction running. We wait for any running
  4590. * trasnaction to commit.
  4591. *
  4592. * - Within sys_sync(), kupdate and such.
  4593. * We wait on commit, if tol to.
  4594. *
  4595. * - Within prune_icache() (PF_MEMALLOC == true)
  4596. * Here we simply return. We can't afford to block kswapd on the
  4597. * journal commit.
  4598. *
  4599. * In all cases it is actually safe for us to return without doing anything,
  4600. * because the inode has been copied into a raw inode buffer in
  4601. * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
  4602. * knfsd.
  4603. *
  4604. * Note that we are absolutely dependent upon all inode dirtiers doing the
  4605. * right thing: they *must* call mark_inode_dirty() after dirtying info in
  4606. * which we are interested.
  4607. *
  4608. * It would be a bug for them to not do this. The code:
  4609. *
  4610. * mark_inode_dirty(inode)
  4611. * stuff();
  4612. * inode->i_size = expr;
  4613. *
  4614. * is in error because a kswapd-driven write_inode() could occur while
  4615. * `stuff()' is running, and the new i_size will be lost. Plus the inode
  4616. * will no longer be on the superblock's dirty inode list.
  4617. */
  4618. int ext4_write_inode(struct inode *inode, int wait)
  4619. {
  4620. int err;
  4621. if (current->flags & PF_MEMALLOC)
  4622. return 0;
  4623. if (EXT4_SB(inode->i_sb)->s_journal) {
  4624. if (ext4_journal_current_handle()) {
  4625. jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
  4626. dump_stack();
  4627. return -EIO;
  4628. }
  4629. if (!wait)
  4630. return 0;
  4631. err = ext4_force_commit(inode->i_sb);
  4632. } else {
  4633. struct ext4_iloc iloc;
  4634. err = ext4_get_inode_loc(inode, &iloc);
  4635. if (err)
  4636. return err;
  4637. if (wait)
  4638. sync_dirty_buffer(iloc.bh);
  4639. if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
  4640. ext4_error(inode->i_sb, __func__,
  4641. "IO error syncing inode, "
  4642. "inode=%lu, block=%llu",
  4643. inode->i_ino,
  4644. (unsigned long long)iloc.bh->b_blocknr);
  4645. err = -EIO;
  4646. }
  4647. }
  4648. return err;
  4649. }
  4650. /*
  4651. * ext4_setattr()
  4652. *
  4653. * Called from notify_change.
  4654. *
  4655. * We want to trap VFS attempts to truncate the file as soon as
  4656. * possible. In particular, we want to make sure that when the VFS
  4657. * shrinks i_size, we put the inode on the orphan list and modify
  4658. * i_disksize immediately, so that during the subsequent flushing of
  4659. * dirty pages and freeing of disk blocks, we can guarantee that any
  4660. * commit will leave the blocks being flushed in an unused state on
  4661. * disk. (On recovery, the inode will get truncated and the blocks will
  4662. * be freed, so we have a strong guarantee that no future commit will
  4663. * leave these blocks visible to the user.)
  4664. *
  4665. * Another thing we have to assure is that if we are in ordered mode
  4666. * and inode is still attached to the committing transaction, we must
  4667. * we start writeout of all the dirty pages which are being truncated.
  4668. * This way we are sure that all the data written in the previous
  4669. * transaction are already on disk (truncate waits for pages under
  4670. * writeback).
  4671. *
  4672. * Called with inode->i_mutex down.
