splice.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659
  1. /*
  2. * "splice": joining two ropes together by interweaving their strands.
  3. *
  4. * This is the "extended pipe" functionality, where a pipe is used as
  5. * an arbitrary in-memory buffer. Think of a pipe as a small kernel
  6. * buffer that you can use to transfer data from one end to the other.
  7. *
  8. * The traditional unix read/write is extended with a "splice()" operation
  9. * that transfers data buffers to or from a pipe buffer.
  10. *
  11. * Named by Larry McVoy, original implementation from Linus, extended by
  12. * Jens to support splicing to files and fixing the initial implementation
  13. * bugs.
  14. *
  15. * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
  16. * Copyright (C) 2005 Linus Torvalds <torvalds@osdl.org>
  17. *
  18. */
  19. #include <linux/fs.h>
  20. #include <linux/file.h>
  21. #include <linux/pagemap.h>
  22. #include <linux/pipe_fs_i.h>
  23. #include <linux/mm_inline.h>
  24. #include <linux/swap.h>
  25. /*
  26. * Passed to the actors
  27. */
  28. struct splice_desc {
  29. unsigned int len, total_len; /* current and remaining length */
  30. unsigned int flags; /* splice flags */
  31. struct file *file; /* file to read/write */
  32. loff_t pos; /* file position */
  33. };
  34. static int page_cache_pipe_buf_steal(struct pipe_inode_info *info,
  35. struct pipe_buffer *buf)
  36. {
  37. struct page *page = buf->page;
  38. WARN_ON(!PageLocked(page));
  39. WARN_ON(!PageUptodate(page));
  40. if (!remove_mapping(page_mapping(page), page))
  41. return 1;
  42. if (PageLRU(page)) {
  43. struct zone *zone = page_zone(page);
  44. spin_lock_irq(&zone->lru_lock);
  45. BUG_ON(!PageLRU(page));
  46. __ClearPageLRU(page);
  47. del_page_from_lru(zone, page);
  48. spin_unlock_irq(&zone->lru_lock);
  49. }
  50. buf->stolen = 1;
  51. return 0;
  52. }
  53. static void page_cache_pipe_buf_release(struct pipe_inode_info *info,
  54. struct pipe_buffer *buf)
  55. {
  56. page_cache_release(buf->page);
  57. buf->page = NULL;
  58. buf->stolen = 0;
  59. }
  60. static void *page_cache_pipe_buf_map(struct file *file,
  61. struct pipe_inode_info *info,
  62. struct pipe_buffer *buf)
  63. {
  64. struct page *page = buf->page;
  65. lock_page(page);
  66. if (!PageUptodate(page)) {
  67. unlock_page(page);
  68. return ERR_PTR(-EIO);
  69. }
  70. if (!page->mapping) {
  71. unlock_page(page);
  72. return ERR_PTR(-ENODATA);
  73. }
  74. return kmap(buf->page);
  75. }
  76. static void page_cache_pipe_buf_unmap(struct pipe_inode_info *info,
  77. struct pipe_buffer *buf)
  78. {
  79. if (!buf->stolen)
  80. unlock_page(buf->page);
  81. kunmap(buf->page);
  82. }
  83. static struct pipe_buf_operations page_cache_pipe_buf_ops = {
  84. .can_merge = 0,
  85. .map = page_cache_pipe_buf_map,
  86. .unmap = page_cache_pipe_buf_unmap,
  87. .release = page_cache_pipe_buf_release,
  88. .steal = page_cache_pipe_buf_steal,
  89. };
  90. static ssize_t move_to_pipe(struct inode *inode, struct page **pages,
  91. int nr_pages, unsigned long offset,
  92. unsigned long len)
  93. {
  94. struct pipe_inode_info *info;
  95. int ret, do_wakeup, i;
  96. ret = 0;
  97. do_wakeup = 0;
  98. i = 0;
  99. mutex_lock(PIPE_MUTEX(*inode));
  100. info = inode->i_pipe;
  101. for (;;) {
  102. int bufs;
  103. if (!PIPE_READERS(*inode)) {
  104. send_sig(SIGPIPE, current, 0);
  105. if (!ret)
  106. ret = -EPIPE;
  107. break;
  108. }
  109. bufs = info->nrbufs;
  110. if (bufs < PIPE_BUFFERS) {
  111. int newbuf = (info->curbuf + bufs) & (PIPE_BUFFERS - 1);
