t3_hw.c 100 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375
  1. /*
  2. * Copyright (c) 2003-2007 Chelsio, Inc. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. */
  32. #include "common.h"
  33. #include "regs.h"
  34. #include "sge_defs.h"
  35. #include "firmware_exports.h"
  36. /**
  37. * t3_wait_op_done_val - wait until an operation is completed
  38. * @adapter: the adapter performing the operation
  39. * @reg: the register to check for completion
  40. * @mask: a single-bit field within @reg that indicates completion
  41. * @polarity: the value of the field when the operation is completed
  42. * @attempts: number of check iterations
  43. * @delay: delay in usecs between iterations
  44. * @valp: where to store the value of the register at completion time
  45. *
  46. * Wait until an operation is completed by checking a bit in a register
  47. * up to @attempts times. If @valp is not NULL the value of the register
  48. * at the time it indicated completion is stored there. Returns 0 if the
  49. * operation completes and -EAGAIN otherwise.
  50. */
  51. int t3_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
  52. int polarity, int attempts, int delay, u32 *valp)
  53. {
  54. while (1) {
  55. u32 val = t3_read_reg(adapter, reg);
  56. if (!!(val & mask) == polarity) {
  57. if (valp)
  58. *valp = val;
  59. return 0;
  60. }
  61. if (--attempts == 0)
  62. return -EAGAIN;
  63. if (delay)
  64. udelay(delay);
  65. }
  66. }
  67. /**
  68. * t3_write_regs - write a bunch of registers
  69. * @adapter: the adapter to program
  70. * @p: an array of register address/register value pairs
  71. * @n: the number of address/value pairs
  72. * @offset: register address offset
  73. *
  74. * Takes an array of register address/register value pairs and writes each
  75. * value to the corresponding register. Register addresses are adjusted
  76. * by the supplied offset.
  77. */
  78. void t3_write_regs(struct adapter *adapter, const struct addr_val_pair *p,
  79. int n, unsigned int offset)
  80. {
  81. while (n--) {
  82. t3_write_reg(adapter, p->reg_addr + offset, p->val);
  83. p++;
  84. }
  85. }
  86. /**
  87. * t3_set_reg_field - set a register field to a value
  88. * @adapter: the adapter to program
  89. * @addr: the register address
  90. * @mask: specifies the portion of the register to modify
  91. * @val: the new value for the register field
  92. *
  93. * Sets a register field specified by the supplied mask to the
  94. * given value.
  95. */
  96. void t3_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
  97. u32 val)
  98. {
  99. u32 v = t3_read_reg(adapter, addr) & ~mask;
  100. t3_write_reg(adapter, addr, v | val);
  101. t3_read_reg(adapter, addr); /* flush */
  102. }
  103. /**
  104. * t3_read_indirect - read indirectly addressed registers
  105. * @adap: the adapter
  106. * @addr_reg: register holding the indirect address
  107. * @data_reg: register holding the value of the indirect register
  108. * @vals: where the read register values are stored
  109. * @start_idx: index of first indirect register to read
  110. * @nregs: how many indirect registers to read
  111. *
  112. * Reads registers that are accessed indirectly through an address/data
  113. * register pair.
  114. */
  115. void t3_read_indirect(struct adapter *adap, unsigned int addr_reg,
  116. unsigned int data_reg, u32 *vals, unsigned int nregs,
  117. unsigned int start_idx)
  118. {
  119. while (nregs--) {
  120. t3_write_reg(adap, addr_reg, start_idx);
  121. *vals++ = t3_read_reg(adap, data_reg);
  122. start_idx++;
  123. }
  124. }
  125. /**
  126. * t3_mc7_bd_read - read from MC7 through backdoor accesses
  127. * @mc7: identifies MC7 to read from
  128. * @start: index of first 64-bit word to read
  129. * @n: number of 64-bit words to read
  130. * @buf: where to store the read result
  131. *
  132. * Read n 64-bit words from MC7 starting at word start, using backdoor
  133. * accesses.
  134. */
  135. int t3_mc7_bd_read(struct mc7 *mc7, unsigned int start, unsigned int n,
  136. u64 *buf)
  137. {
  138. static const int shift[] = { 0, 0, 16, 24 };
  139. static const int step[] = { 0, 32, 16, 8 };
  140. unsigned int size64 = mc7->size / 8; /* # of 64-bit words */
  141. struct adapter *adap = mc7->adapter;
  142. if (start >= size64 || start + n > size64)
  143. return -EINVAL;
  144. start *= (8 << mc7->width);
  145. while (n--) {
  146. int i;
  147. u64 val64 = 0;
  148. for (i = (1 << mc7->width) - 1; i >= 0; --i) {
  149. int attempts = 10;
  150. u32 val;
  151. t3_write_reg(adap, mc7->offset + A_MC7_BD_ADDR, start);
  152. t3_write_reg(adap, mc7->offset + A_MC7_BD_OP, 0);
  153. val = t3_read_reg(adap, mc7->offset + A_MC7_BD_OP);
  154. while ((val & F_BUSY) && attempts--)
  155. val = t3_read_reg(adap,
  156. mc7->offset + A_MC7_BD_OP);
  157. if (val & F_BUSY)
  158. return -EIO;
  159. val = t3_read_reg(adap, mc7->offset + A_MC7_BD_DATA1);
  160. if (mc7->width == 0) {
  161. val64 = t3_read_reg(adap,
  162. mc7->offset +
  163. A_MC7_BD_DATA0);
  164. val64 |= (u64) val << 32;
  165. } else {
  166. if (mc7->width > 1)
  167. val >>= shift[mc7->width];
  168. val64 |= (u64) val << (step[mc7->width] * i);
  169. }
  170. start += 8;
  171. }
  172. *buf++ = val64;
  173. }
  174. return 0;
  175. }
  176. /*
  177. * Initialize MI1.
  178. */
  179. static void mi1_init(struct adapter *adap, const struct adapter_info *ai)
  180. {
  181. u32 clkdiv = adap->params.vpd.cclk / (2 * adap->params.vpd.mdc) - 1;
  182. u32 val = F_PREEN | V_MDIINV(ai->mdiinv) | V_MDIEN(ai->mdien) |
  183. V_CLKDIV(clkdiv);
  184. if (!(ai->caps & SUPPORTED_10000baseT_Full))
  185. val |= V_ST(1);
  186. t3_write_reg(adap, A_MI1_CFG, val);
  187. }
  188. #define MDIO_ATTEMPTS 10
  189. /*
  190. * MI1 read/write operations for direct-addressed PHYs.
  191. */
  192. static int mi1_read(struct adapter *adapter, int phy_addr, int mmd_addr,
  193. int reg_addr, unsigned int *valp)
  194. {
  195. int ret;
  196. u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
  197. if (mmd_addr)
  198. return -EINVAL;
  199. mutex_lock(&adapter->mdio_lock);
  200. t3_write_reg(adapter, A_MI1_ADDR, addr);
  201. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(2));
  202. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20);
  203. if (!ret)
  204. *valp = t3_read_reg(adapter, A_MI1_DATA);
  205. mutex_unlock(&adapter->mdio_lock);
  206. return ret;
  207. }
  208. static int mi1_write(struct adapter *adapter, int phy_addr, int mmd_addr,
  209. int reg_addr, unsigned int val)
  210. {
  211. int ret;
  212. u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
  213. if (mmd_addr)
  214. return -EINVAL;
  215. mutex_lock(&adapter->mdio_lock);
  216. t3_write_reg(adapter, A_MI1_ADDR, addr);
  217. t3_write_reg(adapter, A_MI1_DATA, val);
  218. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
  219. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20);
  220. mutex_unlock(&adapter->mdio_lock);
  221. return ret;
  222. }
  223. static const struct mdio_ops mi1_mdio_ops = {
  224. mi1_read,
  225. mi1_write
  226. };
  227. /*
  228. * MI1 read/write operations for indirect-addressed PHYs.
  229. */
  230. static int mi1_ext_read(struct adapter *adapter, int phy_addr, int mmd_addr,
  231. int reg_addr, unsigned int *valp)
  232. {
  233. int ret;
  234. u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr);
  235. mutex_lock(&adapter->mdio_lock);
  236. t3_write_reg(adapter, A_MI1_ADDR, addr);
  237. t3_write_reg(adapter, A_MI1_DATA, reg_addr);
  238. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0));
  239. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20);
  240. if (!ret) {
  241. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(3));
  242. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
  243. MDIO_ATTEMPTS, 20);
  244. if (!ret)
  245. *valp = t3_read_reg(adapter, A_MI1_DATA);
  246. }
  247. mutex_unlock(&adapter->mdio_lock);
  248. return ret;
  249. }
  250. static int mi1_ext_write(struct adapter *adapter, int phy_addr, int mmd_addr,
  251. int reg_addr, unsigned int val)
  252. {
  253. int ret;
  254. u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr);
  255. mutex_lock(&adapter->mdio_lock);
  256. t3_write_reg(adapter, A_MI1_ADDR, addr);
  257. t3_write_reg(adapter, A_MI1_DATA, reg_addr);
  258. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0));
  259. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20);
  260. if (!ret) {
  261. t3_write_reg(adapter, A_MI1_DATA, val);
  262. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
  263. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
  264. MDIO_ATTEMPTS, 20);
  265. }
  266. mutex_unlock(&adapter->mdio_lock);
  267. return ret;
  268. }
  269. static const struct mdio_ops mi1_mdio_ext_ops = {
  270. mi1_ext_read,
  271. mi1_ext_write
  272. };
  273. /**
  274. * t3_mdio_change_bits - modify the value of a PHY register
  275. * @phy: the PHY to operate on
  276. * @mmd: the device address
  277. * @reg: the register address
  278. * @clear: what part of the register value to mask off
  279. * @set: what part of the register value to set
  280. *
  281. * Changes the value of a PHY register by applying a mask to its current
  282. * value and ORing the result with a new value.
  283. */
  284. int t3_mdio_change_bits(struct cphy *phy, int mmd, int reg, unsigned int clear,
  285. unsigned int set)
  286. {
  287. int ret;
  288. unsigned int val;
  289. ret = mdio_read(phy, mmd, reg, &val);
  290. if (!ret) {
  291. val &= ~clear;
  292. ret = mdio_write(phy, mmd, reg, val | set);
  293. }
  294. return ret;
  295. }
  296. /**
  297. * t3_phy_reset - reset a PHY block
  298. * @phy: the PHY to operate on
  299. * @mmd: the device address of the PHY block to reset
  300. * @wait: how long to wait for the reset to complete in 1ms increments
  301. *
  302. * Resets a PHY block and optionally waits for the reset to complete.
  303. * @mmd should be 0 for 10/100/1000 PHYs and the device address to reset
  304. * for 10G PHYs.
  305. */
  306. int t3_phy_reset(struct cphy *phy, int mmd, int wait)
  307. {
  308. int err;
  309. unsigned int ctl;
  310. err = t3_mdio_change_bits(phy, mmd, MII_BMCR, BMCR_PDOWN, BMCR_RESET);
  311. if (err || !wait)
  312. return err;
  313. do {
  314. err = mdio_read(phy, mmd, MII_BMCR, &ctl);
  315. if (err)
  316. return err;
  317. ctl &= BMCR_RESET;
  318. if (ctl)
  319. msleep(1);
  320. } while (ctl && --wait);
  321. return ctl ? -1 : 0;
  322. }
  323. /**
  324. * t3_phy_advertise - set the PHY advertisement registers for autoneg
  325. * @phy: the PHY to operate on
  326. * @advert: bitmap of capabilities the PHY should advertise
  327. *
  328. * Sets a 10/100/1000 PHY's advertisement registers to advertise the
  329. * requested capabilities.
  330. */
  331. int t3_phy_advertise(struct cphy *phy, unsigned int advert)
  332. {
  333. int err;
  334. unsigned int val = 0;
  335. err = mdio_read(phy, 0, MII_CTRL1000, &val);
  336. if (err)
  337. return err;
  338. val &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
  339. if (advert & ADVERTISED_1000baseT_Half)
  340. val |= ADVERTISE_1000HALF;
  341. if (advert & ADVERTISED_1000baseT_Full)
  342. val |= ADVERTISE_1000FULL;
  343. err = mdio_write(phy, 0, MII_CTRL1000, val);
  344. if (err)
  345. return err;
  346. val = 1;
  347. if (advert & ADVERTISED_10baseT_Half)
  348. val |= ADVERTISE_10HALF;
  349. if (advert & ADVERTISED_10baseT_Full)
  350. val |= ADVERTISE_10FULL;
  351. if (advert & ADVERTISED_100baseT_Half)
  352. val |= ADVERTISE_100HALF;
  353. if (advert & ADVERTISED_100baseT_Full)
  354. val |= ADVERTISE_100FULL;
  355. if (advert & ADVERTISED_Pause)
  356. val |= ADVERTISE_PAUSE_CAP;
  357. if (advert & ADVERTISED_Asym_Pause)
  358. val |= ADVERTISE_PAUSE_ASYM;
  359. return mdio_write(phy, 0, MII_ADVERTISE, val);
  360. }
  361. /**
  362. * t3_set_phy_speed_duplex - force PHY speed and duplex
  363. * @phy: the PHY to operate on
  364. * @speed: requested PHY speed
  365. * @duplex: requested PHY duplex
  366. *
  367. * Force a 10/100/1000 PHY's speed and duplex. This also disables
  368. * auto-negotiation except for GigE, where auto-negotiation is mandatory.
  369. */
  370. int t3_set_phy_speed_duplex(struct cphy *phy, int speed, int duplex)
  371. {
  372. int err;
  373. unsigned int ctl;
  374. err = mdio_read(phy, 0, MII_BMCR, &ctl);
  375. if (err)
  376. return err;
  377. if (speed >= 0) {
  378. ctl &= ~(BMCR_SPEED100 | BMCR_SPEED1000 | BMCR_ANENABLE);
  379. if (speed == SPEED_100)
  380. ctl |= BMCR_SPEED100;
  381. else if (speed == SPEED_1000)
  382. ctl |= BMCR_SPEED1000;
  383. }
  384. if (duplex >= 0) {
  385. ctl &= ~(BMCR_FULLDPLX | BMCR_ANENABLE);
  386. if (duplex == DUPLEX_FULL)
  387. ctl |= BMCR_FULLDPLX;
  388. }
  389. if (ctl & BMCR_SPEED1000) /* auto-negotiation required for GigE */
  390. ctl |= BMCR_ANENABLE;
  391. return mdio_write(phy, 0, MII_BMCR, ctl);
  392. }
  393. static const struct adapter_info t3_adap_info[] = {
  394. {2, 0, 0, 0,
  395. F_GPIO2_OEN | F_GPIO4_OEN |
  396. F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, F_GPIO3 | F_GPIO5,
  397. SUPPORTED_OFFLOAD,
  398. &mi1_mdio_ops, "Chelsio PE9000"},
  399. {2, 0, 0, 0,
  400. F_GPIO2_OEN | F_GPIO4_OEN |
  401. F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, F_GPIO3 | F_GPIO5,
  402. SUPPORTED_OFFLOAD,
  403. &mi1_mdio_ops, "Chelsio T302"},
  404. {1, 0, 0, 0,
  405. F_GPIO1_OEN | F_GPIO6_OEN | F_GPIO7_OEN | F_GPIO10_OEN |
  406. F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL, 0,
  407. SUPPORTED_10000baseT_Full | SUPPORTED_AUI | SUPPORTED_OFFLOAD,
  408. &mi1_mdio_ext_ops, "Chelsio T310"},
  409. {2, 0, 0, 0,
  410. F_GPIO1_OEN | F_GPIO2_OEN | F_GPIO4_OEN | F_GPIO5_OEN | F_GPIO6_OEN |
  411. F_GPIO7_OEN | F_GPIO10_OEN | F_GPIO11_OEN | F_GPIO1_OUT_VAL |
  412. F_GPIO5_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL, 0,
  413. SUPPORTED_10000baseT_Full | SUPPORTED_AUI | SUPPORTED_OFFLOAD,
  414. &mi1_mdio_ext_ops, "Chelsio T320"},
  415. };
  416. /*
  417. * Return the adapter_info structure with a given index. Out-of-range indices
  418. * return NULL.
  419. */
  420. const struct adapter_info *t3_get_adapter_info(unsigned int id)
  421. {
  422. return id < ARRAY_SIZE(t3_adap_info) ? &t3_adap_info[id] : NULL;
  423. }
  424. #define CAPS_1G (SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Full | \
  425. SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg | SUPPORTED_MII)
  426. #define CAPS_10G (SUPPORTED_10000baseT_Full | SUPPORTED_AUI)
  427. static const struct port_type_info port_types[] = {
  428. {NULL},
  429. {t3_ael1002_phy_prep, CAPS_10G | SUPPORTED_FIBRE,
  430. "10GBASE-XR"},
  431. {t3_vsc8211_phy_prep, CAPS_1G | SUPPORTED_TP | SUPPORTED_IRQ,
  432. "10/100/1000BASE-T"},
  433. {NULL, CAPS_1G | SUPPORTED_TP | SUPPORTED_IRQ,
  434. "10/100/1000BASE-T"},
  435. {t3_xaui_direct_phy_prep, CAPS_10G | SUPPORTED_TP, "10GBASE-CX4"},
  436. {NULL, CAPS_10G, "10GBASE-KX4"},
  437. {t3_qt2045_phy_prep, CAPS_10G | SUPPORTED_TP, "10GBASE-CX4"},
  438. {t3_ael1006_phy_prep, CAPS_10G | SUPPORTED_FIBRE,
  439. "10GBASE-SR"},
  440. {NULL, CAPS_10G | SUPPORTED_TP, "10GBASE-CX4"},
  441. };
  442. #undef CAPS_1G
  443. #undef CAPS_10G
  444. #define VPD_ENTRY(name, len) \
  445. u8 name##_kword[2]; u8 name##_len; u8 name##_data[len]
  446. /*
  447. * Partial EEPROM Vital Product Data structure. Includes only the ID and
  448. * VPD-R sections.
