skge.c 98 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829
  1. /*
  2. * New driver for Marvell Yukon chipset and SysKonnect Gigabit
  3. * Ethernet adapters. Based on earlier sk98lin, e100 and
  4. * FreeBSD if_sk drivers.
  5. *
  6. * This driver intentionally does not support all the features
  7. * of the original driver such as link fail-over and link management because
  8. * those should be done at higher levels.
  9. *
  10. * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
  11. *
  12. * This program is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License as published by
  14. * the Free Software Foundation; either version 2 of the License.
  15. *
  16. * This program is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  19. * GNU General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License
  22. * along with this program; if not, write to the Free Software
  23. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  24. */
  25. #include <linux/in.h>
  26. #include <linux/kernel.h>
  27. #include <linux/module.h>
  28. #include <linux/moduleparam.h>
  29. #include <linux/netdevice.h>
  30. #include <linux/etherdevice.h>
  31. #include <linux/ethtool.h>
  32. #include <linux/pci.h>
  33. #include <linux/if_vlan.h>
  34. #include <linux/ip.h>
  35. #include <linux/delay.h>
  36. #include <linux/crc32.h>
  37. #include <linux/dma-mapping.h>
  38. #include <linux/mii.h>
  39. #include <asm/irq.h>
  40. #include "skge.h"
  41. #define DRV_NAME "skge"
  42. #define DRV_VERSION "1.10"
  43. #define PFX DRV_NAME " "
  44. #define DEFAULT_TX_RING_SIZE 128
  45. #define DEFAULT_RX_RING_SIZE 512
  46. #define MAX_TX_RING_SIZE 1024
  47. #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
  48. #define MAX_RX_RING_SIZE 4096
  49. #define RX_COPY_THRESHOLD 128
  50. #define RX_BUF_SIZE 1536
  51. #define PHY_RETRIES 1000
  52. #define ETH_JUMBO_MTU 9000
  53. #define TX_WATCHDOG (5 * HZ)
  54. #define NAPI_WEIGHT 64
  55. #define BLINK_MS 250
  56. #define LINK_HZ (HZ/2)
  57. MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
  58. MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
  59. MODULE_LICENSE("GPL");
  60. MODULE_VERSION(DRV_VERSION);
  61. static const u32 default_msg
  62. = NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK
  63. | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN;
  64. static int debug = -1; /* defaults above */
  65. module_param(debug, int, 0);
  66. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  67. static const struct pci_device_id skge_id_table[] = {
  68. { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
  69. { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
  70. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
  71. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
  72. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T), },
  73. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* DGE-530T */
  74. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
  75. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
  76. { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
  77. { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
  78. { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015, },
  79. { 0 }
  80. };
  81. MODULE_DEVICE_TABLE(pci, skge_id_table);
  82. static int skge_up(struct net_device *dev);
  83. static int skge_down(struct net_device *dev);
  84. static void skge_phy_reset(struct skge_port *skge);
  85. static void skge_tx_clean(struct net_device *dev);
  86. static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  87. static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  88. static void genesis_get_stats(struct skge_port *skge, u64 *data);
  89. static void yukon_get_stats(struct skge_port *skge, u64 *data);
  90. static void yukon_init(struct skge_hw *hw, int port);
  91. static void genesis_mac_init(struct skge_hw *hw, int port);
  92. static void genesis_link_up(struct skge_port *skge);
  93. /* Avoid conditionals by using array */
  94. static const int txqaddr[] = { Q_XA1, Q_XA2 };
  95. static const int rxqaddr[] = { Q_R1, Q_R2 };
  96. static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
  97. static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
  98. static const u32 irqmask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
  99. static int skge_get_regs_len(struct net_device *dev)
  100. {
  101. return 0x4000;
  102. }
  103. /*
  104. * Returns copy of whole control register region
  105. * Note: skip RAM address register because accessing it will
  106. * cause bus hangs!
  107. */
  108. static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
  109. void *p)
  110. {
  111. const struct skge_port *skge = netdev_priv(dev);
  112. const void __iomem *io = skge->hw->regs;
  113. regs->version = 1;
  114. memset(p, 0, regs->len);
  115. memcpy_fromio(p, io, B3_RAM_ADDR);
  116. memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
  117. regs->len - B3_RI_WTO_R1);
  118. }
  119. /* Wake on Lan only supported on Yukon chips with rev 1 or above */
  120. static u32 wol_supported(const struct skge_hw *hw)
  121. {
  122. if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev != 0)
  123. return WAKE_MAGIC | WAKE_PHY;
  124. else
  125. return 0;
  126. }
  127. static u32 pci_wake_enabled(struct pci_dev *dev)
  128. {
  129. int pm = pci_find_capability(dev, PCI_CAP_ID_PM);
  130. u16 value;
  131. /* If device doesn't support PM Capabilities, but request is to disable
  132. * wake events, it's a nop; otherwise fail */
  133. if (!pm)
  134. return 0;
  135. pci_read_config_word(dev, pm + PCI_PM_PMC, &value);
  136. value &= PCI_PM_CAP_PME_MASK;
  137. value >>= ffs(PCI_PM_CAP_PME_MASK) - 1; /* First bit of mask */
  138. return value != 0;
  139. }
  140. static void skge_wol_init(struct skge_port *skge)
  141. {
  142. struct skge_hw *hw = skge->hw;
  143. int port = skge->port;
  144. enum pause_control save_mode;
  145. u32 ctrl;
  146. /* Bring hardware out of reset */
  147. skge_write16(hw, B0_CTST, CS_RST_CLR);
  148. skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
  149. skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_CLR);
  150. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
  151. /* Force to 10/100 skge_reset will re-enable on resume */
  152. save_mode = skge->flow_control;
  153. skge->flow_control = FLOW_MODE_SYMMETRIC;
  154. ctrl = skge->advertising;
  155. skge->advertising &= ~(ADVERTISED_1000baseT_Half|ADVERTISED_1000baseT_Full);
  156. skge_phy_reset(skge);
  157. skge->flow_control = save_mode;
  158. skge->advertising = ctrl;
  159. /* Set GMAC to no flow control and auto update for speed/duplex */
  160. gma_write16(hw, port, GM_GP_CTRL,
  161. GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
  162. GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
  163. /* Set WOL address */
  164. memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
  165. skge->netdev->dev_addr, ETH_ALEN);
  166. /* Turn on appropriate WOL control bits */
  167. skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
  168. ctrl = 0;
  169. if (skge->wol & WAKE_PHY)
  170. ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
  171. else
  172. ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
  173. if (skge->wol & WAKE_MAGIC)
  174. ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
  175. else
  176. ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;;
  177. ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
  178. skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
  179. /* block receiver */
  180. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  181. }
  182. static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  183. {
  184. struct skge_port *skge = netdev_priv(dev);
  185. wol->supported = wol_supported(skge->hw);
  186. wol->wolopts = skge->wol;
  187. }
  188. static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  189. {
  190. struct skge_port *skge = netdev_priv(dev);
  191. struct skge_hw *hw = skge->hw;
  192. if (wol->wolopts & wol_supported(hw))
  193. return -EOPNOTSUPP;
  194. skge->wol = wol->wolopts;
  195. if (!netif_running(dev))
  196. skge_wol_init(skge);
  197. return 0;
  198. }
  199. /* Determine supported/advertised modes based on hardware.
  200. * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
  201. */
  202. static u32 skge_supported_modes(const struct skge_hw *hw)
  203. {
  204. u32 supported;
  205. if (hw->copper) {
  206. supported = SUPPORTED_10baseT_Half
  207. | SUPPORTED_10baseT_Full
  208. | SUPPORTED_100baseT_Half
  209. | SUPPORTED_100baseT_Full
  210. | SUPPORTED_1000baseT_Half
  211. | SUPPORTED_1000baseT_Full
  212. | SUPPORTED_Autoneg| SUPPORTED_TP;
  213. if (hw->chip_id == CHIP_ID_GENESIS)
  214. supported &= ~(SUPPORTED_10baseT_Half
  215. | SUPPORTED_10baseT_Full
  216. | SUPPORTED_100baseT_Half
  217. | SUPPORTED_100baseT_Full);
  218. else if (hw->chip_id == CHIP_ID_YUKON)
  219. supported &= ~SUPPORTED_1000baseT_Half;
  220. } else
  221. supported = SUPPORTED_1000baseT_Full | SUPPORTED_1000baseT_Half
  222. | SUPPORTED_FIBRE | SUPPORTED_Autoneg;
  223. return supported;
  224. }
  225. static int skge_get_settings(struct net_device *dev,
  226. struct ethtool_cmd *ecmd)
  227. {
  228. struct skge_port *skge = netdev_priv(dev);
  229. struct skge_hw *hw = skge->hw;
  230. ecmd->transceiver = XCVR_INTERNAL;
  231. ecmd->supported = skge_supported_modes(hw);
  232. if (hw->copper) {
  233. ecmd->port = PORT_TP;
  234. ecmd->phy_address = hw->phy_addr;
  235. } else
  236. ecmd->port = PORT_FIBRE;
  237. ecmd->advertising = skge->advertising;
  238. ecmd->autoneg = skge->autoneg;
  239. ecmd->speed = skge->speed;
  240. ecmd->duplex = skge->duplex;
  241. return 0;
  242. }
  243. static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  244. {
  245. struct skge_port *skge = netdev_priv(dev);
  246. const struct skge_hw *hw = skge->hw;
  247. u32 supported = skge_supported_modes(hw);
  248. if (ecmd->autoneg == AUTONEG_ENABLE) {
  249. ecmd->advertising = supported;
  250. skge->duplex = -1;
  251. skge->speed = -1;
  252. } else {
  253. u32 setting;
  254. switch (ecmd->speed) {
  255. case SPEED_1000:
  256. if (ecmd->duplex == DUPLEX_FULL)
  257. setting = SUPPORTED_1000baseT_Full;
  258. else if (ecmd->duplex == DUPLEX_HALF)
  259. setting = SUPPORTED_1000baseT_Half;
  260. else
  261. return -EINVAL;
  262. break;
  263. case SPEED_100:
  264. if (ecmd->duplex == DUPLEX_FULL)
  265. setting = SUPPORTED_100baseT_Full;
  266. else if (ecmd->duplex == DUPLEX_HALF)
  267. setting = SUPPORTED_100baseT_Half;
  268. else
  269. return -EINVAL;
  270. break;
  271. case SPEED_10:
  272. if (ecmd->duplex == DUPLEX_FULL)
  273. setting = SUPPORTED_10baseT_Full;
  274. else if (ecmd->duplex == DUPLEX_HALF)
  275. setting = SUPPORTED_10baseT_Half;
  276. else
  277. return -EINVAL;
  278. break;
  279. default:
  280. return -EINVAL;
  281. }
  282. if ((setting & supported) == 0)
  283. return -EINVAL;
  284. skge->speed = ecmd->speed;
  285. skge->duplex = ecmd->duplex;
  286. }
  287. skge->autoneg = ecmd->autoneg;
  288. skge->advertising = ecmd->advertising;
  289. if (netif_running(dev))
  290. skge_phy_reset(skge);
  291. return (0);
  292. }
  293. static void skge_get_drvinfo(struct net_device *dev,
  294. struct ethtool_drvinfo *info)
  295. {
  296. struct skge_port *skge = netdev_priv(dev);
  297. strcpy(info->driver, DRV_NAME);
  298. strcpy(info->version, DRV_VERSION);
  299. strcpy(info->fw_version, "N/A");
  300. strcpy(info->bus_info, pci_name(skge->hw->pdev));
  301. }
  302. static const struct skge_stat {
  303. char name[ETH_GSTRING_LEN];
  304. u16 xmac_offset;
  305. u16 gma_offset;
  306. } skge_stats[] = {
  307. { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
  308. { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
  309. { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
  310. { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
  311. { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
  312. { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
  313. { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
  314. { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
  315. { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
  316. { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
  317. { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
  318. { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
  319. { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
  320. { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
  321. { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
  322. { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
  323. { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  324. { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
  325. { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
  326. { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  327. { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
  328. };
  329. static int skge_get_stats_count(struct net_device *dev)
  330. {
  331. return ARRAY_SIZE(skge_stats);
  332. }
  333. static void skge_get_ethtool_stats(struct net_device *dev,
  334. struct ethtool_stats *stats, u64 *data)
  335. {
  336. struct skge_port *skge = netdev_priv(dev);
  337. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  338. genesis_get_stats(skge, data);
  339. else
  340. yukon_get_stats(skge, data);
  341. }
  342. /* Use hardware MIB variables for critical path statistics and
  343. * transmit feedback not reported at interrupt.
  344. * Other errors are accounted for in interrupt handler.
