aic94xx_scb.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917
  1. /*
  2. * Aic94xx SAS/SATA driver SCB management.
  3. *
  4. * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
  5. * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
  6. *
  7. * This file is licensed under GPLv2.
  8. *
  9. * This file is part of the aic94xx driver.
  10. *
  11. * The aic94xx driver is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU General Public License as
  13. * published by the Free Software Foundation; version 2 of the
  14. * License.
  15. *
  16. * The aic94xx driver is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License
  22. * along with the aic94xx driver; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  24. *
  25. */
  26. #include <linux/pci.h>
  27. #include <scsi/scsi_host.h>
  28. #include "aic94xx.h"
  29. #include "aic94xx_reg.h"
  30. #include "aic94xx_hwi.h"
  31. #include "aic94xx_seq.h"
  32. #include "aic94xx_dump.h"
  33. /* ---------- EMPTY SCB ---------- */
  34. #define DL_PHY_MASK 7
  35. #define BYTES_DMAED 0
  36. #define PRIMITIVE_RECVD 0x08
  37. #define PHY_EVENT 0x10
  38. #define LINK_RESET_ERROR 0x18
  39. #define TIMER_EVENT 0x20
  40. #define REQ_TASK_ABORT 0xF0
  41. #define REQ_DEVICE_RESET 0xF1
  42. #define SIGNAL_NCQ_ERROR 0xF2
  43. #define CLEAR_NCQ_ERROR 0xF3
  44. #define PHY_EVENTS_STATUS (CURRENT_LOSS_OF_SIGNAL | CURRENT_OOB_DONE \
  45. | CURRENT_SPINUP_HOLD | CURRENT_GTO_TIMEOUT \
  46. | CURRENT_OOB_ERROR)
  47. static inline void get_lrate_mode(struct asd_phy *phy, u8 oob_mode)
  48. {
  49. struct sas_phy *sas_phy = phy->sas_phy.phy;
  50. switch (oob_mode & 7) {
  51. case PHY_SPEED_60:
  52. /* FIXME: sas transport class doesn't have this */
  53. phy->sas_phy.linkrate = SAS_LINK_RATE_6_0_GBPS;
  54. phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_6_0_GBPS;
  55. break;
  56. case PHY_SPEED_30:
  57. phy->sas_phy.linkrate = SAS_LINK_RATE_3_0_GBPS;
  58. phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_3_0_GBPS;
  59. break;
  60. case PHY_SPEED_15:
  61. phy->sas_phy.linkrate = SAS_LINK_RATE_1_5_GBPS;
  62. phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_1_5_GBPS;
  63. break;
  64. }
  65. sas_phy->negotiated_linkrate = phy->sas_phy.linkrate;
  66. sas_phy->maximum_linkrate_hw = SAS_LINK_RATE_3_0_GBPS;
  67. sas_phy->minimum_linkrate_hw = SAS_LINK_RATE_1_5_GBPS;
  68. sas_phy->maximum_linkrate = phy->phy_desc->max_sas_lrate;
  69. sas_phy->minimum_linkrate = phy->phy_desc->min_sas_lrate;
  70. if (oob_mode & SAS_MODE)
  71. phy->sas_phy.oob_mode = SAS_OOB_MODE;
  72. else if (oob_mode & SATA_MODE)
  73. phy->sas_phy.oob_mode = SATA_OOB_MODE;
  74. }
  75. static inline void asd_phy_event_tasklet(struct asd_ascb *ascb,
  76. struct done_list_struct *dl)
  77. {
  78. struct asd_ha_struct *asd_ha = ascb->ha;
  79. struct sas_ha_struct *sas_ha = &asd_ha->sas_ha;
  80. int phy_id = dl->status_block[0] & DL_PHY_MASK;
  81. struct asd_phy *phy = &asd_ha->phys[phy_id];
  82. u8 oob_status = dl->status_block[1] & PHY_EVENTS_STATUS;
  83. u8 oob_mode = dl->status_block[2];
  84. switch (oob_status) {
  85. case CURRENT_LOSS_OF_SIGNAL:
  86. /* directly attached device was removed */
  87. ASD_DPRINTK("phy%d: device unplugged\n", phy_id);
  88. asd_turn_led(asd_ha, phy_id, 0);
  89. sas_phy_disconnected(&phy->sas_phy);
  90. sas_ha->notify_phy_event(&phy->sas_phy, PHYE_LOSS_OF_SIGNAL);
  91. break;
  92. case CURRENT_OOB_DONE:
  93. /* hot plugged device */
  94. asd_turn_led(asd_ha, phy_id, 1);
  95. get_lrate_mode(phy, oob_mode);
  96. ASD_DPRINTK("phy%d device plugged: lrate:0x%x, proto:0x%x\n",
  97. phy_id, phy->sas_phy.linkrate, phy->sas_phy.iproto);
  98. sas_ha->notify_phy_event(&phy->sas_phy, PHYE_OOB_DONE);
  99. break;
  100. case CURRENT_SPINUP_HOLD:
  101. /* hot plug SATA, no COMWAKE sent */
  102. asd_turn_led(asd_ha, phy_id, 1);
  103. sas_ha->notify_phy_event(&phy->sas_phy, PHYE_SPINUP_HOLD);
  104. break;
  105. case CURRENT_GTO_TIMEOUT:
  106. case CURRENT_OOB_ERROR:
  107. ASD_DPRINTK("phy%d error while OOB: oob status:0x%x\n", phy_id,
  108. dl->status_block[1]);
  109. asd_turn_led(asd_ha, phy_id, 0);
  110. sas_phy_disconnected(&phy->sas_phy);
  111. sas_ha->notify_phy_event(&phy->sas_phy, PHYE_OOB_ERROR);
  112. break;
  113. }
  114. }
  115. /* If phys are enabled sparsely, this will do the right thing. */
  116. static inline unsigned ord_phy(struct asd_ha_struct *asd_ha,
  117. struct asd_phy *phy)
  118. {
  119. u8 enabled_mask = asd_ha->hw_prof.enabled_phys;
  120. int i, k = 0;
  121. for_each_phy(enabled_mask, enabled_mask, i) {
  122. if (&asd_ha->phys[i] == phy)
  123. return k;
  124. k++;
  125. }
  126. return 0;
  127. }
  128. /**
  129. * asd_get_attached_sas_addr -- extract/generate attached SAS address
  130. * phy: pointer to asd_phy
  131. * sas_addr: pointer to buffer where the SAS address is to be written
  132. *
  133. * This function extracts the SAS address from an IDENTIFY frame
  134. * received. If OOB is SATA, then a SAS address is generated from the
  135. * HA tables.