  449. */
  450. struct t3_vpd {
  451. u8 id_tag;
  452. u8 id_len[2];
  453. u8 id_data[16];
  454. u8 vpdr_tag;
  455. u8 vpdr_len[2];
  456. VPD_ENTRY(pn, 16); /* part number */
  457. VPD_ENTRY(ec, 16); /* EC level */
  458. VPD_ENTRY(sn, 16); /* serial number */
  459. VPD_ENTRY(na, 12); /* MAC address base */
  460. VPD_ENTRY(cclk, 6); /* core clock */
  461. VPD_ENTRY(mclk, 6); /* mem clock */
  462. VPD_ENTRY(uclk, 6); /* uP clk */
  463. VPD_ENTRY(mdc, 6); /* MDIO clk */
  464. VPD_ENTRY(mt, 2); /* mem timing */
  465. VPD_ENTRY(xaui0cfg, 6); /* XAUI0 config */
  466. VPD_ENTRY(xaui1cfg, 6); /* XAUI1 config */
  467. VPD_ENTRY(port0, 2); /* PHY0 complex */
  468. VPD_ENTRY(port1, 2); /* PHY1 complex */
  469. VPD_ENTRY(port2, 2); /* PHY2 complex */
  470. VPD_ENTRY(port3, 2); /* PHY3 complex */
  471. VPD_ENTRY(rv, 1); /* csum */
  472. u32 pad; /* for multiple-of-4 sizing and alignment */
  473. };
  474. #define EEPROM_MAX_POLL 4
  475. #define EEPROM_STAT_ADDR 0x4000
  476. #define VPD_BASE 0xc00
  477. /**
  478. * t3_seeprom_read - read a VPD EEPROM location
  479. * @adapter: adapter to read
  480. * @addr: EEPROM address
  481. * @data: where to store the read data
  482. *
  483. * Read a 32-bit word from a location in VPD EEPROM using the card's PCI
  484. * VPD ROM capability. A zero is written to the flag bit when the
  485. * addres is written to the control register. The hardware device will
  486. * set the flag to 1 when 4 bytes have been read into the data register.
  487. */
  488. int t3_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
  489. {
  490. u16 val;
  491. int attempts = EEPROM_MAX_POLL;
  492. unsigned int base = adapter->params.pci.vpd_cap_addr;
  493. if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
  494. return -EINVAL;
  495. pci_write_config_word(adapter->pdev, base + PCI_VPD_ADDR, addr);
  496. do {
  497. udelay(10);
  498. pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
  499. } while (!(val & PCI_VPD_ADDR_F) && --attempts);
  500. if (!(val & PCI_VPD_ADDR_F)) {
  501. CH_ERR(adapter, "reading EEPROM address 0x%x failed\n", addr);
  502. return -EIO;
  503. }
  504. pci_read_config_dword(adapter->pdev, base + PCI_VPD_DATA, data);
  505. *data = le32_to_cpu(*data);
  506. return 0;
  507. }
  508. /**
  509. * t3_seeprom_write - write a VPD EEPROM location
  510. * @adapter: adapter to write
  511. * @addr: EEPROM address
  512. * @data: value to write
  513. *
  514. * Write a 32-bit word to a location in VPD EEPROM using the card's PCI
  515. * VPD ROM capability.
  516. */
  517. int t3_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
  518. {
  519. u16 val;
  520. int attempts = EEPROM_MAX_POLL;
  521. unsigned int base = adapter->params.pci.vpd_cap_addr;
  522. if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
  523. return -EINVAL;
  524. pci_write_config_dword(adapter->pdev, base + PCI_VPD_DATA,
  525. cpu_to_le32(data));
  526. pci_write_config_word(adapter->pdev,base + PCI_VPD_ADDR,
  527. addr | PCI_VPD_ADDR_F);
  528. do {
  529. msleep(1);
  530. pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
  531. } while ((val & PCI_VPD_ADDR_F) && --attempts);
  532. if (val & PCI_VPD_ADDR_F) {
  533. CH_ERR(adapter, "write to EEPROM address 0x%x failed\n", addr);
  534. return -EIO;
  535. }
  536. return 0;
  537. }
  538. /**
  539. * t3_seeprom_wp - enable/disable EEPROM write protection
  540. * @adapter: the adapter
  541. * @enable: 1 to enable write protection, 0 to disable it
  542. *
  543. * Enables or disables write protection on the serial EEPROM.
  544. */
  545. int t3_seeprom_wp(struct adapter *adapter, int enable)
  546. {
  547. return t3_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
  548. }
  549. /*
  550. * Convert a character holding a hex digit to a number.
  551. */
  552. static unsigned int hex2int(unsigned char c)
  553. {
  554. return isdigit(c) ? c - '0' : toupper(c) - 'A' + 10;
  555. }
  556. /**
  557. * get_vpd_params - read VPD parameters from VPD EEPROM
  558. * @adapter: adapter to read
  559. * @p: where to store the parameters
  560. *
  561. * Reads card parameters stored in VPD EEPROM.
  562. */
  563. static int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
  564. {
  565. int i, addr, ret;
  566. struct t3_vpd vpd;
  567. /*
  568. * Card information is normally at VPD_BASE but some early cards had
  569. * it at 0.
  570. */
  571. ret = t3_seeprom_read(adapter, VPD_BASE, (u32 *)&vpd);
  572. if (ret)
  573. return ret;
  574. addr = vpd.id_tag == 0x82 ? VPD_BASE : 0;
  575. for (i = 0; i < sizeof(vpd); i += 4) {
  576. ret = t3_seeprom_read(adapter, addr + i,
  577. (u32 *)((u8 *)&vpd + i));
  578. if (ret)
  579. return ret;
  580. }
  581. p->cclk = simple_strtoul(vpd.cclk_data, NULL, 10);
  582. p->mclk = simple_strtoul(vpd.mclk_data, NULL, 10);
  583. p->uclk = simple_strtoul(vpd.uclk_data, NULL, 10);
  584. p->mdc = simple_strtoul(vpd.mdc_data, NULL, 10);
  585. p->mem_timing = simple_strtoul(vpd.mt_data, NULL, 10);
  586. /* Old eeproms didn't have port information */
  587. if (adapter->params.rev == 0 && !vpd.port0_data[0]) {
  588. p->port_type[0] = uses_xaui(adapter) ? 1 : 2;
  589. p->port_type[1] = uses_xaui(adapter) ? 6 : 2;
  590. } else {
  591. p->port_type[0] = hex2int(vpd.port0_data[0]);
  592. p->port_type[1] = hex2int(vpd.port1_data[0]);
  593. p->xauicfg[0] = simple_strtoul(vpd.xaui0cfg_data, NULL, 16);
  594. p->xauicfg[1] = simple_strtoul(vpd.xaui1cfg_data, NULL, 16);
  595. }
  596. for (i = 0; i < 6; i++)
  597. p->eth_base[i] = hex2int(vpd.na_data[2 * i]) * 16 +
  598. hex2int(vpd.na_data[2 * i + 1]);
  599. return 0;
  600. }
  601. /* serial flash and firmware constants */
  602. enum {
  603. SF_ATTEMPTS = 5, /* max retries for SF1 operations */
  604. SF_SEC_SIZE = 64 * 1024, /* serial flash sector size */
  605. SF_SIZE = SF_SEC_SIZE * 8, /* serial flash size */
  606. /* flash command opcodes */
  607. SF_PROG_PAGE = 2, /* program page */
  608. SF_WR_DISABLE = 4, /* disable writes */
  609. SF_RD_STATUS = 5, /* read status register */
  610. SF_WR_ENABLE = 6, /* enable writes */
  611. SF_RD_DATA_FAST = 0xb, /* read flash */
  612. SF_ERASE_SECTOR = 0xd8, /* erase sector */
  613. FW_FLASH_BOOT_ADDR = 0x70000, /* start address of FW in flash */
  614. FW_VERS_ADDR = 0x77ffc /* flash address holding FW version */
  615. };
  616. /**
  617. * sf1_read - read data from the serial flash
  618. * @adapter: the adapter
  619. * @byte_cnt: number of bytes to read
  620. * @cont: whether another operation will be chained
  621. * @valp: where to store the read data
  622. *
  623. * Reads up to 4 bytes of data from the serial flash. The location of
  624. * the read needs to be specified prior to calling this by issuing the
  625. * appropriate commands to the serial flash.
  626. */
  627. static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
  628. u32 *valp)
  629. {
  630. int ret;
  631. if (!byte_cnt || byte_cnt > 4)
  632. return -EINVAL;
  633. if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
  634. return -EBUSY;
  635. t3_write_reg(adapter, A_SF_OP, V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
  636. ret = t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
  637. if (!ret)
  638. *valp = t3_read_reg(adapter, A_SF_DATA);
  639. return ret;
  640. }
  641. /**
  642. * sf1_write - write data to the serial flash
  643. * @adapter: the adapter
  644. * @byte_cnt: number of bytes to write
  645. * @cont: whether another operation will be chained
  646. * @val: value to write
  647. *
  648. * Writes up to 4 bytes of data to the serial flash. The location of
  649. * the write needs to be specified prior to calling this by issuing the
  650. * appropriate commands to the serial flash.
  651. */
  652. static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
  653. u32 val)
  654. {
  655. if (!byte_cnt || byte_cnt > 4)
  656. return -EINVAL;
  657. if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
  658. return -EBUSY;
  659. t3_write_reg(adapter, A_SF_DATA, val);
  660. t3_write_reg(adapter, A_SF_OP,
  661. V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
  662. return t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
  663. }
  664. /**
  665. * flash_wait_op - wait for a flash operation to complete
  666. * @adapter: the adapter
  667. * @attempts: max number of polls of the status register
  668. * @delay: delay between polls in ms
  669. *
  670. * Wait for a flash operation to complete by polling the status register.
  671. */
  672. static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
  673. {
  674. int ret;
  675. u32 status;
  676. while (1) {
  677. if ((ret = sf1_write(adapter, 1, 1, SF_RD_STATUS)) != 0 ||
  678. (ret = sf1_read(adapter, 1, 0, &status)) != 0)
  679. return ret;
  680. if (!(status & 1))
  681. return 0;
  682. if (--attempts == 0)
  683. return -EAGAIN;
  684. if (delay)
  685. msleep(delay);
  686. }
  687. }
  688. /**
  689. * t3_read_flash - read words from serial flash
  690. * @adapter: the adapter
  691. * @addr: the start address for the read
  692. * @nwords: how many 32-bit words to read
  693. * @data: where to store the read data
  694. * @byte_oriented: whether to store data as bytes or as words
  695. *
  696. * Read the specified number of 32-bit words from the serial flash.
  697. * If @byte_oriented is set the read data is stored as a byte array
  698. * (i.e., big-endian), otherwise as 32-bit words in the platform's
  699. * natural endianess.
  700. */
  701. int t3_read_flash(struct adapter *adapter, unsigned int addr,
  702. unsigned int nwords, u32 *data, int byte_oriented)
  703. {
  704. int ret;
  705. if (addr + nwords * sizeof(u32) > SF_SIZE || (addr & 3))
  706. return -EINVAL;
  707. addr = swab32(addr) | SF_RD_DATA_FAST;
  708. if ((ret = sf1_write(adapter, 4, 1, addr)) != 0 ||
  709. (ret = sf1_read(adapter, 1, 1, data)) != 0)
  710. return ret;
  711. for (; nwords; nwords--, data++) {
  712. ret = sf1_read(adapter, 4, nwords > 1, data);
  713. if (ret)
  714. return ret;
  715. if (byte_oriented)
  716. *data = htonl(*data);
  717. }
  718. return 0;
  719. }
  720. /**
  721. * t3_write_flash - write up to a page of data to the serial flash
  722. * @adapter: the adapter
  723. * @addr: the start address to write
  724. * @n: length of data to write
  725. * @data: the data to write
  726. *
  727. * Writes up to a page of data (256 bytes) to the serial flash starting
  728. * at the given address.
  729. */
  730. static int t3_write_flash(struct adapter *adapter, unsigned int addr,
  731. unsigned int n, const u8 *data)
  732. {
  733. int ret;
  734. u32 buf[64];
  735. unsigned int i, c, left, val, offset = addr & 0xff;
  736. if (addr + n > SF_SIZE || offset + n > 256)
  737. return -EINVAL;
  738. val = swab32(addr) | SF_PROG_PAGE;
  739. if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
  740. (ret = sf1_write(adapter, 4, 1, val)) != 0)
  741. return ret;
  742. for (left = n; left; left -= c) {
  743. c = min(left, 4U);
  744. for (val = 0, i = 0; i < c; ++i)
  745. val = (val << 8) + *data++;
  746. ret = sf1_write(adapter, c, c != left, val);
  747. if (ret)
  748. return ret;
  749. }
  750. if ((ret = flash_wait_op(adapter, 5, 1)) != 0)
  751. return ret;
  752. /* Read the page to verify the write succeeded */
  753. ret = t3_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
  754. if (ret)
  755. return ret;
  756. if (memcmp(data - n, (u8 *) buf + offset, n))
  757. return -EIO;
  758. return 0;
  759. }
  760. enum fw_version_type {
  761. FW_VERSION_N3,
  762. FW_VERSION_T3
  763. };
  764. /**
  765. * t3_get_fw_version - read the firmware version
  766. * @adapter: the adapter
  767. * @vers: where to place the version
  768. *
  769. * Reads the FW version from flash.
  770. */
  771. int t3_get_fw_version(struct adapter *adapter, u32 *vers)
  772. {
  773. return t3_read_flash(adapter, FW_VERS_ADDR, 1, vers, 0);
  774. }
  775. /**
  776. * t3_check_fw_version - check if the FW is compatible with this driver
  777. * @adapter: the adapter
  778. *
  779. * Checks if an adapter's FW is compatible with the driver. Returns 0
  780. * if the versions are compatible, a negative error otherwise.
  781. */
  782. int t3_check_fw_version(struct adapter *adapter)
  783. {
  784. int ret;
  785. u32 vers;
  786. unsigned int type, major, minor;
  787. ret = t3_get_fw_version(adapter, &vers);
  788. if (ret)
  789. return ret;
  790. type = G_FW_VERSION_TYPE(vers);
  791. major = G_FW_VERSION_MAJOR(vers);
  792. minor = G_FW_VERSION_MINOR(vers);
  793. if (type == FW_VERSION_T3 && major == 3 && minor == 1)
  794. return 0;
  795. CH_ERR(adapter, "found wrong FW version(%u.%u), "
  796. "driver needs version 3.1\n", major, minor);
  797. return -EINVAL;
  798. }
  799. /**
  800. * t3_flash_erase_sectors - erase a range of flash sectors
  801. * @adapter: the adapter
  802. * @start: the first sector to erase
  803. * @end: the last sector to erase
  804. *
  805. * Erases the sectors in the given range.
  806. */
  807. static int t3_flash_erase_sectors(struct adapter *adapter, int start, int end)
  808. {
  809. while (start <= end) {
  810. int ret;
  811. if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
  812. (ret = sf1_write(adapter, 4, 0,
  813. SF_ERASE_SECTOR | (start << 8))) != 0 ||
  814. (ret = flash_wait_op(adapter, 5, 500)) != 0)
  815. return ret;
  816. start++;
  817. }
  818. return 0;
  819. }
  820. /*
  821. * t3_load_fw - download firmware
  822. * @adapter: the adapter
  823. * @fw_data: the firrware image to write
  824. * @size: image size
  825. *
  826. * Write the supplied firmware image to the card's serial flash.
  827. * The FW image has the following sections: @size - 8 bytes of code and
  828. * data, followed by 4 bytes of FW version, followed by the 32-bit
  829. * 1's complement checksum of the whole image.
  830. */
  831. int t3_load_fw(struct adapter *adapter, const u8 *fw_data, unsigned int size)
  832. {
  833. u32 csum;
  834. unsigned int i;
  835. const u32 *p = (const u32 *)fw_data;
  836. int ret, addr, fw_sector = FW_FLASH_BOOT_ADDR >> 16;
  837. if (size & 3)
  838. return -EINVAL;
  839. if (size > FW_VERS_ADDR + 8 - FW_FLASH_BOOT_ADDR)
  840. return -EFBIG;
  841. for (csum = 0, i = 0; i < size / sizeof(csum); i++)
  842. csum += ntohl(p[i]);
  843. if (csum != 0xffffffff) {
  844. CH_ERR(adapter, "corrupted firmware image, checksum %u\n",
  845. csum);
  846. return -EINVAL;
  847. }
  848. ret = t3_flash_erase_sectors(adapter, fw_sector, fw_sector);
  849. if (ret)
  850. goto out;
  851. size -= 8; /* trim off version and checksum */
  852. for (addr = FW_FLASH_BOOT_ADDR; size;) {
  853. unsigned int chunk_size = min(size, 256U);
  854. ret = t3_write_flash(adapter, addr, chunk_size, fw_data);
  855. if (ret)
  856. goto out;
  857. addr += chunk_size;
  858. fw_data += chunk_size;
  859. size -= chunk_size;
  860. }
  861. ret = t3_write_flash(adapter, FW_VERS_ADDR, 4, fw_data);
  862. out:
  863. if (ret)
  864. CH_ERR(adapter, "firmware download failed, error %d\n", ret);
  865. return ret;
  866. }
  867. #define CIM_CTL_BASE 0x2000
  868. /**
  869. * t3_cim_ctl_blk_read - read a block from CIM control region
  870. *
  871. * @adap: the adapter
  872. * @addr: the start address within the CIM control region
  873. * @n: number of words to read
  874. * @valp: where to store the result
  875. *
  876. * Reads a block of 4-byte words from the CIM control region.