  4673. */
  4674. int ext4_setattr(struct dentry *dentry, struct iattr *attr)
  4675. {
  4676. struct inode *inode = dentry->d_inode;
  4677. int error, rc = 0;
  4678. const unsigned int ia_valid = attr->ia_valid;
  4679. error = inode_change_ok(inode, attr);
  4680. if (error)
  4681. return error;
  4682. if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
  4683. (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
  4684. handle_t *handle;
  4685. /* (user+group)*(old+new) structure, inode write (sb,
  4686. * inode block, ? - but truncate inode update has it) */
  4687. handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
  4688. EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
  4689. if (IS_ERR(handle)) {
  4690. error = PTR_ERR(handle);
  4691. goto err_out;
  4692. }
  4693. error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
  4694. if (error) {
  4695. ext4_journal_stop(handle);
  4696. return error;
  4697. }
  4698. /* Update corresponding info in inode so that everything is in
  4699. * one transaction */
  4700. if (attr->ia_valid & ATTR_UID)
  4701. inode->i_uid = attr->ia_uid;
  4702. if (attr->ia_valid & ATTR_GID)
  4703. inode->i_gid = attr->ia_gid;
  4704. error = ext4_mark_inode_dirty(handle, inode);
  4705. ext4_journal_stop(handle);
  4706. }
  4707. if (attr->ia_valid & ATTR_SIZE) {
  4708. if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
  4709. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  4710. if (attr->ia_size > sbi->s_bitmap_maxbytes) {
  4711. error = -EFBIG;
  4712. goto err_out;
  4713. }
  4714. }
  4715. }
  4716. if (S_ISREG(inode->i_mode) &&
  4717. attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
  4718. handle_t *handle;
  4719. handle = ext4_journal_start(inode, 3);
  4720. if (IS_ERR(handle)) {
  4721. error = PTR_ERR(handle);
  4722. goto err_out;
  4723. }
  4724. error = ext4_orphan_add(handle, inode);
  4725. EXT4_I(inode)->i_disksize = attr->ia_size;
  4726. rc = ext4_mark_inode_dirty(handle, inode);
  4727. if (!error)
  4728. error = rc;
  4729. ext4_journal_stop(handle);
  4730. if (ext4_should_order_data(inode)) {
  4731. error = ext4_begin_ordered_truncate(inode,
  4732. attr->ia_size);
  4733. if (error) {
  4734. /* Do as much error cleanup as possible */
  4735. handle = ext4_journal_start(inode, 3);
  4736. if (IS_ERR(handle)) {
  4737. ext4_orphan_del(NULL, inode);
  4738. goto err_out;
  4739. }
  4740. ext4_orphan_del(handle, inode);
  4741. ext4_journal_stop(handle);
  4742. goto err_out;
  4743. }
  4744. }
  4745. }
  4746. rc = inode_setattr(inode, attr);
  4747. /* If inode_setattr's call to ext4_truncate failed to get a
  4748. * transaction handle at all, we need to clean up the in-core
  4749. * orphan list manually. */
  4750. if (inode->i_nlink)
  4751. ext4_orphan_del(NULL, inode);
  4752. if (!rc && (ia_valid & ATTR_MODE))
  4753. rc = ext4_acl_chmod(inode);
  4754. err_out:
  4755. ext4_std_error(inode->i_sb, error);
  4756. if (!error)
  4757. error = rc;
  4758. return error;
  4759. }
  4760. int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
  4761. struct kstat *stat)
  4762. {
  4763. struct inode *inode;
  4764. unsigned long delalloc_blocks;
  4765. inode = dentry->d_inode;
  4766. generic_fillattr(inode, stat);
  4767. /*
  4768. * We can't update i_blocks if the block allocation is delayed
  4769. * otherwise in the case of system crash before the real block
  4770. * allocation is done, we will have i_blocks inconsistent with
  4771. * on-disk file blocks.
  4772. * We always keep i_blocks updated together with real
  4773. * allocation. But to not confuse with user, stat
  4774. * will return the blocks that include the delayed allocation
  4775. * blocks for this file.
  4776. */
  4777. spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
  4778. delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
  4779. spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
  4780. stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
  4781. return 0;
  4782. }
  4783. static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
  4784. int chunk)
  4785. {
  4786. int indirects;
  4787. /* if nrblocks are contiguous */
  4788. if (chunk) {
  4789. /*
  4790. * With N contiguous data blocks, it need at most
  4791. * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
  4792. * 2 dindirect blocks
  4793. * 1 tindirect block
  4794. */
  4795. indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
  4796. return indirects + 3;
  4797. }
  4798. /*
  4799. * if nrblocks are not contiguous, worse case, each block touch
  4800. * a indirect block, and each indirect block touch a double indirect
  4801. * block, plus a triple indirect block
  4802. */
  4803. indirects = nrblocks * 2 + 1;
  4804. return indirects;
  4805. }
  4806. static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
  4807. {
  4808. if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
  4809. return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
  4810. return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
  4811. }
  4812. /*
  4813. * Account for index blocks, block groups bitmaps and block group
  4814. * descriptor blocks if modify datablocks and index blocks
  4815. * worse case, the indexs blocks spread over different block groups
  4816. *
  4817. * If datablocks are discontiguous, they are possible to spread over
  4818. * different block groups too. If they are contiugous, with flexbg,
  4819. * they could still across block group boundary.
  4820. *
  4821. * Also account for superblock, inode, quota and xattr blocks
  4822. */
  4823. int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
  4824. {
  4825. ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
  4826. int gdpblocks;
  4827. int idxblocks;
  4828. int ret = 0;
  4829. /*
  4830. * How many index blocks need to touch to modify nrblocks?