  136. *
  137. * LOCKING: the frame_rcvd_lock needs to be held since this parses the frame
  138. * buffer.
  139. */
  140. static inline void asd_get_attached_sas_addr(struct asd_phy *phy, u8 *sas_addr)
  141. {
  142. if (phy->sas_phy.frame_rcvd[0] == 0x34
  143. && phy->sas_phy.oob_mode == SATA_OOB_MODE) {
  144. struct asd_ha_struct *asd_ha = phy->sas_phy.ha->lldd_ha;
  145. /* FIS device-to-host */
  146. u64 addr = be64_to_cpu(*(__be64 *)phy->phy_desc->sas_addr);
  147. addr += asd_ha->hw_prof.sata_name_base + ord_phy(asd_ha, phy);
  148. *(__be64 *)sas_addr = cpu_to_be64(addr);
  149. } else {
  150. struct sas_identify_frame *idframe =
  151. (void *) phy->sas_phy.frame_rcvd;
  152. memcpy(sas_addr, idframe->sas_addr, SAS_ADDR_SIZE);
  153. }
  154. }
  155. static void asd_form_port(struct asd_ha_struct *asd_ha, struct asd_phy *phy)
  156. {
  157. int i;
  158. struct asd_port *free_port = NULL;
  159. struct asd_port *port;
  160. struct asd_sas_phy *sas_phy = &phy->sas_phy;
  161. unsigned long flags;
  162. spin_lock_irqsave(&asd_ha->asd_ports_lock, flags);
  163. if (!phy->asd_port) {
  164. for (i = 0; i < ASD_MAX_PHYS; i++) {
  165. port = &asd_ha->asd_ports[i];
  166. /* Check for wide port */
  167. if (port->num_phys > 0 &&
  168. memcmp(port->sas_addr, sas_phy->sas_addr,
  169. SAS_ADDR_SIZE) == 0 &&
  170. memcmp(port->attached_sas_addr,
  171. sas_phy->attached_sas_addr,
  172. SAS_ADDR_SIZE) == 0) {
  173. break;
  174. }
  175. /* Find a free port */
  176. if (port->num_phys == 0 && free_port == NULL) {
  177. free_port = port;
  178. }
  179. }
  180. /* Use a free port if this doesn't form a wide port */
  181. if (i >= ASD_MAX_PHYS) {
  182. port = free_port;
  183. BUG_ON(!port);
  184. memcpy(port->sas_addr, sas_phy->sas_addr,
  185. SAS_ADDR_SIZE);
  186. memcpy(port->attached_sas_addr,
  187. sas_phy->attached_sas_addr,
  188. SAS_ADDR_SIZE);
  189. }
  190. port->num_phys++;
  191. port->phy_mask |= (1U << sas_phy->id);
  192. phy->asd_port = port;
  193. }
  194. ASD_DPRINTK("%s: updating phy_mask 0x%x for phy%d\n",
  195. __FUNCTION__, phy->asd_port->phy_mask, sas_phy->id);
  196. asd_update_port_links(asd_ha, phy);
  197. spin_unlock_irqrestore(&asd_ha->asd_ports_lock, flags);
  198. }
  199. static void asd_deform_port(struct asd_ha_struct *asd_ha, struct asd_phy *phy)
  200. {
  201. struct asd_port *port = phy->asd_port;
  202. struct asd_sas_phy *sas_phy = &phy->sas_phy;
  203. unsigned long flags;
  204. spin_lock_irqsave(&asd_ha->asd_ports_lock, flags);
  205. if (port) {
  206. port->num_phys--;
  207. port->phy_mask &= ~(1U << sas_phy->id);
  208. phy->asd_port = NULL;
  209. }
  210. spin_unlock_irqrestore(&asd_ha->asd_ports_lock, flags);
  211. }
  212. static inline void asd_bytes_dmaed_tasklet(struct asd_ascb *ascb,
  213. struct done_list_struct *dl,
  214. int edb_id, int phy_id)
  215. {
  216. unsigned long flags;
  217. int edb_el = edb_id + ascb->edb_index;
  218. struct asd_dma_tok *edb = ascb->ha->seq.edb_arr[edb_el];
  219. struct asd_phy *phy = &ascb->ha->phys[phy_id];
  220. struct sas_ha_struct *sas_ha = phy->sas_phy.ha;
  221. u16 size = ((dl->status_block[3] & 7) << 8) | dl->status_block[2];
  222. size = min(size, (u16) sizeof(phy->frame_rcvd));
  223. spin_lock_irqsave(&phy->sas_phy.frame_rcvd_lock, flags);
  224. memcpy(phy->sas_phy.frame_rcvd, edb->vaddr, size);