  877. */
  878. int t3_cim_ctl_blk_read(struct adapter *adap, unsigned int addr,
  879. unsigned int n, unsigned int *valp)
  880. {
  881. int ret = 0;
  882. if (t3_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
  883. return -EBUSY;
  884. for ( ; !ret && n--; addr += 4) {
  885. t3_write_reg(adap, A_CIM_HOST_ACC_CTRL, CIM_CTL_BASE + addr);
  886. ret = t3_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
  887. 0, 5, 2);
  888. if (!ret)
  889. *valp++ = t3_read_reg(adap, A_CIM_HOST_ACC_DATA);
  890. }
  891. return ret;
  892. }
  893. /**
  894. * t3_link_changed - handle interface link changes
  895. * @adapter: the adapter
  896. * @port_id: the port index that changed link state
  897. *
  898. * Called when a port's link settings change to propagate the new values
  899. * to the associated PHY and MAC. After performing the common tasks it
  900. * invokes an OS-specific handler.
  901. */
  902. void t3_link_changed(struct adapter *adapter, int port_id)
  903. {
  904. int link_ok, speed, duplex, fc;
  905. struct port_info *pi = adap2pinfo(adapter, port_id);
  906. struct cphy *phy = &pi->phy;
  907. struct cmac *mac = &pi->mac;
  908. struct link_config *lc = &pi->link_config;
  909. phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc);
  910. if (link_ok != lc->link_ok && adapter->params.rev > 0 &&
  911. uses_xaui(adapter)) {
  912. if (link_ok)
  913. t3b_pcs_reset(mac);
  914. t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset,
  915. link_ok ? F_TXACTENABLE | F_RXEN : 0);
  916. }
  917. lc->link_ok = link_ok;
  918. lc->speed = speed < 0 ? SPEED_INVALID : speed;
  919. lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex;
  920. if (lc->requested_fc & PAUSE_AUTONEG)
  921. fc &= lc->requested_fc;
  922. else
  923. fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
  924. if (link_ok && speed >= 0 && lc->autoneg == AUTONEG_ENABLE) {
  925. /* Set MAC speed, duplex, and flow control to match PHY. */
  926. t3_mac_set_speed_duplex_fc(mac, speed, duplex, fc);
  927. lc->fc = fc;
  928. }
  929. t3_os_link_changed(adapter, port_id, link_ok, speed, duplex, fc);
  930. }
  931. /**
  932. * t3_link_start - apply link configuration to MAC/PHY
  933. * @phy: the PHY to setup
  934. * @mac: the MAC to setup
  935. * @lc: the requested link configuration
  936. *
  937. * Set up a port's MAC and PHY according to a desired link configuration.
  938. * - If the PHY can auto-negotiate first decide what to advertise, then
  939. * enable/disable auto-negotiation as desired, and reset.
  940. * - If the PHY does not auto-negotiate just reset it.
  941. * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
  942. * otherwise do it later based on the outcome of auto-negotiation.
  943. */
  944. int t3_link_start(struct cphy *phy, struct cmac *mac, struct link_config *lc)
  945. {
  946. unsigned int fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
  947. lc->link_ok = 0;
  948. if (lc->supported & SUPPORTED_Autoneg) {
  949. lc->advertising &= ~(ADVERTISED_Asym_Pause | ADVERTISED_Pause);
  950. if (fc) {
  951. lc->advertising |= ADVERTISED_Asym_Pause;
  952. if (fc & PAUSE_RX)
  953. lc->advertising |= ADVERTISED_Pause;
  954. }
  955. phy->ops->advertise(phy, lc->advertising);
  956. if (lc->autoneg == AUTONEG_DISABLE) {
  957. lc->speed = lc->requested_speed;
  958. lc->duplex = lc->requested_duplex;
  959. lc->fc = (unsigned char)fc;
  960. t3_mac_set_speed_duplex_fc(mac, lc->speed, lc->duplex,
  961. fc);
  962. /* Also disables autoneg */
  963. phy->ops->set_speed_duplex(phy, lc->speed, lc->duplex);
  964. phy->ops->reset(phy, 0);
  965. } else
  966. phy->ops->autoneg_enable(phy);
  967. } else {
  968. t3_mac_set_speed_duplex_fc(mac, -1, -1, fc);
  969. lc->fc = (unsigned char)fc;
  970. phy->ops->reset(phy, 0);
  971. }
  972. return 0;
  973. }
  974. /**
  975. * t3_set_vlan_accel - control HW VLAN extraction
  976. * @adapter: the adapter
  977. * @ports: bitmap of adapter ports to operate on
  978. * @on: enable (1) or disable (0) HW VLAN extraction
  979. *
  980. * Enables or disables HW extraction of VLAN tags for the given port.
  981. */
  982. void t3_set_vlan_accel(struct adapter *adapter, unsigned int ports, int on)
  983. {
  984. t3_set_reg_field(adapter, A_TP_OUT_CONFIG,
  985. ports << S_VLANEXTRACTIONENABLE,
  986. on ? (ports << S_VLANEXTRACTIONENABLE) : 0);
  987. }
  988. struct intr_info {
  989. unsigned int mask; /* bits to check in interrupt status */
  990. const char *msg; /* message to print or NULL */
  991. short stat_idx; /* stat counter to increment or -1 */
  992. unsigned short fatal:1; /* whether the condition reported is fatal */
  993. };
  994. /**
  995. * t3_handle_intr_status - table driven interrupt handler
  996. * @adapter: the adapter that generated the interrupt
  997. * @reg: the interrupt status register to process
  998. * @mask: a mask to apply to the interrupt status
  999. * @acts: table of interrupt actions
  1000. * @stats: statistics counters tracking interrupt occurences
  1001. *
  1002. * A table driven interrupt handler that applies a set of masks to an
  1003. * interrupt status word and performs the corresponding actions if the
  1004. * interrupts described by the mask have occured. The actions include
  1005. * optionally printing a warning or alert message, and optionally
  1006. * incrementing a stat counter. The table is terminated by an entry
  1007. * specifying mask 0. Returns the number of fatal interrupt conditions.
  1008. */
  1009. static int t3_handle_intr_status(struct adapter *adapter, unsigned int reg,
  1010. unsigned int mask,
  1011. const struct intr_info *acts,
  1012. unsigned long *stats)
  1013. {
  1014. int fatal = 0;
  1015. unsigned int status = t3_read_reg(adapter, reg) & mask;
  1016. for (; acts->mask; ++acts) {
  1017. if (!(status & acts->mask))
  1018. continue;
  1019. if (acts->fatal) {
  1020. fatal++;
  1021. CH_ALERT(adapter, "%s (0x%x)\n",
  1022. acts->msg, status & acts->mask);
  1023. } else if (acts->msg)
  1024. CH_WARN(adapter, "%s (0x%x)\n",
  1025. acts->msg, status & acts->mask);
  1026. if (acts->stat_idx >= 0)
  1027. stats[acts->stat_idx]++;
  1028. }
  1029. if (status) /* clear processed interrupts */
  1030. t3_write_reg(adapter, reg, status);
  1031. return fatal;
  1032. }
  1033. #define SGE_INTR_MASK (F_RSPQDISABLED)
  1034. #define MC5_INTR_MASK (F_PARITYERR | F_ACTRGNFULL | F_UNKNOWNCMD | \
  1035. F_REQQPARERR | F_DISPQPARERR | F_DELACTEMPTY | \
  1036. F_NFASRCHFAIL)
  1037. #define MC7_INTR_MASK (F_AE | F_UE | F_CE | V_PE(M_PE))
  1038. #define XGM_INTR_MASK (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
  1039. V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR) | \
  1040. F_TXFIFO_UNDERRUN | F_RXFIFO_OVERFLOW)
  1041. #define PCIX_INTR_MASK (F_MSTDETPARERR | F_SIGTARABT | F_RCVTARABT | \
  1042. F_RCVMSTABT | F_SIGSYSERR | F_DETPARERR | \
  1043. F_SPLCMPDIS | F_UNXSPLCMP | F_RCVSPLCMPERR | \
  1044. F_DETCORECCERR | F_DETUNCECCERR | F_PIOPARERR | \
  1045. V_WFPARERR(M_WFPARERR) | V_RFPARERR(M_RFPARERR) | \
  1046. V_CFPARERR(M_CFPARERR) /* | V_MSIXPARERR(M_MSIXPARERR) */)
  1047. #define PCIE_INTR_MASK (F_UNXSPLCPLERRR | F_UNXSPLCPLERRC | F_PCIE_PIOPARERR |\
  1048. F_PCIE_WFPARERR | F_PCIE_RFPARERR | F_PCIE_CFPARERR | \
  1049. /* V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR) | */ \
  1050. V_BISTERR(M_BISTERR) | F_PEXERR)
  1051. #define ULPRX_INTR_MASK F_PARERR
  1052. #define ULPTX_INTR_MASK 0
  1053. #define CPLSW_INTR_MASK (F_TP_FRAMING_ERROR | \
  1054. F_SGE_FRAMING_ERROR | F_CIM_FRAMING_ERROR | \
  1055. F_ZERO_SWITCH_ERROR)
  1056. #define CIM_INTR_MASK (F_BLKWRPLINT | F_BLKRDPLINT | F_BLKWRCTLINT | \
  1057. F_BLKRDCTLINT | F_BLKWRFLASHINT | F_BLKRDFLASHINT | \
  1058. F_SGLWRFLASHINT | F_WRBLKFLASHINT | F_BLKWRBOOTINT | \
  1059. F_FLASHRANGEINT | F_SDRAMRANGEINT | F_RSVDSPACEINT)
  1060. #define PMTX_INTR_MASK (F_ZERO_C_CMD_ERROR | ICSPI_FRM_ERR | OESPI_FRM_ERR | \
  1061. V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR) | \
  1062. V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR))
  1063. #define PMRX_INTR_MASK (F_ZERO_E_CMD_ERROR | IESPI_FRM_ERR | OCSPI_FRM_ERR | \
  1064. V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR) | \
  1065. V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR))
  1066. #define MPS_INTR_MASK (V_TX0TPPARERRENB(M_TX0TPPARERRENB) | \
  1067. V_TX1TPPARERRENB(M_TX1TPPARERRENB) | \
  1068. V_RXTPPARERRENB(M_RXTPPARERRENB) | \
  1069. V_MCAPARERRENB(M_MCAPARERRENB))
  1070. #define PL_INTR_MASK (F_T3DBG | F_XGMAC0_0 | F_XGMAC0_1 | F_MC5A | F_PM1_TX | \
  1071. F_PM1_RX | F_ULP2_TX | F_ULP2_RX | F_TP1 | F_CIM | \
  1072. F_MC7_CM | F_MC7_PMTX | F_MC7_PMRX | F_SGE3 | F_PCIM0 | \
  1073. F_MPS0 | F_CPL_SWITCH)
  1074. /*
  1075. * Interrupt handler for the PCIX1 module.
  1076. */
  1077. static void pci_intr_handler(struct adapter *adapter)
  1078. {
  1079. static const struct intr_info pcix1_intr_info[] = {
  1080. {F_MSTDETPARERR, "PCI master detected parity error", -1, 1},
  1081. {F_SIGTARABT, "PCI signaled target abort", -1, 1},
  1082. {F_RCVTARABT, "PCI received target abort", -1, 1},
  1083. {F_RCVMSTABT, "PCI received master abort", -1, 1},
  1084. {F_SIGSYSERR, "PCI signaled system error", -1, 1},
  1085. {F_DETPARERR, "PCI detected parity error", -1, 1},
  1086. {F_SPLCMPDIS, "PCI split completion discarded", -1, 1},
  1087. {F_UNXSPLCMP, "PCI unexpected split completion error", -1, 1},
  1088. {F_RCVSPLCMPERR, "PCI received split completion error", -1,
  1089. 1},
  1090. {F_DETCORECCERR, "PCI correctable ECC error",
  1091. STAT_PCI_CORR_ECC, 0},
  1092. {F_DETUNCECCERR, "PCI uncorrectable ECC error", -1, 1},
  1093. {F_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
  1094. {V_WFPARERR(M_WFPARERR), "PCI write FIFO parity error", -1,
  1095. 1},
  1096. {V_RFPARERR(M_RFPARERR), "PCI read FIFO parity error", -1,
  1097. 1},
  1098. {V_CFPARERR(M_CFPARERR), "PCI command FIFO parity error", -1,
  1099. 1},
  1100. {V_MSIXPARERR(M_MSIXPARERR), "PCI MSI-X table/PBA parity "
  1101. "error", -1, 1},
  1102. {0}
  1103. };
  1104. if (t3_handle_intr_status(adapter, A_PCIX_INT_CAUSE, PCIX_INTR_MASK,
  1105. pcix1_intr_info, adapter->irq_stats))
  1106. t3_fatal_err(adapter);
  1107. }
  1108. /*
  1109. * Interrupt handler for the PCIE module.
  1110. */
  1111. static void pcie_intr_handler(struct adapter *adapter)
  1112. {
  1113. static const struct intr_info pcie_intr_info[] = {
  1114. {F_PEXERR, "PCI PEX error", -1, 1},
  1115. {F_UNXSPLCPLERRR,
  1116. "PCI unexpected split completion DMA read error", -1, 1},
  1117. {F_UNXSPLCPLERRC,
  1118. "PCI unexpected split completion DMA command error", -1, 1},
  1119. {F_PCIE_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
  1120. {F_PCIE_WFPARERR, "PCI write FIFO parity error", -1, 1},
  1121. {F_PCIE_RFPARERR, "PCI read FIFO parity error", -1, 1},
  1122. {F_PCIE_CFPARERR, "PCI command FIFO parity error", -1, 1},
  1123. {V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR),
  1124. "PCI MSI-X table/PBA parity error", -1, 1},
  1125. {V_BISTERR(M_BISTERR), "PCI BIST error", -1, 1},
  1126. {0}
  1127. };
  1128. if (t3_handle_intr_status(adapter, A_PCIE_INT_CAUSE, PCIE_INTR_MASK,
  1129. pcie_intr_info, adapter->irq_stats))
  1130. t3_fatal_err(adapter);
  1131. }
  1132. /*
  1133. * TP interrupt handler.
  1134. */
  1135. static void tp_intr_handler(struct adapter *adapter)
  1136. {
  1137. static const struct intr_info tp_intr_info[] = {
  1138. {0xffffff, "TP parity error", -1, 1},
  1139. {0x1000000, "TP out of Rx pages", -1, 1},
  1140. {0x2000000, "TP out of Tx pages", -1, 1},
  1141. {0}
  1142. };
  1143. if (t3_handle_intr_status(adapter, A_TP_INT_CAUSE, 0xffffffff,
  1144. tp_intr_info, NULL))
  1145. t3_fatal_err(adapter);
  1146. }
  1147. /*
  1148. * CIM interrupt handler.
  1149. */
  1150. static void cim_intr_handler(struct adapter *adapter)
  1151. {
  1152. static const struct intr_info cim_intr_info[] = {
  1153. {F_RSVDSPACEINT, "CIM reserved space write", -1, 1},
  1154. {F_SDRAMRANGEINT, "CIM SDRAM address out of range", -1, 1},
  1155. {F_FLASHRANGEINT, "CIM flash address out of range", -1, 1},
  1156. {F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1},
  1157. {F_WRBLKFLASHINT, "CIM write to cached flash space", -1, 1},
  1158. {F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1},
  1159. {F_BLKRDFLASHINT, "CIM block read from flash space", -1, 1},
  1160. {F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1},
  1161. {F_BLKRDCTLINT, "CIM block read from CTL space", -1, 1},
  1162. {F_BLKWRCTLINT, "CIM block write to CTL space", -1, 1},
  1163. {F_BLKRDPLINT, "CIM block read from PL space", -1, 1},
  1164. {F_BLKWRPLINT, "CIM block write to PL space", -1, 1},
  1165. {0}
  1166. };
  1167. if (t3_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE, 0xffffffff,
  1168. cim_intr_info, NULL))
  1169. t3_fatal_err(adapter);
  1170. }
  1171. /*
  1172. * ULP RX interrupt handler.
  1173. */
  1174. static void ulprx_intr_handler(struct adapter *adapter)
  1175. {
  1176. static const struct intr_info ulprx_intr_info[] = {
  1177. {F_PARERR, "ULP RX parity error", -1, 1},
  1178. {0}
  1179. };
  1180. if (t3_handle_intr_status(adapter, A_ULPRX_INT_CAUSE, 0xffffffff,
  1181. ulprx_intr_info, NULL))
  1182. t3_fatal_err(adapter);
  1183. }
  1184. /*
  1185. * ULP TX interrupt handler.
  1186. */
  1187. static void ulptx_intr_handler(struct adapter *adapter)
  1188. {
  1189. static const struct intr_info ulptx_intr_info[] = {
  1190. {F_PBL_BOUND_ERR_CH0, "ULP TX channel 0 PBL out of bounds",
  1191. STAT_ULP_CH0_PBL_OOB, 0},
  1192. {F_PBL_BOUND_ERR_CH1, "ULP TX channel 1 PBL out of bounds",
  1193. STAT_ULP_CH1_PBL_OOB, 0},
  1194. {0}
  1195. };
  1196. if (t3_handle_intr_status(adapter, A_ULPTX_INT_CAUSE, 0xffffffff,
  1197. ulptx_intr_info, adapter->irq_stats))
  1198. t3_fatal_err(adapter);
  1199. }
  1200. #define ICSPI_FRM_ERR (F_ICSPI0_FIFO2X_RX_FRAMING_ERROR | \
  1201. F_ICSPI1_FIFO2X_RX_FRAMING_ERROR | F_ICSPI0_RX_FRAMING_ERROR | \
  1202. F_ICSPI1_RX_FRAMING_ERROR | F_ICSPI0_TX_FRAMING_ERROR | \
  1203. F_ICSPI1_TX_FRAMING_ERROR)
  1204. #define OESPI_FRM_ERR (F_OESPI0_RX_FRAMING_ERROR | \
  1205. F_OESPI1_RX_FRAMING_ERROR | F_OESPI0_TX_FRAMING_ERROR | \
  1206. F_OESPI1_TX_FRAMING_ERROR | F_OESPI0_OFIFO2X_TX_FRAMING_ERROR | \
  1207. F_OESPI1_OFIFO2X_TX_FRAMING_ERROR)
  1208. /*
  1209. * PM TX interrupt handler.