  112. struct pipe_buffer *buf = info->bufs + newbuf;
  113. struct page *page = pages[i++];
  114. unsigned long this_len;
  115. this_len = PAGE_CACHE_SIZE - offset;
  116. if (this_len > len)
  117. this_len = len;
  118. buf->page = page;
  119. buf->offset = offset;
  120. buf->len = this_len;
  121. buf->ops = &page_cache_pipe_buf_ops;
  122. info->nrbufs = ++bufs;
  123. do_wakeup = 1;
  124. ret += this_len;
  125. len -= this_len;
  126. offset = 0;
  127. if (!--nr_pages)
  128. break;
  129. if (!len)
  130. break;
  131. if (bufs < PIPE_BUFFERS)
  132. continue;
  133. break;
  134. }
  135. if (signal_pending(current)) {
  136. if (!ret)
  137. ret = -ERESTARTSYS;
  138. break;
  139. }
  140. if (do_wakeup) {
  141. wake_up_interruptible_sync(PIPE_WAIT(*inode));
  142. kill_fasync(PIPE_FASYNC_READERS(*inode), SIGIO,
  143. POLL_IN);
  144. do_wakeup = 0;
  145. }
  146. PIPE_WAITING_WRITERS(*inode)++;
  147. pipe_wait(inode);
  148. PIPE_WAITING_WRITERS(*inode)--;
  149. }
  150. mutex_unlock(PIPE_MUTEX(*inode));
  151. if (do_wakeup) {
  152. wake_up_interruptible(PIPE_WAIT(*inode));
  153. kill_fasync(PIPE_FASYNC_READERS(*inode), SIGIO, POLL_IN);
  154. }
  155. while (i < nr_pages)
  156. page_cache_release(pages[i++]);
  157. return ret;
  158. }
  159. static int __generic_file_splice_read(struct file *in, struct inode *pipe,
  160. size_t len)
  161. {
  162. struct address_space *mapping = in->f_mapping;
  163. unsigned int offset, nr_pages;
  164. struct page *pages[PIPE_BUFFERS], *shadow[PIPE_BUFFERS];
  165. struct page *page;
  166. pgoff_t index, pidx;
  167. int i, j;
  168. index = in->f_pos >> PAGE_CACHE_SHIFT;
  169. offset = in->f_pos & ~PAGE_CACHE_MASK;
  170. nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
  171. if (nr_pages > PIPE_BUFFERS)
  172. nr_pages = PIPE_BUFFERS;
  173. /*
  174. * initiate read-ahead on this page range
  175. */
  176. do_page_cache_readahead(mapping, in, index, nr_pages);
  177. /*
  178. * Get as many pages from the page cache as possible..
  179. * Start IO on the page cache entries we create (we
  180. * can assume that any pre-existing ones we find have
  181. * already had IO started on them).
  182. */
  183. i = find_get_pages(mapping, index, nr_pages, pages);
  184. /*
  185. * common case - we found all pages and they are contiguous,
  186. * kick them off
  187. */
  188. if (i && (pages[i - 1]->index == index + i - 1))
  189. goto splice_them;
  190. /*
  191. * fill shadow[] with pages at the right locations, so we only
  192. * have to fill holes
  193. */
  194. memset(shadow, 0, i * sizeof(struct page *));
  195. for (j = 0, pidx = index; j < i; pidx++, j++)
  196. shadow[pages[j]->index - pidx] = pages[j];
  197. /*
  198. * now fill in the holes
  199. */
  200. for (i = 0, pidx = index; i < nr_pages; pidx++, i++) {
  201. int error;
  202. if (shadow[i])
  203. continue;
  204. /*
  205. * no page there, look one up / create it
  206. */
  207. page = find_or_create_page(mapping, pidx,
  208. mapping_gfp_mask(mapping));
  209. if (!page)
  210. break;
  211. if (PageUptodate(page))
  212. unlock_page(page);
  213. else {
  214. error = mapping->a_ops->readpage(in, page);
  215. if (unlikely(error)) {
  216. page_cache_release(page);
  217. break;
  218. }
  219. }
  220. shadow[i] = page;
  221. }
  222. if (!i) {
  223. for (i = 0; i < nr_pages; i++) {
  224. if (shadow[i])
  225. page_cache_release(shadow[i]);
  226. }
  227. return 0;
  228. }
  229. memcpy(pages, shadow, i * sizeof(struct page *));
  230. /*
  231. * Now we splice them into the pipe..