  225. phy->sas_phy.frame_rcvd_size = size;
  226. asd_get_attached_sas_addr(phy, phy->sas_phy.attached_sas_addr);
  227. spin_unlock_irqrestore(&phy->sas_phy.frame_rcvd_lock, flags);
  228. asd_dump_frame_rcvd(phy, dl);
  229. asd_form_port(ascb->ha, phy);
  230. sas_ha->notify_port_event(&phy->sas_phy, PORTE_BYTES_DMAED);
  231. }
  232. static inline void asd_link_reset_err_tasklet(struct asd_ascb *ascb,
  233. struct done_list_struct *dl,
  234. int phy_id)
  235. {
  236. struct asd_ha_struct *asd_ha = ascb->ha;
  237. struct sas_ha_struct *sas_ha = &asd_ha->sas_ha;
  238. struct asd_sas_phy *sas_phy = sas_ha->sas_phy[phy_id];
  239. struct asd_phy *phy = &asd_ha->phys[phy_id];
  240. u8 lr_error = dl->status_block[1];
  241. u8 retries_left = dl->status_block[2];
  242. switch (lr_error) {
  243. case 0:
  244. ASD_DPRINTK("phy%d: Receive ID timer expired\n", phy_id);
  245. break;
  246. case 1:
  247. ASD_DPRINTK("phy%d: Loss of signal\n", phy_id);
  248. break;
  249. case 2:
  250. ASD_DPRINTK("phy%d: Loss of dword sync\n", phy_id);
  251. break;
  252. case 3:
  253. ASD_DPRINTK("phy%d: Receive FIS timeout\n", phy_id);
  254. break;
  255. default:
  256. ASD_DPRINTK("phy%d: unknown link reset error code: 0x%x\n",
  257. phy_id, lr_error);
  258. break;
  259. }
  260. asd_turn_led(asd_ha, phy_id, 0);
  261. sas_phy_disconnected(sas_phy);
  262. asd_deform_port(asd_ha, phy);
  263. sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR);
  264. if (retries_left == 0) {
  265. int num = 1;
  266. struct asd_ascb *cp = asd_ascb_alloc_list(ascb->ha, &num,
  267. GFP_ATOMIC);
  268. if (!cp) {
  269. asd_printk("%s: out of memory\n", __FUNCTION__);
  270. goto out;
  271. }
  272. ASD_DPRINTK("phy%d: retries:0 performing link reset seq\n",
  273. phy_id);
  274. asd_build_control_phy(cp, phy_id, ENABLE_PHY);
  275. if (asd_post_ascb_list(ascb->ha, cp, 1) != 0)
  276. asd_ascb_free(cp);
  277. }
  278. out:
  279. ;
  280. }
  281. static inline void asd_primitive_rcvd_tasklet(struct asd_ascb *ascb,
  282. struct done_list_struct *dl,
  283. int phy_id)
  284. {
  285. unsigned long flags;
  286. struct sas_ha_struct *sas_ha = &ascb->ha->sas_ha;
  287. struct asd_sas_phy *sas_phy = sas_ha->sas_phy[phy_id];
  288. struct asd_ha_struct *asd_ha = ascb->ha;
  289. struct asd_phy *phy = &asd_ha->phys[phy_id];
  290. u8 reg = dl->status_block[1];
  291. u32 cont = dl->status_block[2] << ((reg & 3)*8);
  292. reg &= ~3;
  293. switch (reg) {
  294. case LmPRMSTAT0BYTE0:
  295. switch (cont) {
  296. case LmBROADCH:
  297. case LmBROADRVCH0:
  298. case LmBROADRVCH1:
  299. case LmBROADSES:
  300. ASD_DPRINTK("phy%d: BROADCAST change received:%d\n",
  301. phy_id, cont);
  302. spin_lock_irqsave(&sas_phy->sas_prim_lock, flags);
  303. sas_phy->sas_prim = ffs(cont);
  304. spin_unlock_irqrestore(&sas_phy->sas_prim_lock, flags);
  305. sas_ha->notify_port_event(sas_phy,PORTE_BROADCAST_RCVD);
  306. break;
  307. case LmUNKNOWNP:
  308. ASD_DPRINTK("phy%d: unknown BREAK\n", phy_id);
  309. break;
  310. default:
  311. ASD_DPRINTK("phy%d: primitive reg:0x%x, cont:0x%04x\n",
  312. phy_id, reg, cont);
  313. break;
  314. }
  315. break;
  316. case LmPRMSTAT1BYTE0:
  317. switch (cont) {
  318. case LmHARDRST:
  319. ASD_DPRINTK("phy%d: HARD_RESET primitive rcvd\n",
  320. phy_id);
  321. /* The sequencer disables all phys on that port.