  1210. */
  1211. static void pmtx_intr_handler(struct adapter *adapter)
  1212. {
  1213. static const struct intr_info pmtx_intr_info[] = {
  1214. {F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1},
  1215. {ICSPI_FRM_ERR, "PMTX ispi framing error", -1, 1},
  1216. {OESPI_FRM_ERR, "PMTX ospi framing error", -1, 1},
  1217. {V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR),
  1218. "PMTX ispi parity error", -1, 1},
  1219. {V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR),
  1220. "PMTX ospi parity error", -1, 1},
  1221. {0}
  1222. };
  1223. if (t3_handle_intr_status(adapter, A_PM1_TX_INT_CAUSE, 0xffffffff,
  1224. pmtx_intr_info, NULL))
  1225. t3_fatal_err(adapter);
  1226. }
  1227. #define IESPI_FRM_ERR (F_IESPI0_FIFO2X_RX_FRAMING_ERROR | \
  1228. F_IESPI1_FIFO2X_RX_FRAMING_ERROR | F_IESPI0_RX_FRAMING_ERROR | \
  1229. F_IESPI1_RX_FRAMING_ERROR | F_IESPI0_TX_FRAMING_ERROR | \
  1230. F_IESPI1_TX_FRAMING_ERROR)
  1231. #define OCSPI_FRM_ERR (F_OCSPI0_RX_FRAMING_ERROR | \
  1232. F_OCSPI1_RX_FRAMING_ERROR | F_OCSPI0_TX_FRAMING_ERROR | \
  1233. F_OCSPI1_TX_FRAMING_ERROR | F_OCSPI0_OFIFO2X_TX_FRAMING_ERROR | \
  1234. F_OCSPI1_OFIFO2X_TX_FRAMING_ERROR)
  1235. /*
  1236. * PM RX interrupt handler.
  1237. */
  1238. static void pmrx_intr_handler(struct adapter *adapter)
  1239. {
  1240. static const struct intr_info pmrx_intr_info[] = {
  1241. {F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1},
  1242. {IESPI_FRM_ERR, "PMRX ispi framing error", -1, 1},
  1243. {OCSPI_FRM_ERR, "PMRX ospi framing error", -1, 1},
  1244. {V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR),
  1245. "PMRX ispi parity error", -1, 1},
  1246. {V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR),
  1247. "PMRX ospi parity error", -1, 1},
  1248. {0}
  1249. };
  1250. if (t3_handle_intr_status(adapter, A_PM1_RX_INT_CAUSE, 0xffffffff,
  1251. pmrx_intr_info, NULL))
  1252. t3_fatal_err(adapter);
  1253. }
  1254. /*
  1255. * CPL switch interrupt handler.
  1256. */
  1257. static void cplsw_intr_handler(struct adapter *adapter)
  1258. {
  1259. static const struct intr_info cplsw_intr_info[] = {
  1260. /* { F_CIM_OVFL_ERROR, "CPL switch CIM overflow", -1, 1 }, */
  1261. {F_TP_FRAMING_ERROR, "CPL switch TP framing error", -1, 1},
  1262. {F_SGE_FRAMING_ERROR, "CPL switch SGE framing error", -1, 1},
  1263. {F_CIM_FRAMING_ERROR, "CPL switch CIM framing error", -1, 1},
  1264. {F_ZERO_SWITCH_ERROR, "CPL switch no-switch error", -1, 1},
  1265. {0}
  1266. };
  1267. if (t3_handle_intr_status(adapter, A_CPL_INTR_CAUSE, 0xffffffff,
  1268. cplsw_intr_info, NULL))
  1269. t3_fatal_err(adapter);
  1270. }
  1271. /*
  1272. * MPS interrupt handler.
  1273. */
  1274. static void mps_intr_handler(struct adapter *adapter)
  1275. {
  1276. static const struct intr_info mps_intr_info[] = {
  1277. {0x1ff, "MPS parity error", -1, 1},
  1278. {0}
  1279. };
  1280. if (t3_handle_intr_status(adapter, A_MPS_INT_CAUSE, 0xffffffff,
  1281. mps_intr_info, NULL))
  1282. t3_fatal_err(adapter);
  1283. }
  1284. #define MC7_INTR_FATAL (F_UE | V_PE(M_PE) | F_AE)
  1285. /*
  1286. * MC7 interrupt handler.
  1287. */
  1288. static void mc7_intr_handler(struct mc7 *mc7)
  1289. {
  1290. struct adapter *adapter = mc7->adapter;
  1291. u32 cause = t3_read_reg(adapter, mc7->offset + A_MC7_INT_CAUSE);
  1292. if (cause & F_CE) {
  1293. mc7->stats.corr_err++;
  1294. CH_WARN(adapter, "%s MC7 correctable error at addr 0x%x, "
  1295. "data 0x%x 0x%x 0x%x\n", mc7->name,
  1296. t3_read_reg(adapter, mc7->offset + A_MC7_CE_ADDR),
  1297. t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA0),
  1298. t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA1),
  1299. t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA2));
  1300. }
  1301. if (cause & F_UE) {
  1302. mc7->stats.uncorr_err++;
  1303. CH_ALERT(adapter, "%s MC7 uncorrectable error at addr 0x%x, "
  1304. "data 0x%x 0x%x 0x%x\n", mc7->name,
  1305. t3_read_reg(adapter, mc7->offset + A_MC7_UE_ADDR),
  1306. t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA0),
  1307. t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA1),
  1308. t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA2));
  1309. }
  1310. if (G_PE(cause)) {
  1311. mc7->stats.parity_err++;
  1312. CH_ALERT(adapter, "%s MC7 parity error 0x%x\n",
  1313. mc7->name, G_PE(cause));
  1314. }
  1315. if (cause & F_AE) {
  1316. u32 addr = 0;
  1317. if (adapter->params.rev > 0)
  1318. addr = t3_read_reg(adapter,
  1319. mc7->offset + A_MC7_ERR_ADDR);
  1320. mc7->stats.addr_err++;
  1321. CH_ALERT(adapter, "%s MC7 address error: 0x%x\n",
  1322. mc7->name, addr);
  1323. }
  1324. if (cause & MC7_INTR_FATAL)
  1325. t3_fatal_err(adapter);
  1326. t3_write_reg(adapter, mc7->offset + A_MC7_INT_CAUSE, cause);
  1327. }
  1328. #define XGM_INTR_FATAL (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
  1329. V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR))
  1330. /*
  1331. * XGMAC interrupt handler.
  1332. */
  1333. static int mac_intr_handler(struct adapter *adap, unsigned int idx)
  1334. {
  1335. struct cmac *mac = &adap2pinfo(adap, idx)->mac;
  1336. u32 cause = t3_read_reg(adap, A_XGM_INT_CAUSE + mac->offset);
  1337. if (cause & V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR)) {
  1338. mac->stats.tx_fifo_parity_err++;
  1339. CH_ALERT(adap, "port%d: MAC TX FIFO parity error\n", idx);
  1340. }
  1341. if (cause & V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR)) {
  1342. mac->stats.rx_fifo_parity_err++;
  1343. CH_ALERT(adap, "port%d: MAC RX FIFO parity error\n", idx);
  1344. }
  1345. if (cause & F_TXFIFO_UNDERRUN)
  1346. mac->stats.tx_fifo_urun++;
  1347. if (cause & F_RXFIFO_OVERFLOW)
  1348. mac->stats.rx_fifo_ovfl++;
  1349. if (cause & V_SERDES_LOS(M_SERDES_LOS))
  1350. mac->stats.serdes_signal_loss++;
  1351. if (cause & F_XAUIPCSCTCERR)
  1352. mac->stats.xaui_pcs_ctc_err++;
  1353. if (cause & F_XAUIPCSALIGNCHANGE)
  1354. mac->stats.xaui_pcs_align_change++;
  1355. t3_write_reg(adap, A_XGM_INT_CAUSE + mac->offset, cause);
  1356. if (cause & XGM_INTR_FATAL)
  1357. t3_fatal_err(adap);
  1358. return cause != 0;
  1359. }
  1360. /*
  1361. * Interrupt handler for PHY events.
  1362. */
  1363. int t3_phy_intr_handler(struct adapter *adapter)
  1364. {
  1365. static const int intr_gpio_bits[] = { 8, 0x20 };
  1366. u32 i, cause = t3_read_reg(adapter, A_T3DBG_INT_CAUSE);
  1367. for_each_port(adapter, i) {
  1368. if (cause & intr_gpio_bits[i]) {
  1369. struct cphy *phy = &adap2pinfo(adapter, i)->phy;
  1370. int phy_cause = phy->ops->intr_handler(phy);
  1371. if (phy_cause & cphy_cause_link_change)
  1372. t3_link_changed(adapter, i);
  1373. if (phy_cause & cphy_cause_fifo_error)
  1374. phy->fifo_errors++;
  1375. }
  1376. }
  1377. t3_write_reg(adapter, A_T3DBG_INT_CAUSE, cause);
  1378. return 0;
  1379. }
  1380. /*
  1381. * T3 slow path (non-data) interrupt handler.
  1382. */
  1383. int t3_slow_intr_handler(struct adapter *adapter)
  1384. {
  1385. u32 cause = t3_read_reg(adapter, A_PL_INT_CAUSE0);
  1386. cause &= adapter->slow_intr_mask;
  1387. if (!cause)
  1388. return 0;
  1389. if (cause & F_PCIM0) {
  1390. if (is_pcie(adapter))
  1391. pcie_intr_handler(adapter);
  1392. else
  1393. pci_intr_handler(adapter);
  1394. }
  1395. if (cause & F_SGE3)
  1396. t3_sge_err_intr_handler(adapter);
  1397. if (cause & F_MC7_PMRX)
  1398. mc7_intr_handler(&adapter->pmrx);
  1399. if (cause & F_MC7_PMTX)
  1400. mc7_intr_handler(&adapter->pmtx);
  1401. if (cause & F_MC7_CM)
  1402. mc7_intr_handler(&adapter->cm);
  1403. if (cause & F_CIM)
  1404. cim_intr_handler(adapter);
  1405. if (cause & F_TP1)
  1406. tp_intr_handler(adapter);
  1407. if (cause & F_ULP2_RX)
  1408. ulprx_intr_handler(adapter);
  1409. if (cause & F_ULP2_TX)
  1410. ulptx_intr_handler(adapter);
  1411. if (cause & F_PM1_RX)
  1412. pmrx_intr_handler(adapter);
  1413. if (cause & F_PM1_TX)
  1414. pmtx_intr_handler(adapter);
  1415. if (cause & F_CPL_SWITCH)
  1416. cplsw_intr_handler(adapter);
  1417. if (cause & F_MPS0)
  1418. mps_intr_handler(adapter);
  1419. if (cause & F_MC5A)
  1420. t3_mc5_intr_handler(&adapter->mc5);
  1421. if (cause & F_XGMAC0_0)
  1422. mac_intr_handler(adapter, 0);
  1423. if (cause & F_XGMAC0_1)
  1424. mac_intr_handler(adapter, 1);
  1425. if (cause & F_T3DBG)
  1426. t3_os_ext_intr_handler(adapter);
  1427. /* Clear the interrupts just processed. */
  1428. t3_write_reg(adapter, A_PL_INT_CAUSE0, cause);
  1429. t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */
  1430. return 1;
  1431. }
  1432. /**
  1433. * t3_intr_enable - enable interrupts
  1434. * @adapter: the adapter whose interrupts should be enabled
  1435. *
  1436. * Enable interrupts by setting the interrupt enable registers of the
  1437. * various HW modules and then enabling the top-level interrupt
  1438. * concentrator.
  1439. */
  1440. void t3_intr_enable(struct adapter *adapter)
  1441. {
  1442. static const struct addr_val_pair intr_en_avp[] = {
  1443. {A_SG_INT_ENABLE, SGE_INTR_MASK},
  1444. {A_MC7_INT_ENABLE, MC7_INTR_MASK},
  1445. {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
  1446. MC7_INTR_MASK},
  1447. {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
  1448. MC7_INTR_MASK},
  1449. {A_MC5_DB_INT_ENABLE, MC5_INTR_MASK},
  1450. {A_ULPRX_INT_ENABLE, ULPRX_INTR_MASK},
  1451. {A_TP_INT_ENABLE, 0x3bfffff},
  1452. {A_PM1_TX_INT_ENABLE, PMTX_INTR_MASK},
  1453. {A_PM1_RX_INT_ENABLE, PMRX_INTR_MASK},
  1454. {A_CIM_HOST_INT_ENABLE, CIM_INTR_MASK},
  1455. {A_MPS_INT_ENABLE, MPS_INTR_MASK},
  1456. };
  1457. adapter->slow_intr_mask = PL_INTR_MASK;
  1458. t3_write_regs(adapter, intr_en_avp, ARRAY_SIZE(intr_en_avp), 0);
  1459. if (adapter->params.rev > 0) {
  1460. t3_write_reg(adapter, A_CPL_INTR_ENABLE,
  1461. CPLSW_INTR_MASK | F_CIM_OVFL_ERROR);
  1462. t3_write_reg(adapter, A_ULPTX_INT_ENABLE,
  1463. ULPTX_INTR_MASK | F_PBL_BOUND_ERR_CH0 |
  1464. F_PBL_BOUND_ERR_CH1);
  1465. } else {
  1466. t3_write_reg(adapter, A_CPL_INTR_ENABLE, CPLSW_INTR_MASK);
  1467. t3_write_reg(adapter, A_ULPTX_INT_ENABLE, ULPTX_INTR_MASK);
  1468. }
  1469. t3_write_reg(adapter, A_T3DBG_GPIO_ACT_LOW,
  1470. adapter_info(adapter)->gpio_intr);
  1471. t3_write_reg(adapter, A_T3DBG_INT_ENABLE,
  1472. adapter_info(adapter)->gpio_intr);
  1473. if (is_pcie(adapter))
  1474. t3_write_reg(adapter, A_PCIE_INT_ENABLE, PCIE_INTR_MASK);
  1475. else
  1476. t3_write_reg(adapter, A_PCIX_INT_ENABLE, PCIX_INTR_MASK);
  1477. t3_write_reg(adapter, A_PL_INT_ENABLE0, adapter->slow_intr_mask);
  1478. t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */
  1479. }
  1480. /**
  1481. * t3_intr_disable - disable a card's interrupts
  1482. * @adapter: the adapter whose interrupts should be disabled
  1483. *
  1484. * Disable interrupts. We only disable the top-level interrupt
  1485. * concentrator and the SGE data interrupts.
  1486. */
  1487. void t3_intr_disable(struct adapter *adapter)
  1488. {
  1489. t3_write_reg(adapter, A_PL_INT_ENABLE0, 0);
  1490. t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */
  1491. adapter->slow_intr_mask = 0;
  1492. }
  1493. /**
  1494. * t3_intr_clear - clear all interrupts
  1495. * @adapter: the adapter whose interrupts should be cleared
  1496. *
  1497. * Clears all interrupts.
  1498. */
  1499. void t3_intr_clear(struct adapter *adapter)
  1500. {
  1501. static const unsigned int cause_reg_addr[] = {
  1502. A_SG_INT_CAUSE,
  1503. A_SG_RSPQ_FL_STATUS,
  1504. A_PCIX_INT_CAUSE,
  1505. A_MC7_INT_CAUSE,
  1506. A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
  1507. A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
  1508. A_CIM_HOST_INT_CAUSE,
  1509. A_TP_INT_CAUSE,
  1510. A_MC5_DB_INT_CAUSE,
  1511. A_ULPRX_INT_CAUSE,
  1512. A_ULPTX_INT_CAUSE,
  1513. A_CPL_INTR_CAUSE,
  1514. A_PM1_TX_INT_CAUSE,
  1515. A_PM1_RX_INT_CAUSE,
  1516. A_MPS_INT_CAUSE,
  1517. A_T3DBG_INT_CAUSE,
  1518. };
  1519. unsigned int i;
  1520. /* Clear PHY and MAC interrupts for each port. */
  1521. for_each_port(adapter, i)
  1522. t3_port_intr_clear(adapter, i);
  1523. for (i = 0; i < ARRAY_SIZE(cause_reg_addr); ++i)
  1524. t3_write_reg(adapter, cause_reg_addr[i], 0xffffffff);
  1525. t3_write_reg(adapter, A_PL_INT_CAUSE0, 0xffffffff);
  1526. t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */
  1527. }
  1528. /**
  1529. * t3_port_intr_enable - enable port-specific interrupts
  1530. * @adapter: associated adapter
  1531. * @idx: index of port whose interrupts should be enabled
  1532. *
  1533. * Enable port-specific (i.e., MAC and PHY) interrupts for the given
  1534. * adapter port.
  1535. */
  1536. void t3_port_intr_enable(struct adapter *adapter, int idx)
  1537. {
  1538. struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
  1539. t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), XGM_INTR_MASK);
  1540. t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
  1541. phy->ops->intr_enable(phy);
  1542. }
  1543. /**
  1544. * t3_port_intr_disable - disable port-specific interrupts
  1545. * @adapter: associated adapter
  1546. * @idx: index of port whose interrupts should be disabled
  1547. *
  1548. * Disable port-specific (i.e., MAC and PHY) interrupts for the given
  1549. * adapter port.
  1550. */
  1551. void t3_port_intr_disable(struct adapter *adapter, int idx)
  1552. {
  1553. struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
  1554. t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), 0);
  1555. t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
  1556. phy->ops->intr_disable(phy);
  1557. }
  1558. /**
  1559. * t3_port_intr_clear - clear port-specific interrupts
  1560. * @adapter: associated adapter
  1561. * @idx: index of port whose interrupts to clear
  1562. *
  1563. * Clear port-specific (i.e., MAC and PHY) interrupts for the given
  1564. * adapter port.
  1565. */
  1566. void t3_port_intr_clear(struct adapter *adapter, int idx)
  1567. {
  1568. struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
  1569. t3_write_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx), 0xffffffff);
  1570. t3_read_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx)); /* flush */
  1571. phy->ops->intr_clear(phy);
  1572. }
  1573. /**
  1574. * t3_sge_write_context - write an SGE context
  1575. * @adapter: the adapter
  1576. * @id: the context id
  1577. * @type: the context type
  1578. *
  1579. * Program an SGE context with the values already loaded in the
  1580. * CONTEXT_DATA? registers.