  4831. * The "Chunk" flag indicating whether the nrblocks is
  4832. * physically contiguous on disk
  4833. *
  4834. * For Direct IO and fallocate, they calls get_block to allocate
  4835. * one single extent at a time, so they could set the "Chunk" flag
  4836. */
  4837. idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
  4838. ret = idxblocks;
  4839. /*
  4840. * Now let's see how many group bitmaps and group descriptors need
  4841. * to account
  4842. */
  4843. groups = idxblocks;
  4844. if (chunk)
  4845. groups += 1;
  4846. else
  4847. groups += nrblocks;
  4848. gdpblocks = groups;
  4849. if (groups > ngroups)
  4850. groups = ngroups;
  4851. if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
  4852. gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
  4853. /* bitmaps and block group descriptor blocks */
  4854. ret += groups + gdpblocks;
  4855. /* Blocks for super block, inode, quota and xattr blocks */
  4856. ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
  4857. return ret;
  4858. }
  4859. /*
  4860. * Calulate the total number of credits to reserve to fit
  4861. * the modification of a single pages into a single transaction,
  4862. * which may include multiple chunks of block allocations.
  4863. *
  4864. * This could be called via ext4_write_begin()
  4865. *
  4866. * We need to consider the worse case, when
  4867. * one new block per extent.
  4868. */
  4869. int ext4_writepage_trans_blocks(struct inode *inode)
  4870. {
  4871. int bpp = ext4_journal_blocks_per_page(inode);
  4872. int ret;
  4873. ret = ext4_meta_trans_blocks(inode, bpp, 0);
  4874. /* Account for data blocks for journalled mode */
  4875. if (ext4_should_journal_data(inode))
  4876. ret += bpp;
  4877. return ret;
  4878. }
  4879. /*
  4880. * Calculate the journal credits for a chunk of data modification.
  4881. *
  4882. * This is called from DIO, fallocate or whoever calling
  4883. * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
  4884. *
  4885. * journal buffers for data blocks are not included here, as DIO
  4886. * and fallocate do no need to journal data buffers.
  4887. */
  4888. int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
  4889. {
  4890. return ext4_meta_trans_blocks(inode, nrblocks, 1);
  4891. }
  4892. /*
  4893. * The caller must have previously called ext4_reserve_inode_write().
  4894. * Give this, we know that the caller already has write access to iloc->bh.
  4895. */
  4896. int ext4_mark_iloc_dirty(handle_t *handle,
  4897. struct inode *inode, struct ext4_iloc *iloc)
  4898. {
  4899. int err = 0;
  4900. if (test_opt(inode->i_sb, I_VERSION))
  4901. inode_inc_iversion(inode);
  4902. /* the do_update_inode consumes one bh->b_count */
  4903. get_bh(iloc->bh);
  4904. /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
  4905. err = ext4_do_update_inode(handle, inode, iloc);
  4906. put_bh(iloc->bh);
  4907. return err;
  4908. }
  4909. /*
  4910. * On success, We end up with an outstanding reference count against
  4911. * iloc->bh. This _must_ be cleaned up later.
  4912. */
  4913. int
  4914. ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
  4915. struct ext4_iloc *iloc)
  4916. {
  4917. int err;
  4918. err = ext4_get_inode_loc(inode, iloc);
  4919. if (!err) {
  4920. BUFFER_TRACE(iloc->bh, "get_write_access");
  4921. err = ext4_journal_get_write_access(handle, iloc->bh);
  4922. if (err) {
  4923. brelse(iloc->bh);
  4924. iloc->bh = NULL;
  4925. }
  4926. }
  4927. ext4_std_error(inode->i_sb, err);
  4928. return err;
  4929. }
  4930. /*
  4931. * Expand an inode by new_extra_isize bytes.
  4932. * Returns 0 on success or negative error number on failure.
  4933. */
  4934. static int ext4_expand_extra_isize(struct inode *inode,
  4935. unsigned int new_extra_isize,
  4936. struct ext4_iloc iloc,
  4937. handle_t *handle)
  4938. {
  4939. struct ext4_inode *raw_inode;
  4940. struct ext4_xattr_ibody_header *header;
  4941. struct ext4_xattr_entry *entry;
  4942. if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
  4943. return 0;
  4944. raw_inode = ext4_raw_inode(&iloc);
  4945. header = IHDR(inode, raw_inode);
  4946. entry = IFIRST(header);
  4947. /* No extended attributes present */
  4948. if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
  4949. header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
  4950. memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
  4951. new_extra_isize);
  4952. EXT4_I(inode)->i_extra_isize = new_extra_isize;
  4953. return 0;
  4954. }
  4955. /* try to expand with EAs present */
  4956. return ext4_expand_extra_isize_ea(inode, new_extra_isize,
  4957. raw_inode, handle);
  4958. }
  4959. /*
  4960. * What we do here is to mark the in-core inode as clean with respect to inode
  4961. * dirtiness (it may still be data-dirty).