  322. * We have to re-enable the phys ourselves. */
  323. asd_deform_port(asd_ha, phy);
  324. sas_ha->notify_port_event(sas_phy, PORTE_HARD_RESET);
  325. break;
  326. default:
  327. ASD_DPRINTK("phy%d: primitive reg:0x%x, cont:0x%04x\n",
  328. phy_id, reg, cont);
  329. break;
  330. }
  331. break;
  332. default:
  333. ASD_DPRINTK("unknown primitive register:0x%x\n",
  334. dl->status_block[1]);
  335. break;
  336. }
  337. }
  338. /**
  339. * asd_invalidate_edb -- invalidate an EDB and if necessary post the ESCB
  340. * @ascb: pointer to Empty SCB
  341. * @edb_id: index [0,6] to the empty data buffer which is to be invalidated
  342. *
  343. * After an EDB has been invalidated, if all EDBs in this ESCB have been
  344. * invalidated, the ESCB is posted back to the sequencer.
  345. * Context is tasklet/IRQ.
  346. */
  347. void asd_invalidate_edb(struct asd_ascb *ascb, int edb_id)
  348. {
  349. struct asd_seq_data *seq = &ascb->ha->seq;
  350. struct empty_scb *escb = &ascb->scb->escb;
  351. struct sg_el *eb = &escb->eb[edb_id];
  352. struct asd_dma_tok *edb = seq->edb_arr[ascb->edb_index + edb_id];
  353. memset(edb->vaddr, 0, ASD_EDB_SIZE);
  354. eb->flags |= ELEMENT_NOT_VALID;
  355. escb->num_valid--;
  356. if (escb->num_valid == 0) {
  357. int i;
  358. /* ASD_DPRINTK("reposting escb: vaddr: 0x%p, "
  359. "dma_handle: 0x%08llx, next: 0x%08llx, "
  360. "index:%d, opcode:0x%02x\n",
  361. ascb->dma_scb.vaddr,
  362. (u64)ascb->dma_scb.dma_handle,
  363. le64_to_cpu(ascb->scb->header.next_scb),
  364. le16_to_cpu(ascb->scb->header.index),
  365. ascb->scb->header.opcode);
  366. */
  367. escb->num_valid = ASD_EDBS_PER_SCB;
  368. for (i = 0; i < ASD_EDBS_PER_SCB; i++)
  369. escb->eb[i].flags = 0;
  370. if (!list_empty(&ascb->list))
  371. list_del_init(&ascb->list);
  372. i = asd_post_escb_list(ascb->ha, ascb, 1);
  373. if (i)
  374. asd_printk("couldn't post escb, err:%d\n", i);
  375. }
  376. }
  377. /* hard reset a phy later */
  378. static void do_phy_reset_later(struct work_struct *work)
  379. {
  380. struct sas_phy *sas_phy =
  381. container_of(work, struct sas_phy, reset_work);
  382. int error;
  383. ASD_DPRINTK("%s: About to hard reset phy %d\n", __FUNCTION__,
  384. sas_phy->identify.phy_identifier);
  385. /* Reset device port */
  386. error = sas_phy_reset(sas_phy, 1);
  387. if (error)
  388. ASD_DPRINTK("%s: Hard reset of phy %d failed (%d).\n",
  389. __FUNCTION__, sas_phy->identify.phy_identifier, error);
  390. }
  391. static void phy_reset_later(struct sas_phy *sas_phy, struct Scsi_Host *shost)
  392. {
  393. INIT_WORK(&sas_phy->reset_work, do_phy_reset_later);
  394. queue_work(shost->work_q, &sas_phy->reset_work);
  395. }
  396. /* start up the ABORT TASK tmf... */
  397. static void task_kill_later(struct asd_ascb *ascb)
  398. {
  399. struct asd_ha_struct *asd_ha = ascb->ha;
  400. struct sas_ha_struct *sas_ha = &asd_ha->sas_ha;
  401. struct Scsi_Host *shost = sas_ha->core.shost;
  402. struct sas_task *task = ascb->uldd_task;
  403. INIT_WORK(&task->abort_work, sas_task_abort);
  404. queue_work(shost->work_q, &task->abort_work);
  405. }
  406. static void escb_tasklet_complete(struct asd_ascb *ascb,
  407. struct done_list_struct *dl)
  408. {
  409. struct asd_ha_struct *asd_ha = ascb->ha;
  410. struct sas_ha_struct *sas_ha = &asd_ha->sas_ha;
  411. int edb = (dl->opcode & DL_PHY_MASK) - 1; /* [0xc1,0xc7] -> [0,6] */
  412. u8 sb_opcode = dl->status_block[0];
  413. int phy_id = sb_opcode & DL_PHY_MASK;
  414. struct asd_sas_phy *sas_phy = sas_ha->sas_phy[phy_id];
  415. struct asd_phy *phy = &asd_ha->phys[phy_id];
  416. if (edb > 6 || edb < 0) {
  417. ASD_DPRINTK("edb is 0x%x! dl->opcode is 0x%x\n",