  1581. */
  1582. static int t3_sge_write_context(struct adapter *adapter, unsigned int id,
  1583. unsigned int type)
  1584. {
  1585. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0xffffffff);
  1586. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0xffffffff);
  1587. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0xffffffff);
  1588. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0xffffffff);
  1589. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1590. V_CONTEXT_CMD_OPCODE(1) | type | V_CONTEXT(id));
  1591. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1592. 0, 5, 1);
  1593. }
  1594. /**
  1595. * t3_sge_init_ecntxt - initialize an SGE egress context
  1596. * @adapter: the adapter to configure
  1597. * @id: the context id
  1598. * @gts_enable: whether to enable GTS for the context
  1599. * @type: the egress context type
  1600. * @respq: associated response queue
  1601. * @base_addr: base address of queue
  1602. * @size: number of queue entries
  1603. * @token: uP token
  1604. * @gen: initial generation value for the context
  1605. * @cidx: consumer pointer
  1606. *
  1607. * Initialize an SGE egress context and make it ready for use. If the
  1608. * platform allows concurrent context operations, the caller is
  1609. * responsible for appropriate locking.
  1610. */
  1611. int t3_sge_init_ecntxt(struct adapter *adapter, unsigned int id, int gts_enable,
  1612. enum sge_context_type type, int respq, u64 base_addr,
  1613. unsigned int size, unsigned int token, int gen,
  1614. unsigned int cidx)
  1615. {
  1616. unsigned int credits = type == SGE_CNTXT_OFLD ? 0 : FW_WR_NUM;
  1617. if (base_addr & 0xfff) /* must be 4K aligned */
  1618. return -EINVAL;
  1619. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1620. return -EBUSY;
  1621. base_addr >>= 12;
  1622. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_EC_INDEX(cidx) |
  1623. V_EC_CREDITS(credits) | V_EC_GTS(gts_enable));
  1624. t3_write_reg(adapter, A_SG_CONTEXT_DATA1, V_EC_SIZE(size) |
  1625. V_EC_BASE_LO(base_addr & 0xffff));
  1626. base_addr >>= 16;
  1627. t3_write_reg(adapter, A_SG_CONTEXT_DATA2, base_addr);
  1628. base_addr >>= 32;
  1629. t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
  1630. V_EC_BASE_HI(base_addr & 0xf) | V_EC_RESPQ(respq) |
  1631. V_EC_TYPE(type) | V_EC_GEN(gen) | V_EC_UP_TOKEN(token) |
  1632. F_EC_VALID);
  1633. return t3_sge_write_context(adapter, id, F_EGRESS);
  1634. }
  1635. /**
  1636. * t3_sge_init_flcntxt - initialize an SGE free-buffer list context
  1637. * @adapter: the adapter to configure
  1638. * @id: the context id
  1639. * @gts_enable: whether to enable GTS for the context
  1640. * @base_addr: base address of queue
  1641. * @size: number of queue entries
  1642. * @bsize: size of each buffer for this queue
  1643. * @cong_thres: threshold to signal congestion to upstream producers
  1644. * @gen: initial generation value for the context
  1645. * @cidx: consumer pointer
  1646. *
  1647. * Initialize an SGE free list context and make it ready for use. The
  1648. * caller is responsible for ensuring only one context operation occurs
  1649. * at a time.
  1650. */
  1651. int t3_sge_init_flcntxt(struct adapter *adapter, unsigned int id,
  1652. int gts_enable, u64 base_addr, unsigned int size,
  1653. unsigned int bsize, unsigned int cong_thres, int gen,
  1654. unsigned int cidx)
  1655. {
  1656. if (base_addr & 0xfff) /* must be 4K aligned */
  1657. return -EINVAL;
  1658. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1659. return -EBUSY;
  1660. base_addr >>= 12;
  1661. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, base_addr);
  1662. base_addr >>= 32;
  1663. t3_write_reg(adapter, A_SG_CONTEXT_DATA1,
  1664. V_FL_BASE_HI((u32) base_addr) |
  1665. V_FL_INDEX_LO(cidx & M_FL_INDEX_LO));
  1666. t3_write_reg(adapter, A_SG_CONTEXT_DATA2, V_FL_SIZE(size) |
  1667. V_FL_GEN(gen) | V_FL_INDEX_HI(cidx >> 12) |
  1668. V_FL_ENTRY_SIZE_LO(bsize & M_FL_ENTRY_SIZE_LO));
  1669. t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
  1670. V_FL_ENTRY_SIZE_HI(bsize >> (32 - S_FL_ENTRY_SIZE_LO)) |
  1671. V_FL_CONG_THRES(cong_thres) | V_FL_GTS(gts_enable));
  1672. return t3_sge_write_context(adapter, id, F_FREELIST);
  1673. }
  1674. /**
  1675. * t3_sge_init_rspcntxt - initialize an SGE response queue context
  1676. * @adapter: the adapter to configure
  1677. * @id: the context id
  1678. * @irq_vec_idx: MSI-X interrupt vector index, 0 if no MSI-X, -1 if no IRQ
  1679. * @base_addr: base address of queue
  1680. * @size: number of queue entries
  1681. * @fl_thres: threshold for selecting the normal or jumbo free list
  1682. * @gen: initial generation value for the context
  1683. * @cidx: consumer pointer
  1684. *
  1685. * Initialize an SGE response queue context and make it ready for use.
  1686. * The caller is responsible for ensuring only one context operation
  1687. * occurs at a time.
  1688. */
  1689. int t3_sge_init_rspcntxt(struct adapter *adapter, unsigned int id,
  1690. int irq_vec_idx, u64 base_addr, unsigned int size,
  1691. unsigned int fl_thres, int gen, unsigned int cidx)
  1692. {
  1693. unsigned int intr = 0;
  1694. if (base_addr & 0xfff) /* must be 4K aligned */
  1695. return -EINVAL;
  1696. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1697. return -EBUSY;
  1698. base_addr >>= 12;
  1699. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size) |
  1700. V_CQ_INDEX(cidx));
  1701. t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
  1702. base_addr >>= 32;
  1703. if (irq_vec_idx >= 0)
  1704. intr = V_RQ_MSI_VEC(irq_vec_idx) | F_RQ_INTR_EN;
  1705. t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
  1706. V_CQ_BASE_HI((u32) base_addr) | intr | V_RQ_GEN(gen));
  1707. t3_write_reg(adapter, A_SG_CONTEXT_DATA3, fl_thres);
  1708. return t3_sge_write_context(adapter, id, F_RESPONSEQ);
  1709. }
  1710. /**
  1711. * t3_sge_init_cqcntxt - initialize an SGE completion queue context
  1712. * @adapter: the adapter to configure
  1713. * @id: the context id
  1714. * @base_addr: base address of queue
  1715. * @size: number of queue entries
  1716. * @rspq: response queue for async notifications
  1717. * @ovfl_mode: CQ overflow mode
  1718. * @credits: completion queue credits
  1719. * @credit_thres: the credit threshold
  1720. *
  1721. * Initialize an SGE completion queue context and make it ready for use.
  1722. * The caller is responsible for ensuring only one context operation
  1723. * occurs at a time.
  1724. */
  1725. int t3_sge_init_cqcntxt(struct adapter *adapter, unsigned int id, u64 base_addr,
  1726. unsigned int size, int rspq, int ovfl_mode,
  1727. unsigned int credits, unsigned int credit_thres)
  1728. {
  1729. if (base_addr & 0xfff) /* must be 4K aligned */
  1730. return -EINVAL;
  1731. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1732. return -EBUSY;
  1733. base_addr >>= 12;
  1734. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size));
  1735. t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
  1736. base_addr >>= 32;
  1737. t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
  1738. V_CQ_BASE_HI((u32) base_addr) | V_CQ_RSPQ(rspq) |
  1739. V_CQ_GEN(1) | V_CQ_OVERFLOW_MODE(ovfl_mode));
  1740. t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_CQ_CREDITS(credits) |
  1741. V_CQ_CREDIT_THRES(credit_thres));
  1742. return t3_sge_write_context(adapter, id, F_CQ);
  1743. }
  1744. /**
  1745. * t3_sge_enable_ecntxt - enable/disable an SGE egress context
  1746. * @adapter: the adapter
  1747. * @id: the egress context id
  1748. * @enable: enable (1) or disable (0) the context
  1749. *
  1750. * Enable or disable an SGE egress context. The caller is responsible for
  1751. * ensuring only one context operation occurs at a time.
  1752. */
  1753. int t3_sge_enable_ecntxt(struct adapter *adapter, unsigned int id, int enable)
  1754. {
  1755. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1756. return -EBUSY;
  1757. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
  1758. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  1759. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
  1760. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, F_EC_VALID);
  1761. t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_EC_VALID(enable));
  1762. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1763. V_CONTEXT_CMD_OPCODE(1) | F_EGRESS | V_CONTEXT(id));
  1764. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1765. 0, 5, 1);
  1766. }
  1767. /**
  1768. * t3_sge_disable_fl - disable an SGE free-buffer list
  1769. * @adapter: the adapter
  1770. * @id: the free list context id
  1771. *
  1772. * Disable an SGE free-buffer list. The caller is responsible for
  1773. * ensuring only one context operation occurs at a time.
  1774. */
  1775. int t3_sge_disable_fl(struct adapter *adapter, unsigned int id)
  1776. {
  1777. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1778. return -EBUSY;
  1779. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
  1780. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  1781. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, V_FL_SIZE(M_FL_SIZE));
  1782. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
  1783. t3_write_reg(adapter, A_SG_CONTEXT_DATA2, 0);
  1784. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1785. V_CONTEXT_CMD_OPCODE(1) | F_FREELIST | V_CONTEXT(id));
  1786. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1787. 0, 5, 1);
  1788. }
  1789. /**
  1790. * t3_sge_disable_rspcntxt - disable an SGE response queue
  1791. * @adapter: the adapter
  1792. * @id: the response queue context id
  1793. *
  1794. * Disable an SGE response queue. The caller is responsible for
  1795. * ensuring only one context operation occurs at a time.
  1796. */
  1797. int t3_sge_disable_rspcntxt(struct adapter *adapter, unsigned int id)
  1798. {
  1799. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1800. return -EBUSY;
  1801. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
  1802. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  1803. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
  1804. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
  1805. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
  1806. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1807. V_CONTEXT_CMD_OPCODE(1) | F_RESPONSEQ | V_CONTEXT(id));
  1808. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1809. 0, 5, 1);
  1810. }
  1811. /**
  1812. * t3_sge_disable_cqcntxt - disable an SGE completion queue
  1813. * @adapter: the adapter
  1814. * @id: the completion queue context id
  1815. *
  1816. * Disable an SGE completion queue. The caller is responsible for
  1817. * ensuring only one context operation occurs at a time.
  1818. */
  1819. int t3_sge_disable_cqcntxt(struct adapter *adapter, unsigned int id)
  1820. {
  1821. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1822. return -EBUSY;
  1823. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
  1824. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  1825. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
  1826. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
  1827. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
  1828. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1829. V_CONTEXT_CMD_OPCODE(1) | F_CQ | V_CONTEXT(id));
  1830. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1831. 0, 5, 1);
  1832. }
  1833. /**
  1834. * t3_sge_cqcntxt_op - perform an operation on a completion queue context
  1835. * @adapter: the adapter
  1836. * @id: the context id
  1837. * @op: the operation to perform
  1838. *
  1839. * Perform the selected operation on an SGE completion queue context.
  1840. * The caller is responsible for ensuring only one context operation
  1841. * occurs at a time.
  1842. */
  1843. int t3_sge_cqcntxt_op(struct adapter *adapter, unsigned int id, unsigned int op,
  1844. unsigned int credits)
  1845. {
  1846. u32 val;
  1847. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1848. return -EBUSY;
  1849. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, credits << 16);
  1850. t3_write_reg(adapter, A_SG_CONTEXT_CMD, V_CONTEXT_CMD_OPCODE(op) |
  1851. V_CONTEXT(id) | F_CQ);
  1852. if (t3_wait_op_done_val(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1853. 0, 5, 1, &val))
  1854. return -EIO;
  1855. if (op >= 2 && op < 7) {
  1856. if (adapter->params.rev > 0)
  1857. return G_CQ_INDEX(val);
  1858. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1859. V_CONTEXT_CMD_OPCODE(0) | F_CQ | V_CONTEXT(id));
  1860. if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD,
  1861. F_CONTEXT_CMD_BUSY, 0, 5, 1))
  1862. return -EIO;
  1863. return G_CQ_INDEX(t3_read_reg(adapter, A_SG_CONTEXT_DATA0));
  1864. }
  1865. return 0;
  1866. }
  1867. /**
  1868. * t3_sge_read_context - read an SGE context
  1869. * @type: the context type
  1870. * @adapter: the adapter
  1871. * @id: the context id
  1872. * @data: holds the retrieved context
  1873. *
  1874. * Read an SGE egress context. The caller is responsible for ensuring
  1875. * only one context operation occurs at a time.
  1876. */
  1877. static int t3_sge_read_context(unsigned int type, struct adapter *adapter,
  1878. unsigned int id, u32 data[4])
  1879. {
  1880. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1881. return -EBUSY;
  1882. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1883. V_CONTEXT_CMD_OPCODE(0) | type | V_CONTEXT(id));
  1884. if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, 0,
  1885. 5, 1))
  1886. return -EIO;
  1887. data[0] = t3_read_reg(adapter, A_SG_CONTEXT_DATA0);
  1888. data[1] = t3_read_reg(adapter, A_SG_CONTEXT_DATA1);
  1889. data[2] = t3_read_reg(adapter, A_SG_CONTEXT_DATA2);
  1890. data[3] = t3_read_reg(adapter, A_SG_CONTEXT_DATA3);
  1891. return 0;
  1892. }
  1893. /**
  1894. * t3_sge_read_ecntxt - read an SGE egress context
  1895. * @adapter: the adapter
  1896. * @id: the context id
  1897. * @data: holds the retrieved context
  1898. *
  1899. * Read an SGE egress context. The caller is responsible for ensuring
  1900. * only one context operation occurs at a time.
  1901. */
  1902. int t3_sge_read_ecntxt(struct adapter *adapter, unsigned int id, u32 data[4])
  1903. {
  1904. if (id >= 65536)
  1905. return -EINVAL;
  1906. return t3_sge_read_context(F_EGRESS, adapter, id, data);
  1907. }
  1908. /**
  1909. * t3_sge_read_cq - read an SGE CQ context
  1910. * @adapter: the adapter
  1911. * @id: the context id
  1912. * @data: holds the retrieved context
  1913. *
  1914. * Read an SGE CQ context. The caller is responsible for ensuring
  1915. * only one context operation occurs at a time.
  1916. */
  1917. int t3_sge_read_cq(struct adapter *adapter, unsigned int id, u32 data[4])
  1918. {
  1919. if (id >= 65536)
  1920. return -EINVAL;
  1921. return t3_sge_read_context(F_CQ, adapter, id, data);
  1922. }
  1923. /**
  1924. * t3_sge_read_fl - read an SGE free-list context
  1925. * @adapter: the adapter
  1926. * @id: the context id
  1927. * @data: holds the retrieved context
  1928. *
  1929. * Read an SGE free-list context. The caller is responsible for ensuring
  1930. * only one context operation occurs at a time.
  1931. */
  1932. int t3_sge_read_fl(struct adapter *adapter, unsigned int id, u32 data[4])
  1933. {
  1934. if (id >= SGE_QSETS * 2)
  1935. return -EINVAL;
  1936. return t3_sge_read_context(F_FREELIST, adapter, id, data);
  1937. }
  1938. /**
  1939. * t3_sge_read_rspq - read an SGE response queue context
  1940. * @adapter: the adapter
  1941. * @id: the context id
  1942. * @data: holds the retrieved context
  1943. *
  1944. * Read an SGE response queue context. The caller is responsible for
  1945. * ensuring only one context operation occurs at a time.
  1946. */
  1947. int t3_sge_read_rspq(struct adapter *adapter, unsigned int id, u32 data[4])
  1948. {
  1949. if (id >= SGE_QSETS)
  1950. return -EINVAL;
  1951. return t3_sge_read_context(F_RESPONSEQ, adapter, id, data);
  1952. }
  1953. /**
  1954. * t3_config_rss - configure Rx packet steering
  1955. * @adapter: the adapter
  1956. * @rss_config: RSS settings (written to TP_RSS_CONFIG)
  1957. * @cpus: values for the CPU lookup table (0xff terminated)
  1958. * @rspq: values for the response queue lookup table (0xffff terminated)
  1959. *
  1960. * Programs the receive packet steering logic. @cpus and @rspq provide
  1961. * the values for the CPU and response queue lookup tables. If they
  1962. * provide fewer values than the size of the tables the supplied values
  1963. * are used repeatedly until the tables are fully populated.
  1964. */
  1965. void t3_config_rss(struct adapter *adapter, unsigned int rss_config,
  1966. const u8 * cpus, const u16 *rspq)
  1967. {
  1968. int i, j, cpu_idx = 0, q_idx = 0;
  1969. if (cpus)
  1970. for (i = 0; i < RSS_TABLE_SIZE; ++i) {
  1971. u32 val = i << 16;
  1972. for (j = 0; j < 2; ++j) {
  1973. val |= (cpus[cpu_idx++] & 0x3f) << (8 * j);
  1974. if (cpus[cpu_idx] == 0xff)
  1975. cpu_idx = 0;
  1976. }
  1977. t3_write_reg(adapter, A_TP_RSS_LKP_TABLE, val);
  1978. }
  1979. if (rspq)
  1980. for (i = 0; i < RSS_TABLE_SIZE; ++i) {
  1981. t3_write_reg(adapter, A_TP_RSS_MAP_TABLE,
  1982. (i << 16) | rspq[q_idx++]);
  1983. if (rspq[q_idx] == 0xffff)
  1984. q_idx = 0;
  1985. }
  1986. t3_write_reg(adapter, A_TP_RSS_CONFIG, rss_config);
  1987. }
  1988. /**
  1989. * t3_read_rss - read the contents of the RSS tables
  1990. * @adapter: the adapter
  1991. * @lkup: holds the contents of the RSS lookup table
  1992. * @map: holds the contents of the RSS map table
  1993. *
  1994. * Reads the contents of the receive packet steering tables.