  345. */
  346. static struct net_device_stats *skge_get_stats(struct net_device *dev)
  347. {
  348. struct skge_port *skge = netdev_priv(dev);
  349. u64 data[ARRAY_SIZE(skge_stats)];
  350. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  351. genesis_get_stats(skge, data);
  352. else
  353. yukon_get_stats(skge, data);
  354. skge->net_stats.tx_bytes = data[0];
  355. skge->net_stats.rx_bytes = data[1];
  356. skge->net_stats.tx_packets = data[2] + data[4] + data[6];
  357. skge->net_stats.rx_packets = data[3] + data[5] + data[7];
  358. skge->net_stats.multicast = data[3] + data[5];
  359. skge->net_stats.collisions = data[10];
  360. skge->net_stats.tx_aborted_errors = data[12];
  361. return &skge->net_stats;
  362. }
  363. static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  364. {
  365. int i;
  366. switch (stringset) {
  367. case ETH_SS_STATS:
  368. for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
  369. memcpy(data + i * ETH_GSTRING_LEN,
  370. skge_stats[i].name, ETH_GSTRING_LEN);
  371. break;
  372. }
  373. }
  374. static void skge_get_ring_param(struct net_device *dev,
  375. struct ethtool_ringparam *p)
  376. {
  377. struct skge_port *skge = netdev_priv(dev);
  378. p->rx_max_pending = MAX_RX_RING_SIZE;
  379. p->tx_max_pending = MAX_TX_RING_SIZE;
  380. p->rx_mini_max_pending = 0;
  381. p->rx_jumbo_max_pending = 0;
  382. p->rx_pending = skge->rx_ring.count;
  383. p->tx_pending = skge->tx_ring.count;
  384. p->rx_mini_pending = 0;
  385. p->rx_jumbo_pending = 0;
  386. }
  387. static int skge_set_ring_param(struct net_device *dev,
  388. struct ethtool_ringparam *p)
  389. {
  390. struct skge_port *skge = netdev_priv(dev);
  391. int err;
  392. if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
  393. p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
  394. return -EINVAL;
  395. skge->rx_ring.count = p->rx_pending;
  396. skge->tx_ring.count = p->tx_pending;
  397. if (netif_running(dev)) {
  398. skge_down(dev);
  399. err = skge_up(dev);
  400. if (err)
  401. dev_close(dev);
  402. }
  403. return 0;
  404. }
  405. static u32 skge_get_msglevel(struct net_device *netdev)
  406. {
  407. struct skge_port *skge = netdev_priv(netdev);
  408. return skge->msg_enable;
  409. }
  410. static void skge_set_msglevel(struct net_device *netdev, u32 value)
  411. {
  412. struct skge_port *skge = netdev_priv(netdev);
  413. skge->msg_enable = value;
  414. }
  415. static int skge_nway_reset(struct net_device *dev)
  416. {
  417. struct skge_port *skge = netdev_priv(dev);
  418. if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
  419. return -EINVAL;
  420. skge_phy_reset(skge);
  421. return 0;
  422. }
  423. static int skge_set_sg(struct net_device *dev, u32 data)
  424. {
  425. struct skge_port *skge = netdev_priv(dev);
  426. struct skge_hw *hw = skge->hw;
  427. if (hw->chip_id == CHIP_ID_GENESIS && data)
  428. return -EOPNOTSUPP;
  429. return ethtool_op_set_sg(dev, data);
  430. }
  431. static int skge_set_tx_csum(struct net_device *dev, u32 data)
  432. {
  433. struct skge_port *skge = netdev_priv(dev);
  434. struct skge_hw *hw = skge->hw;
  435. if (hw->chip_id == CHIP_ID_GENESIS && data)
  436. return -EOPNOTSUPP;
  437. return ethtool_op_set_tx_csum(dev, data);
  438. }
  439. static u32 skge_get_rx_csum(struct net_device *dev)
  440. {
  441. struct skge_port *skge = netdev_priv(dev);
  442. return skge->rx_csum;
  443. }
  444. /* Only Yukon supports checksum offload. */
  445. static int skge_set_rx_csum(struct net_device *dev, u32 data)
  446. {
  447. struct skge_port *skge = netdev_priv(dev);
  448. if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
  449. return -EOPNOTSUPP;
  450. skge->rx_csum = data;
  451. return 0;
  452. }
  453. static void skge_get_pauseparam(struct net_device *dev,
  454. struct ethtool_pauseparam *ecmd)
  455. {
  456. struct skge_port *skge = netdev_priv(dev);
  457. ecmd->rx_pause = (skge->flow_control == FLOW_MODE_SYMMETRIC)
  458. || (skge->flow_control == FLOW_MODE_SYM_OR_REM);
  459. ecmd->tx_pause = ecmd->rx_pause || (skge->flow_control == FLOW_MODE_LOC_SEND);
  460. ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
  461. }
  462. static int skge_set_pauseparam(struct net_device *dev,
  463. struct ethtool_pauseparam *ecmd)
  464. {
  465. struct skge_port *skge = netdev_priv(dev);
  466. struct ethtool_pauseparam old;
  467. skge_get_pauseparam(dev, &old);
  468. if (ecmd->autoneg != old.autoneg)
  469. skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
  470. else {
  471. if (ecmd->rx_pause && ecmd->tx_pause)
  472. skge->flow_control = FLOW_MODE_SYMMETRIC;
  473. else if (ecmd->rx_pause && !ecmd->tx_pause)
  474. skge->flow_control = FLOW_MODE_SYM_OR_REM;
  475. else if (!ecmd->rx_pause && ecmd->tx_pause)
  476. skge->flow_control = FLOW_MODE_LOC_SEND;
  477. else
  478. skge->flow_control = FLOW_MODE_NONE;
  479. }
  480. if (netif_running(dev))
  481. skge_phy_reset(skge);
  482. return 0;
  483. }
  484. /* Chip internal frequency for clock calculations */
  485. static inline u32 hwkhz(const struct skge_hw *hw)
  486. {
  487. return (hw->chip_id == CHIP_ID_GENESIS) ? 53125 : 78125;
  488. }
  489. /* Chip HZ to microseconds */
  490. static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
  491. {
  492. return (ticks * 1000) / hwkhz(hw);
  493. }
  494. /* Microseconds to chip HZ */
  495. static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
  496. {
  497. return hwkhz(hw) * usec / 1000;
  498. }
  499. static int skge_get_coalesce(struct net_device *dev,
  500. struct ethtool_coalesce *ecmd)
  501. {
  502. struct skge_port *skge = netdev_priv(dev);
  503. struct skge_hw *hw = skge->hw;
  504. int port = skge->port;
  505. ecmd->rx_coalesce_usecs = 0;
  506. ecmd->tx_coalesce_usecs = 0;
  507. if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
  508. u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
  509. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  510. if (msk & rxirqmask[port])
  511. ecmd->rx_coalesce_usecs = delay;
  512. if (msk & txirqmask[port])
  513. ecmd->tx_coalesce_usecs = delay;
  514. }
  515. return 0;
  516. }
  517. /* Note: interrupt timer is per board, but can turn on/off per port */
  518. static int skge_set_coalesce(struct net_device *dev,
  519. struct ethtool_coalesce *ecmd)
  520. {
  521. struct skge_port *skge = netdev_priv(dev);
  522. struct skge_hw *hw = skge->hw;
  523. int port = skge->port;
  524. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  525. u32 delay = 25;
  526. if (ecmd->rx_coalesce_usecs == 0)
  527. msk &= ~rxirqmask[port];
  528. else if (ecmd->rx_coalesce_usecs < 25 ||
  529. ecmd->rx_coalesce_usecs > 33333)
  530. return -EINVAL;
  531. else {
  532. msk |= rxirqmask[port];
  533. delay = ecmd->rx_coalesce_usecs;
  534. }
  535. if (ecmd->tx_coalesce_usecs == 0)
  536. msk &= ~txirqmask[port];
  537. else if (ecmd->tx_coalesce_usecs < 25 ||
  538. ecmd->tx_coalesce_usecs > 33333)
  539. return -EINVAL;
  540. else {
  541. msk |= txirqmask[port];
  542. delay = min(delay, ecmd->rx_coalesce_usecs);
  543. }
  544. skge_write32(hw, B2_IRQM_MSK, msk);
  545. if (msk == 0)
  546. skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
  547. else {
  548. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
  549. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  550. }
  551. return 0;
  552. }
  553. enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
  554. static void skge_led(struct skge_port *skge, enum led_mode mode)
  555. {
  556. struct skge_hw *hw = skge->hw;
  557. int port = skge->port;
  558. mutex_lock(&hw->phy_mutex);
  559. if (hw->chip_id == CHIP_ID_GENESIS) {
  560. switch (mode) {
  561. case LED_MODE_OFF:
  562. if (hw->phy_type == SK_PHY_BCOM)
  563. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
  564. else {
  565. skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
  566. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
  567. }
  568. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
  569. skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
  570. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
  571. break;
  572. case LED_MODE_ON:
  573. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
  574. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
  575. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  576. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  577. break;
  578. case LED_MODE_TST:
  579. skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
  580. skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
  581. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  582. if (hw->phy_type == SK_PHY_BCOM)
  583. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
  584. else {
  585. skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
  586. skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
  587. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  588. }
  589. }
  590. } else {
  591. switch (mode) {
  592. case LED_MODE_OFF:
  593. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  594. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  595. PHY_M_LED_MO_DUP(MO_LED_OFF) |
  596. PHY_M_LED_MO_10(MO_LED_OFF) |
  597. PHY_M_LED_MO_100(MO_LED_OFF) |
  598. PHY_M_LED_MO_1000(MO_LED_OFF) |
  599. PHY_M_LED_MO_RX(MO_LED_OFF));
  600. break;
  601. case LED_MODE_ON:
  602. gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
  603. PHY_M_LED_PULS_DUR(PULS_170MS) |
  604. PHY_M_LED_BLINK_RT(BLINK_84MS) |
  605. PHY_M_LEDC_TX_CTRL |
  606. PHY_M_LEDC_DP_CTRL);
  607. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  608. PHY_M_LED_MO_RX(MO_LED_OFF) |
  609. (skge->speed == SPEED_100 ?
  610. PHY_M_LED_MO_100(MO_LED_ON) : 0));
  611. break;
  612. case LED_MODE_TST:
  613. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  614. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  615. PHY_M_LED_MO_DUP(MO_LED_ON) |
  616. PHY_M_LED_MO_10(MO_LED_ON) |
  617. PHY_M_LED_MO_100(MO_LED_ON) |
  618. PHY_M_LED_MO_1000(MO_LED_ON) |
  619. PHY_M_LED_MO_RX(MO_LED_ON));
  620. }
  621. }
  622. mutex_unlock(&hw->phy_mutex);
  623. }
  624. /* blink LED's for finding board */
  625. static int skge_phys_id(struct net_device *dev, u32 data)
  626. {
  627. struct skge_port *skge = netdev_priv(dev);
  628. unsigned long ms;
  629. enum led_mode mode = LED_MODE_TST;
  630. if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
  631. ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000;
  632. else
  633. ms = data * 1000;
  634. while (ms > 0) {
  635. skge_led(skge, mode);
  636. mode ^= LED_MODE_TST;
  637. if (msleep_interruptible(BLINK_MS))
  638. break;
  639. ms -= BLINK_MS;
  640. }
  641. /* back to regular LED state */
  642. skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
  643. return 0;
  644. }
  645. static const struct ethtool_ops skge_ethtool_ops = {
  646. .get_settings = skge_get_settings,
  647. .set_settings = skge_set_settings,
  648. .get_drvinfo = skge_get_drvinfo,
  649. .get_regs_len = skge_get_regs_len,
  650. .get_regs = skge_get_regs,
  651. .get_wol = skge_get_wol,
  652. .set_wol = skge_set_wol,
  653. .get_msglevel = skge_get_msglevel,
  654. .set_msglevel = skge_set_msglevel,
  655. .nway_reset = skge_nway_reset,
  656. .get_link = ethtool_op_get_link,
  657. .get_ringparam = skge_get_ring_param,
  658. .set_ringparam = skge_set_ring_param,
  659. .get_pauseparam = skge_get_pauseparam,
  660. .set_pauseparam = skge_set_pauseparam,
  661. .get_coalesce = skge_get_coalesce,
  662. .set_coalesce = skge_set_coalesce,
  663. .get_sg = ethtool_op_get_sg,
  664. .set_sg = skge_set_sg,
  665. .get_tx_csum = ethtool_op_get_tx_csum,
  666. .set_tx_csum = skge_set_tx_csum,
  667. .get_rx_csum = skge_get_rx_csum,
  668. .set_rx_csum = skge_set_rx_csum,
  669. .get_strings = skge_get_strings,
  670. .phys_id = skge_phys_id,
  671. .get_stats_count = skge_get_stats_count,
  672. .get_ethtool_stats = skge_get_ethtool_stats,
  673. .get_perm_addr = ethtool_op_get_perm_addr,
  674. };
  675. /*
  676. * Allocate ring elements and chain them together
  677. * One-to-one association of board descriptors with ring elements
  678. */
  679. static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
  680. {
  681. struct skge_tx_desc *d;
  682. struct skge_element *e;
  683. int i;
  684. ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
  685. if (!ring->start)
  686. return -ENOMEM;
  687. for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
  688. e->desc = d;
  689. if (i == ring->count - 1) {
  690. e->next = ring->start;
  691. d->next_offset = base;
  692. } else {
  693. e->next = e + 1;
  694. d->next_offset = base + (i+1) * sizeof(*d);
  695. }
  696. }
  697. ring->to_use = ring->to_clean = ring->start;
  698. return 0;
  699. }
  700. /* Allocate and setup a new buffer for receiving */
  701. static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
  702. struct sk_buff *skb, unsigned int bufsize)
  703. {
  704. struct skge_rx_desc *rd = e->desc;
  705. u64 map;
  706. map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
  707. PCI_DMA_FROMDEVICE);
  708. rd->dma_lo = map;
  709. rd->dma_hi = map >> 32;
  710. e->skb = skb;
  711. rd->csum1_start = ETH_HLEN;
  712. rd->csum2_start = ETH_HLEN;
  713. rd->csum1 = 0;
  714. rd->csum2 = 0;
  715. wmb();
  716. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
  717. pci_unmap_addr_set(e, mapaddr, map);
  718. pci_unmap_len_set(e, maplen, bufsize);
  719. }
  720. /* Resume receiving using existing skb,
  721. * Note: DMA address is not changed by chip.
  722. * MTU not changed while receiver active.
  723. */
  724. static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
  725. {
  726. struct skge_rx_desc *rd = e->desc;
  727. rd->csum2 = 0;
  728. rd->csum2_start = ETH_HLEN;
  729. wmb();
  730. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
  731. }
  732. /* Free all buffers in receive ring, assumes receiver stopped */
  733. static void skge_rx_clean(struct skge_port *skge)
  734. {
  735. struct skge_hw *hw = skge->hw;
  736. struct skge_ring *ring = &skge->rx_ring;
  737. struct skge_element *e;
  738. e = ring->start;
  739. do {
  740. struct skge_rx_desc *rd = e->desc;
  741. rd->control = 0;
  742. if (e->skb) {
  743. pci_unmap_single(hw->pdev,
  744. pci_unmap_addr(e, mapaddr),
  745. pci_unmap_len(e, maplen),
  746. PCI_DMA_FROMDEVICE);
  747. dev_kfree_skb(e->skb);
  748. e->skb = NULL;
  749. }
  750. } while ((e = e->next) != ring->start);
  751. }
  752. /* Allocate buffers for receive ring
  753. * For receive: to_clean is next received frame.