  418. edb, dl->opcode);
  419. ASD_DPRINTK("sb_opcode : 0x%x, phy_id: 0x%x\n",
  420. sb_opcode, phy_id);
  421. ASD_DPRINTK("escb: vaddr: 0x%p, "
  422. "dma_handle: 0x%llx, next: 0x%llx, "
  423. "index:%d, opcode:0x%02x\n",
  424. ascb->dma_scb.vaddr,
  425. (unsigned long long)ascb->dma_scb.dma_handle,
  426. (unsigned long long)
  427. le64_to_cpu(ascb->scb->header.next_scb),
  428. le16_to_cpu(ascb->scb->header.index),
  429. ascb->scb->header.opcode);
  430. }
  431. /* Catch these before we mask off the sb_opcode bits */
  432. switch (sb_opcode) {
  433. case REQ_TASK_ABORT: {
  434. struct asd_ascb *a, *b;
  435. u16 tc_abort;
  436. tc_abort = *((u16*)(&dl->status_block[1]));
  437. tc_abort = le16_to_cpu(tc_abort);
  438. ASD_DPRINTK("%s: REQ_TASK_ABORT, reason=0x%X\n",
  439. __FUNCTION__, dl->status_block[3]);
  440. /* Find the pending task and abort it. */
  441. list_for_each_entry_safe(a, b, &asd_ha->seq.pend_q, list)
  442. if (a->tc_index == tc_abort) {
  443. task_kill_later(a);
  444. break;
  445. }
  446. goto out;
  447. }
  448. case REQ_DEVICE_RESET: {
  449. struct Scsi_Host *shost = sas_ha->core.shost;
  450. struct sas_phy *dev_phy;
  451. struct asd_ascb *a;
  452. u16 conn_handle;
  453. conn_handle = *((u16*)(&dl->status_block[1]));
  454. conn_handle = le16_to_cpu(conn_handle);
  455. ASD_DPRINTK("%s: REQ_DEVICE_RESET, reason=0x%X\n", __FUNCTION__,
  456. dl->status_block[3]);
  457. /* Kill all pending tasks and reset the device */
  458. dev_phy = NULL;
  459. list_for_each_entry(a, &asd_ha->seq.pend_q, list) {
  460. struct sas_task *task;
  461. struct domain_device *dev;
  462. u16 x;
  463. task = a->uldd_task;
  464. if (!task)
  465. continue;
  466. dev = task->dev;
  467. x = (unsigned long)dev->lldd_dev;
  468. if (x == conn_handle) {
  469. dev_phy = dev->port->phy;
  470. task_kill_later(a);
  471. }
  472. }
  473. /* Reset device port */
  474. if (!dev_phy) {
  475. ASD_DPRINTK("%s: No pending commands; can't reset.\n",
  476. __FUNCTION__);
  477. goto out;
  478. }
  479. phy_reset_later(dev_phy, shost);
  480. goto out;
  481. }
  482. case SIGNAL_NCQ_ERROR:
  483. ASD_DPRINTK("%s: SIGNAL_NCQ_ERROR\n", __FUNCTION__);
  484. goto out;
  485. case CLEAR_NCQ_ERROR:
  486. ASD_DPRINTK("%s: CLEAR_NCQ_ERROR\n", __FUNCTION__);
  487. goto out;
  488. }
  489. sb_opcode &= ~DL_PHY_MASK;
  490. switch (sb_opcode) {
  491. case BYTES_DMAED:
  492. ASD_DPRINTK("%s: phy%d: BYTES_DMAED\n", __FUNCTION__, phy_id);
  493. asd_bytes_dmaed_tasklet(ascb, dl, edb, phy_id);
  494. break;
  495. case PRIMITIVE_RECVD:
  496. ASD_DPRINTK("%s: phy%d: PRIMITIVE_RECVD\n", __FUNCTION__,
  497. phy_id);
  498. asd_primitive_rcvd_tasklet(ascb, dl, phy_id);
  499. break;
  500. case PHY_EVENT:
  501. ASD_DPRINTK("%s: phy%d: PHY_EVENT\n", __FUNCTION__, phy_id);
  502. asd_phy_event_tasklet(ascb, dl);
  503. break;
  504. case LINK_RESET_ERROR:
  505. ASD_DPRINTK("%s: phy%d: LINK_RESET_ERROR\n", __FUNCTION__,
  506. phy_id);
  507. asd_link_reset_err_tasklet(ascb, dl, phy_id);
  508. break;
  509. case TIMER_EVENT:
  510. ASD_DPRINTK("%s: phy%d: TIMER_EVENT, lost dw sync\n",
  511. __FUNCTION__, phy_id);
  512. asd_turn_led(asd_ha, phy_id, 0);
  513. /* the device is gone */
  514. sas_phy_disconnected(sas_phy);
  515. asd_deform_port(asd_ha, phy);
  516. sas_ha->notify_port_event(sas_phy, PORTE_TIMER_EVENT);
  517. break;
  518. default:
  519. ASD_DPRINTK("%s: phy%d: unknown event:0x%x\n", __FUNCTION__,
  520. phy_id, sb_opcode);
  521. ASD_DPRINTK("edb is 0x%x! dl->opcode is 0x%x\n",
  522. edb, dl->opcode);
  523. ASD_DPRINTK("sb_opcode : 0x%x, phy_id: 0x%x\n",
  524. sb_opcode, phy_id);
  525. ASD_DPRINTK("escb: vaddr: 0x%p, "
  526. "dma_handle: 0x%llx, next: 0x%llx, "
