cpufreq_ondemand.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610
  1. /*
  2. * drivers/cpufreq/cpufreq_ondemand.c
  3. *
  4. * Copyright (C) 2001 Russell King
  5. * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
  6. * Jun Nakajima <jun.nakajima@intel.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/module.h>
  14. #include <linux/init.h>
  15. #include <linux/cpufreq.h>
  16. #include <linux/cpu.h>
  17. #include <linux/jiffies.h>
  18. #include <linux/kernel_stat.h>
  19. #include <linux/mutex.h>
  20. /*
  21. * dbs is used in this file as a shortform for demandbased switching
  22. * It helps to keep variable names smaller, simpler
  23. */
  24. #define DEF_FREQUENCY_UP_THRESHOLD (80)
  25. #define MIN_FREQUENCY_UP_THRESHOLD (11)
  26. #define MAX_FREQUENCY_UP_THRESHOLD (100)
  27. /*
  28. * The polling frequency of this governor depends on the capability of
  29. * the processor. Default polling frequency is 1000 times the transition
  30. * latency of the processor. The governor will work on any processor with
  31. * transition latency <= 10mS, using appropriate sampling
  32. * rate.
  33. * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
  34. * this governor will not work.
  35. * All times here are in uS.
  36. */
  37. static unsigned int def_sampling_rate;
  38. #define MIN_SAMPLING_RATE_RATIO (2)
  39. /* for correct statistics, we need at least 10 ticks between each measure */
  40. #define MIN_STAT_SAMPLING_RATE \
  41. (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
  42. #define MIN_SAMPLING_RATE \
  43. (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
  44. #define MAX_SAMPLING_RATE (500 * def_sampling_rate)
  45. #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER (1000)
  46. #define TRANSITION_LATENCY_LIMIT (10 * 1000)
  47. static void do_dbs_timer(struct work_struct *work);
  48. /* Sampling types */
  49. enum dbs_sample {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
  50. struct cpu_dbs_info_s {
  51. cputime64_t prev_cpu_idle;
  52. cputime64_t prev_cpu_wall;
  53. struct cpufreq_policy *cur_policy;
  54. struct delayed_work work;
  55. enum dbs_sample sample_type;
  56. unsigned int enable;
  57. struct cpufreq_frequency_table *freq_table;
  58. unsigned int freq_lo;
  59. unsigned int freq_lo_jiffies;
  60. unsigned int freq_hi_jiffies;
  61. };
  62. static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
  63. static unsigned int dbs_enable; /* number of CPUs using this policy */
  64. /*
  65. * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
  66. * lock and dbs_mutex. cpu_hotplug lock should always be held before
  67. * dbs_mutex. If any function that can potentially take cpu_hotplug lock
  68. * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
  69. * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
  70. * is recursive for the same process. -Venki
  71. */
  72. static DEFINE_MUTEX(dbs_mutex);
  73. static struct workqueue_struct *kondemand_wq;
  74. static struct dbs_tuners {
  75. unsigned int sampling_rate;
  76. unsigned int up_threshold;
  77. unsigned int ignore_nice;
  78. unsigned int powersave_bias;
  79. } dbs_tuners_ins = {
  80. .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
  81. .ignore_nice = 0,
  82. .powersave_bias = 0,
  83. };
  84. static inline cputime64_t get_cpu_idle_time(unsigned int cpu)
  85. {
  86. cputime64_t retval;
  87. retval = cputime64_add(kstat_cpu(cpu).cpustat.idle,
  88. kstat_cpu(cpu).cpustat.iowait);
  89. if (dbs_tuners_ins.ignore_nice)
  90. retval = cputime64_add(retval, kstat_cpu(cpu).cpustat.nice);
  91. return retval;
  92. }
  93. /*
  94. * Find right freq to be set now with powersave_bias on.