  754. */
  755. static int skge_rx_fill(struct net_device *dev)
  756. {
  757. struct skge_port *skge = netdev_priv(dev);
  758. struct skge_ring *ring = &skge->rx_ring;
  759. struct skge_element *e;
  760. e = ring->start;
  761. do {
  762. struct sk_buff *skb;
  763. skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
  764. GFP_KERNEL);
  765. if (!skb)
  766. return -ENOMEM;
  767. skb_reserve(skb, NET_IP_ALIGN);
  768. skge_rx_setup(skge, e, skb, skge->rx_buf_size);
  769. } while ( (e = e->next) != ring->start);
  770. ring->to_clean = ring->start;
  771. return 0;
  772. }
  773. static const char *skge_pause(enum pause_status status)
  774. {
  775. switch(status) {
  776. case FLOW_STAT_NONE:
  777. return "none";
  778. case FLOW_STAT_REM_SEND:
  779. return "rx only";
  780. case FLOW_STAT_LOC_SEND:
  781. return "tx_only";
  782. case FLOW_STAT_SYMMETRIC: /* Both station may send PAUSE */
  783. return "both";
  784. default:
  785. return "indeterminated";
  786. }
  787. }
  788. static void skge_link_up(struct skge_port *skge)
  789. {
  790. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
  791. LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
  792. netif_carrier_on(skge->netdev);
  793. netif_wake_queue(skge->netdev);
  794. if (netif_msg_link(skge)) {
  795. printk(KERN_INFO PFX
  796. "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
  797. skge->netdev->name, skge->speed,
  798. skge->duplex == DUPLEX_FULL ? "full" : "half",
  799. skge_pause(skge->flow_status));
  800. }
  801. }
  802. static void skge_link_down(struct skge_port *skge)
  803. {
  804. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
  805. netif_carrier_off(skge->netdev);
  806. netif_stop_queue(skge->netdev);
  807. if (netif_msg_link(skge))
  808. printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
  809. }
  810. static void xm_link_down(struct skge_hw *hw, int port)
  811. {
  812. struct net_device *dev = hw->dev[port];
  813. struct skge_port *skge = netdev_priv(dev);
  814. u16 cmd, msk;
  815. if (hw->phy_type == SK_PHY_XMAC) {
  816. msk = xm_read16(hw, port, XM_IMSK);
  817. msk |= XM_IS_INP_ASS | XM_IS_LIPA_RC | XM_IS_RX_PAGE | XM_IS_AND;
  818. xm_write16(hw, port, XM_IMSK, msk);
  819. }
  820. cmd = xm_read16(hw, port, XM_MMU_CMD);
  821. cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  822. xm_write16(hw, port, XM_MMU_CMD, cmd);
  823. /* dummy read to ensure writing */
  824. (void) xm_read16(hw, port, XM_MMU_CMD);
  825. if (netif_carrier_ok(dev))
  826. skge_link_down(skge);
  827. }
  828. static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
  829. {
  830. int i;
  831. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  832. *val = xm_read16(hw, port, XM_PHY_DATA);
  833. if (hw->phy_type == SK_PHY_XMAC)
  834. goto ready;
  835. for (i = 0; i < PHY_RETRIES; i++) {
  836. if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
  837. goto ready;
  838. udelay(1);
  839. }
  840. return -ETIMEDOUT;
  841. ready:
  842. *val = xm_read16(hw, port, XM_PHY_DATA);
  843. return 0;
  844. }
  845. static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
  846. {
  847. u16 v = 0;
  848. if (__xm_phy_read(hw, port, reg, &v))
  849. printk(KERN_WARNING PFX "%s: phy read timed out\n",
  850. hw->dev[port]->name);
  851. return v;
  852. }
  853. static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  854. {
  855. int i;
  856. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  857. for (i = 0; i < PHY_RETRIES; i++) {
  858. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  859. goto ready;
  860. udelay(1);
  861. }
  862. return -EIO;
  863. ready:
  864. xm_write16(hw, port, XM_PHY_DATA, val);
  865. for (i = 0; i < PHY_RETRIES; i++) {
  866. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  867. return 0;
  868. udelay(1);
  869. }
  870. return -ETIMEDOUT;
  871. }
  872. static void genesis_init(struct skge_hw *hw)
  873. {
  874. /* set blink source counter */
  875. skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
  876. skge_write8(hw, B2_BSC_CTRL, BSC_START);
  877. /* configure mac arbiter */
  878. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  879. /* configure mac arbiter timeout values */
  880. skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
  881. skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
  882. skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
  883. skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
  884. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  885. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  886. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  887. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  888. /* configure packet arbiter timeout */
  889. skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
  890. skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
  891. skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
  892. skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
  893. skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
  894. }
  895. static void genesis_reset(struct skge_hw *hw, int port)
  896. {
  897. const u8 zero[8] = { 0 };
  898. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  899. /* reset the statistics module */
  900. xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
  901. xm_write16(hw, port, XM_IMSK, 0xffff); /* disable XMAC IRQs */
  902. xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
  903. xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
  904. xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
  905. /* disable Broadcom PHY IRQ */
  906. if (hw->phy_type == SK_PHY_BCOM)
  907. xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
  908. xm_outhash(hw, port, XM_HSM, zero);
  909. }
  910. /* Convert mode to MII values */
  911. static const u16 phy_pause_map[] = {
  912. [FLOW_MODE_NONE] = 0,
  913. [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
  914. [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
  915. [FLOW_MODE_SYM_OR_REM] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
  916. };
  917. /* special defines for FIBER (88E1011S only) */
  918. static const u16 fiber_pause_map[] = {
  919. [FLOW_MODE_NONE] = PHY_X_P_NO_PAUSE,
  920. [FLOW_MODE_LOC_SEND] = PHY_X_P_ASYM_MD,
  921. [FLOW_MODE_SYMMETRIC] = PHY_X_P_SYM_MD,
  922. [FLOW_MODE_SYM_OR_REM] = PHY_X_P_BOTH_MD,
  923. };
  924. /* Check status of Broadcom phy link */
  925. static void bcom_check_link(struct skge_hw *hw, int port)
  926. {
  927. struct net_device *dev = hw->dev[port];
  928. struct skge_port *skge = netdev_priv(dev);
  929. u16 status;
  930. /* read twice because of latch */
  931. (void) xm_phy_read(hw, port, PHY_BCOM_STAT);
  932. status = xm_phy_read(hw, port, PHY_BCOM_STAT);
  933. if ((status & PHY_ST_LSYNC) == 0) {
  934. xm_link_down(hw, port);
  935. return;
  936. }
  937. if (skge->autoneg == AUTONEG_ENABLE) {
  938. u16 lpa, aux;
  939. if (!(status & PHY_ST_AN_OVER))
  940. return;
  941. lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
  942. if (lpa & PHY_B_AN_RF) {
  943. printk(KERN_NOTICE PFX "%s: remote fault\n",
  944. dev->name);
  945. return;
  946. }
  947. aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
  948. /* Check Duplex mismatch */
  949. switch (aux & PHY_B_AS_AN_RES_MSK) {
  950. case PHY_B_RES_1000FD:
  951. skge->duplex = DUPLEX_FULL;
  952. break;
  953. case PHY_B_RES_1000HD:
  954. skge->duplex = DUPLEX_HALF;
  955. break;
  956. default:
  957. printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
  958. dev->name);
  959. return;
  960. }
  961. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  962. switch (aux & PHY_B_AS_PAUSE_MSK) {
  963. case PHY_B_AS_PAUSE_MSK:
  964. skge->flow_status = FLOW_STAT_SYMMETRIC;
  965. break;
  966. case PHY_B_AS_PRR:
  967. skge->flow_status = FLOW_STAT_REM_SEND;
  968. break;
  969. case PHY_B_AS_PRT:
  970. skge->flow_status = FLOW_STAT_LOC_SEND;
  971. break;
  972. default:
  973. skge->flow_status = FLOW_STAT_NONE;
  974. }
  975. skge->speed = SPEED_1000;
  976. }
  977. if (!netif_carrier_ok(dev))
  978. genesis_link_up(skge);
  979. }
  980. /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
  981. * Phy on for 100 or 10Mbit operation
  982. */
  983. static void bcom_phy_init(struct skge_port *skge)
  984. {
  985. struct skge_hw *hw = skge->hw;
  986. int port = skge->port;
  987. int i;
  988. u16 id1, r, ext, ctl;
  989. /* magic workaround patterns for Broadcom */
  990. static const struct {
  991. u16 reg;
  992. u16 val;
  993. } A1hack[] = {
  994. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
  995. { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
  996. { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
  997. { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
  998. }, C0hack[] = {
  999. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
  1000. { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
  1001. };
  1002. /* read Id from external PHY (all have the same address) */
  1003. id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
  1004. /* Optimize MDIO transfer by suppressing preamble. */
  1005. r = xm_read16(hw, port, XM_MMU_CMD);
  1006. r |= XM_MMU_NO_PRE;
  1007. xm_write16(hw, port, XM_MMU_CMD,r);
  1008. switch (id1) {
  1009. case PHY_BCOM_ID1_C0:
  1010. /*
  1011. * Workaround BCOM Errata for the C0 type.
  1012. * Write magic patterns to reserved registers.
  1013. */
  1014. for (i = 0; i < ARRAY_SIZE(C0hack); i++)
  1015. xm_phy_write(hw, port,
  1016. C0hack[i].reg, C0hack[i].val);
  1017. break;
  1018. case PHY_BCOM_ID1_A1:
  1019. /*
  1020. * Workaround BCOM Errata for the A1 type.
  1021. * Write magic patterns to reserved registers.
  1022. */
  1023. for (i = 0; i < ARRAY_SIZE(A1hack); i++)
  1024. xm_phy_write(hw, port,
  1025. A1hack[i].reg, A1hack[i].val);
  1026. break;
  1027. }
  1028. /*
  1029. * Workaround BCOM Errata (#10523) for all BCom PHYs.
  1030. * Disable Power Management after reset.
  1031. */
  1032. r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
  1033. r |= PHY_B_AC_DIS_PM;
  1034. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
  1035. /* Dummy read */
  1036. xm_read16(hw, port, XM_ISRC);
  1037. ext = PHY_B_PEC_EN_LTR; /* enable tx led */
  1038. ctl = PHY_CT_SP1000; /* always 1000mbit */
  1039. if (skge->autoneg == AUTONEG_ENABLE) {
  1040. /*
  1041. * Workaround BCOM Errata #1 for the C5 type.
  1042. * 1000Base-T Link Acquisition Failure in Slave Mode
  1043. * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
  1044. */
  1045. u16 adv = PHY_B_1000C_RD;
  1046. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1047. adv |= PHY_B_1000C_AHD;
  1048. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1049. adv |= PHY_B_1000C_AFD;
  1050. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
  1051. ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1052. } else {
  1053. if (skge->duplex == DUPLEX_FULL)
  1054. ctl |= PHY_CT_DUP_MD;
  1055. /* Force to slave */
  1056. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
  1057. }
  1058. /* Set autonegotiation pause parameters */
  1059. xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
  1060. phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
  1061. /* Handle Jumbo frames */
  1062. if (hw->dev[port]->mtu > ETH_DATA_LEN) {
  1063. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  1064. PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
  1065. ext |= PHY_B_PEC_HIGH_LA;
  1066. }
  1067. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
  1068. xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
  1069. /* Use link status change interrupt */
  1070. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  1071. }
  1072. static void xm_phy_init(struct skge_port *skge)
  1073. {
  1074. struct skge_hw *hw = skge->hw;
  1075. int port = skge->port;
  1076. u16 ctrl = 0;
  1077. if (skge->autoneg == AUTONEG_ENABLE) {
  1078. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1079. ctrl |= PHY_X_AN_HD;
  1080. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1081. ctrl |= PHY_X_AN_FD;
  1082. ctrl |= fiber_pause_map[skge->flow_control];
  1083. xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
  1084. /* Restart Auto-negotiation */
  1085. ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
  1086. } else {
  1087. /* Set DuplexMode in Config register */
  1088. if (skge->duplex == DUPLEX_FULL)
  1089. ctrl |= PHY_CT_DUP_MD;
  1090. /*
  1091. * Do NOT enable Auto-negotiation here. This would hold
  1092. * the link down because no IDLEs are transmitted
  1093. */
  1094. }
  1095. xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
  1096. /* Poll PHY for status changes */
  1097. schedule_delayed_work(&skge->link_thread, LINK_HZ);
  1098. }
  1099. static void xm_check_link(struct net_device *dev)
  1100. {
  1101. struct skge_port *skge = netdev_priv(dev);
  1102. struct skge_hw *hw = skge->hw;
  1103. int port = skge->port;
  1104. u16 status;
  1105. /* read twice because of latch */
  1106. (void) xm_phy_read(hw, port, PHY_XMAC_STAT);
  1107. status = xm_phy_read(hw, port, PHY_XMAC_STAT);
  1108. if ((status & PHY_ST_LSYNC) == 0) {
  1109. xm_link_down(hw, port);
  1110. return;
  1111. }
  1112. if (skge->autoneg == AUTONEG_ENABLE) {
  1113. u16 lpa, res;
  1114. if (!(status & PHY_ST_AN_OVER))
  1115. return;
  1116. lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
  1117. if (lpa & PHY_B_AN_RF) {
  1118. printk(KERN_NOTICE PFX "%s: remote fault\n",
  1119. dev->name);
  1120. return;
  1121. }
  1122. res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
  1123. /* Check Duplex mismatch */
  1124. switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
  1125. case PHY_X_RS_FD:
  1126. skge->duplex = DUPLEX_FULL;
  1127. break;
  1128. case PHY_X_RS_HD:
  1129. skge->duplex = DUPLEX_HALF;
  1130. break;
  1131. default:
  1132. printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
  1133. dev->name);
  1134. return;
  1135. }
  1136. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1137. if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
  1138. skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
  1139. (lpa & PHY_X_P_SYM_MD))
  1140. skge->flow_status = FLOW_STAT_SYMMETRIC;
  1141. else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
  1142. (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
  1143. /* Enable PAUSE receive, disable PAUSE transmit */
  1144. skge->flow_status = FLOW_STAT_REM_SEND;
  1145. else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
  1146. (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
  1147. /* Disable PAUSE receive, enable PAUSE transmit */
  1148. skge->flow_status = FLOW_STAT_LOC_SEND;
  1149. else
  1150. skge->flow_status = FLOW_STAT_NONE;
  1151. skge->speed = SPEED_1000;
  1152. }
  1153. if (!netif_carrier_ok(dev))
  1154. genesis_link_up(skge);
  1155. }
  1156. /* Poll to check for link coming up.
  1157. * Since internal PHY is wired to a level triggered pin, can't
  1158. * get an interrupt when carrier is detected.
  1159. */
  1160. static void xm_link_timer(struct work_struct *work)
  1161. {
  1162. struct skge_port *skge =
  1163. container_of(work, struct skge_port, link_thread.work);
  1164. struct net_device *dev = skge->netdev;
  1165. struct skge_hw *hw = skge->hw;
  1166. int port = skge->port;
  1167. if (!netif_running(dev))
  1168. return;
  1169. if (netif_carrier_ok(dev)) {
  1170. xm_read16(hw, port, XM_ISRC);
  1171. if (!(xm_read16(hw, port, XM_ISRC) & XM_IS_INP_ASS))
  1172. goto nochange;
  1173. } else {
  1174. if (xm_read32(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
  1175. goto nochange;
  1176. xm_read16(hw, port, XM_ISRC);
  1177. if (xm_read16(hw, port, XM_ISRC) & XM_IS_INP_ASS)
  1178. goto nochange;
  1179. }
  1180. mutex_lock(&hw->phy_mutex);
  1181. xm_check_link(dev);
  1182. mutex_unlock(&hw->phy_mutex);
  1183. nochange:
  1184. schedule_delayed_work(&skge->link_thread, LINK_HZ);
  1185. }
  1186. static void genesis_mac_init(struct skge_hw *hw, int port)
  1187. {
  1188. struct net_device *dev = hw->dev[port];
  1189. struct skge_port *skge = netdev_priv(dev);
  1190. int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
  1191. int i;
  1192. u32 r;
  1193. const u8 zero[6] = { 0 };
  1194. for (i = 0; i < 10; i++) {
  1195. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
  1196. MFF_SET_MAC_RST);
  1197. if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
  1198. goto reset_ok;
  1199. udelay(1);
  1200. }
  1201. printk(KERN_WARNING PFX "%s: genesis reset failed\n", dev->name);
  1202. reset_ok:
  1203. /* Unreset the XMAC. */
  1204. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
  1205. /*
  1206. * Perform additional initialization for external PHYs,
  1207. * namely for the 1000baseTX cards that use the XMAC's
  1208. * GMII mode.