  527. "index:%d, opcode:0x%02x\n",
  528. ascb->dma_scb.vaddr,
  529. (unsigned long long)ascb->dma_scb.dma_handle,
  530. (unsigned long long)
  531. le64_to_cpu(ascb->scb->header.next_scb),
  532. le16_to_cpu(ascb->scb->header.index),
  533. ascb->scb->header.opcode);
  534. break;
  535. }
  536. out:
  537. asd_invalidate_edb(ascb, edb);
  538. }
  539. int asd_init_post_escbs(struct asd_ha_struct *asd_ha)
  540. {
  541. struct asd_seq_data *seq = &asd_ha->seq;
  542. int i;
  543. for (i = 0; i < seq->num_escbs; i++)
  544. seq->escb_arr[i]->tasklet_complete = escb_tasklet_complete;
  545. ASD_DPRINTK("posting %d escbs\n", i);
  546. return asd_post_escb_list(asd_ha, seq->escb_arr[0], seq->num_escbs);
  547. }
  548. /* ---------- CONTROL PHY ---------- */
  549. #define CONTROL_PHY_STATUS (CURRENT_DEVICE_PRESENT | CURRENT_OOB_DONE \
  550. | CURRENT_SPINUP_HOLD | CURRENT_GTO_TIMEOUT \
  551. | CURRENT_OOB_ERROR)
  552. /**
  553. * control_phy_tasklet_complete -- tasklet complete for CONTROL PHY ascb
  554. * @ascb: pointer to an ascb
  555. * @dl: pointer to the done list entry
  556. *
  557. * This function completes a CONTROL PHY scb and frees the ascb.
  558. * A note on LEDs:
  559. * - an LED blinks if there is IO though it,
  560. * - if a device is connected to the LED, it is lit,
  561. * - if no device is connected to the LED, is is dimmed (off).
  562. */
  563. static void control_phy_tasklet_complete(struct asd_ascb *ascb,
  564. struct done_list_struct *dl)
  565. {
  566. struct asd_ha_struct *asd_ha = ascb->ha;
  567. struct scb *scb = ascb->scb;
  568. struct control_phy *control_phy = &scb->control_phy;
  569. u8 phy_id = control_phy->phy_id;
  570. struct asd_phy *phy = &ascb->ha->phys[phy_id];
  571. u8 status = dl->status_block[0];
  572. u8 oob_status = dl->status_block[1];
  573. u8 oob_mode = dl->status_block[2];
  574. /* u8 oob_signals= dl->status_block[3]; */
  575. if (status != 0) {
  576. ASD_DPRINTK("%s: phy%d status block opcode:0x%x\n",
  577. __FUNCTION__, phy_id, status);
  578. goto out;
  579. }
  580. switch (control_phy->sub_func) {
  581. case DISABLE_PHY:
  582. asd_ha->hw_prof.enabled_phys &= ~(1 << phy_id);
  583. asd_turn_led(asd_ha, phy_id, 0);
  584. asd_control_led(asd_ha, phy_id, 0);
  585. ASD_DPRINTK("%s: disable phy%d\n", __FUNCTION__, phy_id);
  586. break;
  587. case ENABLE_PHY:
  588. asd_control_led(asd_ha, phy_id, 1);
  589. if (oob_status & CURRENT_OOB_DONE) {
  590. asd_ha->hw_prof.enabled_phys |= (1 << phy_id);
  591. get_lrate_mode(phy, oob_mode);
  592. asd_turn_led(asd_ha, phy_id, 1);
  593. ASD_DPRINTK("%s: phy%d, lrate:0x%x, proto:0x%x\n",
  594. __FUNCTION__, phy_id,phy->sas_phy.linkrate,
  595. phy->sas_phy.iproto);
  596. } else if (oob_status & CURRENT_SPINUP_HOLD) {
  597. asd_ha->hw_prof.enabled_phys |= (1 << phy_id);
  598. asd_turn_led(asd_ha, phy_id, 1);
  599. ASD_DPRINTK("%s: phy%d, spinup hold\n", __FUNCTION__,
  600. phy_id);
  601. } else if (oob_status & CURRENT_ERR_MASK) {
  602. asd_turn_led(asd_ha, phy_id, 0);
  603. ASD_DPRINTK("%s: phy%d: error: oob status:0x%02x\n",
  604. __FUNCTION__, phy_id, oob_status);
  605. } else if (oob_status & (CURRENT_HOT_PLUG_CNCT
  606. | CURRENT_DEVICE_PRESENT)) {
  607. asd_ha->hw_prof.enabled_phys |= (1 << phy_id);
  608. asd_turn_led(asd_ha, phy_id, 1);
  609. ASD_DPRINTK("%s: phy%d: hot plug or device present\n",
  610. __FUNCTION__, phy_id);
  611. } else {
  612. asd_ha->hw_prof.enabled_phys |= (1 << phy_id);
  613. asd_turn_led(asd_ha, phy_id, 0);
  614. ASD_DPRINTK("%s: phy%d: no device present: "
  615. "oob_status:0x%x\n",
  616. __FUNCTION__, phy_id, oob_status);
  617. }
  618. break;
  619. case RELEASE_SPINUP_HOLD:
  620. case PHY_NO_OP:
  621. case EXECUTE_HARD_RESET:
  622. ASD_DPRINTK("%s: phy%d: sub_func:0x%x\n", __FUNCTION__,
  623. phy_id, control_phy->sub_func);
  624. /* XXX finish */
  625. break;
  626. default:
  627. ASD_DPRINTK("%s: phy%d: sub_func:0x%x?\n", __FUNCTION__,
  628. phy_id, control_phy->sub_func);
  629. break;
  630. }
  631. out:
  632. asd_ascb_free(ascb);
  633. }
  634. static inline void set_speed_mask(u8 *speed_mask, struct asd_phy_desc *pd)
  635. {
  636. /* disable all speeds, then enable defaults */
  637. *speed_mask = SAS_SPEED_60_DIS | SAS_SPEED_30_DIS | SAS_SPEED_15_DIS
  638. | SATA_SPEED_30_DIS | SATA_SPEED_15_DIS;
  639. switch (pd->max_sas_lrate) {
  640. case SAS_LINK_RATE_6_0_GBPS:
  641. *speed_mask &= ~SAS_SPEED_60_DIS;
  642. default:
  643. case SAS_LINK_RATE_3_0_GBPS:
  644. *speed_mask &= ~SAS_SPEED_30_DIS;
  645. case SAS_LINK_RATE_1_5_GBPS:
  646. *speed_mask &= ~SAS_SPEED_15_DIS;
  647. }
  648. switch (pd->min_sas_lrate) {
  649. case SAS_LINK_RATE_6_0_GBPS:
  650. *speed_mask |= SAS_SPEED_30_DIS;
  651. case SAS_LINK_RATE_3_0_GBPS:
  652. *speed_mask |= SAS_SPEED_15_DIS;
  653. default:
  654. case SAS_LINK_RATE_1_5_GBPS:
  655. /* nothing to do */
  656. ;
  657. }
  658. switch (pd->max_sata_lrate) {
  659. case SAS_LINK_RATE_3_0_GBPS:
  660. *speed_mask &= ~SATA_SPEED_30_DIS;
  661. default:
  662. case SAS_LINK_RATE_1_5_GBPS:
  663. *speed_mask &= ~SATA_SPEED_15_DIS;
  664. }
  665. switch (pd->min_sata_lrate) {
  666. case SAS_LINK_RATE_3_0_GBPS:
  667. *speed_mask |= SATA_SPEED_15_DIS;
  668. default:
  669. case SAS_LINK_RATE_1_5_GBPS:
  670. /* nothing to do */
  671. ;
  672. }
  673. }
  674. /**
  675. * asd_build_control_phy -- build a CONTROL PHY SCB
  676. * @ascb: pointer to an ascb
  677. * @phy_id: phy id to control, integer
  678. * @subfunc: subfunction, what to actually to do the phy
  679. *
  680. * This function builds a CONTROL PHY scb. No allocation of any kind
  681. * is performed. @ascb is allocated with the list function.
  682. * The caller can override the ascb->tasklet_complete to point
  683. * to its own callback function. It must call asd_ascb_free()
  684. * at its tasklet complete function.
  685. * See the default implementation.
  686. */
  687. void asd_build_control_phy(struct asd_ascb *ascb, int phy_id, u8 subfunc)
  688. {
  689. struct asd_phy *phy = &ascb->ha->phys[phy_id];
  690. struct scb *scb = ascb->scb;
  691. struct control_phy *control_phy = &scb->control_phy;
  692. scb->header.opcode = CONTROL_PHY;
  693. control_phy->phy_id = (u8) phy_id;
  694. control_phy->sub_func = subfunc;
  695. switch (subfunc) {
  696. case EXECUTE_HARD_RESET: /* 0x81 */
  697. case ENABLE_PHY: /* 0x01 */
  698. /* decide hot plug delay */
  699. control_phy->hot_plug_delay = HOTPLUG_DELAY_TIMEOUT;
  700. /* decide speed mask */
  701. set_speed_mask(&control_phy->speed_mask, phy->phy_desc);
  702. /* initiator port settings are in the hi nibble */
  703. if (phy->sas_phy.role == PHY_ROLE_INITIATOR)
  704. control_phy->port_type = SAS_PROTO_ALL << 4;
  705. else if (phy->sas_phy.role == PHY_ROLE_TARGET)
  706. control_phy->port_type = SAS_PROTO_ALL;
  707. else
  708. control_phy->port_type =
  709. (SAS_PROTO_ALL << 4) | SAS_PROTO_ALL;
  710. /* link reset retries, this should be nominal */
  711. control_phy->link_reset_retries = 10;
  712. case RELEASE_SPINUP_HOLD: /* 0x02 */
  713. /* decide the func_mask */
  714. control_phy->func_mask = FUNCTION_MASK_DEFAULT;
  715. if (phy->phy_desc->flags & ASD_SATA_SPINUP_HOLD)
  716. control_phy->func_mask &= ~SPINUP_HOLD_DIS;
  717. else
  718. control_phy->func_mask |= SPINUP_HOLD_DIS;
  719. }
  720. control_phy->conn_handle = cpu_to_le16(0xFFFF);