  232. */
  233. splice_them:
  234. return move_to_pipe(pipe, pages, i, offset, len);
  235. }
  236. ssize_t generic_file_splice_read(struct file *in, struct inode *pipe,
  237. size_t len, unsigned int flags)
  238. {
  239. ssize_t spliced;
  240. int ret;
  241. ret = 0;
  242. spliced = 0;
  243. while (len) {
  244. ret = __generic_file_splice_read(in, pipe, len);
  245. if (ret <= 0)
  246. break;
  247. in->f_pos += ret;
  248. len -= ret;
  249. spliced += ret;
  250. }
  251. if (spliced)
  252. return spliced;
  253. return ret;
  254. }
  255. /*
  256. * Send 'len' bytes to socket from 'file' at position 'pos' using sendpage().
  257. */
  258. static int pipe_to_sendpage(struct pipe_inode_info *info,
  259. struct pipe_buffer *buf, struct splice_desc *sd)
  260. {
  261. struct file *file = sd->file;
  262. loff_t pos = sd->pos;
  263. unsigned int offset;
  264. ssize_t ret;
  265. void *ptr;
  266. /*
  267. * sub-optimal, but we are limited by the pipe ->map. we don't
  268. * need a kmap'ed buffer here, we just want to make sure we
  269. * have the page pinned if the pipe page originates from the
  270. * page cache
  271. */
  272. ptr = buf->ops->map(file, info, buf);
  273. if (IS_ERR(ptr))
  274. return PTR_ERR(ptr);
  275. offset = pos & ~PAGE_CACHE_MASK;
  276. ret = file->f_op->sendpage(file, buf->page, offset, sd->len, &pos,
  277. sd->len < sd->total_len);
  278. buf->ops->unmap(info, buf);
  279. if (ret == sd->len)
  280. return 0;
  281. return -EIO;
  282. }
  283. /*
  284. * This is a little more tricky than the file -> pipe splicing. There are
  285. * basically three cases:
  286. *
  287. * - Destination page already exists in the address space and there
  288. * are users of it. For that case we have no other option that
  289. * copying the data. Tough luck.
  290. * - Destination page already exists in the address space, but there
  291. * are no users of it. Make sure it's uptodate, then drop it. Fall
  292. * through to last case.
  293. * - Destination page does not exist, we can add the pipe page to
  294. * the page cache and avoid the copy.
  295. *
  296. * For now we just do the slower thing and always copy pages over, it's
  297. * easier than migrating pages from the pipe to the target file. For the
  298. * case of doing file | file splicing, the migrate approach had some LRU
  299. * nastiness...
  300. */
  301. static int pipe_to_file(struct pipe_inode_info *info, struct pipe_buffer *buf,
  302. struct splice_desc *sd)
  303. {
  304. struct file *file = sd->file;
  305. struct address_space *mapping = file->f_mapping;
  306. unsigned int offset;
  307. struct page *page;
  308. pgoff_t index;
  309. char *src;
  310. int ret;
  311. /*
  312. * after this, page will be locked and unmapped
  313. */
  314. src = buf->ops->map(file, info, buf);
  315. if (IS_ERR(src))
  316. return PTR_ERR(src);
  317. index = sd->pos >> PAGE_CACHE_SHIFT;
  318. offset = sd->pos & ~PAGE_CACHE_MASK;
  319. /*
  320. * reuse buf page, if SPLICE_F_MOVE is set
  321. */
  322. if (sd->flags & SPLICE_F_MOVE) {
  323. if (buf->ops->steal(info, buf))
  324. goto find_page;
  325. page = buf->page;
  326. if (add_to_page_cache_lru(page, mapping, index,
  327. mapping_gfp_mask(mapping)))
  328. goto find_page;
  329. } else {
  330. find_page:
  331. ret = -ENOMEM;
  332. page = find_or_create_page(mapping, index,
  333. mapping_gfp_mask(mapping));
  334. if (!page)
  335. goto out;
  336. /*
  337. * If the page is uptodate, it is also locked. If it isn't
  338. * uptodate, we can mark it uptodate if we are filling the
  339. * full page. Otherwise we need to read it in first...