  1209. */
  1210. if (hw->phy_type != SK_PHY_XMAC) {
  1211. /* Take external Phy out of reset */
  1212. r = skge_read32(hw, B2_GP_IO);
  1213. if (port == 0)
  1214. r |= GP_DIR_0|GP_IO_0;
  1215. else
  1216. r |= GP_DIR_2|GP_IO_2;
  1217. skge_write32(hw, B2_GP_IO, r);
  1218. /* Enable GMII interface */
  1219. xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
  1220. }
  1221. switch(hw->phy_type) {
  1222. case SK_PHY_XMAC:
  1223. xm_phy_init(skge);
  1224. break;
  1225. case SK_PHY_BCOM:
  1226. bcom_phy_init(skge);
  1227. bcom_check_link(hw, port);
  1228. }
  1229. /* Set Station Address */
  1230. xm_outaddr(hw, port, XM_SA, dev->dev_addr);
  1231. /* We don't use match addresses so clear */
  1232. for (i = 1; i < 16; i++)
  1233. xm_outaddr(hw, port, XM_EXM(i), zero);
  1234. /* Clear MIB counters */
  1235. xm_write16(hw, port, XM_STAT_CMD,
  1236. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  1237. /* Clear two times according to Errata #3 */
  1238. xm_write16(hw, port, XM_STAT_CMD,
  1239. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  1240. /* configure Rx High Water Mark (XM_RX_HI_WM) */
  1241. xm_write16(hw, port, XM_RX_HI_WM, 1450);
  1242. /* We don't need the FCS appended to the packet. */
  1243. r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
  1244. if (jumbo)
  1245. r |= XM_RX_BIG_PK_OK;
  1246. if (skge->duplex == DUPLEX_HALF) {
  1247. /*
  1248. * If in manual half duplex mode the other side might be in
  1249. * full duplex mode, so ignore if a carrier extension is not seen
  1250. * on frames received
  1251. */
  1252. r |= XM_RX_DIS_CEXT;
  1253. }
  1254. xm_write16(hw, port, XM_RX_CMD, r);
  1255. /* We want short frames padded to 60 bytes. */
  1256. xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
  1257. /*
  1258. * Bump up the transmit threshold. This helps hold off transmit
  1259. * underruns when we're blasting traffic from both ports at once.
  1260. */
  1261. xm_write16(hw, port, XM_TX_THR, 512);
  1262. /*
  1263. * Enable the reception of all error frames. This is is
  1264. * a necessary evil due to the design of the XMAC. The
  1265. * XMAC's receive FIFO is only 8K in size, however jumbo
  1266. * frames can be up to 9000 bytes in length. When bad
  1267. * frame filtering is enabled, the XMAC's RX FIFO operates
  1268. * in 'store and forward' mode. For this to work, the
  1269. * entire frame has to fit into the FIFO, but that means
  1270. * that jumbo frames larger than 8192 bytes will be
  1271. * truncated. Disabling all bad frame filtering causes
  1272. * the RX FIFO to operate in streaming mode, in which
  1273. * case the XMAC will start transferring frames out of the
  1274. * RX FIFO as soon as the FIFO threshold is reached.
  1275. */
  1276. xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
  1277. /*
  1278. * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
  1279. * - Enable all bits excepting 'Octets Rx OK Low CntOv'
  1280. * and 'Octets Rx OK Hi Cnt Ov'.
  1281. */
  1282. xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
  1283. /*
  1284. * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
  1285. * - Enable all bits excepting 'Octets Tx OK Low CntOv'
  1286. * and 'Octets Tx OK Hi Cnt Ov'.
  1287. */
  1288. xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
  1289. /* Configure MAC arbiter */
  1290. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  1291. /* configure timeout values */
  1292. skge_write8(hw, B3_MA_TOINI_RX1, 72);
  1293. skge_write8(hw, B3_MA_TOINI_RX2, 72);
  1294. skge_write8(hw, B3_MA_TOINI_TX1, 72);
  1295. skge_write8(hw, B3_MA_TOINI_TX2, 72);
  1296. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  1297. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  1298. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  1299. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  1300. /* Configure Rx MAC FIFO */
  1301. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
  1302. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
  1303. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
  1304. /* Configure Tx MAC FIFO */
  1305. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
  1306. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
  1307. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
  1308. if (jumbo) {
  1309. /* Enable frame flushing if jumbo frames used */
  1310. skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
  1311. } else {
  1312. /* enable timeout timers if normal frames */
  1313. skge_write16(hw, B3_PA_CTRL,
  1314. (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
  1315. }
  1316. }
  1317. static void genesis_stop(struct skge_port *skge)
  1318. {
  1319. struct skge_hw *hw = skge->hw;
  1320. int port = skge->port;
  1321. u32 reg;
  1322. genesis_reset(hw, port);
  1323. /* Clear Tx packet arbiter timeout IRQ */
  1324. skge_write16(hw, B3_PA_CTRL,
  1325. port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
  1326. /*
  1327. * If the transfer sticks at the MAC the STOP command will not
  1328. * terminate if we don't flush the XMAC's transmit FIFO !
  1329. */
  1330. xm_write32(hw, port, XM_MODE,
  1331. xm_read32(hw, port, XM_MODE)|XM_MD_FTF);
  1332. /* Reset the MAC */
  1333. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
  1334. /* For external PHYs there must be special handling */
  1335. if (hw->phy_type != SK_PHY_XMAC) {
  1336. reg = skge_read32(hw, B2_GP_IO);
  1337. if (port == 0) {
  1338. reg |= GP_DIR_0;
  1339. reg &= ~GP_IO_0;
  1340. } else {
  1341. reg |= GP_DIR_2;
  1342. reg &= ~GP_IO_2;
  1343. }
  1344. skge_write32(hw, B2_GP_IO, reg);
  1345. skge_read32(hw, B2_GP_IO);
  1346. }
  1347. xm_write16(hw, port, XM_MMU_CMD,
  1348. xm_read16(hw, port, XM_MMU_CMD)
  1349. & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
  1350. xm_read16(hw, port, XM_MMU_CMD);
  1351. }
  1352. static void genesis_get_stats(struct skge_port *skge, u64 *data)
  1353. {
  1354. struct skge_hw *hw = skge->hw;
  1355. int port = skge->port;
  1356. int i;
  1357. unsigned long timeout = jiffies + HZ;
  1358. xm_write16(hw, port,
  1359. XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
  1360. /* wait for update to complete */
  1361. while (xm_read16(hw, port, XM_STAT_CMD)
  1362. & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
  1363. if (time_after(jiffies, timeout))
  1364. break;
  1365. udelay(10);
  1366. }
  1367. /* special case for 64 bit octet counter */
  1368. data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
  1369. | xm_read32(hw, port, XM_TXO_OK_LO);
  1370. data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
  1371. | xm_read32(hw, port, XM_RXO_OK_LO);
  1372. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1373. data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
  1374. }
  1375. static void genesis_mac_intr(struct skge_hw *hw, int port)
  1376. {
  1377. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1378. u16 status = xm_read16(hw, port, XM_ISRC);
  1379. if (netif_msg_intr(skge))
  1380. printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
  1381. skge->netdev->name, status);
  1382. if (hw->phy_type == SK_PHY_XMAC &&
  1383. (status & (XM_IS_INP_ASS | XM_IS_LIPA_RC)))
  1384. xm_link_down(hw, port);
  1385. if (status & XM_IS_TXF_UR) {
  1386. xm_write32(hw, port, XM_MODE, XM_MD_FTF);
  1387. ++skge->net_stats.tx_fifo_errors;
  1388. }
  1389. if (status & XM_IS_RXF_OV) {
  1390. xm_write32(hw, port, XM_MODE, XM_MD_FRF);
  1391. ++skge->net_stats.rx_fifo_errors;
  1392. }
  1393. }
  1394. static void genesis_link_up(struct skge_port *skge)
  1395. {
  1396. struct skge_hw *hw = skge->hw;
  1397. int port = skge->port;
  1398. u16 cmd, msk;
  1399. u32 mode;
  1400. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1401. /*
  1402. * enabling pause frame reception is required for 1000BT
  1403. * because the XMAC is not reset if the link is going down
  1404. */
  1405. if (skge->flow_status == FLOW_STAT_NONE ||
  1406. skge->flow_status == FLOW_STAT_LOC_SEND)
  1407. /* Disable Pause Frame Reception */
  1408. cmd |= XM_MMU_IGN_PF;
  1409. else
  1410. /* Enable Pause Frame Reception */
  1411. cmd &= ~XM_MMU_IGN_PF;
  1412. xm_write16(hw, port, XM_MMU_CMD, cmd);
  1413. mode = xm_read32(hw, port, XM_MODE);
  1414. if (skge->flow_status== FLOW_STAT_SYMMETRIC ||
  1415. skge->flow_status == FLOW_STAT_LOC_SEND) {
  1416. /*
  1417. * Configure Pause Frame Generation
  1418. * Use internal and external Pause Frame Generation.
  1419. * Sending pause frames is edge triggered.
  1420. * Send a Pause frame with the maximum pause time if
  1421. * internal oder external FIFO full condition occurs.
  1422. * Send a zero pause time frame to re-start transmission.
  1423. */
  1424. /* XM_PAUSE_DA = '010000C28001' (default) */
  1425. /* XM_MAC_PTIME = 0xffff (maximum) */
  1426. /* remember this value is defined in big endian (!) */
  1427. xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
  1428. mode |= XM_PAUSE_MODE;
  1429. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
  1430. } else {
  1431. /*
  1432. * disable pause frame generation is required for 1000BT
  1433. * because the XMAC is not reset if the link is going down
  1434. */
  1435. /* Disable Pause Mode in Mode Register */
  1436. mode &= ~XM_PAUSE_MODE;
  1437. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
  1438. }
  1439. xm_write32(hw, port, XM_MODE, mode);
  1440. msk = XM_DEF_MSK;
  1441. if (hw->phy_type != SK_PHY_XMAC)
  1442. msk |= XM_IS_INP_ASS; /* disable GP0 interrupt bit */
  1443. xm_write16(hw, port, XM_IMSK, msk);
  1444. xm_read16(hw, port, XM_ISRC);
  1445. /* get MMU Command Reg. */
  1446. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1447. if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
  1448. cmd |= XM_MMU_GMII_FD;
  1449. /*
  1450. * Workaround BCOM Errata (#10523) for all BCom Phys
  1451. * Enable Power Management after link up
  1452. */
  1453. if (hw->phy_type == SK_PHY_BCOM) {
  1454. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  1455. xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
  1456. & ~PHY_B_AC_DIS_PM);
  1457. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  1458. }
  1459. /* enable Rx/Tx */
  1460. xm_write16(hw, port, XM_MMU_CMD,
  1461. cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  1462. skge_link_up(skge);
  1463. }
  1464. static inline void bcom_phy_intr(struct skge_port *skge)
  1465. {
  1466. struct skge_hw *hw = skge->hw;
  1467. int port = skge->port;
  1468. u16 isrc;
  1469. isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
  1470. if (netif_msg_intr(skge))
  1471. printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x\n",
  1472. skge->netdev->name, isrc);
  1473. if (isrc & PHY_B_IS_PSE)
  1474. printk(KERN_ERR PFX "%s: uncorrectable pair swap error\n",
  1475. hw->dev[port]->name);
  1476. /* Workaround BCom Errata:
  1477. * enable and disable loopback mode if "NO HCD" occurs.