  1995. */
  1996. int t3_read_rss(struct adapter *adapter, u8 * lkup, u16 *map)
  1997. {
  1998. int i;
  1999. u32 val;
  2000. if (lkup)
  2001. for (i = 0; i < RSS_TABLE_SIZE; ++i) {
  2002. t3_write_reg(adapter, A_TP_RSS_LKP_TABLE,
  2003. 0xffff0000 | i);
  2004. val = t3_read_reg(adapter, A_TP_RSS_LKP_TABLE);
  2005. if (!(val & 0x80000000))
  2006. return -EAGAIN;
  2007. *lkup++ = val;
  2008. *lkup++ = (val >> 8);
  2009. }
  2010. if (map)
  2011. for (i = 0; i < RSS_TABLE_SIZE; ++i) {
  2012. t3_write_reg(adapter, A_TP_RSS_MAP_TABLE,
  2013. 0xffff0000 | i);
  2014. val = t3_read_reg(adapter, A_TP_RSS_MAP_TABLE);
  2015. if (!(val & 0x80000000))
  2016. return -EAGAIN;
  2017. *map++ = val;
  2018. }
  2019. return 0;
  2020. }
  2021. /**
  2022. * t3_tp_set_offload_mode - put TP in NIC/offload mode
  2023. * @adap: the adapter
  2024. * @enable: 1 to select offload mode, 0 for regular NIC
  2025. *
  2026. * Switches TP to NIC/offload mode.
  2027. */
  2028. void t3_tp_set_offload_mode(struct adapter *adap, int enable)
  2029. {
  2030. if (is_offload(adap) || !enable)
  2031. t3_set_reg_field(adap, A_TP_IN_CONFIG, F_NICMODE,
  2032. V_NICMODE(!enable));
  2033. }
  2034. /**
  2035. * pm_num_pages - calculate the number of pages of the payload memory
  2036. * @mem_size: the size of the payload memory
  2037. * @pg_size: the size of each payload memory page
  2038. *
  2039. * Calculate the number of pages, each of the given size, that fit in a
  2040. * memory of the specified size, respecting the HW requirement that the
  2041. * number of pages must be a multiple of 24.
  2042. */
  2043. static inline unsigned int pm_num_pages(unsigned int mem_size,
  2044. unsigned int pg_size)
  2045. {
  2046. unsigned int n = mem_size / pg_size;
  2047. return n - n % 24;
  2048. }
  2049. #define mem_region(adap, start, size, reg) \
  2050. t3_write_reg((adap), A_ ## reg, (start)); \
  2051. start += size
  2052. /*
  2053. * partition_mem - partition memory and configure TP memory settings
  2054. * @adap: the adapter
  2055. * @p: the TP parameters
  2056. *
  2057. * Partitions context and payload memory and configures TP's memory
  2058. * registers.
  2059. */
  2060. static void partition_mem(struct adapter *adap, const struct tp_params *p)
  2061. {
  2062. unsigned int m, pstructs, tids = t3_mc5_size(&adap->mc5);
  2063. unsigned int timers = 0, timers_shift = 22;
  2064. if (adap->params.rev > 0) {
  2065. if (tids <= 16 * 1024) {
  2066. timers = 1;
  2067. timers_shift = 16;
  2068. } else if (tids <= 64 * 1024) {
  2069. timers = 2;
  2070. timers_shift = 18;
  2071. } else if (tids <= 256 * 1024) {
  2072. timers = 3;
  2073. timers_shift = 20;
  2074. }
  2075. }
  2076. t3_write_reg(adap, A_TP_PMM_SIZE,
  2077. p->chan_rx_size | (p->chan_tx_size >> 16));
  2078. t3_write_reg(adap, A_TP_PMM_TX_BASE, 0);
  2079. t3_write_reg(adap, A_TP_PMM_TX_PAGE_SIZE, p->tx_pg_size);
  2080. t3_write_reg(adap, A_TP_PMM_TX_MAX_PAGE, p->tx_num_pgs);
  2081. t3_set_reg_field(adap, A_TP_PARA_REG3, V_TXDATAACKIDX(M_TXDATAACKIDX),
  2082. V_TXDATAACKIDX(fls(p->tx_pg_size) - 12));
  2083. t3_write_reg(adap, A_TP_PMM_RX_BASE, 0);
  2084. t3_write_reg(adap, A_TP_PMM_RX_PAGE_SIZE, p->rx_pg_size);
  2085. t3_write_reg(adap, A_TP_PMM_RX_MAX_PAGE, p->rx_num_pgs);
  2086. pstructs = p->rx_num_pgs + p->tx_num_pgs;
  2087. /* Add a bit of headroom and make multiple of 24 */
  2088. pstructs += 48;
  2089. pstructs -= pstructs % 24;
  2090. t3_write_reg(adap, A_TP_CMM_MM_MAX_PSTRUCT, pstructs);
  2091. m = tids * TCB_SIZE;
  2092. mem_region(adap, m, (64 << 10) * 64, SG_EGR_CNTX_BADDR);
  2093. mem_region(adap, m, (64 << 10) * 64, SG_CQ_CONTEXT_BADDR);
  2094. t3_write_reg(adap, A_TP_CMM_TIMER_BASE, V_CMTIMERMAXNUM(timers) | m);
  2095. m += ((p->ntimer_qs - 1) << timers_shift) + (1 << 22);
  2096. mem_region(adap, m, pstructs * 64, TP_CMM_MM_BASE);
  2097. mem_region(adap, m, 64 * (pstructs / 24), TP_CMM_MM_PS_FLST_BASE);
  2098. mem_region(adap, m, 64 * (p->rx_num_pgs / 24), TP_CMM_MM_RX_FLST_BASE);
  2099. mem_region(adap, m, 64 * (p->tx_num_pgs / 24), TP_CMM_MM_TX_FLST_BASE);
  2100. m = (m + 4095) & ~0xfff;
  2101. t3_write_reg(adap, A_CIM_SDRAM_BASE_ADDR, m);
  2102. t3_write_reg(adap, A_CIM_SDRAM_ADDR_SIZE, p->cm_size - m);
  2103. tids = (p->cm_size - m - (3 << 20)) / 3072 - 32;
  2104. m = t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
  2105. adap->params.mc5.nfilters - adap->params.mc5.nroutes;
  2106. if (tids < m)
  2107. adap->params.mc5.nservers += m - tids;
  2108. }
  2109. static inline void tp_wr_indirect(struct adapter *adap, unsigned int addr,
  2110. u32 val)
  2111. {
  2112. t3_write_reg(adap, A_TP_PIO_ADDR, addr);
  2113. t3_write_reg(adap, A_TP_PIO_DATA, val);
  2114. }
  2115. static void tp_config(struct adapter *adap, const struct tp_params *p)
  2116. {
  2117. t3_write_reg(adap, A_TP_GLOBAL_CONFIG, F_TXPACINGENABLE | F_PATHMTU |
  2118. F_IPCHECKSUMOFFLOAD | F_UDPCHECKSUMOFFLOAD |
  2119. F_TCPCHECKSUMOFFLOAD | V_IPTTL(64));
  2120. t3_write_reg(adap, A_TP_TCP_OPTIONS, V_MTUDEFAULT(576) |
  2121. F_MTUENABLE | V_WINDOWSCALEMODE(1) |
  2122. V_TIMESTAMPSMODE(1) | V_SACKMODE(1) | V_SACKRX(1));
  2123. t3_write_reg(adap, A_TP_DACK_CONFIG, V_AUTOSTATE3(1) |
  2124. V_AUTOSTATE2(1) | V_AUTOSTATE1(0) |
  2125. V_BYTETHRESHOLD(16384) | V_MSSTHRESHOLD(2) |
  2126. F_AUTOCAREFUL | F_AUTOENABLE | V_DACK_MODE(1));
  2127. t3_set_reg_field(adap, A_TP_IN_CONFIG, F_IPV6ENABLE | F_NICMODE,
  2128. F_IPV6ENABLE | F_NICMODE);
  2129. t3_write_reg(adap, A_TP_TX_RESOURCE_LIMIT, 0x18141814);
  2130. t3_write_reg(adap, A_TP_PARA_REG4, 0x5050105);
  2131. t3_set_reg_field(adap, A_TP_PARA_REG6,
  2132. adap->params.rev > 0 ? F_ENABLEESND : F_T3A_ENABLEESND,
  2133. 0);
  2134. t3_set_reg_field(adap, A_TP_PC_CONFIG,
  2135. F_ENABLEEPCMDAFULL | F_ENABLEOCSPIFULL,
  2136. F_TXDEFERENABLE | F_HEARBEATDACK | F_TXCONGESTIONMODE |
  2137. F_RXCONGESTIONMODE);
  2138. t3_set_reg_field(adap, A_TP_PC_CONFIG2, F_CHDRAFULL, 0);
  2139. if (adap->params.rev > 0) {
  2140. tp_wr_indirect(adap, A_TP_EGRESS_CONFIG, F_REWRITEFORCETOSIZE);
  2141. t3_set_reg_field(adap, A_TP_PARA_REG3, F_TXPACEAUTO,
  2142. F_TXPACEAUTO);
  2143. t3_set_reg_field(adap, A_TP_PC_CONFIG, F_LOCKTID, F_LOCKTID);
  2144. t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEAUTOSTRICT);
  2145. } else
  2146. t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEFIXED);
  2147. t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT1, 0x12121212);
  2148. t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0, 0x12121212);
  2149. t3_write_reg(adap, A_TP_MOD_CHANNEL_WEIGHT, 0x1212);
  2150. }
  2151. /* Desired TP timer resolution in usec */
  2152. #define TP_TMR_RES 50
  2153. /* TCP timer values in ms */
  2154. #define TP_DACK_TIMER 50
  2155. #define TP_RTO_MIN 250
  2156. /**
  2157. * tp_set_timers - set TP timing parameters
  2158. * @adap: the adapter to set
  2159. * @core_clk: the core clock frequency in Hz
  2160. *
  2161. * Set TP's timing parameters, such as the various timer resolutions and
  2162. * the TCP timer values.
  2163. */
  2164. static void tp_set_timers(struct adapter *adap, unsigned int core_clk)
  2165. {
  2166. unsigned int tre = fls(core_clk / (1000000 / TP_TMR_RES)) - 1;
  2167. unsigned int dack_re = fls(core_clk / 5000) - 1; /* 200us */
  2168. unsigned int tstamp_re = fls(core_clk / 1000); /* 1ms, at least */
  2169. unsigned int tps = core_clk >> tre;
  2170. t3_write_reg(adap, A_TP_TIMER_RESOLUTION, V_TIMERRESOLUTION(tre) |
  2171. V_DELAYEDACKRESOLUTION(dack_re) |
  2172. V_TIMESTAMPRESOLUTION(tstamp_re));
  2173. t3_write_reg(adap, A_TP_DACK_TIMER,
  2174. (core_clk >> dack_re) / (1000 / TP_DACK_TIMER));
  2175. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG0, 0x3020100);
  2176. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG1, 0x7060504);
  2177. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG2, 0xb0a0908);
  2178. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG3, 0xf0e0d0c);
  2179. t3_write_reg(adap, A_TP_SHIFT_CNT, V_SYNSHIFTMAX(6) |
  2180. V_RXTSHIFTMAXR1(4) | V_RXTSHIFTMAXR2(15) |
  2181. V_PERSHIFTBACKOFFMAX(8) | V_PERSHIFTMAX(8) |
  2182. V_KEEPALIVEMAX(9));
  2183. #define SECONDS * tps
  2184. t3_write_reg(adap, A_TP_MSL, adap->params.rev > 0 ? 0 : 2 SECONDS);
  2185. t3_write_reg(adap, A_TP_RXT_MIN, tps / (1000 / TP_RTO_MIN));
  2186. t3_write_reg(adap, A_TP_RXT_MAX, 64 SECONDS);
  2187. t3_write_reg(adap, A_TP_PERS_MIN, 5 SECONDS);
  2188. t3_write_reg(adap, A_TP_PERS_MAX, 64 SECONDS);
  2189. t3_write_reg(adap, A_TP_KEEP_IDLE, 7200 SECONDS);
  2190. t3_write_reg(adap, A_TP_KEEP_INTVL, 75 SECONDS);
  2191. t3_write_reg(adap, A_TP_INIT_SRTT, 3 SECONDS);
  2192. t3_write_reg(adap, A_TP_FINWAIT2_TIMER, 600 SECONDS);
  2193. #undef SECONDS
  2194. }
  2195. /**
  2196. * t3_tp_set_coalescing_size - set receive coalescing size
  2197. * @adap: the adapter
  2198. * @size: the receive coalescing size
  2199. * @psh: whether a set PSH bit should deliver coalesced data
  2200. *
  2201. * Set the receive coalescing size and PSH bit handling.
  2202. */
  2203. int t3_tp_set_coalescing_size(struct adapter *adap, unsigned int size, int psh)
  2204. {
  2205. u32 val;
  2206. if (size > MAX_RX_COALESCING_LEN)
  2207. return -EINVAL;
  2208. val = t3_read_reg(adap, A_TP_PARA_REG3);
  2209. val &= ~(F_RXCOALESCEENABLE | F_RXCOALESCEPSHEN);
  2210. if (size) {
  2211. val |= F_RXCOALESCEENABLE;
  2212. if (psh)
  2213. val |= F_RXCOALESCEPSHEN;
  2214. t3_write_reg(adap, A_TP_PARA_REG2, V_RXCOALESCESIZE(size) |
  2215. V_MAXRXDATA(MAX_RX_COALESCING_LEN));
  2216. }
  2217. t3_write_reg(adap, A_TP_PARA_REG3, val);
  2218. return 0;
  2219. }
  2220. /**
  2221. * t3_tp_set_max_rxsize - set the max receive size
  2222. * @adap: the adapter
  2223. * @size: the max receive size
  2224. *
  2225. * Set TP's max receive size. This is the limit that applies when
  2226. * receive coalescing is disabled.
  2227. */
  2228. void t3_tp_set_max_rxsize(struct adapter *adap, unsigned int size)
  2229. {
  2230. t3_write_reg(adap, A_TP_PARA_REG7,
  2231. V_PMMAXXFERLEN0(size) | V_PMMAXXFERLEN1(size));
  2232. }
  2233. static void __devinit init_mtus(unsigned short mtus[])
  2234. {
  2235. /*
  2236. * See draft-mathis-plpmtud-00.txt for the values. The min is 88 so
  2237. * it can accomodate max size TCP/IP headers when SACK and timestamps
  2238. * are enabled and still have at least 8 bytes of payload.
  2239. */
  2240. mtus[0] = 88;
  2241. mtus[1] = 256;
  2242. mtus[2] = 512;
  2243. mtus[3] = 576;
  2244. mtus[4] = 808;
  2245. mtus[5] = 1024;
  2246. mtus[6] = 1280;
  2247. mtus[7] = 1492;
  2248. mtus[8] = 1500;
  2249. mtus[9] = 2002;
  2250. mtus[10] = 2048;
  2251. mtus[11] = 4096;
  2252. mtus[12] = 4352;
  2253. mtus[13] = 8192;
  2254. mtus[14] = 9000;
  2255. mtus[15] = 9600;
  2256. }
  2257. /*
  2258. * Initial congestion control parameters.
  2259. */
  2260. static void __devinit init_cong_ctrl(unsigned short *a, unsigned short *b)
  2261. {
  2262. a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
  2263. a[9] = 2;
  2264. a[10] = 3;
  2265. a[11] = 4;
  2266. a[12] = 5;
  2267. a[13] = 6;
  2268. a[14] = 7;
  2269. a[15] = 8;
  2270. a[16] = 9;
  2271. a[17] = 10;
  2272. a[18] = 14;
  2273. a[19] = 17;
  2274. a[20] = 21;
  2275. a[21] = 25;
  2276. a[22] = 30;
  2277. a[23] = 35;
  2278. a[24] = 45;
  2279. a[25] = 60;
  2280. a[26] = 80;
  2281. a[27] = 100;
  2282. a[28] = 200;
  2283. a[29] = 300;
  2284. a[30] = 400;
  2285. a[31] = 500;
  2286. b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
  2287. b[9] = b[10] = 1;
  2288. b[11] = b[12] = 2;
  2289. b[13] = b[14] = b[15] = b[16] = 3;
  2290. b[17] = b[18] = b[19] = b[20] = b[21] = 4;
  2291. b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
  2292. b[28] = b[29] = 6;
  2293. b[30] = b[31] = 7;
  2294. }
  2295. /* The minimum additive increment value for the congestion control table */
  2296. #define CC_MIN_INCR 2U
  2297. /**
  2298. * t3_load_mtus - write the MTU and congestion control HW tables
  2299. * @adap: the adapter
  2300. * @mtus: the unrestricted values for the MTU table
  2301. * @alphs: the values for the congestion control alpha parameter
  2302. * @beta: the values for the congestion control beta parameter
  2303. * @mtu_cap: the maximum permitted effective MTU
  2304. *
  2305. * Write the MTU table with the supplied MTUs capping each at &mtu_cap.
  2306. * Update the high-speed congestion control table with the supplied alpha,
  2307. * beta, and MTUs.