  340. */
  341. if (!PageUptodate(page)) {
  342. if (sd->len < PAGE_CACHE_SIZE) {
  343. ret = mapping->a_ops->readpage(file, page);
  344. if (unlikely(ret))
  345. goto out;
  346. lock_page(page);
  347. if (!PageUptodate(page)) {
  348. /*
  349. * page got invalidated, repeat
  350. */
  351. if (!page->mapping) {
  352. unlock_page(page);
  353. page_cache_release(page);
  354. goto find_page;
  355. }
  356. ret = -EIO;
  357. goto out;
  358. }
  359. } else {
  360. WARN_ON(!PageLocked(page));
  361. SetPageUptodate(page);
  362. }
  363. }
  364. }
  365. ret = mapping->a_ops->prepare_write(file, page, 0, sd->len);
  366. if (ret)
  367. goto out;
  368. if (!buf->stolen) {
  369. char *dst = kmap_atomic(page, KM_USER0);
  370. memcpy(dst + offset, src + buf->offset, sd->len);
  371. flush_dcache_page(page);
  372. kunmap_atomic(dst, KM_USER0);
  373. }
  374. ret = mapping->a_ops->commit_write(file, page, 0, sd->len);
  375. if (ret < 0)
  376. goto out;
  377. set_page_dirty(page);
  378. ret = write_one_page(page, 0);
  379. out:
  380. if (ret < 0)
  381. unlock_page(page);
  382. if (!buf->stolen)
  383. page_cache_release(page);
  384. buf->ops->unmap(info, buf);
  385. return ret;
  386. }
  387. typedef int (splice_actor)(struct pipe_inode_info *, struct pipe_buffer *,
  388. struct splice_desc *);
  389. static ssize_t move_from_pipe(struct inode *inode, struct file *out,
  390. size_t len, unsigned int flags,
  391. splice_actor *actor)
  392. {
  393. struct pipe_inode_info *info;
  394. int ret, do_wakeup, err;
  395. struct splice_desc sd;
  396. ret = 0;
  397. do_wakeup = 0;
  398. sd.total_len = len;
  399. sd.flags = flags;
  400. sd.file = out;
  401. sd.pos = out->f_pos;
  402. mutex_lock(PIPE_MUTEX(*inode));
  403. info = inode->i_pipe;
  404. for (;;) {
  405. int bufs = info->nrbufs;
  406. if (bufs) {
  407. int curbuf = info->curbuf;
  408. struct pipe_buffer *buf = info->bufs + curbuf;
  409. struct pipe_buf_operations *ops = buf->ops;
  410. sd.len = buf->len;
  411. if (sd.len > sd.total_len)
  412. sd.len = sd.total_len;
  413. err = actor(info, buf, &sd);
  414. if (err) {
  415. if (!ret && err != -ENODATA)
  416. ret = err;
  417. break;
  418. }
  419. ret += sd.len;
  420. buf->offset += sd.len;
  421. buf->len -= sd.len;
  422. if (!buf->len) {
  423. buf->ops = NULL;
  424. ops->release(info, buf);
  425. curbuf = (curbuf + 1) & (PIPE_BUFFERS - 1);
  426. info->curbuf = curbuf;
  427. info->nrbufs = --bufs;
  428. do_wakeup = 1;
  429. }
  430. sd.pos += sd.len;
  431. sd.total_len -= sd.len;
  432. if (!sd.total_len)
  433. break;
  434. }
  435. if (bufs)
  436. continue;
  437. if (!PIPE_WRITERS(*inode))
  438. break;
  439. if (!PIPE_WAITING_WRITERS(*inode)) {
  440. if (ret)
  441. break;
  442. }
  443. if (signal_pending(current)) {
  444. if (!ret)
  445. ret = -ERESTARTSYS;
  446. break;
  447. }
  448. if (do_wakeup) {
  449. wake_up_interruptible_sync(PIPE_WAIT(*inode));
  450. kill_fasync(PIPE_FASYNC_WRITERS(*inode),SIGIO,POLL_OUT);