  1478. */
  1479. if (isrc & PHY_B_IS_NO_HDCL) {
  1480. u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
  1481. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1482. ctrl | PHY_CT_LOOP);
  1483. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1484. ctrl & ~PHY_CT_LOOP);
  1485. }
  1486. if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
  1487. bcom_check_link(hw, port);
  1488. }
  1489. static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  1490. {
  1491. int i;
  1492. gma_write16(hw, port, GM_SMI_DATA, val);
  1493. gma_write16(hw, port, GM_SMI_CTRL,
  1494. GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
  1495. for (i = 0; i < PHY_RETRIES; i++) {
  1496. udelay(1);
  1497. if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
  1498. return 0;
  1499. }
  1500. printk(KERN_WARNING PFX "%s: phy write timeout\n",
  1501. hw->dev[port]->name);
  1502. return -EIO;
  1503. }
  1504. static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
  1505. {
  1506. int i;
  1507. gma_write16(hw, port, GM_SMI_CTRL,
  1508. GM_SMI_CT_PHY_AD(hw->phy_addr)
  1509. | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
  1510. for (i = 0; i < PHY_RETRIES; i++) {
  1511. udelay(1);
  1512. if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
  1513. goto ready;
  1514. }
  1515. return -ETIMEDOUT;
  1516. ready:
  1517. *val = gma_read16(hw, port, GM_SMI_DATA);
  1518. return 0;
  1519. }
  1520. static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
  1521. {
  1522. u16 v = 0;
  1523. if (__gm_phy_read(hw, port, reg, &v))
  1524. printk(KERN_WARNING PFX "%s: phy read timeout\n",
  1525. hw->dev[port]->name);
  1526. return v;
  1527. }
  1528. /* Marvell Phy Initialization */
  1529. static void yukon_init(struct skge_hw *hw, int port)
  1530. {
  1531. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1532. u16 ctrl, ct1000, adv;
  1533. if (skge->autoneg == AUTONEG_ENABLE) {
  1534. u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
  1535. ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
  1536. PHY_M_EC_MAC_S_MSK);
  1537. ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
  1538. ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
  1539. gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
  1540. }
  1541. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1542. if (skge->autoneg == AUTONEG_DISABLE)
  1543. ctrl &= ~PHY_CT_ANE;
  1544. ctrl |= PHY_CT_RESET;
  1545. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1546. ctrl = 0;
  1547. ct1000 = 0;
  1548. adv = PHY_AN_CSMA;
  1549. if (skge->autoneg == AUTONEG_ENABLE) {
  1550. if (hw->copper) {
  1551. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1552. ct1000 |= PHY_M_1000C_AFD;
  1553. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1554. ct1000 |= PHY_M_1000C_AHD;
  1555. if (skge->advertising & ADVERTISED_100baseT_Full)
  1556. adv |= PHY_M_AN_100_FD;
  1557. if (skge->advertising & ADVERTISED_100baseT_Half)
  1558. adv |= PHY_M_AN_100_HD;
  1559. if (skge->advertising & ADVERTISED_10baseT_Full)
  1560. adv |= PHY_M_AN_10_FD;
  1561. if (skge->advertising & ADVERTISED_10baseT_Half)
  1562. adv |= PHY_M_AN_10_HD;
  1563. /* Set Flow-control capabilities */
  1564. adv |= phy_pause_map[skge->flow_control];
  1565. } else {
  1566. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1567. adv |= PHY_M_AN_1000X_AFD;
  1568. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1569. adv |= PHY_M_AN_1000X_AHD;
  1570. adv |= fiber_pause_map[skge->flow_control];
  1571. }
  1572. /* Restart Auto-negotiation */
  1573. ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1574. } else {
  1575. /* forced speed/duplex settings */
  1576. ct1000 = PHY_M_1000C_MSE;
  1577. if (skge->duplex == DUPLEX_FULL)
  1578. ctrl |= PHY_CT_DUP_MD;
  1579. switch (skge->speed) {
  1580. case SPEED_1000:
  1581. ctrl |= PHY_CT_SP1000;
  1582. break;
  1583. case SPEED_100:
  1584. ctrl |= PHY_CT_SP100;
  1585. break;
  1586. }
  1587. ctrl |= PHY_CT_RESET;
  1588. }
  1589. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
  1590. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
  1591. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1592. /* Enable phy interrupt on autonegotiation complete (or link up) */
  1593. if (skge->autoneg == AUTONEG_ENABLE)
  1594. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
  1595. else
  1596. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1597. }
  1598. static void yukon_reset(struct skge_hw *hw, int port)
  1599. {
  1600. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
  1601. gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
  1602. gma_write16(hw, port, GM_MC_ADDR_H2, 0);
  1603. gma_write16(hw, port, GM_MC_ADDR_H3, 0);
  1604. gma_write16(hw, port, GM_MC_ADDR_H4, 0);
  1605. gma_write16(hw, port, GM_RX_CTRL,
  1606. gma_read16(hw, port, GM_RX_CTRL)
  1607. | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  1608. }
  1609. /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
  1610. static int is_yukon_lite_a0(struct skge_hw *hw)
  1611. {
  1612. u32 reg;
  1613. int ret;
  1614. if (hw->chip_id != CHIP_ID_YUKON)
  1615. return 0;
  1616. reg = skge_read32(hw, B2_FAR);
  1617. skge_write8(hw, B2_FAR + 3, 0xff);
  1618. ret = (skge_read8(hw, B2_FAR + 3) != 0);
  1619. skge_write32(hw, B2_FAR, reg);
  1620. return ret;
  1621. }
  1622. static void yukon_mac_init(struct skge_hw *hw, int port)
  1623. {
  1624. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1625. int i;
  1626. u32 reg;
  1627. const u8 *addr = hw->dev[port]->dev_addr;
  1628. /* WA code for COMA mode -- set PHY reset */
  1629. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1630. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1631. reg = skge_read32(hw, B2_GP_IO);
  1632. reg |= GP_DIR_9 | GP_IO_9;
  1633. skge_write32(hw, B2_GP_IO, reg);
  1634. }
  1635. /* hard reset */
  1636. skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1637. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1638. /* WA code for COMA mode -- clear PHY reset */
  1639. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1640. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1641. reg = skge_read32(hw, B2_GP_IO);
  1642. reg |= GP_DIR_9;
  1643. reg &= ~GP_IO_9;
  1644. skge_write32(hw, B2_GP_IO, reg);
  1645. }
  1646. /* Set hardware config mode */
  1647. reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
  1648. GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
  1649. reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
  1650. /* Clear GMC reset */
  1651. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
  1652. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
  1653. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
  1654. if (skge->autoneg == AUTONEG_DISABLE) {
  1655. reg = GM_GPCR_AU_ALL_DIS;
  1656. gma_write16(hw, port, GM_GP_CTRL,
  1657. gma_read16(hw, port, GM_GP_CTRL) | reg);
  1658. switch (skge->speed) {
  1659. case SPEED_1000:
  1660. reg &= ~GM_GPCR_SPEED_100;
  1661. reg |= GM_GPCR_SPEED_1000;
  1662. break;
  1663. case SPEED_100:
  1664. reg &= ~GM_GPCR_SPEED_1000;
  1665. reg |= GM_GPCR_SPEED_100;
  1666. break;
  1667. case SPEED_10:
  1668. reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
  1669. break;
  1670. }
  1671. if (skge->duplex == DUPLEX_FULL)
  1672. reg |= GM_GPCR_DUP_FULL;
  1673. } else
  1674. reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
  1675. switch (skge->flow_control) {
  1676. case FLOW_MODE_NONE:
  1677. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1678. reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1679. break;
  1680. case FLOW_MODE_LOC_SEND:
  1681. /* disable Rx flow-control */
  1682. reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1683. break;
  1684. case FLOW_MODE_SYMMETRIC:
  1685. case FLOW_MODE_SYM_OR_REM:
  1686. /* enable Tx & Rx flow-control */
  1687. break;
  1688. }
  1689. gma_write16(hw, port, GM_GP_CTRL, reg);
  1690. skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
  1691. yukon_init(hw, port);
  1692. /* MIB clear */
  1693. reg = gma_read16(hw, port, GM_PHY_ADDR);
  1694. gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
  1695. for (i = 0; i < GM_MIB_CNT_SIZE; i++)
  1696. gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
  1697. gma_write16(hw, port, GM_PHY_ADDR, reg);
  1698. /* transmit control */
  1699. gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
  1700. /* receive control reg: unicast + multicast + no FCS */
  1701. gma_write16(hw, port, GM_RX_CTRL,
  1702. GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
  1703. /* transmit flow control */
  1704. gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
  1705. /* transmit parameter */
  1706. gma_write16(hw, port, GM_TX_PARAM,
  1707. TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
  1708. TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
  1709. TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
  1710. /* serial mode register */
  1711. reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
  1712. if (hw->dev[port]->mtu > 1500)
  1713. reg |= GM_SMOD_JUMBO_ENA;
  1714. gma_write16(hw, port, GM_SERIAL_MODE, reg);
  1715. /* physical address: used for pause frames */
  1716. gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
  1717. /* virtual address for data */
  1718. gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
  1719. /* enable interrupt mask for counter overflows */
  1720. gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
  1721. gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
  1722. gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
  1723. /* Initialize Mac Fifo */
  1724. /* Configure Rx MAC FIFO */
  1725. skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
  1726. reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
  1727. /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
  1728. if (is_yukon_lite_a0(hw))
  1729. reg &= ~GMF_RX_F_FL_ON;
  1730. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
  1731. skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
  1732. /*
  1733. * because Pause Packet Truncation in GMAC is not working
  1734. * we have to increase the Flush Threshold to 64 bytes
  1735. * in order to flush pause packets in Rx FIFO on Yukon-1
  1736. */
  1737. skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
  1738. /* Configure Tx MAC FIFO */
  1739. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
  1740. skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
  1741. }
  1742. /* Go into power down mode */
  1743. static void yukon_suspend(struct skge_hw *hw, int port)
  1744. {
  1745. u16 ctrl;
  1746. ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  1747. ctrl |= PHY_M_PC_POL_R_DIS;
  1748. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
  1749. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1750. ctrl |= PHY_CT_RESET;
  1751. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1752. /* switch IEEE compatible power down mode on */
  1753. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1754. ctrl |= PHY_CT_PDOWN;
  1755. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1756. }
  1757. static void yukon_stop(struct skge_port *skge)
  1758. {
  1759. struct skge_hw *hw = skge->hw;
  1760. int port = skge->port;
  1761. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  1762. yukon_reset(hw, port);
  1763. gma_write16(hw, port, GM_GP_CTRL,
  1764. gma_read16(hw, port, GM_GP_CTRL)
  1765. & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
  1766. gma_read16(hw, port, GM_GP_CTRL);
  1767. yukon_suspend(hw, port);
  1768. /* set GPHY Control reset */
  1769. skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1770. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1771. }
  1772. static void yukon_get_stats(struct skge_port *skge, u64 *data)
  1773. {
  1774. struct skge_hw *hw = skge->hw;
  1775. int port = skge->port;
  1776. int i;
  1777. data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
  1778. | gma_read32(hw, port, GM_TXO_OK_LO);
  1779. data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
  1780. | gma_read32(hw, port, GM_RXO_OK_LO);
  1781. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1782. data[i] = gma_read32(hw, port,
  1783. skge_stats[i].gma_offset);
  1784. }
  1785. static void yukon_mac_intr(struct skge_hw *hw, int port)
  1786. {
  1787. struct net_device *dev = hw->dev[port];
  1788. struct skge_port *skge = netdev_priv(dev);
  1789. u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
  1790. if (netif_msg_intr(skge))
  1791. printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
  1792. dev->name, status);
  1793. if (status & GM_IS_RX_FF_OR) {
  1794. ++skge->net_stats.rx_fifo_errors;
  1795. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
  1796. }
  1797. if (status & GM_IS_TX_FF_UR) {
  1798. ++skge->net_stats.tx_fifo_errors;
  1799. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
  1800. }
  1801. }
  1802. static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
  1803. {
  1804. switch (aux & PHY_M_PS_SPEED_MSK) {
  1805. case PHY_M_PS_SPEED_1000:
  1806. return SPEED_1000;
  1807. case PHY_M_PS_SPEED_100:
  1808. return SPEED_100;
  1809. default:
  1810. return SPEED_10;
  1811. }
  1812. }
  1813. static void yukon_link_up(struct skge_port *skge)
  1814. {
  1815. struct skge_hw *hw = skge->hw;
  1816. int port = skge->port;
  1817. u16 reg;
  1818. /* Enable Transmit FIFO Underrun */
  1819. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
  1820. reg = gma_read16(hw, port, GM_GP_CTRL);
  1821. if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
  1822. reg |= GM_GPCR_DUP_FULL;
  1823. /* enable Rx/Tx */
  1824. reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
  1825. gma_write16(hw, port, GM_GP_CTRL, reg);
  1826. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1827. skge_link_up(skge);
  1828. }
  1829. static void yukon_link_down(struct skge_port *skge)
  1830. {
  1831. struct skge_hw *hw = skge->hw;
  1832. int port = skge->port;
  1833. u16 ctrl;
  1834. ctrl = gma_read16(hw, port, GM_GP_CTRL);
  1835. ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
  1836. gma_write16(hw, port, GM_GP_CTRL, ctrl);
  1837. if (skge->flow_status == FLOW_STAT_REM_SEND) {
  1838. ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
  1839. ctrl |= PHY_M_AN_ASP;
  1840. /* restore Asymmetric Pause bit */
  1841. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
  1842. }
  1843. skge_link_down(skge);
  1844. yukon_init(hw, port);
  1845. }
  1846. static void yukon_phy_intr(struct skge_port *skge)
  1847. {
  1848. struct skge_hw *hw = skge->hw;
  1849. int port = skge->port;
  1850. const char *reason = NULL;
  1851. u16 istatus, phystat;
  1852. istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
  1853. phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
  1854. if (netif_msg_intr(skge))
  1855. printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x 0x%x\n",
  1856. skge->netdev->name, istatus, phystat);
  1857. if (istatus & PHY_M_IS_AN_COMPL) {
  1858. if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
  1859. & PHY_M_AN_RF) {
  1860. reason = "remote fault";
  1861. goto failed;
  1862. }
  1863. if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
  1864. reason = "master/slave fault";
  1865. goto failed;
  1866. }
  1867. if (!(phystat & PHY_M_PS_SPDUP_RES)) {
  1868. reason = "speed/duplex";
  1869. goto failed;
  1870. }
  1871. skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
  1872. ? DUPLEX_FULL : DUPLEX_HALF;
  1873. skge->speed = yukon_speed(hw, phystat);
  1874. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1875. switch (phystat & PHY_M_PS_PAUSE_MSK) {
  1876. case PHY_M_PS_PAUSE_MSK:
  1877. skge->flow_status = FLOW_STAT_SYMMETRIC;
  1878. break;
  1879. case PHY_M_PS_RX_P_EN:
  1880. skge->flow_status = FLOW_STAT_REM_SEND;
  1881. break;
  1882. case PHY_M_PS_TX_P_EN:
  1883. skge->flow_status = FLOW_STAT_LOC_SEND;
  1884. break;
  1885. default:
  1886. skge->flow_status = FLOW_STAT_NONE;
  1887. }
  1888. if (skge->flow_status == FLOW_STAT_NONE ||
  1889. (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
  1890. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1891. else
  1892. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
  1893. yukon_link_up(skge);
  1894. return;
  1895. }
  1896. if (istatus & PHY_M_IS_LSP_CHANGE)
  1897. skge->speed = yukon_speed(hw, phystat);
  1898. if (istatus & PHY_M_IS_DUP_CHANGE)
  1899. skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
  1900. if (istatus & PHY_M_IS_LST_CHANGE) {
  1901. if (phystat & PHY_M_PS_LINK_UP)
  1902. yukon_link_up(skge);
  1903. else