  2308. */
  2309. void t3_load_mtus(struct adapter *adap, unsigned short mtus[NMTUS],
  2310. unsigned short alpha[NCCTRL_WIN],
  2311. unsigned short beta[NCCTRL_WIN], unsigned short mtu_cap)
  2312. {
  2313. static const unsigned int avg_pkts[NCCTRL_WIN] = {
  2314. 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
  2315. 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
  2316. 28672, 40960, 57344, 81920, 114688, 163840, 229376
  2317. };
  2318. unsigned int i, w;
  2319. for (i = 0; i < NMTUS; ++i) {
  2320. unsigned int mtu = min(mtus[i], mtu_cap);
  2321. unsigned int log2 = fls(mtu);
  2322. if (!(mtu & ((1 << log2) >> 2))) /* round */
  2323. log2--;
  2324. t3_write_reg(adap, A_TP_MTU_TABLE,
  2325. (i << 24) | (log2 << 16) | mtu);
  2326. for (w = 0; w < NCCTRL_WIN; ++w) {
  2327. unsigned int inc;
  2328. inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
  2329. CC_MIN_INCR);
  2330. t3_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
  2331. (w << 16) | (beta[w] << 13) | inc);
  2332. }
  2333. }
  2334. }
  2335. /**
  2336. * t3_read_hw_mtus - returns the values in the HW MTU table
  2337. * @adap: the adapter
  2338. * @mtus: where to store the HW MTU values
  2339. *
  2340. * Reads the HW MTU table.
  2341. */
  2342. void t3_read_hw_mtus(struct adapter *adap, unsigned short mtus[NMTUS])
  2343. {
  2344. int i;
  2345. for (i = 0; i < NMTUS; ++i) {
  2346. unsigned int val;
  2347. t3_write_reg(adap, A_TP_MTU_TABLE, 0xff000000 | i);
  2348. val = t3_read_reg(adap, A_TP_MTU_TABLE);
  2349. mtus[i] = val & 0x3fff;
  2350. }
  2351. }
  2352. /**
  2353. * t3_get_cong_cntl_tab - reads the congestion control table
  2354. * @adap: the adapter
  2355. * @incr: where to store the alpha values
  2356. *
  2357. * Reads the additive increments programmed into the HW congestion
  2358. * control table.
  2359. */
  2360. void t3_get_cong_cntl_tab(struct adapter *adap,
  2361. unsigned short incr[NMTUS][NCCTRL_WIN])
  2362. {
  2363. unsigned int mtu, w;
  2364. for (mtu = 0; mtu < NMTUS; ++mtu)
  2365. for (w = 0; w < NCCTRL_WIN; ++w) {
  2366. t3_write_reg(adap, A_TP_CCTRL_TABLE,
  2367. 0xffff0000 | (mtu << 5) | w);
  2368. incr[mtu][w] = t3_read_reg(adap, A_TP_CCTRL_TABLE) &
  2369. 0x1fff;
  2370. }
  2371. }
  2372. /**
  2373. * t3_tp_get_mib_stats - read TP's MIB counters
  2374. * @adap: the adapter
  2375. * @tps: holds the returned counter values
  2376. *
  2377. * Returns the values of TP's MIB counters.
  2378. */
  2379. void t3_tp_get_mib_stats(struct adapter *adap, struct tp_mib_stats *tps)
  2380. {
  2381. t3_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_RDATA, (u32 *) tps,
  2382. sizeof(*tps) / sizeof(u32), 0);
  2383. }
  2384. #define ulp_region(adap, name, start, len) \
  2385. t3_write_reg((adap), A_ULPRX_ ## name ## _LLIMIT, (start)); \
  2386. t3_write_reg((adap), A_ULPRX_ ## name ## _ULIMIT, \
  2387. (start) + (len) - 1); \
  2388. start += len
  2389. #define ulptx_region(adap, name, start, len) \
  2390. t3_write_reg((adap), A_ULPTX_ ## name ## _LLIMIT, (start)); \
  2391. t3_write_reg((adap), A_ULPTX_ ## name ## _ULIMIT, \
  2392. (start) + (len) - 1)
  2393. static void ulp_config(struct adapter *adap, const struct tp_params *p)
  2394. {
  2395. unsigned int m = p->chan_rx_size;
  2396. ulp_region(adap, ISCSI, m, p->chan_rx_size / 8);
  2397. ulp_region(adap, TDDP, m, p->chan_rx_size / 8);
  2398. ulptx_region(adap, TPT, m, p->chan_rx_size / 4);
  2399. ulp_region(adap, STAG, m, p->chan_rx_size / 4);
  2400. ulp_region(adap, RQ, m, p->chan_rx_size / 4);
  2401. ulptx_region(adap, PBL, m, p->chan_rx_size / 4);
  2402. ulp_region(adap, PBL, m, p->chan_rx_size / 4);
  2403. t3_write_reg(adap, A_ULPRX_TDDP_TAGMASK, 0xffffffff);
  2404. }
  2405. void t3_config_trace_filter(struct adapter *adapter,
  2406. const struct trace_params *tp, int filter_index,
  2407. int invert, int enable)
  2408. {
  2409. u32 addr, key[4], mask[4];
  2410. key[0] = tp->sport | (tp->sip << 16);
  2411. key[1] = (tp->sip >> 16) | (tp->dport << 16);
  2412. key[2] = tp->dip;
  2413. key[3] = tp->proto | (tp->vlan << 8) | (tp->intf << 20);
  2414. mask[0] = tp->sport_mask | (tp->sip_mask << 16);
  2415. mask[1] = (tp->sip_mask >> 16) | (tp->dport_mask << 16);
  2416. mask[2] = tp->dip_mask;
  2417. mask[3] = tp->proto_mask | (tp->vlan_mask << 8) | (tp->intf_mask << 20);
  2418. if (invert)
  2419. key[3] |= (1 << 29);
  2420. if (enable)
  2421. key[3] |= (1 << 28);
  2422. addr = filter_index ? A_TP_RX_TRC_KEY0 : A_TP_TX_TRC_KEY0;
  2423. tp_wr_indirect(adapter, addr++, key[0]);
  2424. tp_wr_indirect(adapter, addr++, mask[0]);
  2425. tp_wr_indirect(adapter, addr++, key[1]);
  2426. tp_wr_indirect(adapter, addr++, mask[1]);
  2427. tp_wr_indirect(adapter, addr++, key[2]);
  2428. tp_wr_indirect(adapter, addr++, mask[2]);
  2429. tp_wr_indirect(adapter, addr++, key[3]);
  2430. tp_wr_indirect(adapter, addr, mask[3]);
  2431. t3_read_reg(adapter, A_TP_PIO_DATA);
  2432. }
  2433. /**
  2434. * t3_config_sched - configure a HW traffic scheduler
  2435. * @adap: the adapter
  2436. * @kbps: target rate in Kbps
  2437. * @sched: the scheduler index
  2438. *
  2439. * Configure a HW scheduler for the target rate
  2440. */
  2441. int t3_config_sched(struct adapter *adap, unsigned int kbps, int sched)
  2442. {
  2443. unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
  2444. unsigned int clk = adap->params.vpd.cclk * 1000;
  2445. unsigned int selected_cpt = 0, selected_bpt = 0;
  2446. if (kbps > 0) {
  2447. kbps *= 125; /* -> bytes */
  2448. for (cpt = 1; cpt <= 255; cpt++) {
  2449. tps = clk / cpt;
  2450. bpt = (kbps + tps / 2) / tps;
  2451. if (bpt > 0 && bpt <= 255) {
  2452. v = bpt * tps;
  2453. delta = v >= kbps ? v - kbps : kbps - v;
  2454. if (delta <= mindelta) {
  2455. mindelta = delta;
  2456. selected_cpt = cpt;
  2457. selected_bpt = bpt;
  2458. }
  2459. } else if (selected_cpt)
  2460. break;
  2461. }
  2462. if (!selected_cpt)
  2463. return -EINVAL;
  2464. }
  2465. t3_write_reg(adap, A_TP_TM_PIO_ADDR,
  2466. A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
  2467. v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
  2468. if (sched & 1)
  2469. v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
  2470. else
  2471. v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
  2472. t3_write_reg(adap, A_TP_TM_PIO_DATA, v);
  2473. return 0;
  2474. }
  2475. static int tp_init(struct adapter *adap, const struct tp_params *p)
  2476. {
  2477. int busy = 0;
  2478. tp_config(adap, p);
  2479. t3_set_vlan_accel(adap, 3, 0);
  2480. if (is_offload(adap)) {
  2481. tp_set_timers(adap, adap->params.vpd.cclk * 1000);
  2482. t3_write_reg(adap, A_TP_RESET, F_FLSTINITENABLE);
  2483. busy = t3_wait_op_done(adap, A_TP_RESET, F_FLSTINITENABLE,
  2484. 0, 1000, 5);
  2485. if (busy)
  2486. CH_ERR(adap, "TP initialization timed out\n");
  2487. }
  2488. if (!busy)
  2489. t3_write_reg(adap, A_TP_RESET, F_TPRESET);
  2490. return busy;
  2491. }
  2492. int t3_mps_set_active_ports(struct adapter *adap, unsigned int port_mask)
  2493. {
  2494. if (port_mask & ~((1 << adap->params.nports) - 1))
  2495. return -EINVAL;
  2496. t3_set_reg_field(adap, A_MPS_CFG, F_PORT1ACTIVE | F_PORT0ACTIVE,
  2497. port_mask << S_PORT0ACTIVE);
  2498. return 0;
  2499. }
  2500. /*
  2501. * Perform the bits of HW initialization that are dependent on the number
  2502. * of available ports.
  2503. */
  2504. static void init_hw_for_avail_ports(struct adapter *adap, int nports)
  2505. {
  2506. int i;
  2507. if (nports == 1) {
  2508. t3_set_reg_field(adap, A_ULPRX_CTL, F_ROUND_ROBIN, 0);
  2509. t3_set_reg_field(adap, A_ULPTX_CONFIG, F_CFG_RR_ARB, 0);
  2510. t3_write_reg(adap, A_MPS_CFG, F_TPRXPORTEN | F_TPTXPORT0EN |
  2511. F_PORT0ACTIVE | F_ENFORCEPKT);
  2512. t3_write_reg(adap, A_PM1_TX_CFG, 0xc000c000);
  2513. } else {
  2514. t3_set_reg_field(adap, A_ULPRX_CTL, 0, F_ROUND_ROBIN);
  2515. t3_set_reg_field(adap, A_ULPTX_CONFIG, 0, F_CFG_RR_ARB);
  2516. t3_write_reg(adap, A_ULPTX_DMA_WEIGHT,
  2517. V_D1_WEIGHT(16) | V_D0_WEIGHT(16));
  2518. t3_write_reg(adap, A_MPS_CFG, F_TPTXPORT0EN | F_TPTXPORT1EN |
  2519. F_TPRXPORTEN | F_PORT0ACTIVE | F_PORT1ACTIVE |
  2520. F_ENFORCEPKT);
  2521. t3_write_reg(adap, A_PM1_TX_CFG, 0x80008000);
  2522. t3_set_reg_field(adap, A_TP_PC_CONFIG, 0, F_TXTOSQUEUEMAPMODE);
  2523. t3_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP,
  2524. V_TX_MOD_QUEUE_REQ_MAP(0xaa));
  2525. for (i = 0; i < 16; i++)
  2526. t3_write_reg(adap, A_TP_TX_MOD_QUE_TABLE,
  2527. (i << 16) | 0x1010);
  2528. }
  2529. }
  2530. static int calibrate_xgm(struct adapter *adapter)
  2531. {
  2532. if (uses_xaui(adapter)) {
  2533. unsigned int v, i;
  2534. for (i = 0; i < 5; ++i) {
  2535. t3_write_reg(adapter, A_XGM_XAUI_IMP, 0);
  2536. t3_read_reg(adapter, A_XGM_XAUI_IMP);
  2537. msleep(1);
  2538. v = t3_read_reg(adapter, A_XGM_XAUI_IMP);
  2539. if (!(v & (F_XGM_CALFAULT | F_CALBUSY))) {
  2540. t3_write_reg(adapter, A_XGM_XAUI_IMP,
  2541. V_XAUIIMP(G_CALIMP(v) >> 2));
  2542. return 0;
  2543. }
  2544. }
  2545. CH_ERR(adapter, "MAC calibration failed\n");
  2546. return -1;
  2547. } else {
  2548. t3_write_reg(adapter, A_XGM_RGMII_IMP,
  2549. V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
  2550. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
  2551. F_XGM_IMPSETUPDATE);
  2552. }
  2553. return 0;
  2554. }
  2555. static void calibrate_xgm_t3b(struct adapter *adapter)
  2556. {
  2557. if (!uses_xaui(adapter)) {
  2558. t3_write_reg(adapter, A_XGM_RGMII_IMP, F_CALRESET |
  2559. F_CALUPDATE | V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
  2560. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALRESET, 0);
  2561. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0,
  2562. F_XGM_IMPSETUPDATE);
  2563. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
  2564. 0);
  2565. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALUPDATE, 0);
  2566. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0, F_CALUPDATE);
  2567. }
  2568. }
  2569. struct mc7_timing_params {
  2570. unsigned char ActToPreDly;
  2571. unsigned char ActToRdWrDly;
  2572. unsigned char PreCyc;
  2573. unsigned char RefCyc[5];
  2574. unsigned char BkCyc;
  2575. unsigned char WrToRdDly;
  2576. unsigned char RdToWrDly;
  2577. };
  2578. /*
  2579. * Write a value to a register and check that the write completed. These
  2580. * writes normally complete in a cycle or two, so one read should suffice.
  2581. * The very first read exists to flush the posted write to the device.
  2582. */
  2583. static int wrreg_wait(struct adapter *adapter, unsigned int addr, u32 val)
  2584. {
  2585. t3_write_reg(adapter, addr, val);
  2586. t3_read_reg(adapter, addr); /* flush */
  2587. if (!(t3_read_reg(adapter, addr) & F_BUSY))
  2588. return 0;
  2589. CH_ERR(adapter, "write to MC7 register 0x%x timed out\n", addr);
  2590. return -EIO;
  2591. }
  2592. static int mc7_init(struct mc7 *mc7, unsigned int mc7_clock, int mem_type)
  2593. {
  2594. static const unsigned int mc7_mode[] = {
  2595. 0x632, 0x642, 0x652, 0x432, 0x442
  2596. };
  2597. static const struct mc7_timing_params mc7_timings[] = {
  2598. {12, 3, 4, {20, 28, 34, 52, 0}, 15, 6, 4},
  2599. {12, 4, 5, {20, 28, 34, 52, 0}, 16, 7, 4},
  2600. {12, 5, 6, {20, 28, 34, 52, 0}, 17, 8, 4},
  2601. {9, 3, 4, {15, 21, 26, 39, 0}, 12, 6, 4},
  2602. {9, 4, 5, {15, 21, 26, 39, 0}, 13, 7, 4}
  2603. };
  2604. u32 val;
  2605. unsigned int width, density, slow, attempts;
  2606. struct adapter *adapter = mc7->adapter;
  2607. const struct mc7_timing_params *p = &mc7_timings[mem_type];
  2608. val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
  2609. slow = val & F_SLOW;
  2610. width = G_WIDTH(val);
  2611. density = G_DEN(val);
  2612. t3_write_reg(adapter, mc7->offset + A_MC7_CFG, val | F_IFEN);
  2613. val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */
  2614. msleep(1);
  2615. if (!slow) {
  2616. t3_write_reg(adapter, mc7->offset + A_MC7_CAL, F_SGL_CAL_EN);
  2617. t3_read_reg(adapter, mc7->offset + A_MC7_CAL);
  2618. msleep(1);
  2619. if (t3_read_reg(adapter, mc7->offset + A_MC7_CAL) &
  2620. (F_BUSY | F_SGL_CAL_EN | F_CAL_FAULT)) {
  2621. CH_ERR(adapter, "%s MC7 calibration timed out\n",
  2622. mc7->name);
  2623. goto out_fail;
  2624. }
  2625. }
  2626. t3_write_reg(adapter, mc7->offset + A_MC7_PARM,
  2627. V_ACTTOPREDLY(p->ActToPreDly) |
  2628. V_ACTTORDWRDLY(p->ActToRdWrDly) | V_PRECYC(p->PreCyc) |
  2629. V_REFCYC(p->RefCyc[density]) | V_BKCYC(p->BkCyc) |
  2630. V_WRTORDDLY(p->WrToRdDly) | V_RDTOWRDLY(p->RdToWrDly));
  2631. t3_write_reg(adapter, mc7->offset + A_MC7_CFG,
  2632. val | F_CLKEN | F_TERM150);
  2633. t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */
  2634. if (!slow)
  2635. t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLENB,
  2636. F_DLLENB);
  2637. udelay(1);
  2638. val = slow ? 3 : 6;
  2639. if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
  2640. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE2, 0) ||
  2641. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE3, 0) ||
  2642. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
  2643. goto out_fail;
  2644. if (!slow) {
  2645. t3_write_reg(adapter, mc7->offset + A_MC7_MODE, 0x100);
  2646. t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLRST, 0);
  2647. udelay(5);
  2648. }
  2649. if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
  2650. wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
  2651. wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
  2652. wrreg_wait(adapter, mc7->offset + A_MC7_MODE,
  2653. mc7_mode[mem_type]) ||
  2654. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val | 0x380) ||
  2655. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
  2656. goto out_fail;
  2657. /* clock value is in KHz */
  2658. mc7_clock = mc7_clock * 7812 + mc7_clock / 2; /* ns */
  2659. mc7_clock /= 1000000; /* KHz->MHz, ns->us */
  2660. t3_write_reg(adapter, mc7->offset + A_MC7_REF,
  2661. F_PERREFEN | V_PREREFDIV(mc7_clock));
  2662. t3_read_reg(adapter, mc7->offset + A_MC7_REF); /* flush */
  2663. t3_write_reg(adapter, mc7->offset + A_MC7_ECC, F_ECCGENEN | F_ECCCHKEN);
  2664. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_DATA, 0);
  2665. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_BEG, 0);
  2666. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_END,
  2667. (mc7->size << width) - 1);
  2668. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_OP, V_OP(1));
  2669. t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP); /* flush */
  2670. attempts = 50;
  2671. do {
  2672. msleep(250);
  2673. val = t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP);
  2674. } while ((val & F_BUSY) && --attempts);
  2675. if (val & F_BUSY) {
  2676. CH_ERR(adapter, "%s MC7 BIST timed out\n", mc7->name);
  2677. goto out_fail;
  2678. }
  2679. /* Enable normal memory accesses. */
  2680. t3_set_reg_field(adapter, mc7->offset + A_MC7_CFG, 0, F_RDY);
  2681. return 0;
  2682. out_fail:
  2683. return -1;
  2684. }
  2685. static void config_pcie(struct adapter *adap)
  2686. {
  2687. static const u16 ack_lat[4][6] = {
  2688. {237, 416, 559, 1071, 2095, 4143},
  2689. {128, 217, 289, 545, 1057, 2081},
  2690. {73, 118, 154, 282, 538, 1050},
  2691. {67, 107, 86, 150, 278, 534}
  2692. };
  2693. static const u16 rpl_tmr[4][6] = {
  2694. {711, 1248, 1677, 3213, 6285, 12429},
  2695. {384, 651, 867, 1635, 3171, 6243},
  2696. {219, 354, 462, 846, 1614, 3150},
  2697. {201, 321, 258, 450, 834, 1602}
  2698. };
  2699. u16 val;
  2700. unsigned int log2_width, pldsize;
  2701. unsigned int fst_trn_rx, fst_trn_tx, acklat, rpllmt;
  2702. pci_read_config_word(adap->pdev,
  2703. adap->params.pci.pcie_cap_addr + PCI_EXP_DEVCTL,
  2704. &val);
  2705. pldsize = (val & PCI_EXP_DEVCTL_PAYLOAD) >> 5;
  2706. pci_read_config_word(adap->pdev,
  2707. adap->params.pci.pcie_cap_addr + PCI_EXP_LNKCTL,
  2708. &val);
  2709. fst_trn_tx = G_NUMFSTTRNSEQ(t3_read_reg(adap, A_PCIE_PEX_CTRL0));
  2710. fst_trn_rx = adap->params.rev == 0 ? fst_trn_tx :
  2711. G_NUMFSTTRNSEQRX(t3_read_reg(adap, A_PCIE_MODE));
  2712. log2_width = fls(adap->params.pci.width) - 1;
  2713. acklat = ack_lat[log2_width][pldsize];
  2714. if (val & 1) /* check LOsEnable */
  2715. acklat += fst_trn_tx * 4;
  2716. rpllmt = rpl_tmr[log2_width][pldsize] + fst_trn_rx * 4;
  2717. if (adap->params.rev == 0)
  2718. t3_set_reg_field(adap, A_PCIE_PEX_CTRL1,
  2719. V_T3A_ACKLAT(M_T3A_ACKLAT),
  2720. V_T3A_ACKLAT(acklat));
  2721. else
  2722. t3_set_reg_field(adap, A_PCIE_PEX_CTRL1, V_ACKLAT(M_ACKLAT),
  2723. V_ACKLAT(acklat));
  2724. t3_set_reg_field(adap, A_PCIE_PEX_CTRL0, V_REPLAYLMT(M_REPLAYLMT),
  2725. V_REPLAYLMT(rpllmt));
  2726. t3_write_reg(adap, A_PCIE_PEX_ERR, 0xffffffff);
  2727. t3_set_reg_field(adap, A_PCIE_CFG, F_PCIE_CLIDECEN, F_PCIE_CLIDECEN);
  2728. }
  2729. /*
  2730. * Initialize and configure T3 HW modules. This performs the
  2731. * initialization steps that need to be done once after a card is reset.