  95. * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
  96. * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
  97. */
  98. static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
  99. unsigned int freq_next,
  100. unsigned int relation)
  101. {
  102. unsigned int freq_req, freq_reduc, freq_avg;
  103. unsigned int freq_hi, freq_lo;
  104. unsigned int index = 0;
  105. unsigned int jiffies_total, jiffies_hi, jiffies_lo;
  106. struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, policy->cpu);
  107. if (!dbs_info->freq_table) {
  108. dbs_info->freq_lo = 0;
  109. dbs_info->freq_lo_jiffies = 0;
  110. return freq_next;
  111. }
  112. cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
  113. relation, &index);
  114. freq_req = dbs_info->freq_table[index].frequency;
  115. freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
  116. freq_avg = freq_req - freq_reduc;
  117. /* Find freq bounds for freq_avg in freq_table */
  118. index = 0;
  119. cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
  120. CPUFREQ_RELATION_H, &index);
  121. freq_lo = dbs_info->freq_table[index].frequency;
  122. index = 0;
  123. cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
  124. CPUFREQ_RELATION_L, &index);
  125. freq_hi = dbs_info->freq_table[index].frequency;
  126. /* Find out how long we have to be in hi and lo freqs */
  127. if (freq_hi == freq_lo) {
  128. dbs_info->freq_lo = 0;
  129. dbs_info->freq_lo_jiffies = 0;
  130. return freq_lo;
  131. }
  132. jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
  133. jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
  134. jiffies_hi += ((freq_hi - freq_lo) / 2);
  135. jiffies_hi /= (freq_hi - freq_lo);
  136. jiffies_lo = jiffies_total - jiffies_hi;
  137. dbs_info->freq_lo = freq_lo;
  138. dbs_info->freq_lo_jiffies = jiffies_lo;
  139. dbs_info->freq_hi_jiffies = jiffies_hi;
  140. return freq_hi;
  141. }
  142. static void ondemand_powersave_bias_init(void)
  143. {
  144. int i;
  145. for_each_online_cpu(i) {
  146. struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, i);
  147. dbs_info->freq_table = cpufreq_frequency_get_table(i);
  148. dbs_info->freq_lo = 0;
  149. }
  150. }
  151. /************************** sysfs interface ************************/
  152. static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
  153. {
  154. return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
  155. }
  156. static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
  157. {
  158. return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
  159. }
  160. #define define_one_ro(_name) \
  161. static struct freq_attr _name = \
  162. __ATTR(_name, 0444, show_##_name, NULL)
  163. define_one_ro(sampling_rate_max);
  164. define_one_ro(sampling_rate_min);
  165. /* cpufreq_ondemand Governor Tunables */
  166. #define show_one(file_name, object) \
  167. static ssize_t show_##file_name \
  168. (struct cpufreq_policy *unused, char *buf) \
  169. { \
  170. return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
  171. }
  172. show_one(sampling_rate, sampling_rate);
  173. show_one(up_threshold, up_threshold);
  174. show_one(ignore_nice_load, ignore_nice);
  175. show_one(powersave_bias, powersave_bias);
  176. static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
  177. const char *buf, size_t count)
  178. {
  179. unsigned int input;
  180. int ret;
  181. ret = sscanf(buf, "%u", &input);
  182. mutex_lock(&dbs_mutex);
  183. if (ret != 1 || input > MAX_SAMPLING_RATE
  184. || input < MIN_SAMPLING_RATE) {
  185. mutex_unlock(&dbs_mutex);
  186. return -EINVAL;
  187. }
  188. dbs_tuners_ins.sampling_rate = input;