  1904. yukon_link_down(skge);
  1905. }
  1906. return;
  1907. failed:
  1908. printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n",
  1909. skge->netdev->name, reason);
  1910. /* XXX restart autonegotiation? */
  1911. }
  1912. static void skge_phy_reset(struct skge_port *skge)
  1913. {
  1914. struct skge_hw *hw = skge->hw;
  1915. int port = skge->port;
  1916. struct net_device *dev = hw->dev[port];
  1917. netif_stop_queue(skge->netdev);
  1918. netif_carrier_off(skge->netdev);
  1919. mutex_lock(&hw->phy_mutex);
  1920. if (hw->chip_id == CHIP_ID_GENESIS) {
  1921. genesis_reset(hw, port);
  1922. genesis_mac_init(hw, port);
  1923. } else {
  1924. yukon_reset(hw, port);
  1925. yukon_init(hw, port);
  1926. }
  1927. mutex_unlock(&hw->phy_mutex);
  1928. dev->set_multicast_list(dev);
  1929. }
  1930. /* Basic MII support */
  1931. static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  1932. {
  1933. struct mii_ioctl_data *data = if_mii(ifr);
  1934. struct skge_port *skge = netdev_priv(dev);
  1935. struct skge_hw *hw = skge->hw;
  1936. int err = -EOPNOTSUPP;
  1937. if (!netif_running(dev))
  1938. return -ENODEV; /* Phy still in reset */
  1939. switch(cmd) {
  1940. case SIOCGMIIPHY:
  1941. data->phy_id = hw->phy_addr;
  1942. /* fallthru */
  1943. case SIOCGMIIREG: {
  1944. u16 val = 0;
  1945. mutex_lock(&hw->phy_mutex);
  1946. if (hw->chip_id == CHIP_ID_GENESIS)
  1947. err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
  1948. else
  1949. err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
  1950. mutex_unlock(&hw->phy_mutex);
  1951. data->val_out = val;
  1952. break;
  1953. }
  1954. case SIOCSMIIREG:
  1955. if (!capable(CAP_NET_ADMIN))
  1956. return -EPERM;
  1957. mutex_lock(&hw->phy_mutex);
  1958. if (hw->chip_id == CHIP_ID_GENESIS)
  1959. err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
  1960. data->val_in);
  1961. else
  1962. err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
  1963. data->val_in);
  1964. mutex_unlock(&hw->phy_mutex);
  1965. break;
  1966. }
  1967. return err;
  1968. }
  1969. static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
  1970. {
  1971. u32 end;
  1972. start /= 8;
  1973. len /= 8;
  1974. end = start + len - 1;
  1975. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
  1976. skge_write32(hw, RB_ADDR(q, RB_START), start);
  1977. skge_write32(hw, RB_ADDR(q, RB_WP), start);
  1978. skge_write32(hw, RB_ADDR(q, RB_RP), start);
  1979. skge_write32(hw, RB_ADDR(q, RB_END), end);
  1980. if (q == Q_R1 || q == Q_R2) {
  1981. /* Set thresholds on receive queue's */
  1982. skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
  1983. start + (2*len)/3);
  1984. skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
  1985. start + (len/3));
  1986. } else {
  1987. /* Enable store & forward on Tx queue's because
  1988. * Tx FIFO is only 4K on Genesis and 1K on Yukon
  1989. */
  1990. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
  1991. }
  1992. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
  1993. }
  1994. /* Setup Bus Memory Interface */
  1995. static void skge_qset(struct skge_port *skge, u16 q,
  1996. const struct skge_element *e)
  1997. {
  1998. struct skge_hw *hw = skge->hw;
  1999. u32 watermark = 0x600;
  2000. u64 base = skge->dma + (e->desc - skge->mem);
  2001. /* optimization to reduce window on 32bit/33mhz */
  2002. if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
  2003. watermark /= 2;
  2004. skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
  2005. skge_write32(hw, Q_ADDR(q, Q_F), watermark);
  2006. skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
  2007. skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
  2008. }
  2009. static int skge_up(struct net_device *dev)
  2010. {
  2011. struct skge_port *skge = netdev_priv(dev);
  2012. struct skge_hw *hw = skge->hw;
  2013. int port = skge->port;
  2014. u32 chunk, ram_addr;
  2015. size_t rx_size, tx_size;
  2016. int err;
  2017. if (!is_valid_ether_addr(dev->dev_addr))
  2018. return -EINVAL;
  2019. if (netif_msg_ifup(skge))
  2020. printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
  2021. if (dev->mtu > RX_BUF_SIZE)
  2022. skge->rx_buf_size = dev->mtu + ETH_HLEN;
  2023. else
  2024. skge->rx_buf_size = RX_BUF_SIZE;
  2025. rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
  2026. tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
  2027. skge->mem_size = tx_size + rx_size;
  2028. skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
  2029. if (!skge->mem)
  2030. return -ENOMEM;
  2031. BUG_ON(skge->dma & 7);
  2032. if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
  2033. dev_err(&hw->pdev->dev, "pci_alloc_consistent region crosses 4G boundary\n");
  2034. err = -EINVAL;
  2035. goto free_pci_mem;
  2036. }
  2037. memset(skge->mem, 0, skge->mem_size);
  2038. err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
  2039. if (err)
  2040. goto free_pci_mem;
  2041. err = skge_rx_fill(dev);
  2042. if (err)
  2043. goto free_rx_ring;
  2044. err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
  2045. skge->dma + rx_size);
  2046. if (err)
  2047. goto free_rx_ring;
  2048. /* Initialize MAC */
  2049. mutex_lock(&hw->phy_mutex);
  2050. if (hw->chip_id == CHIP_ID_GENESIS)
  2051. genesis_mac_init(hw, port);
  2052. else
  2053. yukon_mac_init(hw, port);
  2054. mutex_unlock(&hw->phy_mutex);
  2055. /* Configure RAMbuffers */
  2056. chunk = hw->ram_size / ((hw->ports + 1)*2);
  2057. ram_addr = hw->ram_offset + 2 * chunk * port;
  2058. skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
  2059. skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
  2060. BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
  2061. skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
  2062. skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
  2063. /* Start receiver BMU */
  2064. wmb();
  2065. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
  2066. skge_led(skge, LED_MODE_ON);
  2067. netif_poll_enable(dev);
  2068. return 0;
  2069. free_rx_ring:
  2070. skge_rx_clean(skge);
  2071. kfree(skge->rx_ring.start);
  2072. free_pci_mem:
  2073. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  2074. skge->mem = NULL;
  2075. return err;
  2076. }
  2077. static int skge_down(struct net_device *dev)
  2078. {
  2079. struct skge_port *skge = netdev_priv(dev);
  2080. struct skge_hw *hw = skge->hw;
  2081. int port = skge->port;
  2082. if (skge->mem == NULL)
  2083. return 0;
  2084. if (netif_msg_ifdown(skge))
  2085. printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
  2086. netif_stop_queue(dev);
  2087. if (hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC)
  2088. cancel_rearming_delayed_work(&skge->link_thread);
  2089. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
  2090. if (hw->chip_id == CHIP_ID_GENESIS)
  2091. genesis_stop(skge);
  2092. else
  2093. yukon_stop(skge);
  2094. /* Stop transmitter */
  2095. skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
  2096. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
  2097. RB_RST_SET|RB_DIS_OP_MD);
  2098. /* Disable Force Sync bit and Enable Alloc bit */
  2099. skge_write8(hw, SK_REG(port, TXA_CTRL),
  2100. TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
  2101. /* Stop Interval Timer and Limit Counter of Tx Arbiter */
  2102. skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
  2103. skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
  2104. /* Reset PCI FIFO */
  2105. skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
  2106. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
  2107. /* Reset the RAM Buffer async Tx queue */
  2108. skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
  2109. /* stop receiver */
  2110. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
  2111. skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
  2112. RB_RST_SET|RB_DIS_OP_MD);
  2113. skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
  2114. if (hw->chip_id == CHIP_ID_GENESIS) {
  2115. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
  2116. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
  2117. } else {
  2118. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  2119. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
  2120. }
  2121. skge_led(skge, LED_MODE_OFF);
  2122. netif_poll_disable(dev);
  2123. skge_tx_clean(dev);
  2124. skge_rx_clean(skge);
  2125. kfree(skge->rx_ring.start);
  2126. kfree(skge->tx_ring.start);
  2127. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  2128. skge->mem = NULL;
  2129. return 0;
  2130. }
  2131. static inline int skge_avail(const struct skge_ring *ring)
  2132. {
  2133. return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
  2134. + (ring->to_clean - ring->to_use) - 1;
  2135. }
  2136. static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
  2137. {
  2138. struct skge_port *skge = netdev_priv(dev);
  2139. struct skge_hw *hw = skge->hw;
  2140. struct skge_element *e;
  2141. struct skge_tx_desc *td;
  2142. int i;
  2143. u32 control, len;
  2144. u64 map;
  2145. if (skb_padto(skb, ETH_ZLEN))
  2146. return NETDEV_TX_OK;
  2147. if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
  2148. return NETDEV_TX_BUSY;
  2149. e = skge->tx_ring.to_use;
  2150. td = e->desc;
  2151. BUG_ON(td->control & BMU_OWN);
  2152. e->skb = skb;
  2153. len = skb_headlen(skb);
  2154. map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
  2155. pci_unmap_addr_set(e, mapaddr, map);
  2156. pci_unmap_len_set(e, maplen, len);
  2157. td->dma_lo = map;
  2158. td->dma_hi = map >> 32;
  2159. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  2160. int offset = skb->h.raw - skb->data;
  2161. /* This seems backwards, but it is what the sk98lin
  2162. * does. Looks like hardware is wrong?
  2163. */
  2164. if (skb->h.ipiph->protocol == IPPROTO_UDP
  2165. && hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
  2166. control = BMU_TCP_CHECK;
  2167. else
  2168. control = BMU_UDP_CHECK;
  2169. td->csum_offs = 0;
  2170. td->csum_start = offset;
  2171. td->csum_write = offset + skb->csum_offset;
  2172. } else
  2173. control = BMU_CHECK;
  2174. if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
  2175. control |= BMU_EOF| BMU_IRQ_EOF;
  2176. else {
  2177. struct skge_tx_desc *tf = td;
  2178. control |= BMU_STFWD;
  2179. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  2180. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2181. map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
  2182. frag->size, PCI_DMA_TODEVICE);
  2183. e = e->next;
  2184. e->skb = skb;
  2185. tf = e->desc;
  2186. BUG_ON(tf->control & BMU_OWN);
  2187. tf->dma_lo = map;
  2188. tf->dma_hi = (u64) map >> 32;
  2189. pci_unmap_addr_set(e, mapaddr, map);
  2190. pci_unmap_len_set(e, maplen, frag->size);
  2191. tf->control = BMU_OWN | BMU_SW | control | frag->size;
  2192. }
  2193. tf->control |= BMU_EOF | BMU_IRQ_EOF;
  2194. }
  2195. /* Make sure all the descriptors written */
  2196. wmb();
  2197. td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
  2198. wmb();
  2199. skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
  2200. if (unlikely(netif_msg_tx_queued(skge)))
  2201. printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n",
  2202. dev->name, e - skge->tx_ring.start, skb->len);
  2203. skge->tx_ring.to_use = e->next;
  2204. if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
  2205. pr_debug("%s: transmit queue full\n", dev->name);
  2206. netif_stop_queue(dev);
  2207. }
  2208. dev->trans_start = jiffies;
  2209. return NETDEV_TX_OK;
  2210. }
  2211. /* Free resources associated with this reing element */
  2212. static void skge_tx_free(struct skge_port *skge, struct skge_element *e,
  2213. u32 control)
  2214. {
  2215. struct pci_dev *pdev = skge->hw->pdev;
  2216. BUG_ON(!e->skb);
  2217. /* skb header vs. fragment */
  2218. if (control & BMU_STF)
  2219. pci_unmap_single(pdev, pci_unmap_addr(e, mapaddr),
  2220. pci_unmap_len(e, maplen),
  2221. PCI_DMA_TODEVICE);
  2222. else
  2223. pci_unmap_page(pdev, pci_unmap_addr(e, mapaddr),
  2224. pci_unmap_len(e, maplen),
  2225. PCI_DMA_TODEVICE);
  2226. if (control & BMU_EOF) {
  2227. if (unlikely(netif_msg_tx_done(skge)))
  2228. printk(KERN_DEBUG PFX "%s: tx done slot %td\n",
  2229. skge->netdev->name, e - skge->tx_ring.start);
  2230. dev_kfree_skb(e->skb);
  2231. }
  2232. e->skb = NULL;
  2233. }
  2234. /* Free all buffers in transmit ring */
  2235. static void skge_tx_clean(struct net_device *dev)
  2236. {
  2237. struct skge_port *skge = netdev_priv(dev);
  2238. struct skge_element *e;
  2239. netif_tx_lock_bh(dev);
  2240. for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
  2241. struct skge_tx_desc *td = e->desc;
  2242. skge_tx_free(skge, e, td->control);
  2243. td->control = 0;
  2244. }
  2245. skge->tx_ring.to_clean = e;
  2246. netif_wake_queue(dev);
  2247. netif_tx_unlock_bh(dev);
  2248. }
  2249. static void skge_tx_timeout(struct net_device *dev)
  2250. {
  2251. struct skge_port *skge = netdev_priv(dev);
  2252. if (netif_msg_timer(skge))
  2253. printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name);
  2254. skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
  2255. skge_tx_clean(dev);
  2256. }
  2257. static int skge_change_mtu(struct net_device *dev, int new_mtu)
  2258. {
  2259. int err;
  2260. if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
  2261. return -EINVAL;
  2262. if (!netif_running(dev)) {
  2263. dev->mtu = new_mtu;
  2264. return 0;
  2265. }
  2266. skge_down(dev);
  2267. dev->mtu = new_mtu;
  2268. err = skge_up(dev);
  2269. if (err)
  2270. dev_close(dev);
  2271. return err;
  2272. }
  2273. static void genesis_set_multicast(struct net_device *dev)
  2274. {
  2275. struct skge_port *skge = netdev_priv(dev);
  2276. struct skge_hw *hw = skge->hw;
  2277. int port = skge->port;
  2278. int i, count = dev->mc_count;
  2279. struct dev_mc_list *list = dev->mc_list;
  2280. u32 mode;
  2281. u8 filter[8];
  2282. mode = xm_read32(hw, port, XM_MODE);
  2283. mode |= XM_MD_ENA_HASH;
  2284. if (dev->flags & IFF_PROMISC)
  2285. mode |= XM_MD_ENA_PROM;
  2286. else
  2287. mode &= ~XM_MD_ENA_PROM;
  2288. if (dev->flags & IFF_ALLMULTI)
  2289. memset(filter, 0xff, sizeof(filter));
  2290. else {
  2291. memset(filter, 0, sizeof(filter));
  2292. for (i = 0; list && i < count; i++, list = list->next) {
  2293. u32 crc, bit;
  2294. crc = ether_crc_le(ETH_ALEN, list->dmi_addr);
  2295. bit = ~crc & 0x3f;
  2296. filter[bit/8] |= 1 << (bit%8);
  2297. }
  2298. }
  2299. xm_write32(hw, port, XM_MODE, mode);
  2300. xm_outhash(hw, port, XM_HSM, filter);
  2301. }
  2302. static void yukon_set_multicast(struct net_device *dev)
  2303. {
  2304. struct skge_port *skge = netdev_priv(dev);
  2305. struct skge_hw *hw = skge->hw;
  2306. int port = skge->port;
  2307. struct dev_mc_list *list = dev->mc_list;
  2308. u16 reg;
  2309. u8 filter[8];
  2310. memset(filter, 0, sizeof(filter));
  2311. reg = gma_read16(hw, port, GM_RX_CTRL);
  2312. reg |= GM_RXCR_UCF_ENA;
  2313. if (dev->flags & IFF_PROMISC) /* promiscuous */
  2314. reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  2315. else if (dev->flags & IFF_ALLMULTI) /* all multicast */
  2316. memset(filter, 0xff, sizeof(filter));
  2317. else if (dev->mc_count == 0) /* no multicast */
  2318. reg &= ~GM_RXCR_MCF_ENA;
  2319. else {
  2320. int i;
  2321. reg |= GM_RXCR_MCF_ENA;
  2322. for (i = 0; list && i < dev->mc_count; i++, list = list->next) {
  2323. u32 bit = ether_crc(ETH_ALEN, list->dmi_addr) & 0x3f;
  2324. filter[bit/8] |= 1 << (bit%8);
  2325. }
  2326. }
  2327. gma_write16(hw, port, GM_MC_ADDR_H1,
  2328. (u16)filter[0] | ((u16)filter[1] << 8));
  2329. gma_write16(hw, port, GM_MC_ADDR_H2,
  2330. (u16)filter[2] | ((u16)filter[3] << 8));
  2331. gma_write16(hw, port, GM_MC_ADDR_H3,
  2332. (u16)filter[4] | ((u16)filter[5] << 8));
  2333. gma_write16(hw, port, GM_MC_ADDR_H4,
  2334. (u16)filter[6] | ((u16)filter[7] << 8));
  2335. gma_write16(hw, port, GM_RX_CTRL, reg);
  2336. }
  2337. static inline u16 phy_length(const struct skge_hw *hw, u32 status)
  2338. {
  2339. if (hw->chip_id == CHIP_ID_GENESIS)
  2340. return status >> XMR_FS_LEN_SHIFT;
  2341. else
  2342. return status >> GMR_FS_LEN_SHIFT;
  2343. }
  2344. static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
  2345. {
  2346. if (hw->chip_id == CHIP_ID_GENESIS)
  2347. return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
  2348. else
  2349. return (status & GMR_FS_ANY_ERR) ||
  2350. (status & GMR_FS_RX_OK) == 0;
  2351. }
  2352. /* Get receive buffer from descriptor.