  721. ascb->tasklet_complete = control_phy_tasklet_complete;
  722. }
  723. /* ---------- INITIATE LINK ADM TASK ---------- */
  724. static void link_adm_tasklet_complete(struct asd_ascb *ascb,
  725. struct done_list_struct *dl)
  726. {
  727. u8 opcode = dl->opcode;
  728. struct initiate_link_adm *link_adm = &ascb->scb->link_adm;
  729. u8 phy_id = link_adm->phy_id;
  730. if (opcode != TC_NO_ERROR) {
  731. asd_printk("phy%d: link adm task 0x%x completed with error "
  732. "0x%x\n", phy_id, link_adm->sub_func, opcode);
  733. }
  734. ASD_DPRINTK("phy%d: link adm task 0x%x: 0x%x\n",
  735. phy_id, link_adm->sub_func, opcode);
  736. asd_ascb_free(ascb);
  737. }
  738. void asd_build_initiate_link_adm_task(struct asd_ascb *ascb, int phy_id,
  739. u8 subfunc)
  740. {
  741. struct scb *scb = ascb->scb;
  742. struct initiate_link_adm *link_adm = &scb->link_adm;
  743. scb->header.opcode = INITIATE_LINK_ADM_TASK;
  744. link_adm->phy_id = phy_id;
  745. link_adm->sub_func = subfunc;
  746. link_adm->conn_handle = cpu_to_le16(0xFFFF);
  747. ascb->tasklet_complete = link_adm_tasklet_complete;
  748. }
  749. /* ---------- SCB timer ---------- */
  750. /**
  751. * asd_ascb_timedout -- called when a pending SCB's timer has expired
  752. * @data: unsigned long, a pointer to the ascb in question
  753. *
  754. * This is the default timeout function which does the most necessary.
  755. * Upper layers can implement their own timeout function, say to free
  756. * resources they have with this SCB, and then call this one at the
  757. * end of their timeout function. To do this, one should initialize
  758. * the ascb->timer.{function, data, expires} prior to calling the post
  759. * funcion. The timer is started by the post function.
  760. */
  761. void asd_ascb_timedout(unsigned long data)
  762. {
  763. struct asd_ascb *ascb = (void *) data;
  764. struct asd_seq_data *seq = &ascb->ha->seq;
  765. unsigned long flags;
  766. ASD_DPRINTK("scb:0x%x timed out\n", ascb->scb->header.opcode);
  767. spin_lock_irqsave(&seq->pend_q_lock, flags);
  768. seq->pending--;
  769. list_del_init(&ascb->list);
  770. spin_unlock_irqrestore(&seq->pend_q_lock, flags);
  771. asd_ascb_free(ascb);
  772. }
  773. /* ---------- CONTROL PHY ---------- */
  774. /* Given the spec value, return a driver value. */
  775. static const int phy_func_table[] = {
  776. [PHY_FUNC_NOP] = PHY_NO_OP,
  777. [PHY_FUNC_LINK_RESET] = ENABLE_PHY,
  778. [PHY_FUNC_HARD_RESET] = EXECUTE_HARD_RESET,
  779. [PHY_FUNC_DISABLE] = DISABLE_PHY,
  780. [PHY_FUNC_RELEASE_SPINUP_HOLD] = RELEASE_SPINUP_HOLD,
  781. };
  782. int asd_control_phy(struct asd_sas_phy *phy, enum phy_func func, void *arg)
  783. {
  784. struct asd_ha_struct *asd_ha = phy->ha->lldd_ha;
  785. struct asd_phy_desc *pd = asd_ha->phys[phy->id].phy_desc;
  786. struct asd_ascb *ascb;
  787. struct sas_phy_linkrates *rates;
  788. int res = 1;
  789. switch (func) {
  790. case PHY_FUNC_CLEAR_ERROR_LOG:
  791. return -ENOSYS;
  792. case PHY_FUNC_SET_LINK_RATE:
  793. rates = arg;
  794. if (rates->minimum_linkrate) {
  795. pd->min_sas_lrate = rates->minimum_linkrate;
  796. pd->min_sata_lrate = rates->minimum_linkrate;
  797. }
  798. if (rates->maximum_linkrate) {
  799. pd->max_sas_lrate = rates->maximum_linkrate;
  800. pd->max_sata_lrate = rates->maximum_linkrate;
  801. }
  802. func = PHY_FUNC_LINK_RESET;
  803. break;
  804. default:
  805. break;
  806. }
  807. ascb = asd_ascb_alloc_list(asd_ha, &res, GFP_KERNEL);
  808. if (!ascb)
  809. return -ENOMEM;
  810. asd_build_control_phy(ascb, phy->id, phy_func_table[func]);
  811. res = asd_post_ascb_list(asd_ha, ascb , 1);
  812. if (res)
  813. asd_ascb_free(ascb);
  814. return res;
  815. }