  451. do_wakeup = 0;
  452. }
  453. pipe_wait(inode);
  454. }
  455. mutex_unlock(PIPE_MUTEX(*inode));
  456. if (do_wakeup) {
  457. wake_up_interruptible(PIPE_WAIT(*inode));
  458. kill_fasync(PIPE_FASYNC_WRITERS(*inode), SIGIO, POLL_OUT);
  459. }
  460. mutex_lock(&out->f_mapping->host->i_mutex);
  461. out->f_pos = sd.pos;
  462. mutex_unlock(&out->f_mapping->host->i_mutex);
  463. return ret;
  464. }
  465. ssize_t generic_file_splice_write(struct inode *inode, struct file *out,
  466. size_t len, unsigned int flags)
  467. {
  468. return move_from_pipe(inode, out, len, flags, pipe_to_file);
  469. }
  470. ssize_t generic_splice_sendpage(struct inode *inode, struct file *out,
  471. size_t len, unsigned int flags)
  472. {
  473. return move_from_pipe(inode, out, len, flags, pipe_to_sendpage);
  474. }
  475. static long do_splice_from(struct inode *pipe, struct file *out, size_t len,
  476. unsigned int flags)
  477. {
  478. loff_t pos;
  479. int ret;
  480. if (!out->f_op || !out->f_op->splice_write)
  481. return -EINVAL;
  482. if (!(out->f_mode & FMODE_WRITE))
  483. return -EBADF;
  484. pos = out->f_pos;
  485. ret = rw_verify_area(WRITE, out, &pos, len);
  486. if (unlikely(ret < 0))
  487. return ret;
  488. return out->f_op->splice_write(pipe, out, len, flags);
  489. }
  490. static long do_splice_to(struct file *in, struct inode *pipe, size_t len,
  491. unsigned int flags)
  492. {
  493. loff_t pos, isize, left;
  494. int ret;
  495. if (!in->f_op || !in->f_op->splice_read)
  496. return -EINVAL;
  497. if (!(in->f_mode & FMODE_READ))
  498. return -EBADF;
  499. pos = in->f_pos;
  500. ret = rw_verify_area(READ, in, &pos, len);
  501. if (unlikely(ret < 0))
  502. return ret;
  503. isize = i_size_read(in->f_mapping->host);
  504. if (unlikely(in->f_pos >= isize))
  505. return 0;
  506. left = isize - in->f_pos;
  507. if (left < len)
  508. len = left;
  509. return in->f_op->splice_read(in, pipe, len, flags);
  510. }
  511. static long do_splice(struct file *in, struct file *out, size_t len,
  512. unsigned int flags)
  513. {
  514. struct inode *pipe;
  515. pipe = in->f_dentry->d_inode;
  516. if (pipe->i_pipe)
  517. return do_splice_from(pipe, out, len, flags);
  518. pipe = out->f_dentry->d_inode;
  519. if (pipe->i_pipe)
  520. return do_splice_to(in, pipe, len, flags);
  521. return -EINVAL;
  522. }
  523. asmlinkage long sys_splice(int fdin, int fdout, size_t len, unsigned int flags)
  524. {
  525. long error;
  526. struct file *in, *out;
  527. int fput_in, fput_out;
  528. if (unlikely(!len))
  529. return 0;
  530. error = -EBADF;
  531. in = fget_light(fdin, &fput_in);
  532. if (in) {
  533. if (in->f_mode & FMODE_READ) {
  534. out = fget_light(fdout, &fput_out);
  535. if (out) {
  536. if (out->f_mode & FMODE_WRITE)
  537. error = do_splice(in, out, len, flags);
  538. fput_light(out, fput_out);
  539. }
  540. }
  541. fput_light(in, fput_in);
  542. }
  543. return error;
  544. }