  189. mutex_unlock(&dbs_mutex);
  190. return count;
  191. }
  192. static ssize_t store_up_threshold(struct cpufreq_policy *unused,
  193. const char *buf, size_t count)
  194. {
  195. unsigned int input;
  196. int ret;
  197. ret = sscanf(buf, "%u", &input);
  198. mutex_lock(&dbs_mutex);
  199. if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
  200. input < MIN_FREQUENCY_UP_THRESHOLD) {
  201. mutex_unlock(&dbs_mutex);
  202. return -EINVAL;
  203. }
  204. dbs_tuners_ins.up_threshold = input;
  205. mutex_unlock(&dbs_mutex);
  206. return count;
  207. }
  208. static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
  209. const char *buf, size_t count)
  210. {
  211. unsigned int input;
  212. int ret;
  213. unsigned int j;
  214. ret = sscanf(buf, "%u", &input);
  215. if ( ret != 1 )
  216. return -EINVAL;
  217. if ( input > 1 )
  218. input = 1;
  219. mutex_lock(&dbs_mutex);
  220. if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
  221. mutex_unlock(&dbs_mutex);
  222. return count;
  223. }
  224. dbs_tuners_ins.ignore_nice = input;
  225. /* we need to re-evaluate prev_cpu_idle */
  226. for_each_online_cpu(j) {
  227. struct cpu_dbs_info_s *dbs_info;
  228. dbs_info = &per_cpu(cpu_dbs_info, j);
  229. dbs_info->prev_cpu_idle = get_cpu_idle_time(j);
  230. dbs_info->prev_cpu_wall = get_jiffies_64();
  231. }
  232. mutex_unlock(&dbs_mutex);
  233. return count;
  234. }
  235. static ssize_t store_powersave_bias(struct cpufreq_policy *unused,
  236. const char *buf, size_t count)
  237. {
  238. unsigned int input;
  239. int ret;
  240. ret = sscanf(buf, "%u", &input);
  241. if (ret != 1)
  242. return -EINVAL;
  243. if (input > 1000)
  244. input = 1000;
  245. mutex_lock(&dbs_mutex);
  246. dbs_tuners_ins.powersave_bias = input;
  247. ondemand_powersave_bias_init();
  248. mutex_unlock(&dbs_mutex);
  249. return count;
  250. }
  251. #define define_one_rw(_name) \
  252. static struct freq_attr _name = \
  253. __ATTR(_name, 0644, show_##_name, store_##_name)
  254. define_one_rw(sampling_rate);
  255. define_one_rw(up_threshold);
  256. define_one_rw(ignore_nice_load);
  257. define_one_rw(powersave_bias);
  258. static struct attribute * dbs_attributes[] = {
  259. &sampling_rate_max.attr,
  260. &sampling_rate_min.attr,
  261. &sampling_rate.attr,
  262. &up_threshold.attr,
  263. &ignore_nice_load.attr,
  264. &powersave_bias.attr,
  265. NULL
  266. };
  267. static struct attribute_group dbs_attr_group = {
  268. .attrs = dbs_attributes,
  269. .name = "ondemand",
  270. };
  271. /************************** sysfs end ************************/
  272. static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
  273. {
  274. unsigned int idle_ticks, total_ticks;
  275. unsigned int load;
  276. cputime64_t cur_jiffies;
  277. struct cpufreq_policy *policy;
  278. unsigned int j;
  279. if (!this_dbs_info->enable)
  280. return;
  281. this_dbs_info->freq_lo = 0;
  282. policy = this_dbs_info->cur_policy;
  283. cur_jiffies = jiffies64_to_cputime64(get_jiffies_64());
  284. total_ticks = (unsigned int) cputime64_sub(cur_jiffies,
  285. this_dbs_info->prev_cpu_wall);
  286. this_dbs_info->prev_cpu_wall = cur_jiffies;
  287. if (!total_ticks)
  288. return;
  289. /*
  290. * Every sampling_rate, we check, if current idle time is less
  291. * than 20% (default), then we try to increase frequency
  292. * Every sampling_rate, we look for a the lowest
  293. * frequency which can sustain the load while keeping idle time over
  294. * 30%. If such a frequency exist, we try to decrease to this frequency.
  295. *
  296. * Any frequency increase takes it to the maximum frequency.