  4962. * This means that the in-core inode may be reaped by prune_icache
  4963. * without having to perform any I/O. This is a very good thing,
  4964. * because *any* task may call prune_icache - even ones which
  4965. * have a transaction open against a different journal.
  4966. *
  4967. * Is this cheating? Not really. Sure, we haven't written the
  4968. * inode out, but prune_icache isn't a user-visible syncing function.
  4969. * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
  4970. * we start and wait on commits.
  4971. *
  4972. * Is this efficient/effective? Well, we're being nice to the system
  4973. * by cleaning up our inodes proactively so they can be reaped
  4974. * without I/O. But we are potentially leaving up to five seconds'
  4975. * worth of inodes floating about which prune_icache wants us to
  4976. * write out. One way to fix that would be to get prune_icache()
  4977. * to do a write_super() to free up some memory. It has the desired
  4978. * effect.
  4979. */
  4980. int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
  4981. {
  4982. struct ext4_iloc iloc;
  4983. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  4984. static unsigned int mnt_count;
  4985. int err, ret;
  4986. might_sleep();
  4987. err = ext4_reserve_inode_write(handle, inode, &iloc);
  4988. if (ext4_handle_valid(handle) &&
  4989. EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
  4990. !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
  4991. /*
  4992. * We need extra buffer credits since we may write into EA block
  4993. * with this same handle. If journal_extend fails, then it will
  4994. * only result in a minor loss of functionality for that inode.
  4995. * If this is felt to be critical, then e2fsck should be run to
  4996. * force a large enough s_min_extra_isize.
  4997. */
  4998. if ((jbd2_journal_extend(handle,
  4999. EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
  5000. ret = ext4_expand_extra_isize(inode,
  5001. sbi->s_want_extra_isize,
  5002. iloc, handle);
  5003. if (ret) {
  5004. EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
  5005. if (mnt_count !=
  5006. le16_to_cpu(sbi->s_es->s_mnt_count)) {
  5007. ext4_warning(inode->i_sb, __func__,
  5008. "Unable to expand inode %lu. Delete"
  5009. " some EAs or run e2fsck.",
  5010. inode->i_ino);
  5011. mnt_count =
  5012. le16_to_cpu(sbi->s_es->s_mnt_count);
  5013. }
  5014. }
  5015. }
  5016. }
  5017. if (!err)
  5018. err = ext4_mark_iloc_dirty(handle, inode, &iloc);
  5019. return err;
  5020. }
  5021. /*
  5022. * ext4_dirty_inode() is called from __mark_inode_dirty()
  5023. *
  5024. * We're really interested in the case where a file is being extended.
  5025. * i_size has been changed by generic_commit_write() and we thus need
  5026. * to include the updated inode in the current transaction.
  5027. *
  5028. * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
  5029. * are allocated to the file.
  5030. *
  5031. * If the inode is marked synchronous, we don't honour that here - doing
  5032. * so would cause a commit on atime updates, which we don't bother doing.
  5033. * We handle synchronous inodes at the highest possible level.
  5034. */
  5035. void ext4_dirty_inode(struct inode *inode)
  5036. {
  5037. handle_t *handle;
  5038. handle = ext4_journal_start(inode, 2);
  5039. if (IS_ERR(handle))
  5040. goto out;
  5041. ext4_mark_inode_dirty(handle, inode);
  5042. ext4_journal_stop(handle);
  5043. out:
  5044. return;
  5045. }
  5046. #if 0
  5047. /*
  5048. * Bind an inode's backing buffer_head into this transaction, to prevent
  5049. * it from being flushed to disk early. Unlike
  5050. * ext4_reserve_inode_write, this leaves behind no bh reference and
  5051. * returns no iloc structure, so the caller needs to repeat the iloc
  5052. * lookup to mark the inode dirty later.