  2732. * MAC and PHY initialization is handled separarely whenever a port is enabled.
  2733. *
  2734. * fw_params are passed to FW and their value is platform dependent. Only the
  2735. * top 8 bits are available for use, the rest must be 0.
  2736. */
  2737. int t3_init_hw(struct adapter *adapter, u32 fw_params)
  2738. {
  2739. int err = -EIO, attempts = 100;
  2740. const struct vpd_params *vpd = &adapter->params.vpd;
  2741. if (adapter->params.rev > 0)
  2742. calibrate_xgm_t3b(adapter);
  2743. else if (calibrate_xgm(adapter))
  2744. goto out_err;
  2745. if (vpd->mclk) {
  2746. partition_mem(adapter, &adapter->params.tp);
  2747. if (mc7_init(&adapter->pmrx, vpd->mclk, vpd->mem_timing) ||
  2748. mc7_init(&adapter->pmtx, vpd->mclk, vpd->mem_timing) ||
  2749. mc7_init(&adapter->cm, vpd->mclk, vpd->mem_timing) ||
  2750. t3_mc5_init(&adapter->mc5, adapter->params.mc5.nservers,
  2751. adapter->params.mc5.nfilters,
  2752. adapter->params.mc5.nroutes))
  2753. goto out_err;
  2754. }
  2755. if (tp_init(adapter, &adapter->params.tp))
  2756. goto out_err;
  2757. t3_tp_set_coalescing_size(adapter,
  2758. min(adapter->params.sge.max_pkt_size,
  2759. MAX_RX_COALESCING_LEN), 1);
  2760. t3_tp_set_max_rxsize(adapter,
  2761. min(adapter->params.sge.max_pkt_size, 16384U));
  2762. ulp_config(adapter, &adapter->params.tp);
  2763. if (is_pcie(adapter))
  2764. config_pcie(adapter);
  2765. else
  2766. t3_set_reg_field(adapter, A_PCIX_CFG, 0, F_CLIDECEN);
  2767. t3_write_reg(adapter, A_PM1_RX_CFG, 0xf000f000);
  2768. init_hw_for_avail_ports(adapter, adapter->params.nports);
  2769. t3_sge_init(adapter, &adapter->params.sge);
  2770. t3_write_reg(adapter, A_CIM_HOST_ACC_DATA, vpd->uclk | fw_params);
  2771. t3_write_reg(adapter, A_CIM_BOOT_CFG,
  2772. V_BOOTADDR(FW_FLASH_BOOT_ADDR >> 2));
  2773. t3_read_reg(adapter, A_CIM_BOOT_CFG); /* flush */
  2774. do { /* wait for uP to initialize */
  2775. msleep(20);
  2776. } while (t3_read_reg(adapter, A_CIM_HOST_ACC_DATA) && --attempts);
  2777. if (!attempts)
  2778. goto out_err;
  2779. err = 0;
  2780. out_err:
  2781. return err;
  2782. }
  2783. /**
  2784. * get_pci_mode - determine a card's PCI mode
  2785. * @adapter: the adapter
  2786. * @p: where to store the PCI settings
  2787. *
  2788. * Determines a card's PCI mode and associated parameters, such as speed
  2789. * and width.
  2790. */
  2791. static void __devinit get_pci_mode(struct adapter *adapter,
  2792. struct pci_params *p)
  2793. {
  2794. static unsigned short speed_map[] = { 33, 66, 100, 133 };
  2795. u32 pci_mode, pcie_cap;
  2796. pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
  2797. if (pcie_cap) {
  2798. u16 val;
  2799. p->variant = PCI_VARIANT_PCIE;
  2800. p->pcie_cap_addr = pcie_cap;
  2801. pci_read_config_word(adapter->pdev, pcie_cap + PCI_EXP_LNKSTA,
  2802. &val);
  2803. p->width = (val >> 4) & 0x3f;
  2804. return;
  2805. }
  2806. pci_mode = t3_read_reg(adapter, A_PCIX_MODE);
  2807. p->speed = speed_map[G_PCLKRANGE(pci_mode)];
  2808. p->width = (pci_mode & F_64BIT) ? 64 : 32;
  2809. pci_mode = G_PCIXINITPAT(pci_mode);
  2810. if (pci_mode == 0)
  2811. p->variant = PCI_VARIANT_PCI;
  2812. else if (pci_mode < 4)
  2813. p->variant = PCI_VARIANT_PCIX_MODE1_PARITY;
  2814. else if (pci_mode < 8)
  2815. p->variant = PCI_VARIANT_PCIX_MODE1_ECC;
  2816. else
  2817. p->variant = PCI_VARIANT_PCIX_266_MODE2;
  2818. }
  2819. /**
  2820. * init_link_config - initialize a link's SW state
  2821. * @lc: structure holding the link state
  2822. * @ai: information about the current card
  2823. *
  2824. * Initializes the SW state maintained for each link, including the link's
  2825. * capabilities and default speed/duplex/flow-control/autonegotiation
  2826. * settings.
  2827. */
  2828. static void __devinit init_link_config(struct link_config *lc,
  2829. unsigned int caps)
  2830. {
  2831. lc->supported = caps;
  2832. lc->requested_speed = lc->speed = SPEED_INVALID;
  2833. lc->requested_duplex = lc->duplex = DUPLEX_INVALID;
  2834. lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
  2835. if (lc->supported & SUPPORTED_Autoneg) {
  2836. lc->advertising = lc->supported;
  2837. lc->autoneg = AUTONEG_ENABLE;
  2838. lc->requested_fc |= PAUSE_AUTONEG;
  2839. } else {
  2840. lc->advertising = 0;
  2841. lc->autoneg = AUTONEG_DISABLE;
  2842. }
  2843. }
  2844. /**
  2845. * mc7_calc_size - calculate MC7 memory size
  2846. * @cfg: the MC7 configuration
  2847. *
  2848. * Calculates the size of an MC7 memory in bytes from the value of its
  2849. * configuration register.
  2850. */
  2851. static unsigned int __devinit mc7_calc_size(u32 cfg)
  2852. {
  2853. unsigned int width = G_WIDTH(cfg);
  2854. unsigned int banks = !!(cfg & F_BKS) + 1;
  2855. unsigned int org = !!(cfg & F_ORG) + 1;
  2856. unsigned int density = G_DEN(cfg);
  2857. unsigned int MBs = ((256 << density) * banks) / (org << width);
  2858. return MBs << 20;
  2859. }
  2860. static void __devinit mc7_prep(struct adapter *adapter, struct mc7 *mc7,
  2861. unsigned int base_addr, const char *name)
  2862. {
  2863. u32 cfg;
  2864. mc7->adapter = adapter;
  2865. mc7->name = name;
  2866. mc7->offset = base_addr - MC7_PMRX_BASE_ADDR;
  2867. cfg = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
  2868. mc7->size = mc7_calc_size(cfg);
  2869. mc7->width = G_WIDTH(cfg);
  2870. }
  2871. void mac_prep(struct cmac *mac, struct adapter *adapter, int index)
  2872. {
  2873. mac->adapter = adapter;
  2874. mac->offset = (XGMAC0_1_BASE_ADDR - XGMAC0_0_BASE_ADDR) * index;
  2875. mac->nucast = 1;
  2876. if (adapter->params.rev == 0 && uses_xaui(adapter)) {
  2877. t3_write_reg(adapter, A_XGM_SERDES_CTRL + mac->offset,
  2878. is_10G(adapter) ? 0x2901c04 : 0x2301c04);
  2879. t3_set_reg_field(adapter, A_XGM_PORT_CFG + mac->offset,
  2880. F_ENRGMII, 0);
  2881. }
  2882. }
  2883. void early_hw_init(struct adapter *adapter, const struct adapter_info *ai)
  2884. {
  2885. u32 val = V_PORTSPEED(is_10G(adapter) ? 3 : 2);
  2886. mi1_init(adapter, ai);
  2887. t3_write_reg(adapter, A_I2C_CFG, /* set for 80KHz */
  2888. V_I2C_CLKDIV(adapter->params.vpd.cclk / 80 - 1));
  2889. t3_write_reg(adapter, A_T3DBG_GPIO_EN,
  2890. ai->gpio_out | F_GPIO0_OEN | F_GPIO0_OUT_VAL);
  2891. if (adapter->params.rev == 0 || !uses_xaui(adapter))
  2892. val |= F_ENRGMII;
  2893. /* Enable MAC clocks so we can access the registers */
  2894. t3_write_reg(adapter, A_XGM_PORT_CFG, val);
  2895. t3_read_reg(adapter, A_XGM_PORT_CFG);
  2896. val |= F_CLKDIVRESET_;
  2897. t3_write_reg(adapter, A_XGM_PORT_CFG, val);
  2898. t3_read_reg(adapter, A_XGM_PORT_CFG);
  2899. t3_write_reg(adapter, XGM_REG(A_XGM_PORT_CFG, 1), val);
  2900. t3_read_reg(adapter, A_XGM_PORT_CFG);
  2901. }
  2902. /*
  2903. * Reset the adapter. PCIe cards lose their config space during reset, PCI-X
  2904. * ones don't.
  2905. */
  2906. int t3_reset_adapter(struct adapter *adapter)
  2907. {
  2908. int i;
  2909. uint16_t devid = 0;
  2910. if (is_pcie(adapter))
  2911. pci_save_state(adapter->pdev);
  2912. t3_write_reg(adapter, A_PL_RST, F_CRSTWRM | F_CRSTWRMMODE);
  2913. /*
  2914. * Delay. Give Some time to device to reset fully.
  2915. * XXX The delay time should be modified.
  2916. */
  2917. for (i = 0; i < 10; i++) {
  2918. msleep(50);
  2919. pci_read_config_word(adapter->pdev, 0x00, &devid);
  2920. if (devid == 0x1425)
  2921. break;
  2922. }
  2923. if (devid != 0x1425)
  2924. return -1;
  2925. if (is_pcie(adapter))
  2926. pci_restore_state(adapter->pdev);
  2927. return 0;
  2928. }
  2929. /*
  2930. * Initialize adapter SW state for the various HW modules, set initial values
  2931. * for some adapter tunables, take PHYs out of reset, and initialize the MDIO
  2932. * interface.
  2933. */
  2934. int __devinit t3_prep_adapter(struct adapter *adapter,
  2935. const struct adapter_info *ai, int reset)
  2936. {
  2937. int ret;
  2938. unsigned int i, j = 0;
  2939. get_pci_mode(adapter, &adapter->params.pci);
  2940. adapter->params.info = ai;
  2941. adapter->params.nports = ai->nports;
  2942. adapter->params.rev = t3_read_reg(adapter, A_PL_REV);
  2943. adapter->params.linkpoll_period = 0;
  2944. adapter->params.stats_update_period = is_10G(adapter) ?
  2945. MAC_STATS_ACCUM_SECS : (MAC_STATS_ACCUM_SECS * 10);
  2946. adapter->params.pci.vpd_cap_addr =
  2947. pci_find_capability(adapter->pdev, PCI_CAP_ID_VPD);
  2948. ret = get_vpd_params(adapter, &adapter->params.vpd);
  2949. if (ret < 0)
  2950. return ret;
  2951. if (reset && t3_reset_adapter(adapter))
  2952. return -1;
  2953. t3_sge_prep(adapter, &adapter->params.sge);
  2954. if (adapter->params.vpd.mclk) {
  2955. struct tp_params *p = &adapter->params.tp;
  2956. mc7_prep(adapter, &adapter->pmrx, MC7_PMRX_BASE_ADDR, "PMRX");
  2957. mc7_prep(adapter, &adapter->pmtx, MC7_PMTX_BASE_ADDR, "PMTX");
  2958. mc7_prep(adapter, &adapter->cm, MC7_CM_BASE_ADDR, "CM");
  2959. p->nchan = ai->nports;
  2960. p->pmrx_size = t3_mc7_size(&adapter->pmrx);
  2961. p->pmtx_size = t3_mc7_size(&adapter->pmtx);
  2962. p->cm_size = t3_mc7_size(&adapter->cm);
  2963. p->chan_rx_size = p->pmrx_size / 2; /* only 1 Rx channel */
  2964. p->chan_tx_size = p->pmtx_size / p->nchan;
  2965. p->rx_pg_size = 64 * 1024;
  2966. p->tx_pg_size = is_10G(adapter) ? 64 * 1024 : 16 * 1024;
  2967. p->rx_num_pgs = pm_num_pages(p->chan_rx_size, p->rx_pg_size);
  2968. p->tx_num_pgs = pm_num_pages(p->chan_tx_size, p->tx_pg_size);
  2969. p->ntimer_qs = p->cm_size >= (128 << 20) ||
  2970. adapter->params.rev > 0 ? 12 : 6;
  2971. adapter->params.mc5.nservers = DEFAULT_NSERVERS;
  2972. adapter->params.mc5.nfilters = adapter->params.rev > 0 ?
  2973. DEFAULT_NFILTERS : 0;
  2974. adapter->params.mc5.nroutes = 0;
  2975. t3_mc5_prep(adapter, &adapter->mc5, MC5_MODE_144_BIT);
  2976. init_mtus(adapter->params.mtus);
  2977. init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
  2978. }
  2979. early_hw_init(adapter, ai);
  2980. for_each_port(adapter, i) {
  2981. u8 hw_addr[6];
  2982. struct port_info *p = adap2pinfo(adapter, i);
  2983. while (!adapter->params.vpd.port_type[j])
  2984. ++j;
  2985. p->port_type = &port_types[adapter->params.vpd.port_type[j]];
  2986. p->port_type->phy_prep(&p->phy, adapter, ai->phy_base_addr + j,
  2987. ai->mdio_ops);
  2988. mac_prep(&p->mac, adapter, j);
  2989. ++j;
  2990. /*
  2991. * The VPD EEPROM stores the base Ethernet address for the
  2992. * card. A port's address is derived from the base by adding
  2993. * the port's index to the base's low octet.
  2994. */
  2995. memcpy(hw_addr, adapter->params.vpd.eth_base, 5);
  2996. hw_addr[5] = adapter->params.vpd.eth_base[5] + i;
  2997. memcpy(adapter->port[i]->dev_addr, hw_addr,
  2998. ETH_ALEN);
  2999. memcpy(adapter->port[i]->perm_addr, hw_addr,
  3000. ETH_ALEN);
  3001. init_link_config(&p->link_config, p->port_type->caps);
  3002. p->phy.ops->power_down(&p->phy, 1);
  3003. if (!(p->port_type->caps & SUPPORTED_IRQ))
  3004. adapter->params.linkpoll_period = 10;
  3005. }
  3006. return 0;
  3007. }
  3008. void t3_led_ready(struct adapter *adapter)
  3009. {
  3010. t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
  3011. F_GPIO0_OUT_VAL);
  3012. }