  2353. * Handles copy of small buffers and reallocation failures
  2354. */
  2355. static struct sk_buff *skge_rx_get(struct net_device *dev,
  2356. struct skge_element *e,
  2357. u32 control, u32 status, u16 csum)
  2358. {
  2359. struct skge_port *skge = netdev_priv(dev);
  2360. struct sk_buff *skb;
  2361. u16 len = control & BMU_BBC;
  2362. if (unlikely(netif_msg_rx_status(skge)))
  2363. printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n",
  2364. dev->name, e - skge->rx_ring.start,
  2365. status, len);
  2366. if (len > skge->rx_buf_size)
  2367. goto error;
  2368. if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
  2369. goto error;
  2370. if (bad_phy_status(skge->hw, status))
  2371. goto error;
  2372. if (phy_length(skge->hw, status) != len)
  2373. goto error;
  2374. if (len < RX_COPY_THRESHOLD) {
  2375. skb = netdev_alloc_skb(dev, len + 2);
  2376. if (!skb)
  2377. goto resubmit;
  2378. skb_reserve(skb, 2);
  2379. pci_dma_sync_single_for_cpu(skge->hw->pdev,
  2380. pci_unmap_addr(e, mapaddr),
  2381. len, PCI_DMA_FROMDEVICE);
  2382. memcpy(skb->data, e->skb->data, len);
  2383. pci_dma_sync_single_for_device(skge->hw->pdev,
  2384. pci_unmap_addr(e, mapaddr),
  2385. len, PCI_DMA_FROMDEVICE);
  2386. skge_rx_reuse(e, skge->rx_buf_size);
  2387. } else {
  2388. struct sk_buff *nskb;
  2389. nskb = netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN);
  2390. if (!nskb)
  2391. goto resubmit;
  2392. skb_reserve(nskb, NET_IP_ALIGN);
  2393. pci_unmap_single(skge->hw->pdev,
  2394. pci_unmap_addr(e, mapaddr),
  2395. pci_unmap_len(e, maplen),
  2396. PCI_DMA_FROMDEVICE);
  2397. skb = e->skb;
  2398. prefetch(skb->data);
  2399. skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
  2400. }
  2401. skb_put(skb, len);
  2402. if (skge->rx_csum) {
  2403. skb->csum = csum;
  2404. skb->ip_summed = CHECKSUM_COMPLETE;
  2405. }
  2406. skb->protocol = eth_type_trans(skb, dev);
  2407. return skb;
  2408. error:
  2409. if (netif_msg_rx_err(skge))
  2410. printk(KERN_DEBUG PFX "%s: rx err, slot %td control 0x%x status 0x%x\n",
  2411. dev->name, e - skge->rx_ring.start,
  2412. control, status);
  2413. if (skge->hw->chip_id == CHIP_ID_GENESIS) {
  2414. if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
  2415. skge->net_stats.rx_length_errors++;
  2416. if (status & XMR_FS_FRA_ERR)
  2417. skge->net_stats.rx_frame_errors++;
  2418. if (status & XMR_FS_FCS_ERR)
  2419. skge->net_stats.rx_crc_errors++;
  2420. } else {
  2421. if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
  2422. skge->net_stats.rx_length_errors++;
  2423. if (status & GMR_FS_FRAGMENT)
  2424. skge->net_stats.rx_frame_errors++;
  2425. if (status & GMR_FS_CRC_ERR)
  2426. skge->net_stats.rx_crc_errors++;
  2427. }
  2428. resubmit:
  2429. skge_rx_reuse(e, skge->rx_buf_size);
  2430. return NULL;
  2431. }
  2432. /* Free all buffers in Tx ring which are no longer owned by device */
  2433. static void skge_tx_done(struct net_device *dev)
  2434. {
  2435. struct skge_port *skge = netdev_priv(dev);
  2436. struct skge_ring *ring = &skge->tx_ring;
  2437. struct skge_element *e;
  2438. skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  2439. netif_tx_lock(dev);
  2440. for (e = ring->to_clean; e != ring->to_use; e = e->next) {
  2441. struct skge_tx_desc *td = e->desc;
  2442. if (td->control & BMU_OWN)
  2443. break;
  2444. skge_tx_free(skge, e, td->control);
  2445. }
  2446. skge->tx_ring.to_clean = e;
  2447. if (skge_avail(&skge->tx_ring) > TX_LOW_WATER)
  2448. netif_wake_queue(dev);
  2449. netif_tx_unlock(dev);
  2450. }
  2451. static int skge_poll(struct net_device *dev, int *budget)
  2452. {
  2453. struct skge_port *skge = netdev_priv(dev);
  2454. struct skge_hw *hw = skge->hw;
  2455. struct skge_ring *ring = &skge->rx_ring;
  2456. struct skge_element *e;
  2457. unsigned long flags;
  2458. int to_do = min(dev->quota, *budget);
  2459. int work_done = 0;
  2460. skge_tx_done(dev);
  2461. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  2462. for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
  2463. struct skge_rx_desc *rd = e->desc;
  2464. struct sk_buff *skb;
  2465. u32 control;
  2466. rmb();
  2467. control = rd->control;
  2468. if (control & BMU_OWN)
  2469. break;
  2470. skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
  2471. if (likely(skb)) {
  2472. dev->last_rx = jiffies;
  2473. netif_receive_skb(skb);
  2474. ++work_done;
  2475. }
  2476. }
  2477. ring->to_clean = e;
  2478. /* restart receiver */
  2479. wmb();
  2480. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
  2481. *budget -= work_done;
  2482. dev->quota -= work_done;
  2483. if (work_done >= to_do)
  2484. return 1; /* not done */
  2485. spin_lock_irqsave(&hw->hw_lock, flags);
  2486. __netif_rx_complete(dev);
  2487. hw->intr_mask |= irqmask[skge->port];
  2488. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2489. skge_read32(hw, B0_IMSK);
  2490. spin_unlock_irqrestore(&hw->hw_lock, flags);
  2491. return 0;
  2492. }
  2493. /* Parity errors seem to happen when Genesis is connected to a switch
  2494. * with no other ports present. Heartbeat error??
  2495. */
  2496. static void skge_mac_parity(struct skge_hw *hw, int port)
  2497. {
  2498. struct net_device *dev = hw->dev[port];
  2499. if (dev) {
  2500. struct skge_port *skge = netdev_priv(dev);
  2501. ++skge->net_stats.tx_heartbeat_errors;
  2502. }
  2503. if (hw->chip_id == CHIP_ID_GENESIS)
  2504. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
  2505. MFF_CLR_PERR);
  2506. else
  2507. /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
  2508. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
  2509. (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
  2510. ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
  2511. }
  2512. static void skge_mac_intr(struct skge_hw *hw, int port)
  2513. {
  2514. if (hw->chip_id == CHIP_ID_GENESIS)
  2515. genesis_mac_intr(hw, port);
  2516. else
  2517. yukon_mac_intr(hw, port);
  2518. }
  2519. /* Handle device specific framing and timeout interrupts */
  2520. static void skge_error_irq(struct skge_hw *hw)
  2521. {
  2522. struct pci_dev *pdev = hw->pdev;
  2523. u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2524. if (hw->chip_id == CHIP_ID_GENESIS) {
  2525. /* clear xmac errors */
  2526. if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
  2527. skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
  2528. if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
  2529. skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
  2530. } else {
  2531. /* Timestamp (unused) overflow */
  2532. if (hwstatus & IS_IRQ_TIST_OV)
  2533. skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
  2534. }
  2535. if (hwstatus & IS_RAM_RD_PAR) {
  2536. dev_err(&pdev->dev, "Ram read data parity error\n");
  2537. skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
  2538. }
  2539. if (hwstatus & IS_RAM_WR_PAR) {
  2540. dev_err(&pdev->dev, "Ram write data parity error\n");
  2541. skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
  2542. }
  2543. if (hwstatus & IS_M1_PAR_ERR)
  2544. skge_mac_parity(hw, 0);
  2545. if (hwstatus & IS_M2_PAR_ERR)
  2546. skge_mac_parity(hw, 1);
  2547. if (hwstatus & IS_R1_PAR_ERR) {
  2548. dev_err(&pdev->dev, "%s: receive queue parity error\n",
  2549. hw->dev[0]->name);
  2550. skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
  2551. }
  2552. if (hwstatus & IS_R2_PAR_ERR) {
  2553. dev_err(&pdev->dev, "%s: receive queue parity error\n",
  2554. hw->dev[1]->name);
  2555. skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
  2556. }
  2557. if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
  2558. u16 pci_status, pci_cmd;
  2559. pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
  2560. pci_read_config_word(pdev, PCI_STATUS, &pci_status);
  2561. dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
  2562. pci_cmd, pci_status);
  2563. /* Write the error bits back to clear them. */
  2564. pci_status &= PCI_STATUS_ERROR_BITS;
  2565. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2566. pci_write_config_word(pdev, PCI_COMMAND,
  2567. pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  2568. pci_write_config_word(pdev, PCI_STATUS, pci_status);
  2569. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2570. /* if error still set then just ignore it */
  2571. hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2572. if (hwstatus & IS_IRQ_STAT) {
  2573. dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
  2574. hw->intr_mask &= ~IS_HW_ERR;
  2575. }
  2576. }
  2577. }
  2578. /*
  2579. * Interrupt from PHY are handled in work queue
  2580. * because accessing phy registers requires spin wait which might
  2581. * cause excess interrupt latency.
  2582. */
  2583. static void skge_extirq(struct work_struct *work)
  2584. {
  2585. struct skge_hw *hw = container_of(work, struct skge_hw, phy_work);
  2586. int port;
  2587. mutex_lock(&hw->phy_mutex);
  2588. for (port = 0; port < hw->ports; port++) {
  2589. struct net_device *dev = hw->dev[port];
  2590. struct skge_port *skge = netdev_priv(dev);
  2591. if (netif_running(dev)) {
  2592. if (hw->chip_id != CHIP_ID_GENESIS)
  2593. yukon_phy_intr(skge);
  2594. else if (hw->phy_type == SK_PHY_BCOM)
  2595. bcom_phy_intr(skge);
  2596. }
  2597. }
  2598. mutex_unlock(&hw->phy_mutex);
  2599. spin_lock_irq(&hw->hw_lock);
  2600. hw->intr_mask |= IS_EXT_REG;
  2601. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2602. skge_read32(hw, B0_IMSK);
  2603. spin_unlock_irq(&hw->hw_lock);
  2604. }
  2605. static irqreturn_t skge_intr(int irq, void *dev_id)
  2606. {
  2607. struct skge_hw *hw = dev_id;
  2608. u32 status;
  2609. int handled = 0;
  2610. spin_lock(&hw->hw_lock);
  2611. /* Reading this register masks IRQ */
  2612. status = skge_read32(hw, B0_SP_ISRC);
  2613. if (status == 0 || status == ~0)
  2614. goto out;
  2615. handled = 1;
  2616. status &= hw->intr_mask;
  2617. if (status & IS_EXT_REG) {
  2618. hw->intr_mask &= ~IS_EXT_REG;
  2619. schedule_work(&hw->phy_work);
  2620. }
  2621. if (status & (IS_XA1_F|IS_R1_F)) {
  2622. hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
  2623. netif_rx_schedule(hw->dev[0]);
  2624. }
  2625. if (status & IS_PA_TO_TX1)
  2626. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
  2627. if (status & IS_PA_TO_RX1) {
  2628. struct skge_port *skge = netdev_priv(hw->dev[0]);
  2629. ++skge->net_stats.rx_over_errors;
  2630. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
  2631. }
  2632. if (status & IS_MAC1)
  2633. skge_mac_intr(hw, 0);
  2634. if (hw->dev[1]) {
  2635. if (status & (IS_XA2_F|IS_R2_F)) {
  2636. hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
  2637. netif_rx_schedule(hw->dev[1]);
  2638. }
  2639. if (status & IS_PA_TO_RX2) {
  2640. struct skge_port *skge = netdev_priv(hw->dev[1]);
  2641. ++skge->net_stats.rx_over_errors;
  2642. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
  2643. }
  2644. if (status & IS_PA_TO_TX2)
  2645. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
  2646. if (status & IS_MAC2)
  2647. skge_mac_intr(hw, 1);
  2648. }
  2649. if (status & IS_HW_ERR)
  2650. skge_error_irq(hw);
  2651. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2652. skge_read32(hw, B0_IMSK);
  2653. out:
  2654. spin_unlock(&hw->hw_lock);
  2655. return IRQ_RETVAL(handled);
  2656. }
  2657. #ifdef CONFIG_NET_POLL_CONTROLLER
  2658. static void skge_netpoll(struct net_device *dev)
  2659. {
  2660. struct skge_port *skge = netdev_priv(dev);
  2661. disable_irq(dev->irq);
  2662. skge_intr(dev->irq, skge->hw);
  2663. enable_irq(dev->irq);
  2664. }
  2665. #endif
  2666. static int skge_set_mac_address(struct net_device *dev, void *p)
  2667. {
  2668. struct skge_port *skge = netdev_priv(dev);
  2669. struct skge_hw *hw = skge->hw;
  2670. unsigned port = skge->port;
  2671. const struct sockaddr *addr = p;
  2672. if (!is_valid_ether_addr(addr->sa_data))
  2673. return -EADDRNOTAVAIL;
  2674. mutex_lock(&hw->phy_mutex);
  2675. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  2676. memcpy_toio(hw->regs + B2_MAC_1 + port*8,
  2677. dev->dev_addr, ETH_ALEN);
  2678. memcpy_toio(hw->regs + B2_MAC_2 + port*8,
  2679. dev->dev_addr, ETH_ALEN);
  2680. if (hw->chip_id == CHIP_ID_GENESIS)
  2681. xm_outaddr(hw, port, XM_SA, dev->dev_addr);
  2682. else {
  2683. gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
  2684. gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
  2685. }
  2686. mutex_unlock(&hw->phy_mutex);
  2687. return 0;
  2688. }
  2689. static const struct {
  2690. u8 id;
  2691. const char *name;
  2692. } skge_chips[] = {
  2693. { CHIP_ID_GENESIS, "Genesis" },
  2694. { CHIP_ID_YUKON, "Yukon" },
  2695. { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
  2696. { CHIP_ID_YUKON_LP, "Yukon-LP"},
  2697. };
  2698. static const char *skge_board_name(const struct skge_hw *hw)
  2699. {
  2700. int i;
  2701. static char buf[16];
  2702. for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
  2703. if (skge_chips[i].id == hw->chip_id)
  2704. return skge_chips[i].name;
  2705. snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
  2706. return buf;
  2707. }
  2708. /*
  2709. * Setup the board data structure, but don't bring up
  2710. * the port(s)
  2711. */
  2712. static int skge_reset(struct skge_hw *hw)
  2713. {
  2714. u32 reg;
  2715. u16 ctst, pci_status;
  2716. u8 t8, mac_cfg, pmd_type;
  2717. int i;
  2718. ctst = skge_read16(hw, B0_CTST);
  2719. /* do a SW reset */
  2720. skge_write8(hw, B0_CTST, CS_RST_SET);
  2721. skge_write8(hw, B0_CTST, CS_RST_CLR);
  2722. /* clear PCI errors, if any */
  2723. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2724. skge_write8(hw, B2_TST_CTRL2, 0);
  2725. pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
  2726. pci_write_config_word(hw->pdev, PCI_STATUS,
  2727. pci_status | PCI_STATUS_ERROR_BITS);
  2728. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2729. skge_write8(hw, B0_CTST, CS_MRST_CLR);
  2730. /* restore CLK_RUN bits (for Yukon-Lite) */
  2731. skge_write16(hw, B0_CTST,
  2732. ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
  2733. hw->chip_id = skge_read8(hw, B2_CHIP_ID);
  2734. hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
  2735. pmd_type = skge_read8(hw, B2_PMD_TYP);
  2736. hw->copper = (pmd_type == 'T' || pmd_type == '1');