  297. * Frequency reduction happens at minimum steps of
  298. * 5% (default) of current frequency
  299. */
  300. /* Get Idle Time */
  301. idle_ticks = UINT_MAX;
  302. for_each_cpu_mask(j, policy->cpus) {
  303. cputime64_t total_idle_ticks;
  304. unsigned int tmp_idle_ticks;
  305. struct cpu_dbs_info_s *j_dbs_info;
  306. j_dbs_info = &per_cpu(cpu_dbs_info, j);
  307. total_idle_ticks = get_cpu_idle_time(j);
  308. tmp_idle_ticks = (unsigned int) cputime64_sub(total_idle_ticks,
  309. j_dbs_info->prev_cpu_idle);
  310. j_dbs_info->prev_cpu_idle = total_idle_ticks;
  311. if (tmp_idle_ticks < idle_ticks)
  312. idle_ticks = tmp_idle_ticks;
  313. }
  314. load = (100 * (total_ticks - idle_ticks)) / total_ticks;
  315. /* Check for frequency increase */
  316. if (load > dbs_tuners_ins.up_threshold) {
  317. /* if we are already at full speed then break out early */
  318. if (!dbs_tuners_ins.powersave_bias) {
  319. if (policy->cur == policy->max)
  320. return;
  321. __cpufreq_driver_target(policy, policy->max,
  322. CPUFREQ_RELATION_H);
  323. } else {
  324. int freq = powersave_bias_target(policy, policy->max,
  325. CPUFREQ_RELATION_H);
  326. __cpufreq_driver_target(policy, freq,
  327. CPUFREQ_RELATION_L);
  328. }
  329. return;
  330. }
  331. /* Check for frequency decrease */
  332. /* if we cannot reduce the frequency anymore, break out early */
  333. if (policy->cur == policy->min)
  334. return;
  335. /*
  336. * The optimal frequency is the frequency that is the lowest that
  337. * can support the current CPU usage without triggering the up
  338. * policy. To be safe, we focus 10 points under the threshold.
  339. */
  340. if (load < (dbs_tuners_ins.up_threshold - 10)) {
  341. unsigned int freq_next, freq_cur;
  342. freq_cur = cpufreq_driver_getavg(policy);
  343. if (!freq_cur)
  344. freq_cur = policy->cur;
  345. freq_next = (freq_cur * load) /
  346. (dbs_tuners_ins.up_threshold - 10);
  347. if (!dbs_tuners_ins.powersave_bias) {
  348. __cpufreq_driver_target(policy, freq_next,
  349. CPUFREQ_RELATION_L);
  350. } else {
  351. int freq = powersave_bias_target(policy, freq_next,
  352. CPUFREQ_RELATION_L);
  353. __cpufreq_driver_target(policy, freq,
  354. CPUFREQ_RELATION_L);
  355. }
  356. }
  357. }
  358. static void do_dbs_timer(struct work_struct *work)
  359. {
  360. unsigned int cpu = smp_processor_id();
  361. struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, cpu);
  362. enum dbs_sample sample_type = dbs_info->sample_type;
  363. /* We want all CPUs to do sampling nearly on same jiffy */
  364. int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
  365. /* Permit rescheduling of this work item */
  366. work_release(work);
  367. delay -= jiffies % delay;
  368. if (!dbs_info->enable)
  369. return;
  370. /* Common NORMAL_SAMPLE setup */
  371. dbs_info->sample_type = DBS_NORMAL_SAMPLE;
  372. if (!dbs_tuners_ins.powersave_bias ||
  373. sample_type == DBS_NORMAL_SAMPLE) {
  374. lock_cpu_hotplug();
  375. dbs_check_cpu(dbs_info);
  376. unlock_cpu_hotplug();
  377. if (dbs_info->freq_lo) {
  378. /* Setup timer for SUB_SAMPLE */
  379. dbs_info->sample_type = DBS_SUB_SAMPLE;
  380. delay = dbs_info->freq_hi_jiffies;
  381. }
  382. } else {
  383. __cpufreq_driver_target(dbs_info->cur_policy,
  384. dbs_info->freq_lo,
  385. CPUFREQ_RELATION_H);
  386. }
  387. queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
  388. }
  389. static inline void dbs_timer_init(unsigned int cpu)
  390. {
  391. struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, cpu);
  392. /* We want all CPUs to do sampling nearly on same jiffy */
  393. int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
  394. delay -= jiffies % delay;
  395. ondemand_powersave_bias_init();
  396. INIT_DELAYED_WORK_NAR(&dbs_info->work, do_dbs_timer);
  397. dbs_info->sample_type = DBS_NORMAL_SAMPLE;
  398. queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
  399. }
  400. static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