  5053. */
  5054. static int ext4_pin_inode(handle_t *handle, struct inode *inode)
  5055. {
  5056. struct ext4_iloc iloc;
  5057. int err = 0;
  5058. if (handle) {
  5059. err = ext4_get_inode_loc(inode, &iloc);
  5060. if (!err) {
  5061. BUFFER_TRACE(iloc.bh, "get_write_access");
  5062. err = jbd2_journal_get_write_access(handle, iloc.bh);
  5063. if (!err)
  5064. err = ext4_handle_dirty_metadata(handle,
  5065. inode,
  5066. iloc.bh);
  5067. brelse(iloc.bh);
  5068. }
  5069. }
  5070. ext4_std_error(inode->i_sb, err);
  5071. return err;
  5072. }
  5073. #endif
  5074. int ext4_change_inode_journal_flag(struct inode *inode, int val)
  5075. {
  5076. journal_t *journal;
  5077. handle_t *handle;
  5078. int err;
  5079. /*
  5080. * We have to be very careful here: changing a data block's
  5081. * journaling status dynamically is dangerous. If we write a
  5082. * data block to the journal, change the status and then delete
  5083. * that block, we risk forgetting to revoke the old log record
  5084. * from the journal and so a subsequent replay can corrupt data.
  5085. * So, first we make sure that the journal is empty and that
  5086. * nobody is changing anything.
  5087. */
  5088. journal = EXT4_JOURNAL(inode);
  5089. if (!journal)
  5090. return 0;
  5091. if (is_journal_aborted(journal))
  5092. return -EROFS;
  5093. jbd2_journal_lock_updates(journal);
  5094. jbd2_journal_flush(journal);
  5095. /*
  5096. * OK, there are no updates running now, and all cached data is
  5097. * synced to disk. We are now in a completely consistent state
  5098. * which doesn't have anything in the journal, and we know that
  5099. * no filesystem updates are running, so it is safe to modify
  5100. * the inode's in-core data-journaling state flag now.
  5101. */
  5102. if (val)
  5103. EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
  5104. else
  5105. EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
  5106. ext4_set_aops(inode);
  5107. jbd2_journal_unlock_updates(journal);
  5108. /* Finally we can mark the inode as dirty. */
  5109. handle = ext4_journal_start(inode, 1);
  5110. if (IS_ERR(handle))
  5111. return PTR_ERR(handle);
  5112. err = ext4_mark_inode_dirty(handle, inode);
  5113. ext4_handle_sync(handle);
  5114. ext4_journal_stop(handle);
  5115. ext4_std_error(inode->i_sb, err);
  5116. return err;
  5117. }
  5118. static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
  5119. {
  5120. return !buffer_mapped(bh);
  5121. }
  5122. int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
  5123. {
  5124. struct page *page = vmf->page;
  5125. loff_t size;
  5126. unsigned long len;
  5127. int ret = -EINVAL;
  5128. void *fsdata;
  5129. struct file *file = vma->vm_file;
  5130. struct inode *inode = file->f_path.dentry->d_inode;
  5131. struct address_space *mapping = inode->i_mapping;
  5132. /*
  5133. * Get i_alloc_sem to stop truncates messing with the inode. We cannot
  5134. * get i_mutex because we are already holding mmap_sem.
  5135. */
  5136. down_read(&inode->i_alloc_sem);
  5137. size = i_size_read(inode);
  5138. if (page->mapping != mapping || size <= page_offset(page)
  5139. || !PageUptodate(page)) {
  5140. /* page got truncated from under us? */
  5141. goto out_unlock;
  5142. }
  5143. ret = 0;
  5144. if (PageMappedToDisk(page))
  5145. goto out_unlock;
  5146. if (page->index == size >> PAGE_CACHE_SHIFT)
  5147. len = size & ~PAGE_CACHE_MASK;
  5148. else
  5149. len = PAGE_CACHE_SIZE;
  5150. lock_page(page);
  5151. /*
  5152. * return if we have all the buffers mapped. This avoid
  5153. * the need to call write_begin/write_end which does a
  5154. * journal_start/journal_stop which can block and take
  5155. * long time
  5156. */
  5157. if (page_has_buffers(page)) {
  5158. if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
  5159. ext4_bh_unmapped)) {
  5160. unlock_page(page);
  5161. goto out_unlock;
  5162. }
  5163. }
  5164. unlock_page(page);
  5165. /*
  5166. * OK, we need to fill the hole... Do write_begin write_end
  5167. * to do block allocation/reservation.We are not holding
  5168. * inode.i__mutex here. That allow * parallel write_begin,
  5169. * write_end call. lock_page prevent this from happening
  5170. * on the same page though
  5171. */
  5172. ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
  5173. len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
  5174. if (ret < 0)
  5175. goto out_unlock;
  5176. ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
  5177. len, len, page, fsdata);
  5178. if (ret < 0)
  5179. goto out_unlock;
  5180. ret = 0;
  5181. out_unlock:
  5182. if (ret)
  5183. ret = VM_FAULT_SIGBUS;
  5184. up_read(&inode->i_alloc_sem);
  5185. return ret;
  5186. }