  2737. switch (hw->chip_id) {
  2738. case CHIP_ID_GENESIS:
  2739. switch (hw->phy_type) {
  2740. case SK_PHY_XMAC:
  2741. hw->phy_addr = PHY_ADDR_XMAC;
  2742. break;
  2743. case SK_PHY_BCOM:
  2744. hw->phy_addr = PHY_ADDR_BCOM;
  2745. break;
  2746. default:
  2747. dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
  2748. hw->phy_type);
  2749. return -EOPNOTSUPP;
  2750. }
  2751. break;
  2752. case CHIP_ID_YUKON:
  2753. case CHIP_ID_YUKON_LITE:
  2754. case CHIP_ID_YUKON_LP:
  2755. if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
  2756. hw->copper = 1;
  2757. hw->phy_addr = PHY_ADDR_MARV;
  2758. break;
  2759. default:
  2760. dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
  2761. hw->chip_id);
  2762. return -EOPNOTSUPP;
  2763. }
  2764. mac_cfg = skge_read8(hw, B2_MAC_CFG);
  2765. hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
  2766. hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
  2767. /* read the adapters RAM size */
  2768. t8 = skge_read8(hw, B2_E_0);
  2769. if (hw->chip_id == CHIP_ID_GENESIS) {
  2770. if (t8 == 3) {
  2771. /* special case: 4 x 64k x 36, offset = 0x80000 */
  2772. hw->ram_size = 0x100000;
  2773. hw->ram_offset = 0x80000;
  2774. } else
  2775. hw->ram_size = t8 * 512;
  2776. }
  2777. else if (t8 == 0)
  2778. hw->ram_size = 0x20000;
  2779. else
  2780. hw->ram_size = t8 * 4096;
  2781. hw->intr_mask = IS_HW_ERR | IS_PORT_1;
  2782. if (hw->ports > 1)
  2783. hw->intr_mask |= IS_PORT_2;
  2784. if (!(hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC))
  2785. hw->intr_mask |= IS_EXT_REG;
  2786. if (hw->chip_id == CHIP_ID_GENESIS)
  2787. genesis_init(hw);
  2788. else {
  2789. /* switch power to VCC (WA for VAUX problem) */
  2790. skge_write8(hw, B0_POWER_CTRL,
  2791. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
  2792. /* avoid boards with stuck Hardware error bits */
  2793. if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
  2794. (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
  2795. dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
  2796. hw->intr_mask &= ~IS_HW_ERR;
  2797. }
  2798. /* Clear PHY COMA */
  2799. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2800. pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
  2801. reg &= ~PCI_PHY_COMA;
  2802. pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
  2803. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2804. for (i = 0; i < hw->ports; i++) {
  2805. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
  2806. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
  2807. }
  2808. }
  2809. /* turn off hardware timer (unused) */
  2810. skge_write8(hw, B2_TI_CTRL, TIM_STOP);
  2811. skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
  2812. skge_write8(hw, B0_LED, LED_STAT_ON);
  2813. /* enable the Tx Arbiters */
  2814. for (i = 0; i < hw->ports; i++)
  2815. skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
  2816. /* Initialize ram interface */
  2817. skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
  2818. skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
  2819. skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
  2820. skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
  2821. skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
  2822. skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
  2823. skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
  2824. skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
  2825. skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
  2826. skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
  2827. skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
  2828. skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
  2829. skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
  2830. skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
  2831. /* Set interrupt moderation for Transmit only
  2832. * Receive interrupts avoided by NAPI
  2833. */
  2834. skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
  2835. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
  2836. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  2837. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2838. mutex_lock(&hw->phy_mutex);
  2839. for (i = 0; i < hw->ports; i++) {
  2840. if (hw->chip_id == CHIP_ID_GENESIS)
  2841. genesis_reset(hw, i);
  2842. else
  2843. yukon_reset(hw, i);
  2844. }
  2845. mutex_unlock(&hw->phy_mutex);
  2846. return 0;
  2847. }
  2848. /* Initialize network device */
  2849. static struct net_device *skge_devinit(struct skge_hw *hw, int port,
  2850. int highmem)
  2851. {
  2852. struct skge_port *skge;
  2853. struct net_device *dev = alloc_etherdev(sizeof(*skge));
  2854. if (!dev) {
  2855. dev_err(&hw->pdev->dev, "etherdev alloc failed\n");
  2856. return NULL;
  2857. }
  2858. SET_MODULE_OWNER(dev);
  2859. SET_NETDEV_DEV(dev, &hw->pdev->dev);
  2860. dev->open = skge_up;
  2861. dev->stop = skge_down;
  2862. dev->do_ioctl = skge_ioctl;
  2863. dev->hard_start_xmit = skge_xmit_frame;
  2864. dev->get_stats = skge_get_stats;
  2865. if (hw->chip_id == CHIP_ID_GENESIS)
  2866. dev->set_multicast_list = genesis_set_multicast;
  2867. else
  2868. dev->set_multicast_list = yukon_set_multicast;
  2869. dev->set_mac_address = skge_set_mac_address;
  2870. dev->change_mtu = skge_change_mtu;
  2871. SET_ETHTOOL_OPS(dev, &skge_ethtool_ops);
  2872. dev->tx_timeout = skge_tx_timeout;
  2873. dev->watchdog_timeo = TX_WATCHDOG;
  2874. dev->poll = skge_poll;
  2875. dev->weight = NAPI_WEIGHT;
  2876. #ifdef CONFIG_NET_POLL_CONTROLLER
  2877. dev->poll_controller = skge_netpoll;
  2878. #endif
  2879. dev->irq = hw->pdev->irq;
  2880. if (highmem)
  2881. dev->features |= NETIF_F_HIGHDMA;
  2882. skge = netdev_priv(dev);
  2883. skge->netdev = dev;
  2884. skge->hw = hw;
  2885. skge->msg_enable = netif_msg_init(debug, default_msg);
  2886. skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
  2887. skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
  2888. /* Auto speed and flow control */
  2889. skge->autoneg = AUTONEG_ENABLE;
  2890. skge->flow_control = FLOW_MODE_SYM_OR_REM;
  2891. skge->duplex = -1;
  2892. skge->speed = -1;
  2893. skge->advertising = skge_supported_modes(hw);
  2894. skge->wol = pci_wake_enabled(hw->pdev) ? wol_supported(hw) : 0;
  2895. hw->dev[port] = dev;
  2896. skge->port = port;
  2897. /* Only used for Genesis XMAC */
  2898. INIT_DELAYED_WORK(&skge->link_thread, xm_link_timer);
  2899. if (hw->chip_id != CHIP_ID_GENESIS) {
  2900. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  2901. skge->rx_csum = 1;
  2902. }
  2903. /* read the mac address */
  2904. memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
  2905. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  2906. /* device is off until link detection */
  2907. netif_carrier_off(dev);
  2908. netif_stop_queue(dev);
  2909. return dev;
  2910. }
  2911. static void __devinit skge_show_addr(struct net_device *dev)
  2912. {
  2913. const struct skge_port *skge = netdev_priv(dev);
  2914. if (netif_msg_probe(skge))
  2915. printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
  2916. dev->name,
  2917. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  2918. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  2919. }
  2920. static int __devinit skge_probe(struct pci_dev *pdev,
  2921. const struct pci_device_id *ent)
  2922. {
  2923. struct net_device *dev, *dev1;
  2924. struct skge_hw *hw;
  2925. int err, using_dac = 0;
  2926. err = pci_enable_device(pdev);
  2927. if (err) {
  2928. dev_err(&pdev->dev, "cannot enable PCI device\n");
  2929. goto err_out;
  2930. }
  2931. err = pci_request_regions(pdev, DRV_NAME);
  2932. if (err) {
  2933. dev_err(&pdev->dev, "cannot obtain PCI resources\n");
  2934. goto err_out_disable_pdev;
  2935. }
  2936. pci_set_master(pdev);
  2937. if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  2938. using_dac = 1;
  2939. err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
  2940. } else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
  2941. using_dac = 0;
  2942. err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
  2943. }
  2944. if (err) {
  2945. dev_err(&pdev->dev, "no usable DMA configuration\n");
  2946. goto err_out_free_regions;
  2947. }
  2948. #ifdef __BIG_ENDIAN
  2949. /* byte swap descriptors in hardware */
  2950. {
  2951. u32 reg;
  2952. pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
  2953. reg |= PCI_REV_DESC;
  2954. pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
  2955. }
  2956. #endif
  2957. err = -ENOMEM;
  2958. hw = kzalloc(sizeof(*hw), GFP_KERNEL);
  2959. if (!hw) {
  2960. dev_err(&pdev->dev, "cannot allocate hardware struct\n");
  2961. goto err_out_free_regions;
  2962. }
  2963. hw->pdev = pdev;
  2964. mutex_init(&hw->phy_mutex);
  2965. INIT_WORK(&hw->phy_work, skge_extirq);
  2966. spin_lock_init(&hw->hw_lock);
  2967. hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
  2968. if (!hw->regs) {
  2969. dev_err(&pdev->dev, "cannot map device registers\n");
  2970. goto err_out_free_hw;
  2971. }
  2972. err = skge_reset(hw);
  2973. if (err)
  2974. goto err_out_iounmap;
  2975. printk(KERN_INFO PFX DRV_VERSION " addr 0x%llx irq %d chip %s rev %d\n",
  2976. (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
  2977. skge_board_name(hw), hw->chip_rev);
  2978. dev = skge_devinit(hw, 0, using_dac);
  2979. if (!dev)
  2980. goto err_out_led_off;
  2981. /* Some motherboards are broken and has zero in ROM. */
  2982. if (!is_valid_ether_addr(dev->dev_addr))
  2983. dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
  2984. err = register_netdev(dev);
  2985. if (err) {
  2986. dev_err(&pdev->dev, "cannot register net device\n");
  2987. goto err_out_free_netdev;
  2988. }
  2989. err = request_irq(pdev->irq, skge_intr, IRQF_SHARED, dev->name, hw);
  2990. if (err) {
  2991. dev_err(&pdev->dev, "%s: cannot assign irq %d\n",
  2992. dev->name, pdev->irq);
  2993. goto err_out_unregister;
  2994. }
  2995. skge_show_addr(dev);
  2996. if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) {
  2997. if (register_netdev(dev1) == 0)
  2998. skge_show_addr(dev1);
  2999. else {
  3000. /* Failure to register second port need not be fatal */
  3001. dev_warn(&pdev->dev, "register of second port failed\n");
  3002. hw->dev[1] = NULL;
  3003. free_netdev(dev1);
  3004. }
  3005. }
  3006. pci_set_drvdata(pdev, hw);
  3007. return 0;
  3008. err_out_unregister:
  3009. unregister_netdev(dev);
  3010. err_out_free_netdev:
  3011. free_netdev(dev);
  3012. err_out_led_off:
  3013. skge_write16(hw, B0_LED, LED_STAT_OFF);
  3014. err_out_iounmap:
  3015. iounmap(hw->regs);
  3016. err_out_free_hw:
  3017. kfree(hw);
  3018. err_out_free_regions:
  3019. pci_release_regions(pdev);
  3020. err_out_disable_pdev:
  3021. pci_disable_device(pdev);
  3022. pci_set_drvdata(pdev, NULL);
  3023. err_out:
  3024. return err;
  3025. }
  3026. static void __devexit skge_remove(struct pci_dev *pdev)
  3027. {
  3028. struct skge_hw *hw = pci_get_drvdata(pdev);
  3029. struct net_device *dev0, *dev1;
  3030. if (!hw)
  3031. return;
  3032. if ((dev1 = hw->dev[1]))
  3033. unregister_netdev(dev1);
  3034. dev0 = hw->dev[0];
  3035. unregister_netdev(dev0);
  3036. spin_lock_irq(&hw->hw_lock);
  3037. hw->intr_mask = 0;
  3038. skge_write32(hw, B0_IMSK, 0);
  3039. skge_read32(hw, B0_IMSK);
  3040. spin_unlock_irq(&hw->hw_lock);
  3041. skge_write16(hw, B0_LED, LED_STAT_OFF);
  3042. skge_write8(hw, B0_CTST, CS_RST_SET);
  3043. flush_scheduled_work();
  3044. free_irq(pdev->irq, hw);
  3045. pci_release_regions(pdev);
  3046. pci_disable_device(pdev);
  3047. if (dev1)
  3048. free_netdev(dev1);
  3049. free_netdev(dev0);
  3050. iounmap(hw->regs);
  3051. kfree(hw);
  3052. pci_set_drvdata(pdev, NULL);
  3053. }
  3054. #ifdef CONFIG_PM
  3055. static int vaux_avail(struct pci_dev *pdev)
  3056. {
  3057. int pm_cap;
  3058. pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
  3059. if (pm_cap) {
  3060. u16 ctl;
  3061. pci_read_config_word(pdev, pm_cap + PCI_PM_PMC, &ctl);
  3062. if (ctl & PCI_PM_CAP_AUX_POWER)
  3063. return 1;
  3064. }
  3065. return 0;
  3066. }
  3067. static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
  3068. {
  3069. struct skge_hw *hw = pci_get_drvdata(pdev);
  3070. int i, err, wol = 0;
  3071. err = pci_save_state(pdev);
  3072. if (err)
  3073. return err;
  3074. for (i = 0; i < hw->ports; i++) {
  3075. struct net_device *dev = hw->dev[i];
  3076. struct skge_port *skge = netdev_priv(dev);
  3077. if (netif_running(dev))
  3078. skge_down(dev);
  3079. if (skge->wol)
  3080. skge_wol_init(skge);
  3081. wol |= skge->wol;
  3082. }
  3083. if (wol && vaux_avail(pdev))
  3084. skge_write8(hw, B0_POWER_CTRL,
  3085. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
  3086. skge_write32(hw, B0_IMSK, 0);
  3087. pci_enable_wake(pdev, pci_choose_state(pdev, state), wol);
  3088. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  3089. return 0;
  3090. }
  3091. static int skge_resume(struct pci_dev *pdev)
  3092. {
  3093. struct skge_hw *hw = pci_get_drvdata(pdev);
  3094. int i, err;
  3095. err = pci_set_power_state(pdev, PCI_D0);
  3096. if (err)
  3097. goto out;
  3098. err = pci_restore_state(pdev);
  3099. if (err)
  3100. goto out;
  3101. pci_enable_wake(pdev, PCI_D0, 0);
  3102. err = skge_reset(hw);
  3103. if (err)
  3104. goto out;
  3105. for (i = 0; i < hw->ports; i++) {
  3106. struct net_device *dev = hw->dev[i];
  3107. if (netif_running(dev)) {
  3108. err = skge_up(dev);
  3109. if (err) {
  3110. printk(KERN_ERR PFX "%s: could not up: %d\n",
  3111. dev->name, err);
  3112. dev_close(dev);
  3113. goto out;
  3114. }
  3115. }
  3116. }
  3117. out:
  3118. return err;
  3119. }
  3120. #endif
  3121. static struct pci_driver skge_driver = {
  3122. .name = DRV_NAME,
  3123. .id_table = skge_id_table,
  3124. .probe = skge_probe,
  3125. .remove = __devexit_p(skge_remove),
  3126. #ifdef CONFIG_PM
  3127. .suspend = skge_suspend,
  3128. .resume = skge_resume,
  3129. #endif
  3130. };
  3131. static int __init skge_init_module(void)
  3132. {
  3133. return pci_register_driver(&skge_driver);
  3134. }
  3135. static void __exit skge_cleanup_module(void)
  3136. {
  3137. pci_unregister_driver(&skge_driver);
  3138. }
  3139. module_init(skge_init_module);
  3140. module_exit(skge_cleanup_module);