  401. {
  402. dbs_info->enable = 0;
  403. cancel_delayed_work(&dbs_info->work);
  404. flush_workqueue(kondemand_wq);
  405. }
  406. static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
  407. unsigned int event)
  408. {
  409. unsigned int cpu = policy->cpu;
  410. struct cpu_dbs_info_s *this_dbs_info;
  411. unsigned int j;
  412. int rc;
  413. this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
  414. switch (event) {
  415. case CPUFREQ_GOV_START:
  416. if ((!cpu_online(cpu)) || (!policy->cur))
  417. return -EINVAL;
  418. if (policy->cpuinfo.transition_latency >
  419. (TRANSITION_LATENCY_LIMIT * 1000)) {
  420. printk(KERN_WARNING "ondemand governor failed to load "
  421. "due to too long transition latency\n");
  422. return -EINVAL;
  423. }
  424. if (this_dbs_info->enable) /* Already enabled */
  425. break;
  426. mutex_lock(&dbs_mutex);
  427. dbs_enable++;
  428. if (dbs_enable == 1) {
  429. kondemand_wq = create_workqueue("kondemand");
  430. if (!kondemand_wq) {
  431. printk(KERN_ERR
  432. "Creation of kondemand failed\n");
  433. dbs_enable--;
  434. mutex_unlock(&dbs_mutex);
  435. return -ENOSPC;
  436. }
  437. }
  438. rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
  439. if (rc) {
  440. if (dbs_enable == 1)
  441. destroy_workqueue(kondemand_wq);
  442. dbs_enable--;
  443. mutex_unlock(&dbs_mutex);
  444. return rc;
  445. }
  446. for_each_cpu_mask(j, policy->cpus) {
  447. struct cpu_dbs_info_s *j_dbs_info;
  448. j_dbs_info = &per_cpu(cpu_dbs_info, j);
  449. j_dbs_info->cur_policy = policy;
  450. j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j);
  451. j_dbs_info->prev_cpu_wall = get_jiffies_64();
  452. }
  453. this_dbs_info->enable = 1;
  454. /*
  455. * Start the timerschedule work, when this governor
  456. * is used for first time
  457. */
  458. if (dbs_enable == 1) {
  459. unsigned int latency;
  460. /* policy latency is in nS. Convert it to uS first */
  461. latency = policy->cpuinfo.transition_latency / 1000;
  462. if (latency == 0)
  463. latency = 1;
  464. def_sampling_rate = latency *
  465. DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
  466. if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
  467. def_sampling_rate = MIN_STAT_SAMPLING_RATE;
  468. dbs_tuners_ins.sampling_rate = def_sampling_rate;
  469. }
  470. dbs_timer_init(policy->cpu);
  471. mutex_unlock(&dbs_mutex);
  472. break;
  473. case CPUFREQ_GOV_STOP:
  474. mutex_lock(&dbs_mutex);
  475. dbs_timer_exit(this_dbs_info);
  476. sysfs_remove_group(&policy->kobj, &dbs_attr_group);
  477. dbs_enable--;
  478. if (dbs_enable == 0)
  479. destroy_workqueue(kondemand_wq);
  480. mutex_unlock(&dbs_mutex);
  481. break;
  482. case CPUFREQ_GOV_LIMITS:
  483. mutex_lock(&dbs_mutex);
  484. if (policy->max < this_dbs_info->cur_policy->cur)
  485. __cpufreq_driver_target(this_dbs_info->cur_policy,
  486. policy->max,
  487. CPUFREQ_RELATION_H);
  488. else if (policy->min > this_dbs_info->cur_policy->cur)
  489. __cpufreq_driver_target(this_dbs_info->cur_policy,
  490. policy->min,
  491. CPUFREQ_RELATION_L);
  492. mutex_unlock(&dbs_mutex);
  493. break;
  494. }
  495. return 0;
  496. }
  497. static struct cpufreq_governor cpufreq_gov_dbs = {
  498. .name = "ondemand",
  499. .governor = cpufreq_governor_dbs,
  500. .owner = THIS_MODULE,
  501. };
  502. static int __init cpufreq_gov_dbs_init(void)
  503. {
  504. return cpufreq_register_governor(&cpufreq_gov_dbs);
  505. }
  506. static void __exit cpufreq_gov_dbs_exit(void)
  507. {
  508. cpufreq_unregister_governor(&cpufreq_gov_dbs);
  509. }
  510. MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
  511. MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
  512. MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
  513. "Low Latency Frequency Transition capable processors");
  514. MODULE_LICENSE("GPL");
  515. module_init(cpufreq_gov_dbs_init);
  516. module_exit(cpufreq_gov_dbs_exit);